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Solution of Schwinger-Dyson equations forPT-symmetric quantum field theory
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In recent papers it has been observed that non-Hermitian Hamiltonians, such as those describingigf3 and
2gf4 field theories, still possess real positive spectra so long as the weaker condition ofPT symmetry holds.
This allows for the possibility of new kinds of quantum field theories that have strange and quite unexpected
properties. In this paper a technique based on truncating the Schwinger-Dyson equations is presented for
renormalizing and solving such field theories. Using this technique it is argued that a2gf4 scalar quantum
field theory in four-dimensional space-time is renormalizable, is asymptotically free, has a nonzero value of
^0ufu0&, and has a positive definite spectrum. Such a theory might be useful in describing the Higgs boson.

PACS number~s!: 11.30.Qc, 11.10.Gh, 11.15.Tk, 11.30.Er
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I. INTRODUCTION

It has recently been observed@1,2# that quantum mechani
cal theories whose Hamiltonians arePT symmetric have
positive definite spectra even if the Hamiltonian is not H
mitian. A class of such theories that has been studied ex
sively is defined by the Hamiltonian

H5p22~ ix !N ~N>2!. ~1.1!

It is believed that the reality and positivity of the spectra a
a direct consequence ofPT symmetry.

The positivity of the spectra for allN is an extremely
surprising result; it is not at all obvious, for example, that t
HamiltonianH5p22x4 corresponding toN54 has a posi-
tive real spectrum. To understand this result it is necessa
define properly the boundary conditions in the correspond
Schrödinger equation.

For the Hamiltonian in Eq.~1.1! the Schro¨dinger differ-
ential equation corresponding to the eigenvalue prob
Hc5Ec is

2c9~x!2~ ix !Nc~x!5Ec~x!. ~1.2!

The boundary conditions for this equation are discusse
detail in Ref.@1#. There, it was shown how to continue an
lytically in the parameterN away from the harmonic oscilla
tor valueN52. This analytic continuation defines the boun
ary conditions in the complex-x plane. The regions in the cu
complex-x plane in whichc(x) vanishes exponentially a
uxu→` are wedges. In Ref. @1# the wedges forN.2 were
chosen to be analytic continuations of the wedges for
harmonic oscillator, which are centered about the nega
and positive real axes and have angular openingp/2. For
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arbitraryN.2 the anti-Stokes’ lines at the centers of the l
and right wedges lie below the real axis at the angles

u left52p1S N22

N12D p

2
,

u right52S N22

N12D p

2
. ~1.3!

The opening angle of these wedges is 2p/(N12). In Ref.
@1# the time-independent Schro¨dinger equation was inte
grated numerically inside the wedges to determine the eig
values to high precision.

The quantum mechanical Hamiltonian in Eq.~1.1! has
additional remarkable properties. For example, for allN.2
the expectation valuê0uxu0& of the position operatorx in
the ground state is nonzero. This surprising result is t
even whenN54 @1#.

These results for quantum mechanics raise some inte
ing questions regarding quantum field theory. In particu
does the self-interacting scalar quantum field theory defi
by the Lagrangian

L5
1

2
~]f!21

1

2
m2f22

g

N
~ if!N ~1.4!

have a positive definite spectrum and a nonvanishing va
of ^0ufu0& for all N.2? We believe that the answer to th
question is yes. Because of these properties, we believe
when N54 the resulting quantum field theory in fou
dimensional space-time could serve as a good descriptio
the Higgs particle. As we argue in this paper, the2gf4

theory is particularly advantageous because, like the conv
tional gf4 theory it has a dimensionless coupling consta
but unlike the conventional theory, it is asymptotically fre
and is thus not a trivial theory.

The question of how to determine the properties
PT-symmetric non-Hermitian quantum field theories has
©2000 The American Physical Society01-1
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ready been examined. As we will see in this paper, conv
tional Feynman diagrammatic perturbation theory is not
equate for studying these theories. Thus, in previous w
@3,4# the perturbative approach that was used was to takN
521d, whered is treated as a small parameter. While so
interesting results regarding parity violation@3# and super-
symmetry@4# were obtained, unfortunately this perturbati
scheme has a severe drawback: It is not known how to c
out the renormalization procedure required to underst
higher-dimensional theories.

Why is it that Feynman diagrams cannot be used to p
form calculations in theories such as2gf4? As we have
already stated, in this theory^0ufu0&Þ0. There is no way to
obtain this result using the standard Feynman rules; one
not obtain a one-point Green’s function using four-point v
tex amplitudes. Indeed, as we will show in Sec. III in t
context of zero-dimensional theories, the standard Feyn
rules are incorrect for this theory.

In this paper we perform a systematic truncation of
Schwinger-Dyson equations as a calculational proced
This idea has already been applied in a simple contex
obtain Green’s functions and energy levels in conventio
quantum mechanical problems@5#. Truncating the
Schwinger-Dyson equations is an inherently variational
proach; including more and more of the higher Green’s fu
tions is equivalent to enlarging the space of variational
rameters. In a recent study of thePT-symmetric, non-
Hermitian quantum mechanical Hamiltonian in Eq.~1.1!
variational methods were found to be extremely accurate@6#.

This paper is organized as follows: In Sec. II we revie
the general approach used in this paper. We show how
derive the Schwinger-Dyson equations using simple fu
tional methods and we explain our truncation procedure
Sec. III we examine the numerical accuracy of our truncat
method in the context of zero-dimensional field theory. W
study the massless zero-dimensional version of Eq.~1.4! in
very high order in the truncation process for the casesN
53 and N54. In the case of a zero-dimensional mass
theory we show that the Feynman rules are inapplicable
Sec. IV we examine the theory in Eq.~1.4! in one-
dimensional space-time~quantum mechanics!. Finally, in
Sec. V we apply our methods to field theory in arbitra
dimension. As an application of our procedure we calcul
the Callan-Symanzik functionb(g) for a four-dimensional
2gf4 theory for smallg. We show that to leading orde
b(g) is negative and thus the theory is asymptotically fr
This result is in distinct contrast with the result for a conve
tional gf4 theory.

