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Bounds on curved domain walls in 5D gravity
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We discuss maximally symmetric curved deformations of the flat domain wall solutions of five-dimensional
dilaton gravity that appeared in a recent approach to the cosmological constant problem. By analyzing the bulk
field configurations and the boundary conditions at a four-dimensional maximally symmetric curved domain
wall, we obtain constraints on such solutions. For a special dilaton coupling to the brane tension that appeared
in recent works, we find no curved deformations, confirming and extending slightly a result of Arkani-Hamed
et al. which was argued using &, symmetry of the solution. For more general dilaton-dependent brane
tension, we find that the curvature is bounded by the Kaluza-Klein scale in the fifth dimension.

PACS numbgs): 11.27+d, 11.25.Mj

I. INTRODUCTION The organization of this paper is as follows. In Sec. Il we
describe the bulk gravity solutions with maximally symmet-
There has recently been renewed interest in the old idedc curved domain walls and the matching boundary condi-
that placing our world on a domain wall in a higher- tions at the domain wall. In Sec. Ill we explain the bounds
dimensional bulk space can provide a useful new perspectiven the curvature of curved solutions that result from these
on the cosmological constant probldi]. Work in this di-  solutions. In Sec. IV, we discuss some additional issues of
rection appeared if2,3]. More recently, concrete examples interest in analyzing the physics of the solutions discussed
of 4D domain wall universes which have bound state gravihere and if{5,6], including the singularities.
tons[4] and a 4D cosmological constant which is insensitive
to quantum loops of matter fields localized on the wall ap-;;. cURVED SOLUTIONS AND MATCHING CONDITIONS
peared in[5,6]. Similar domain wall solutions have been
explored[in the context of the AdS conformal field theory ~ We will make the following ansatz for the metiifollow-

(CFT) correspondenden [7,8]. ing [9,10)):
In this paper, we extend our wor6] in one respect. o )
There, we concentrated for the most part on 5D gravity theo- dSZZGZA(Xs)gde’LdX +dX§’ (2.7)
ries with a bulk scalar dilatorp, and action
where
4 — .
s-m? | dSXV_G[R‘?V"’)Z o [ ax=a-tean g, diag — 1,621,620 2 e

(1D for de Sitter space and

(with vanishing bulk cosmological tevmin Eg. (1.1, G is glw:diag_eZHXz;,eZHM,eZJXM,l)
the 5D bulk metric, whileg is the induced metric on the
domain wall, which is located ats;=0. We demonstrated for anti—de Sitter space.
that one can find flat domain wall solutions for fairly generic  Plugging this ansatz into the dilaton equations and Ein-
thin wall & function sources$(¢), i.e, without “fine-tuning”  stein’s equations gives
the brane tensioffi(¢). This is important because quantum
loops of brane matter fields will in the most general circum- 8 32 df
stances correct the form d¢{¢); it demonstrates some in- §¢ + §A ¢ @5()(5):0' 2.2
sensitivity of the existence of a flat 4D world to brane quan-
tum loops. However, we did not address the issue of curved 2 _
[de Sitter or anti—de SittefAdS)] solutions to the same 5D B(A")%— §(¢’)2—6Ae‘2A=O, (2.3
equations of motion.
Here we find curved solutions with maximal symmetry in
four dimensions. More specifically, for both negatively A"+ f(¢,)2+3xe72A+ lf(d’) S(x5)=0. (2.4
curved and positively curved deformations we find that the 3 2 ¥ '
largest scale of curvature possible is given by the scale set by
the inverse proper length of the fifth dimension. In particular,Note here that the zero modg0) always appears together
the curvature can at most reach the mass scale of Kaluzasith A here; we will takeA(0)=0 in what follows.
Klein modes in the fifth dimension. Unfortunately this upper Integrating the first equation in the bulk gives
bound is essentially equivalent to a 4D vacuum energy of the
order of the scale of brane physics. P'=ye A (2.5
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for some integration constant. Substituting this into the [ll. BOUNDS ON CURVED DEFORMATIONS

second equation gives A. Asymmetric solutions (1) [General f(¢)]

— —8AL An—2A We have now gathered the information we need to deter-
e M+ Ae 2.6 . :
6\/9 L4 (2.6 mine the extent of curvature of these curved-slice deforma-

. tions of the flat solutions of5,6]. We will first discuss a
wheree= *+1 determines the branch of the square root tha d onlAl which basicall L be | h
we choose in the solution. Note here that this solution only?2Und on|A|, which basically constrains it to be less than
makes sense when the argument of the square root in EHwe inverse proper length of the fifth dimension, that applies

(2.6) is positive: for anti—de Sitter sllce(sneganveA) this O both signs ofv. We will then discuss a tighter bound that

gives a constraint oi which we will discuss in Sec. Il &rises in the case of p03|t|\1te._ _
This equation can be integrated to yield Consider the Eq(2.8) at x5=0:

