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Bounds on curved domain walls in 5D gravity
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Department of Physics and SLAC, Stanford University, Stanford, California 94305/94309

~Received 2 March 2000; published 14 September 2000!

We discuss maximally symmetric curved deformations of the flat domain wall solutions of five-dimensional
dilaton gravity that appeared in a recent approach to the cosmological constant problem. By analyzing the bulk
field configurations and the boundary conditions at a four-dimensional maximally symmetric curved domain
wall, we obtain constraints on such solutions. For a special dilaton coupling to the brane tension that appeared
in recent works, we find no curved deformations, confirming and extending slightly a result of Arkani-Hamed
et al. which was argued using aZ2 symmetry of the solution. For more general dilaton-dependent brane
tension, we find that the curvature is bounded by the Kaluza-Klein scale in the fifth dimension.

PACS number~s!: 11.27.1d, 11.25.Mj
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I. INTRODUCTION

There has recently been renewed interest in the old
that placing our world on a domain wall in a highe
dimensional bulk space can provide a useful new perspec
on the cosmological constant problem@1#. Work in this di-
rection appeared in@2,3#. More recently, concrete example
of 4D domain wall universes which have bound state gra
tons@4# and a 4D cosmological constant which is insensit
to quantum loops of matter fields localized on the wall a
peared in@5,6#. Similar domain wall solutions have bee
explored@in the context of the AdS conformal field theor
~CFT! correspondence# in @7,8#.

In this paper, we extend our work@5# in one respect.
There, we concentrated for the most part on 5D gravity th
ries with a bulk scalar dilatonf, and action

S5M
*
3 E d5xA2GFR2

4

3
~¹f!2G1E d4xA2g„2 f ~f!…

~1.1!

~with vanishing bulk cosmological term!. In Eq. ~1.1!, G is
the 5D bulk metric, whileg is the induced metric on the
domain wall, which is located atx550. We demonstrated
that one can find flat domain wall solutions for fairly gene
thin wall d function sourcesf (f), i.e, without ‘‘fine-tuning’’
the brane tensionf (f). This is important because quantu
loops of brane matter fields will in the most general circu
stances correct the form off (f); it demonstrates some in
sensitivity of the existence of a flat 4D world to brane qua
tum loops. However, we did not address the issue of cur
@de Sitter or anti–de Sitter~AdS!# solutions to the same 5D
equations of motion.

Here we find curved solutions with maximal symmetry
four dimensions. More specifically, for both negative
curved and positively curved deformations we find that
largest scale of curvature possible is given by the scale se
the inverse proper length of the fifth dimension. In particul
the curvature can at most reach the mass scale of Kal
Klein modes in the fifth dimension. Unfortunately this upp
bound is essentially equivalent to a 4D vacuum energy of
order of the scale of brane physics.
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The organization of this paper is as follows. In Sec. II w
describe the bulk gravity solutions with maximally symme
ric curved domain walls and the matching boundary con
tions at the domain wall. In Sec. III we explain the boun
on the curvature of curved solutions that result from the
solutions. In Sec. IV, we discuss some additional issues
interest in analyzing the physics of the solutions discus
here and in@5,6#, including the singularities.

II. CURVED SOLUTIONS AND MATCHING CONDITIONS

We will make the following ansatz for the metric~follow-
ing @9,10#!:

ds25e2A~x5!ḡmndxmdxn1dx5
2, ~2.1!

where

ḡmn5diag~21,e2AL̄x1,e2AL̄x1,e2AL̄x1!

for de Sitter space and

ḡmn5diag~2e2A2L̄x4,e2A2L̄x4,e2AL̄x4,1!

for anti–de Sitter space.
Plugging this ansatz into the dilaton equations and E

stein’s equations gives

8

3
f91

32

3
A8f82

] f

]f
d~x5!50, ~2.2!

6~A8!22
2

3
~f8!226L̄e22A50, ~2.3!

3A91
4

3
~f8!213L̄e22A1

1

2
f ~f!d~x5!50. ~2.4!

Note here that the zero modeA(0) always appears togethe
with L̄ here; we will takeA(0)50 in what follows.

Integrating the first equation in the bulk gives

f85ge24A ~2.5!
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for some integration constantg. Substituting this into the
second equation gives

A85eA 1
9 g2e28A1L̄e22A, ~2.6!

wheree561 determines the branch of the square root t
we choose in the solution. Note here that this solution o
makes sense when the argument of the square root in
~2.6! is positive; for anti–de Sitter slices~negativeL̄! this
gives a constraint onL̄ which we will discuss in Sec. III.

This equation can be integrated to yield

EA edA

A1

9
g2e28A1L̄e22A

5x51
3

4
c. ~2.7!

The left-hand side of Eq.~2.7! is

3

4
e

1

ugu
e4A

2F1S 1

2
,
2

3
,
5

3
,2

9L̄

g2 e6AD 5x51
3

4
c, ~2.8!

where 2F1( 1
2 , 2

3 , 5
3 ,z)[F(z) is a hypergeometric function. I

is analytic onC2$@1,̀ ),R% and increases monotonicall
from F(2`)50 throughF(0)51 until it attains its maxi-
mum at

F~1!5Fmax5
G~ 5

3 !G~ 1
2 !