II. ELEMENTARY DERIVATION OF THE
SCHWINGER-DYSON EQUATIONS

The Schwinger-Dyson equations are an infinite set
coupled equations relating the Green’s functions of a qu
tum field theory. In this section we derive the Schwing
Dyson equations using elementary formal functional me
ods.

We begin with Eq.~1.4! and append a term that represen
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the coupling of the fieldf(x) to an externalc-number source
J(x):

L5
1

2
~]f!21

1

2
m2f22

g

N
~ if!N2Jf. ~2.1!

This Lagrangian represents a self-interacting scalar quan
field theory in D-dimensional Euclidean space-time. If w
vary the action with respect tof(x) we obtain the field equa
tion:

2]2f~x!1m2f~x!2 ig@ if~x!#N215J~x!. ~2.2!

Next, leaving the source turned on, we take the expe
tion value of the field equation~2.2! in the vacuum state o
the theoryu0& and divide by the vacuum-vacuum function
Z@J#5^0u0&:

2]2G1
(J)~x!1m2G1

(J)~x!2giN
^0ufN21~x!u0&

^0u0&
5J~x!,

~2.3!

whereG1
(J)(x) is the one-point Green’s function in the pre

ence of the external source:

G1
(J)~x![

^0uf~x!u0&

^0u0&
. ~2.4!

Note that the functionJ(x) appears alone on the right side
Eq. ~2.3! because it is ac-number and therefore can be fa
tored out of matrix elements.

The objective is now to use Eq.~2.3! to calculate the
Green’s functions of the theory. The~connected! Green’s
functions in the presence of the sourceJ are defined as func
tional derivatives of the logarithm ofZ@J# with respect to the
sourceJ(x):

Gn
(J)~x1 ,x2 , . . . ,xn![

d n

dJ~x1!dJ~x2!•••dJ~xn!
ln~Z@J# !.

~2.5!

To obtain the standard connected Green’s functions of
theory ~the connected part of the vacuum expectation va
of the time-ordered product of the fields; that is, the sum
the connectedn-point Feynman diagrams! we then turn off
the source:

Gn~x1 ,x2 , . . . ,xn!5Gn
(J)~x1 ,x2 , . . . ,xn!uJ[0 . ~2.6!

Note that turning off the source restores translation inva
ance. As a result, the one-point Green’s functionG1 is a
constant independent ofx, the two-point Green’s function
depends only on the differencex2y, G2(x,y)5G2(x2y),
G3(x,y,z)5G3(x2y,x2z) depends on two differences, an
so on.

Before one can proceed, one must express the third t
in Eq. ~2.3! in terms of the connected Green’s functions
the theory. To do this we recall that functionally differen
ating with respect toJ(x) is equivalent to insertingf(x) in
matrix elements@5#.
1-2
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Let us consider the simple caseN53. In this case it is
necessary to calculate the quantity^0uf2(x)u0&. To do so we
begin with Eq.~2.4! multiplied by Z@J#:

G1
(J)~x!Z@J#5^0uf~x!u0&. ~2.7!

Taking the functional derivative of this equation with respe
to J(x) gives

@G1
(J)~x!#2Z@J#1G2

(J)~x,x!Z@J#5^0uf2~x!u0&. ~2.8!

Hence, we can eliminatê0uf2(x)u0& from Eq. ~2.3! to ob-
tain

2]2G1
(J)~x!1m2G1

(J)~x!1gi„@G1
(J)~x!#21G2

(J)~x,x!…

5J~x!. ~2.9!

We now obtain the first of the Schwinger-Dyson equatio
by settingJ[0 ~turning off the source!:

m2G11gi@G1
21G2~0!#50. ~2.10!

Remember that by translation invarianceG1 is a constant, so
that its derivative vanishes and thatG2(0)5G2(x2x)
5G2(x,x).

To obtain the second of the Schwinger-Dyson equati
for N53 we take a functional derivative of Eq.~2.9! with
respect toJ(y),

2]2G2
(J)~x,y!1m2G2

(J)~x,y!1gi@2G1
(J)~x!G2

(J)~x,y!

1G3
(J)~x,x,y!#5d~x2y!, ~2.11!

and then setJ[0 in this equation:

2]2G2~x2y!1m2G2~x2y!1gi@2G1G2~x2y!

1G3~0,x2y!#5d~x2y!. ~2.12!

If we continue the process of functionally differentiatin
with respect toJ and settingJ[0, we obtain the infinite
tower of coupled differential equations known as t
Schwinger-Dyson equations. For example, the third in
sequence is

2]2G3~x2y,x2z!1m2G3~x2y,x2z!

1gi@2G1G3~x2y,x2z!12G2~x2z!G2~x2y!

1G4~0,x2y,x2z!#50. ~2.13!

Note that these Schwinger-Dyson equations areincom-
pletein the sense that there are too many unknowns. The
08500
t
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equation containsG1 and G2, the second containsG1 , G2,
andG3, and so on. Thus, each new equation contains a n
unknown Green’s function and the system never clos
However, we can force the system to close by truncating
sequence of coupled equations and settingGn1150 in the
last equation. We will use this method throughout the
mainder of the paper.