€[T|F(—9A (%)) =c. (3.1
A edA 3 _
f \/1 — X5t (2.7 Definingy= /9| A|[E], this equation implies
2~—8A —2A
—ye "+ Ae _
9 lyF(—=y*)|=]c[VIIA]. (3.2
The left-hand side of Eq2.7) is Now the quantityy F(—y?) is bounded. In fact, its maximum

value (attained ay—«) is 4. We have from Eq(3.2) that
1

w125 9N o) 30 g
f|| 21233 yze =Xz c, (2.9

3 pr—
4 9|A|<4

! 3.3
ik (3.3
where ,F,(3,%,2,2)=F(2) is a hypergeometric function. It where we added the index & since this bound applies on
is analytic onC—{[1,2)CR} and increases monotonically either side of the domain wall.

from F(—)=0 throughF(0)=1 until it attains its maxi- Note from the metri¢2.1) that|c;| is the proper distance
mum at to the singularity on theth side of the wall. So for either

sign of A, we find that the effective 4D cosmological con-

r( () stant of the curved solutions is bounded to be smaller than

F(1)=F —F=1.725. the Kaluza-Klein scale in the bulk.
I'(% This reflects the same physical point madé¢5t6]: there

is no contribution from physics localized on the brane to the

BecauseF>O the solution(2.8) is valid only on one side 4D cosmological constant. A brane-scale cosmological con-
of xs= — §¢ (determined by the sige). At xs=—c there is  stant would have manifested itself in a contribution to Eq.
a curvature singularity. As ifb,6], we make the assumption (3.3) which depends ofi(4(0)), and such terms are absent.

that the space can be truncated at this singularity, at least ghese bounds arise from the matching conditions, but note

far as Iow—energy physics is conc_:erned. that it is not the case that the singularities recede t@r
Let us now introduce a domain wall at=0. We must  come in to the originas one saturates the bound.
match the bulk solutionfgiven implicitly in Eqgs.(2.5 and The largest phenomenologically viable value for the

(2.9] on the two sides of the wall, consistent with the proper distance is roughly a millimeter[11]. This would
S&function terms in Eqs(2.2) and (2.4). Let us denote the give us a bound o of about 10°® eV2. This is much larger
integration constants on the leftd<0) side of the wall by 64\ 2
C1, y1, d, and those on the rightxc>0) side byCy, 7y, than the observed valugé ~10~%eV? of the cosmological

d,. Hered. refers to the zero modé(0) of the dilaton field constan_t. Note that we here gre using “general relativity
on theith side of the wall. Imposing continuity a at the conventions for the cosmological constakt the standard

wall fixesd,. “particle physics” cosmological constant is\,=M2A
Defining’c‘:i=ci/F|X5=o, we find the matching conditions ~mm™4. Unfortunately this is within a couple of orders of
magnitude of the standard model scale of TeM a model
8 1 1 with supersymmetry spontaneously broken at the TeV scale,
—-M3 (~—+ —) P —(¢(0)), (2.9  this would be the scale of a brane cosmological constant.

3 C2 For positiveA this 1k scale is itself bounded by a further

constraint. Consider the matching conditi@10. It implies

1\ 12 | 1
Mi(\/(t— oA+ \/(E— +ON | =5 1($(0)). that
1 2
(2.10 1 1
€2<m3'f(¢)- (3.9
We here used the fact, which follows from Eg.8) evalu- I *
ated atxs=0 with A(0)=0, that|y;|[S;|=1. Therefore, since=T/F|,, we can extend Eq3.3) to
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— 1 four-dimensional LagrangiarisThe existence of anti—de Sit-
9A<AFmax 5z (). (3.5  ter and de Sitter deformation®ounded though they are
* suggests that these deformations constitute parameters in the
4D effective theory. If the effective 4D cosmological con-
stant were parametrized by a field, then in solving its equa-
tions of motion one would end up with one consistent pos-
sibility for the value of the 4D cosmological constant. The

In fact we can do better than E¢(B.5. The 4D Planck
scaleM, is given by

M3 1 — fact that we find a family of solutions suggests that this is not
M2=M3 | dxgeA=—2| \/—=+9A - i i
4 * 5 — AR the case here. Indeed, naive calculation of the coefficient of
9A ! the kinetic term for the mode which moves one from flat to
1 1 1 curved 4D metrics does suggest that it is not a dynamical
+ A / +9A— i (3.6) mode (it has infinite kinetic termm However the divergence
[C,]2 [T [T in the calculation arises at the singularities, so this conclu-

sion depends sensitively on how the singularities are re-
solved by microphysics.