G~ 7
6 !

51.725.

BecauseF>0, the solution~2.8! is valid only on one side
of x552 3

4 c ~determined by the signe!. At x552c there is
a curvature singularity. As in@5,6#, we make the assumptio
that the space can be truncated at this singularity, at lea
far as low-energy physics is concerned.

Let us now introduce a domain wall atx550. We must
match the bulk solutions@given implicitly in Eqs.~2.5! and
~2.8!# on the two sides of the wall, consistent with th
d-function terms in Eqs.~2.2! and ~2.4!. Let us denote the
integration constants on the left (x5,0) side of the wall by
c1 , g1 , d1 and those on the right (x5.0) side byc2 , g2 ,
d2 . Heredi refers to the zero modef(0) of the dilaton field
on the i th side of the wall. Imposing continuity off at the
wall fixes d2 .

Defining c̃i5ci /Fux550 , we find the matching condition

2
8

3
M

*
3 S 1

c̃1
1

1

c̃2
D5

] f

]f
„f~0!…, ~2.9!

M
*
3 SAS 1

c̃1
D 2

19L̄1AS 1

c̃2
D 2

19L̄ D 5
1

2
f „f~0!….

~2.10!

We here used the fact, which follows from Eq.~2.8! evalu-
ated atx550 with A(0)50, thatug i uuc̃i u51.
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t
y
q.

as

III. BOUNDS ON CURVED DEFORMATIONS

A. Asymmetric solutions „I … †General f „f…‡

We have now gathered the information we need to de
mine the extent of curvature of these curved-slice deform
tions of the flat solutions of@5,6#. We will first discuss a
bound onuL̄u, which basically constrains it to be less tha
the inverse proper length of the fifth dimension, that appl
to both signs ofL̄. We will then discuss a tighter bound tha
arises in the case of positiveL̄.

Consider the Eq.~2.8! at x550:

euc̃uF„29L~ c̃!2
…5c. ~3.1!

Defining y[A9uL̄uuc̃u, this equation implies

uyF~2y2!u5ucuA9uL̄u. ~3.2!

Now the quantityyF(2y2) is bounded. In fact, its maximum
value ~attained asy→`! is 4. We have from Eq.~3.2! that

A9uL̄u,4U 1

ci
U, ~3.3!

where we added the index toci since this bound applies o
either side of the domain wall.

Note from the metric~2.1! that uci u is the proper distance
to the singularity on thei th side of the wall. So for either
sign of L̄, we find that the effective 4D cosmological con
stant of the curved solutions is bounded to be smaller t
the Kaluza-Klein scale in the bulk.

This reflects the same physical point made in@5,6#: there
is no contribution from physics localized on the brane to
4D cosmological constant. A brane-scale cosmological c
stant would have manifested itself in a contribution to E
~3.3! which depends onf „f(0)…, and such terms are absen
These bounds arise from the matching conditions, but n
that it is not the case that the singularities recede to` ~or
come in to the origin! as one saturates the bound.

The largest phenomenologically viable value for t
proper distancec is roughly a millimeter@11#. This would
give us a bound onL̄ of about 1026 eV2. This is much larger
than the observed valueL̄;10264eV2 of the cosmological
constant. Note that we here are using ‘‘general relativit
conventions for the cosmological constantL̄; the standard
‘‘particle physics’’ cosmological constant isL45M4

2L̃
;mm24. Unfortunately this is within a couple of orders o
magnitude of the standard model scale of TeV4. In a model
with supersymmetry spontaneously broken at the TeV sc
this would be the scale of a brane cosmological constan

For positiveL̄ this 1/c scale is itself bounded by a furthe
constraint. Consider the matching condition~2.10!. It implies
that

1

c̃i
2,

1

2M
*
3 f ~f!. ~3.4!

Therefore, sincec5 c̃/Fu0 , we can extend Eq.~3.3! to
3-2
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A9L̄,4Fmax

1

2M
*
3 f ~f!. ~3.5!

In fact we can do better than Eq.~3.5!. The 4D Planck
scaleM4 is given by

M4
25M

*
3 E dx5 e2A5

M
*
3

9L̄
SA 1

uc̃1u2
19L̄

1A 1

uc̃2u2
19L̄2

1

uc̃1u
2

1

uc̃2u
D . ~3.6!

Multiplying Eq. ~3.6! by L̄, and dividing byM4
2, we get an

equation forL̄. For positiveL̄, we can use the matchin
condition ~2.10! to replace the first two terms in the pare
theses in Eq.~3.6! with 1

2 f „f(0)…. We then obtain the in-
equality

L̄,
1

18

f „f~0!…

M4
2 ~3.7!

~for negativeL̄, we would not obtain such an inequality!. So
for instance if the value off „f(0)… is TeV scale, which is
natural if we take the standard model~cut off at about a TeV!
to live on the brane, then

L̄,10233 ~TeV!2. ~3.8!