As a second example we derive the first four Schwing
Dyson equations from Eq.~2.3! for the caseN54. Using the
same approach as we did for the caseN53, we begin by
reexpressinĝ 0uf3(x)u0&. We do this by taking the func-
tional derivative of Eq.~2.8! with respect toJ(x) to obtain

@G1
(J)~x!#3Z@J#13G1

(J)~x!G2
(J)~x,x!Z@J#1G3

(J)~x,x,x!Z@J#

5^0uf3~x!u0&. ~2.14!

Substituting this result into theN54 version of Eq.~2.3!, we
have

2]2G1
(J)~x!1m2G1

(J)~x!2g„@G1
(J)~x!#3

13G1
(J)~x!G2

(J)~x,x!1G3
(J)~x,x,x!…5J~x!.

~2.15!

We obtain the first Schwinger-Dyson equation forN54 by
settingJ[0:

m2G12g@G1
313G1G2~0!1G3~0,0!#50. ~2.16!

Using the same procedure as forN53 we now take a
functional derivative of Eq.~2.15! with respect toJ(y) to
obtain

2]2G2
(J)~x,y!1m2G2

(J)~x,y!2g„3@G1
(J)~x!#2G2

(J)~x,y!

13G1
(J)~x!G3

(J)~x,x,y!13G2
(J)~x,x!G2

(J)~x,y!

1G4
(J)~x,x,x,y!…5d~x2y!. ~2.17!

Now, settingJ[0 gives the second of the Schwinger-Dys
equations forN54:

2]2G2~x2y!1m2G2~x2y!2g@3G1
2G2~x2y!

13G2~0!G2~x2y!13G1G3~0,x2y!1G4~0,0,x2y!#

5d~x2y!. ~2.18!

Repeating this process once more by functionally diff
entiating Eq.~2.17! with respect toJ(z) and settingJ[0
gives
2]2G3~x2y,x2z!1m2G3~x2y,x2z!2g@6G1G2~x2y!G2~x2z!13G1
2G3~x2y,x2z!13G2~x2z!G3~0,x2y!

13G2~x2y!G3~0,x2z!13G2~0!G3~x2y,x2z!13G1G4~0,x2y,x2z!1G5~0,0,x2y,x2z!#50, ~2.19!

the third of the Schwinger-Dyson equations forN54. The fourth Schwinger-Dyson equation is
1-3
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2]2G4~x2y,x2z,x2w!1m2G4~x2y,x2z,x2w!2g@6G2~x2y!G2~x2z!G2~x2w!16G1G2~x2y!G3~x2z,x2w!

16G1G2~x2z!G3~x2y,x2w!16G1G2~x2w!G3~x2y,x2z!13G3~0,x2y!G3~x2z,x2w!

13G3~0, x2z!G3~x2y,x2w!13G3~0, x2w!G3~x2y,x2z!13G1
2G4~x2y,x2z,x2w!

13G2~x2y!G4~0, x2z,x2w!13G2~x2z!G4~0, x2y,x2w!13G2~x2w!G4~0,x2y,x2z!

13G2~0!G4~x2y,x2z,x2w!13G1G5~0, x2y,x2z,x2w!1G6~0, 0,x2y,x2z,x2w!#50. ~2.20!
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Again, we observe that the set of equations is incompl
for this case the number of unknown Green’s functions
two more than the number of equations~instead of one more
as in the caseN53). That is, the first equation forN54
contains the three unknownsG1 , G2, and G3, the second
containsG1 , G2 , G3, and G4, and so on. To solve this
system of equations we truncate after thenth equation, but
now to close the system of equations we must setGn1150
andGn1250 in the last and next to last equations.

How do we generalize this derivation to arbitraryN?
Clearly, whenN is an integerandN.2 we can use the two
casesN53 andN54 discussed above as paradigms. All th
is needed is to functionally differentiate Eq.~2.7! N22
times. This gives an expression for^0ufN21(x)u0& in Eq.
~2.3!. For example, whenN55 we have

Z@J#„@G1
(J)~x!#416@G1

(J)~x!#2G2
(J)~x,x!13@G2

(J)~x,x!#2

14G1
(J)~x!G3

(J)~x,x,x!1G4
(J)~x,x,x,x!…

5^0uf4~x!u0&, ~2.21!

whenN56, we have

Z@J#„@G1
(J)~x!#5110@G1

(J)~x!#3G2
(J)~x,x!

115G1
(J)~x!@G2

(J)~x,x!#2110@G1
(J)~x!#2G3

(J)~x,x,x!

110G2
(J)~x,x!G3

(J)~x,x,x!15G1
(J)~x!G4

(J)~x,x,x,x!

1G5
(J)~x,x,x,x,x!…5^0uf5~x!u0&, ~2.22!

and so on. Once this calculation is completed, repeated f
tional differentiation with respect toJ followed by settingJ
[0 gives the complete set of coupled Green’s function eq
tions.

Note that while these equations are rather complica
they are easily expressible in terms of multinomial coe
cients. Following the notation of Abramowitz and Steg
@7#, the multinomial coefficients are defined as follows: F
each integern, there is a set of multinomial coefficients; ea
coefficient expresses the number of possible ways to p
tion n5a112a21•••1nan different objects intoak subsets
containingk objects (k51,2, . . . ,n). For the first few inte-
gersn the sets of multinomial coefficients~calledM3 in Ref.
@7#! are $1% for n51, $1,1% for n52, $1,3,1% for n53,
$1,4,3,6,1% for n54, and$1,5,10,10,15,10,1% for n55. Ob-
serve that these are precisely the coefficients that appe
Eq. ~2.7! for ^0uf(x)u0&, ~2.8! for ^0uf2(x)u0&, ~2.14! for
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^0uf3(x)u0&, ~2.21! for ^0uf4(x)u0&, and ~2.22! for
^0uf5(x)u0&. Also, in these equations the powers of t
Green’s functions are the numbersak .