To a 4D effective field theorist, the choice of which mem-
ber of the family to start with constitutes a tuning of the 4D
cosmological constant. From the point of view of the micro-
scopic 5D theory, this tuning involves a parameter in the
solution and not a parameter in the Lagrangian. If this system
can be embedded consistently into string theory, where there
—<i f(#(0)) 3.7) are no input parameters in the “Lagrangian,” the mere ex-

18 M3 ' istence of Poincare invariant solutions after some quantum
corrections have been taken into account would be signifi-
cant, even if such solutions lie in a family of curved solu-
tions that signal the appearance of fine-tuning at low ener-
gies. In any case, our results here indicate that the apparent
fine-tuning required to choose a flat slice is independent of
standard model physics, though it can arise at the same scale.
— a3 ) Having understood better the situation with respect to this

A<10 (Tev)“. 3.9 issue of fine-tuning, one is led to consider the main challenge
identified in [5,6]: the question of possible microphysical
This is of the same order as the contribution of a brane withconstraints on thécodimension onesingularities in the so-

Multiplying Eg. (3.6) by A, and dividing byMi, we get an
equation forA. For positive A, we can use the matching
condition (2.10 to replace the first two terms in the paren-
theses in Eq(3.6) with 3f(4(0)). We then obtain the in-
equality

(for negativeA, we would not obtain such an inequalitso

for instance if the value of (¢(0)) is TeV scale, which is
natural if we take the standard modelt off at about a TeY

to live on the brane, then

supersymmetry spontaneously broken at a TeV. lutions. The type of analysis we did here might help resolve
an issue raised ipl2], as we will mention presently, after
B. Symmetric solutions(I1) [f( ) =e*“3¢] first discussing the issue in a little more generality.

One possibility is that boundary conditions are required at
the singularities, as in the case analyzed18]. It is then
important to check whether the appropriate boundary condi-

When we pickf (¢) =e*(*®¢  we find the matching con-
dition (2.9) becomes

1 1 1 tions, along with the equations of motion and matching con-
Mi(~_+ ~_) =+ 43¢ (3.9  ditions, can be solved within the space of curved solutions
[ [T 2 we have identified5,6].

o There are some singularities in string thedlike coni-
which agrees with the second conditih10 when A=0. folds, orbifolds, and brane-orientifold systemehich have a

When A #0, the two conditiong3.9) and (2.10 contradict well-understood quantum resolution involving new degrees
each other, and there are no solutions. This means that t@f freedom at the singularity; in these cases the resolution
symmetric solutions of5,6] [solutions(1l) in the classifica- does notimply any extra boundary conditions in the effective
tion of [5]] do not have any deformations with 4D de Sitter long-wavelength theory.

or anti—de Sitter symmetry. This slightly extends the result It has recently been suggested that the singularities that
of Arkani-Hamedet al. [6], who observed that such defor- @ppear in our solutions do not permit a finite-temperature
mations would violate th&@, symmetry of the solution, and deformation accessible with a long-wavelength general rela-

thus could not appear in 2, orbifold of this solution. tivistic analysis[12]. This is a criterion that does not appear
to contradict the microscopic consistency of orbifolds or co-

nifolds, and the case of orientifolds and their duals must be
IV. DISCUSSION AND FURTHER ISSUES considered carefully. Because of the large curvat(aes in

A priori there is a question as to whether the space of
integration constants is parametrized by vacuum expectation
values of fluctuating fields in four dimensions, or whether we thank S. Dimopoulos and R. Sundrum for discussions on this
instead different members of this family arise from differentpoint.
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some cases large couplinge the backgrounds we consider sub-TeV correction to the 4D cosmological constant, while
here, such an analysis is necessarily limited. However, theatisfying the conjectured constraints coming from the long-
general question of how finite temperature can be obtained iwavelength analysis dfL2].

these backgrounds is an important one.

Within the context of the analysis pf2], it is notable that
our solutions lie on the boundary betweéronjecturally
allowed and(conjecturally disallowed singularities. It is im- We would like to thank N. Arkani-Hamed, T. Banks, S.
portant to redo this analysis for solutions which include someDimopoulos, S. Gubser, N. Kaloper, D. Kaplan, H. Ooguri,
bulk corrections. In particular, a nontrivial bulk dilaton po- J. Polchinski, S. Shenker, R. Sundrum, and L. Susskind for
tential of the right sigrias in our caséll) [5]] may put us in  helpful discussions and/or correspondence on this subject.
the allowed region according to the conjectured criterion ofWe would like to thank E. Witten for alerting us to an im-
[12]. Instead of fine-tuning to obtain 4D Poincare invariantportant error in the first version of this paper. S.K. is sup-
slices as we did in cad¢!l) of [5], one can consider curved ported in part by the A.P. Sloan Foundation Foundation,
solutions of the sort given here. In the context of the typeM.S. is supported in part by the NSF Graduate Research
(1) situation where there is a bulk potential f¢r this is in ~ program, and E.S. is supported in part by the DOE OJI pro-
fact natural if we do not wish to fine-tune the parameters ingram and the A.P. Sloan Foundation Foundation. S.K. and
the 5D Lagrangian in order to obtain a 4D Poincare invariant.S. are both supported in part by the DOE under contract
solution. It is possible that this bulk correction will induce a DE-AC03-76SF00515.
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