This is of the same order as the contribution of a brane w
supersymmetry spontaneously broken at a TeV.

B. Symmetric solutions„II … †f „f…ÄeÁ„4Õ3…f
‡

When we pickf (f)5e6(4/3)f, we find the matching con
dition ~2.9! becomes

M
*
3 S 1

uc̃1u
1

1

uc̃2u D56
1

2
e6~4/3!f, ~3.9!

which agrees with the second condition~2.10! when L̄50.
When L̄Þ0, the two conditions~3.9! and ~2.10! contradict
each other, and there are no solutions. This means tha
symmetric solutions of@5,6# @solutions~II ! in the classifica-
tion of @5## do not have any deformations with 4D de Sitt
or anti–de Sitter symmetry. This slightly extends the res
of Arkani-Hamedet al. @6#, who observed that such defo
mations would violate theZ2 symmetry of the solution, and
thus could not appear in aZ2 orbifold of this solution.

IV. DISCUSSION AND FURTHER ISSUES

A priori there is a question as to whether the space
integration constants is parametrized by vacuum expecta
values of fluctuating fields in four dimensions, or wheth
instead different members of this family arise from differe
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four-dimensional Lagrangians.1 The existence of anti–de Sit
ter and de Sitter deformations~bounded though they are!
suggests that these deformations constitute parameters i
4D effective theory. If the effective 4D cosmological co
stant were parametrized by a field, then in solving its eq
tions of motion one would end up with one consistent p
sibility for the value of the 4D cosmological constant. Th
fact that we find a family of solutions suggests that this is
the case here. Indeed, naive calculation of the coefficien
the kinetic term for the mode which moves one from flat
curved 4D metrics does suggest that it is not a dynam
mode~it has infinite kinetic term!. However the divergence
in the calculation arises at the singularities, so this conc
sion depends sensitively on how the singularities are
solved by microphysics.

To a 4D effective field theorist, the choice of which mem
ber of the family to start with constitutes a tuning of the 4
cosmological constant. From the point of view of the micr
scopic 5D theory, this tuning involves a parameter in t
solution and not a parameter in the Lagrangian. If this sys
can be embedded consistently into string theory, where th
are no input parameters in the ‘‘Lagrangian,’’ the mere e
istence of Poincare invariant solutions after some quan
corrections have been taken into account would be sign
cant, even if such solutions lie in a family of curved sol
tions that signal the appearance of fine-tuning at low en
gies. In any case, our results here indicate that the appa
fine-tuning required to choose a flat slice is independen
standard model physics, though it can arise at the same s

Having understood better the situation with respect to t
issue of fine-tuning, one is led to consider the main challe
identified in @5,6#: the question of possible microphysic
constraints on the~codimension one! singularities in the so-
lutions. The type of analysis we did here might help reso
an issue raised in@12#, as we will mention presently, afte
first discussing the issue in a little more generality.

One possibility is that boundary conditions are required
the singularities, as in the case analyzed in@13#. It is then
important to check whether the appropriate boundary con
tions, along with the equations of motion and matching co
ditions, can be solved within the space of curved solutio
we have identified@5,6#.

There are some singularities in string theory~like coni-
folds, orbifolds, and brane-orientifold systems! which have a
well-understood quantum resolution involving new degre
of freedom at the singularity; in these cases the resolu
does not imply any extra boundary conditions in the effect
long-wavelength theory.

It has recently been suggested that the singularities
appear in our solutions do not permit a finite-temperat
deformation accessible with a long-wavelength general r
tivistic analysis@12#. This is a criterion that does not appe
to contradict the microscopic consistency of orbifolds or c
nifolds, and the case of orientifolds and their duals must
considered carefully. Because of the large curvatures~and in

1We thank S. Dimopoulos and R. Sundrum for discussions on
point.
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some cases large couplings! in the backgrounds we conside
here, such an analysis is necessarily limited. However,
general question of how finite temperature can be obtaine
these backgrounds is an important one.

Within the context of the analysis of@12#, it is notable that
our solutions lie on the boundary between~conjecturally!
allowed and~conjecturally! disallowed singularities. It is im-
portant to redo this analysis for solutions which include so
bulk corrections. In particular, a nontrivial bulk dilaton p
tential of the right sign@as in our case~III ! @5## may put us in
the allowed region according to the conjectured criterion
@12#. Instead of fine-tuning to obtain 4D Poincare invaria
slices as we did in case~III ! of @5#, one can consider curve
solutions of the sort given here. In the context of the ty
~III ! situation where there is a bulk potential forf, this is in
fact natural if we do not wish to fine-tune the parameters
the 5D Lagrangian in order to obtain a 4D Poincare invari
solution. It is possible that this bulk correction will induce
s-

-

at
’’

n-
ra

h
,
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sub-TeV correction to the 4D cosmological constant, wh
satisfying the conjectured constraints coming from the lo
wavelength analysis of@12#.
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