To be precise, for eachn we must take all possible com
binations of the numbersak satisfying n5a112a21•••

1nan . In the notation of Ref.@7#, p51a1,2a2, . . . ,nan. This
allows us to read off the subscripts of the Green’s functio
and the powers to which they are raised; the numbersak are
the powers and the numbers they exponentiate are the
scripts of the Green’s functions in that term. From this w
calculate the quantity

M35~n;a1 ,a2 , . . . ,an!

5
n!

~1! !a1a1! ~2! !a2a2! . . . ~n! !anan!
, ~2.23!

which is the coefficient for that particular combination
Green’s functions.

For example, given̂0uf3(x)u0& there are three possibl
combinations of the numbersak that satisfyn5a112a2
1•••1nan : a153; a151 and a251; and a351. This
givesp513; p51,2; andp53. Thus, there are terms of th
form G1

3, G1G2, and G3. CalculatingM3 we find that the
coefficients of these terms are 1, 3, and 1. Hence, we are
to reconstruct Eq.~2.14!.

When N is noninteger, the situation is much more diffi
cult. To derive an expression for^0ufN21(x)u0& in this case,
we assume first thatN is integer and use the general formu
for ^0ufN21(x)u0& in terms of multinomial coefficients
Then, in principle, we can continue analytically off the int
gers using analytical expressions in terms of gamma fu
tions for these multinomial coefficients.

Of course, this procedure is complicated, but we illustr
it below by considering the simplest truncation possible
which we keep only the first two Schwinger-Dyson equ
tions and setGn50 for all n.2. In this case, for intege
values ofN we have the beautiful result that the only mul
nomial coefficients that appear are precisely the coefficie
of the Hermite polynomials. Thus, fornonintegervalues ofN
we have parabolic cylinder functions with the exponent
divided off. It is in this fashion that we are able to continu
off the integersn.

To be explicit, we use the standard notationDn(x) to
represent the parabolic cylinder function@8# and define the
function wn(x) by
1-4
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Dn~x!5e2x2/4xnwn~x!. ~2.24!

Then, for integerN we factor@G1
(J)#N out of the equation for

^0ufN(x)u0& and introduce the variablesg (J) andg by

g (J)5
iG1

(J)~x!

AG2
(J)~x,x!

and g5
iG1

AG2~0!
. ~2.25!

We then obtain for arbitrary nonintegerN

^0ufN~x!u0&
Z@J#

5@G1
(J)~x!#NwN~g (J)!

5@G1
(J)~x!#N(

k50

`
~21!kN!

~N22k!!2kk! @g (J)#2k
.

~2.26!

~This series terminates ifN is integer but is an infinite serie
if N is noninteger.! As we will see, whenJ[0, the constant
G1 is a negative imaginary number and the constantG2(0) is
real and positive. Thus, the argumentg of wN is real and
positive.

Using Eq.~2.26! we write the field equation~2.3! explic-
itly in terms of the Green’s functions of the theory:

2]2G1
(J)~x!1m2G1

(J)~x!2giN@G1
(J)~x!#N21wN21~g (J)!

5J~x!. ~2.27!

~Remember that in the derivation of this equation we ha
discarded all Green’s functions higher thanG2.! As before,
we obtain the first of the Green’s functions for arbitraryN by
setting the sourceJ[0:

m2G12giNG1
N21wN21~g!50. ~2.28!

We obtain the second of the Schwinger-Dyson equati
for arbitrary N by taking the functional derivative of Eq
~2.27! with respect toJ(y):

2]2G2
(J)~x,y!1m2G2

(J)~x,y!

2giNS ~N21!@G1
(J)~x!#N22G2

(J)~x,y!wN21~g (J)!

1 i @G1
(J)~x!#N21wN218 ~g (J)!

G2
(J)~x,y!

AG2
(J)~x,x!

D 5d~x2y!,

~2.29!

where we have setG3
(J)50. Now, settingJ[0 in the above

equation yields the second of the Schwinger-Dyson eq
tions:
08500
e

s

a-

2]2G2~x2y!1m2G2~x2y!2giNF ~N21!G1
N22

3G2~x2y!wN21~g!1 iG1
N21wN218 ~g!

G2~x2y!

AG2~0!
G

5d~x2y!. ~2.30!

This equation can be simplified by using the recurren
relations for parabolic cylinder functions@8#,

xwN218 ~x!5~N21!@wN22~x!2wN21~x!#, ~2.31!

to obtain

2]2G2~x2y!1m2G2~x2y!

1~N21!g~ iG1!N22wN22~g!G2~x2y!

5d~x2y!. ~2.32!

Thus, Eq.~2.28! and Eq.~2.32! are a closed system of tw
equations and two unknowns. The solution of this system
various choices of space-time dimension will be discusse
the following sections.

III. ZERO-DIMENSIONAL THEORIES

In zero-dimensional space-time the integral representa
for the vacuum-vacuum functionalZ@J# corresponding to the
Lagrangian in Eq.~1.4! is an ordinary integral

Z@J#5E
2`

`

df expF2
1

2
m2f21

g

N
~ if!N1JfG . ~3.1!

To demonstrate the numerical accuracy of our truncat
method we first study massless theories of the form in
~3.1! where all quantities are exactly calculable. We find th
for arbitrary N the Green’s functions can be expressed
actly in terms of gamma functions. Then, we examine m
sive theories and show that weak-coupling diagramm
methods are inadequate for the analysis ofPT-symmetric
theories.

A. Massless theories in zero dimensions

Using Eqs.~3.1!, ~2.5!, and~2.6! we express the expecta
tion value of the field~the one-point connected Green’s fun
tion! as

G152 i S 4N

g D 1/N GS 1

N
1

1

2D cosS p

ND
Ap

, ~3.2!

and the expectation value of the field squared as

^0uf2u0&

^0u0&
5S N

g D 2/N GS 3

ND Fsin2S p

ND23 cos2S p

ND G
GS 1

ND .

~3.3!
1-5
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Using Eq. ~2.8! with J[0 we express the two-point con
nected Green’s function asG25^0uf2(x)u0&/^0u0&2G1

2,
which can be calculated exactly using the two equati
given above.

Observe that for anyN>2, G1 is pure imaginary and
negative andG2 is real and positive, as claimed earlier. Th
is in fact true in any dimension. The reality ofG2 and the
imaginarity of G1 follows from thePT symmetry of these
quantities. ApplyingP to G1 changes the sign, while apply
ing P to G2 leaves the sign intact. Hence, underT, which
acts as complex conjugation,G1 changes sign again and thu
is pure imaginary, whileG2 does not change sign and thus
real.

The first truncation approximations toG1 and G2 ob-
tained by keeping just the first two Schwinger-Dyson eq
tions are found by solving the zero-dimensional mass
versions of Eqs.~2.28! and ~2.32!. Observe that withm50,
Eq. ~2.28! demands that

wN21~g!50. ~3.4!

In zero-dimensional space-time there are no derivatives w
respect tox and the delta function is unity. Thus, a
Schwinger-Dyson equations are algebraic. The sec
Schwinger-Dyson equation is

~N21!g~ iG1!N22wN22~g0!G251,

whereg0 is the solution of Eq.~3.4!. ~Note that there is some
ambiguity with regard to which zero to choose. Our nume
cal studies suggest that the most positive zero is always
correct choice, but we do not have a proof. We find that i
this zero that gives the most accurate numerical results.! Re-
calling the definition ofg, we insertG252G1

2/g0
2 to obtain

an expression forG1:

G152 i F g0
2

~N21!gwN22~g0!
G1/N

. ~3.5!

Again using the definition ofg, we expressG2 as

G25F g0
22N

~N21!gwN22~g0!
G2/N

. ~3.6!

Table I compares the exact results with the correspond
first approximations forN53, N54, andN55.

Deriving an expression for the second approximation
terms of N is difficult. However, for a specificN, solving
larger and larger systems of Schwinger-Dyson equation
which more and more Green’s functions are included can
done symbolically on a computer. The caseN53 is com-
paratively simple. If we keepn equations, then fork,n, the
kth equation is linear inGk11. Thus, we can systematicall
solve a sequence of linear equations for the Green’s fu
tions, substitute the results into thenth equation, and solve
the resulting polynomial equation forG1.

For N53, the first six approximations toiG1g1/3 are
0.79370, 0.69336, 0.74690, 0.71256, 0.73987, and 0.71
The exact answer, taken from Eq.~3.2! with N53, is
0.72901~see Table I!. Note that the approximations oscilla
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around the correct answer. For the case of a Hermi
Hamiltonian we would expect that the approach to the c
rect answer is monotone. This is because the calculation
we are performing is variational in nature. Keeping more a
more Green’s functions corresponds to enlarging the par
eter space. However, in this case the Hamiltonian is not H
mitian, so this oscillation is not surprising. Indeed, it is co
sistent with our variational studies ofPT-symmetric
quantum mechanical systems in Ref.@6#.

Apart from the oscillations, we would hope that succe
sive approximations would come closer to the correct val
Thus, the fact that the sixth approximation is worse than
fifth and that eventually most of the approximations beco
complex is a startling result. We believe that this is also d
to the non-Hermiticity of the Hamiltonian. Indeed, whi
these approximations are numerically extremely accurate
find that the convergence is rather slow and it may even
that this truncation method does not converge. To exam
the convergence we have numerically solvedvery largesys-
tems of coupled Schwinger-Dyson equations forN53; we
have plotted in Fig. 1 all solutions for the one-point Green

TABLE I. Exact valuesiG1
exactg1/N andG2

exactg2/N @see Eqs.~3.2!
and ~3.3!# compared with the first approximationsiG1

SDg1/N and
G2

SDg2/N, which are obtained from the first two Schwinger-Dyso
equations and given in Eqs.~3.5! and ~3.6!. This is done for the
three casesN53, N54, andN55. Observe that the percent erro
increases withN for G1 and decreases withN for G2. These trends
continue untilG1 has a maximum error of 23.2% atN553, and
until G2 has a minimum error of 0.34% atN58. For N.53 the
error for G1 decreases until it levels off at 21.3%. ForN.8 the
error forG2 increases likeN. The large-N behavior of our approxi-
mations is more fully discussed later.

N iG1
exactg1/N iG1

SDg1/N G2
exactg2/N G2

SDg2/N

3 0.72901 0.79370 0.53146 0.27516
4 0.97774 1.10668 0.28000 0.14907
5 1.07865 1.24829 0.16433 0.10158

FIG. 1. Solutions of the first 150 coupled Schwinger-Dys
equations for the dimensionless one-point Green’s functioniG1g1/3

for the case of a massless zero-dimensionalN53 theory. Note that
the solutions~indicated by dots! lie in a small portion of the com-
plex plane very close to the exact answer 0.72901.
1-6
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function in the complex plane for the system of 150 coup
Schwinger-Dyson equations that lie near the exact answe
this figure we see that the algebraic solutions for the o
point Green’s function form a very smallloop around the
exact value. The largest dimension of the loop is along
real axis and is approximately 0.04. The furthest distance
a point on the loop from the correct answer is approximat
0.034. A weighted average of the points on the loop is
tremely close to the correct answer 0.72901.

The caseN54 is more complicated than that ofN53
because now the last two Schwinger-Dyson equations, ra
than just the last equation, are nonlinear. As a result
largest number of equations we can solve and hence,
largest number of Green’s functions we can include, is t
The first five approximations toiG1g1/4 are 1.10668,
0.90560, 1.02988, 0.96159, and 1.02868. The exact valu
0.97774~see Table I!. Just as forN53, the approximations
oscillate around the exact answer and successive approx
tions are numerically accurate but appear to converge v
slowly. In this case, the fifth approximation is worse than
fourth. We have plotted in Fig. 2 all solutions of the first t
coupled Schwinger-Dyson equations for the one-po
Green’s function that lie near the exact answer. As in
case of Fig. 1 these solutions form a small loop in the co
plex plane around the exact answer.

The numerical work that we have done on ze
dimensional massless theories suggests that solving sys
of truncated Schwinger-Dyson equations gives extremely
curate numerical approximations to the Green’s functio
The convergence of the method is still not understood
warrants further study.

FIG. 2. Solutions of the first ten coupled Schwinger-Dys
equations for the dimensionless one-point Green’s functioniG1g1/4

for the case of a massless zero-dimensionalN54 theory. The so-
lutions ~indicated by dots! lie in a small portion of the complex
plane very close to the exact answer 0.97774.
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B. Massive theories in zero dimensions

In zero-dimensional space-time, massless theories ar
simple that it is possible to solve the Schwinger-Dyson eq
tions as algebraic systems. However, in higher dimensio
the coupled Schwinger-Dyson equations are quite com
cated. Thus, we will be interested in obtaining perturbat
solutions for the case of small coupling constantg.

To gain a rudimentary understanding of the perturbat
nature of the theories in Eq.~1.4!, we study in this subsection
the path-integral expressions for then-point disconnected
Green’s functionsFn of a zero-dimensional2gf4 field
theory. These disconnected Green’s functions are expre
as ratios of integrals:

Fn5

E
2`

`

dffn expS 2
1

2
m2f21

g

4
f4D

E
2`

`

df expS 2
1

2
m2f21

g

4
f4D . ~3.7!

Although these integrals cannot be done exactly, we
use the method of steepest descents to obtain an asymp
result for smallg with m fixed. We will see that, dependin
on whether the sign ofm2 is positive or negative, we obtain
drastically different results.

We begin by replacingf by the dimensional quantityx
according tof5A2/gumux. This gives

Fn5S 2umu2

g D n/2E
2`

`

dx xn exp@2L~6x22x4!#

E
2`

`

dx exp@2L~6x22x4!#

, ~3.8!

whereL5m4/g is a large positive parameter asg→0 and
we have distinguished between the two casesm2.0 and
m2,0.

To calculate the integrals in Eq.~3.7! asymptotically, we
find the stationary points of the functionr(x) in the expo-
nent, where

r~x!56x22x4. ~3.9!

Setting the derivative of this function equal to zero gives
solutions x50, 61/A2 for m2.0 and x50, 6 i /A2 for
m2,0. These stationary points are shown on Figs. 3 and

Next, we find the paths of steepest ascent and descent
pass through these stationary points. Substitutingx5u1 iv
into Eq. ~3.9! and separating the real and imaginary pa
yields

r~u1 iv !56~u22v2!2u42v416u2v2

1 i @62uv24uv~u22v2!#. ~3.10!

Thus, the paths along which Imr50 are given byu50, v
Þ0; v50, uÞ0; andu25v261/2, where the6 depends
on the sign ofm2.

To determine whether each of these paths is a stee
ascent or descent path, we perform a local analysis of
1-7
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paths at each of the saddle points. The results of this ana
are displayed in Figs. 3 and 4. The stationary phase con
is chosen such that the boundary conditions are obeyed.
ing Eq.~1.3!, we choose the end points that lie below the r
axis at the angles2p/6 and25p/6. Form2.0 the contour
follows the pathu52Av211/2 from the lower left quadran
of the complex-x plane up to the stationary point at21/A2,
then goes along the real axis from21/A2 through the sta-
tionary points at the origin and at 1/A2, and finally leaves the
point 1/A2 and follows the pathu5Av211/2 down to the
lower right quadrant of the complex-x plane. Form2,0 the
contour follows the pathv52Au211/2, which passes
through the stationary point at2 i /A2.

Now, we determine the disconnected Green’s functio
Fn for both them2.0 andm2,0 cases by evaluating th
integrals in Eq.~3.8! along the appropriate stationary pha
contours. Form2.0 the Green’s functions with odd sub
script vanish~by oddness! along the part of the contour tha

FIG. 3. Saddle points and steepest-descent paths for the fun
r(x) in Eq. ~3.9! for the casem2.0.

FIG. 4. Saddle points and steepest-descent paths for the fun
r(x) in Eq. ~3.9! for the casem2,0.
08500
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lies on the real axis. Evaluating the integrals asymptotica
along the remaining parts of the contour gives an expon
tially small result; apart from a multiplicative constant

F2n11;g2n21/2e2L/4 ~g→01!. ~3.11!

The dominant contribution to Green’s functions of even su
script comes from the portion of the contour along the r
axis. Evaluating the integrals near the saddle point at
origin, we find that the small-g behavior of these Green’
functions is given by

F2n;m22n ~g→01!, ~3.12!

apart from a multiplicative constant. Note that the Gree
functions with even subscript behave very differently th
the Green’s functions with odd subscript. Further, notice t
the behavior of the Green’s functions with odd subscript
inherently non-perturbative and, as a result, Feynman pe
bative methods cannot be used to calculate these Gre
functions.

For m2,0 the dominant contribution toall of the Green’s
functions comes from the saddle point at2 i /A2. As a result,
all of the Green’s functions exhibit similar behavior. To b
specific, we have

Fn;~2 i !numung2n/2 ~g→01!. ~3.13!

Thus, once again, it is clear that these results cannot be
tained using Feynman diagrams. As we will see in Sec
this theory is also the one that is asymptotically free in fo
dimensions and the more interesting of the two cases.

IV. NUMERICAL STUDY OF ONE-DIMENSIONAL
THEORIES

Our success with zero-dimensional massless theo
prompts us to study one-dimensional~quantum mechanical!
massless theories of the form in Eq.~1.4!. Numerical com-
putations have been performed in one-dimension which
low us to compare with exact numbers@1#.

In analogy with the last section, we find the first appro
mation toG1 andG2 by solving the one-dimensional mas
less versions of Eqs.~2.28! and ~2.32!. Observe that with
m50 we obtain Eq.~3.4! once again. In fact, Eq.~3.4! holds
independent of the dimension. The second Schwinger-Dy
equation is given by

2]2G2~x2y!1~N21!g~ iG1!N22wN22~g0!G2~x2y!

5d~x2y!. ~4.1!

This equation depends on the dimensionD through the par-
tial derivative. If we introduce the variableM defined by
M25(N21)g( iG1)N22wN22(g0), it is clear that Eq.~4.1!
is just the equation for the Feynman propagator, whose
lution in one-dimension can be written

G2~x2y!5
1

2M
e2M ux2yu. ~4.2!

ion

ion
1-8
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Consequently,G2(0)51/(2M ). Recalling the definition ofg
we useG2(0)52G1

2/g0
2 as we did in the previous section t

obtain an expression forG1:

G152 i F g0
4

4~N21!gwN22~g0!
G1/(N12)

. ~4.3!

SubstitutingG1 into our expression forM yields

M5F ~N21!gwN22~g0!S g0

A2
D N22G 2/(N12)

, ~4.4!

which further allows us to writeG2(0) as

G2~0!5
1

2 F 1

g~N21!wN22~g0! S g0

A2
D 22NG 2/(N12)

.

~4.5!

For field theories,M represents the renormalized mas
which is nothing more than the difference in energy betwe
the first excited state and the ground stateE12E0. Table II
compares the exact values ofM andG1 with the correspond-
ing first approximations for the casesN53, N54, andN
55. ~Here, we must setg5N/2 and multiply M by 2 to
match the Lagrangians studied in Ref.@1#.!

In one dimension it is difficult to obtain the second a
proximation, even for a specificN, because it requires solv
ing coupled systems of nonlinear differential equations.
in the previous section, the easiest case to study isN53. The
first three Schwinger-Dyson equations are given in Sec.
Eqs.~2.10!, ~2.12!, and~2.13! with m50. To close this sys-
tem of equations we setG450 and z5y. Then, the third
Schwinger-Dyson equation becomes

2]2G3~x2y!1gi@2G1G3~x2y!12G2
2~x2y!#50.

~4.6!

Next, we Fourier transform the second and th
Schwinger-Dyson equations to obtain

~p21M2!G̃2~p!1giG̃3~p!51 ~4.7!

and

TABLE II. Exact values ofiG1
exactandMexact5E12E0 ~see Ref.

@1#! compared with the first approximationsiG1
SD andMSD, which

are obtained from the first two Schwinger-Dyson equations~4.3!
and~4.4!. This is done for the three casesN53, N54, andN55.
Note that the error is worse than for the zero-dimensional theo
and that the error forM increases withN. However, the error for
iG1 is smallest forN54.

N iG1
exact iG1

SD Mexact MSD

3 0.59007 0.37011 2.95293 2.70192
4 0.86686 0.82548 4.52620 3.63424
5 1.01310 1.15416 6.70000 4.72160
08500
,
n

s

s

~p21M2!G̃3~p!12giE
2`

` dq

2p
G̃2~q!G̃2~p2q!50,

~4.8!

where we have used the same definition ofM as above, the
convolution property of Fourier transforms, and the trans
tion invariance of Green’s functionsG3(0, x2y)5G3(x
2y,x2y)5G3(x2y).

We now solve forG̃2(p) and obtain

G̃2~p!5
1

p21M22
2g2

~p21M2!2E
2`

` dq

2p
G̃2~q!G̃2~p2q!.

~4.9!

The simplest approach to solving this nonstandard in
gral equation is to iterate it to high order in the small para
eterg. This iterative procedure can be represented in term
diagrams. These diagrams all have a similar structure: T
begin with one line that branches into two lines. This bran
ing process continues until the maximum number of lines
attained. Then the process is reversed, with lines combin
in pairs until only one line remains. We were able to perfo
the calculations symbolically on a computer. We calcula
the propagator to order O(g10); the first three terms in the
expansion are

G̃2~p!5
1

p21M2 2
2g2

M ~p21M2!2~p214M2!2

1
~456M4170M2p214p4!g4

9M6~p21M2!2~p214M2!2~p219M2!

1O~g6!. ~4.10!

Now that we haveG̃2(p) to high order ing, we make the
ansatzthat it can be expressed in the form

G̃2~p!5
Z1

p21M1
2 1

Z2

p21M2
2 1

Z3

p21M3
2 1•••,

~4.11!

where Mn5nM1b1,ng21b2,ng41b3,ng61•••, Z151
1a1,1g

21a2,1g
41a3,1g

61•••, Z25a1,2g
21a2,2g

41a3,2g
6

1•••, Z35a2,3g
41a3,3g

61•••, and so on. By matching
this ansatzto our calculation, we determine the coefficien
ak,n andbk,n . @The expansion of theansatzdoes not exactly
match the expansion of our calculation. This is easily und
stood because our calculation forG̃2(p) only involves spe-
cial diagrams described above, while theansatzinvolves all
types of diagrams. However, the system of equations is
ther overdetermined nor underdetermined, so all coefficie
may still be calculated.#

The series for theMn are

s,
1-9
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M15M1
g2

3M4 2
31g4

72M9 1
1279g6

1944M14
2

98287g8

93312M19

1
9641179g10

5598720M24
,

M252M1
2g2

3M4 2
11g4

108M9 1
133g6

1944M14
1

33161g8

279936M19
,

M353M1
g2

M4 1
29g4

216M9 1
101g6

486M14
,

M454M1
4g2

3M4 1
109g4

270M9 ,

M555M1
5g2

3M4 . ~4.12!

Since we now have expressions forMn in terms ofM, we
need only determineM accurately to finish the calculation
This is done using the first Schwinger-Dyson equat
~2.10!, which implies that

M454g2G2~0!. ~4.13!

Observe that

G2~0!5E
2`

` dp

2p
G̃2~p!. ~4.14!

So, based on our calculation of the first three terms abo
the first few terms are

G2~0!5
1

2M
2

g2

9M6 1
7g4

96M11
. ~4.15!

This allows us to expressM andg as

M25A4g2G2~0!5A2g2

M
2

4g4

9M6 1
7g6

24M11
1O~g8!.

~4.16!

Keeping terms to order O(g10) we obtainM51.126151g2/5.
With this value ofM, the Mn become numerical serie

multiplied by an overall factor ofg2/5. Successive terms in
this numerical series decrease in magnitude and thus th
ries appears to be convergent. To compare with the num
cal results and match the Lagrangian in Ref.@1#, we setg
53/2 and multiply theMn by 2; results are given in Tabl
III.

V. SCHWINGER-DYSON EQUATIONS IN D DIMENSIONS

In this section we show how to solve truncated system
Schwinger-Dyson equations inD dimensions. First, we con
sider the caseD,2, in which it is not necessary to perform
any renormalization. Then we consider the case of arbitr
08500
n

e,

se-
ri-

f

ry

D, in which it is necessary to discuss renormalization.

A. Schwinger-Dyson equations forDË2

In this subsection we solve Eqs.~2.28! and ~2.32! in ar-
bitrary dimension D with m50. This calculation is a
straightforward generalization of the one forD51.

As previously stated, whenm50, Eq. ~2.28! implies Eq.
~3.4!. In addition Eq.~2.32! continues to imply Eq.~4.1!,

2]2G2~x2y!1M2G2~x2y!5d~x2y!, ~5.1!

in which we have defined the renormalized massM2 by

M252giN~N21!G1
N22wN22~g0!. ~5.2!

Equation~5.1! is just the differential equation satisfied by th
Feynman propagator.

We solve these two equations in arbitrary dimensionD by
taking the Fourier transform to obtain the propagator:

G̃2~p!51/~p21M2!. ~5.3!

Fourier transforming this propagator back to position sp
and then settingx5y gives

G2~0!5MD22G~12D/2!p2D/222D. ~5.4!

Using Eqs.~2.25! and ~5.2! we solve forG1:

G152 i $@~N21!gwN22~g0!# (D22)/2G~12D/2!

3~4p!2D/2g0
2%2/(2ND12N12D). ~5.5!

Substituting this result into Eq.~5.2! yields

M5$@~N21!gwN22~g0!#2@G~12D/2!

3~4p!2D/2g0
2#N22%1/(2ND12N12D), ~5.6!

TABLE III. Schwinger-Dyson approximations forMn compared
with exact values of the energy difference,En2E0, calculated in
Ref. @1#. These approximations are based on the truncation of
first three Schwinger-Dyson equations for anigf3 field theory of
the type in Eq.~1.4!. Notice thatM1 is greater than the numerica
result in this case, while in Table II,M1 was less than the numerica
answer. This suggests that in one dimension the oscillatory na
of successive approximations is present once again. Moreover
percent error has decreased significantly; the error is 8.50% forM1

calculated using the first two Schwinger-Dyson equations compa
with 3.52% calculated using the first three Schwinger-Dyson eq
tions.

n En2E0 Mn
SD % error

1 2.952962 3.056763 3.52
2 6.406007 6.191828 3.34
3 10.158155 9.610135 5.39
4 14.135286 12.871434 8.94
5 18.295263 15.681836 14.28
1-10
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and substituting the last two results into Eq.~5.4! gives an
expression forG2. These expressions reduce to the ze
dimensional and one-dimensional solutions given in the p
vious two sections. Notice that each of these express
becomes singular atD52.

Using these approximate solutions we can determine
large-N behavior of the Greens functions asN→`. To do so,
we need to determine the asymptotic behavior of the zero
the parabolic cylinder function. According to Ref.@9#, the
largest zero ofwn21(g) for large n is given byg0;2An.
Substituting this into the integral representation forwn22(g)
and using Eq.~2.31! we perform a steepest-descent calcu
tion to obtainwn22;A2/p321/6G(1/3)22nn1/6en/2. We have
verified these results numerically to high accuracy. Tak
N→` in the expressions forG1 , G2, andM above and using
the asymptotic results for the parabolic cylinder function,
obtain

G1;22i /Ae521.21306i ,

G2;1/~Ne!,

M2;@eG~12D/2!~4p!2D/2N#2/(22D). ~5.7!

Observe thatG1 is independent of bothN and D to this
order,G2 depends onN but not onD, andM2 depends on
both N andD. These results are valid for largeN for all D
,2. These properties are evident in zero dimensions fr
Eqs. ~3.2! and ~3.3!. While the behavior of G1 and
^0uf2(0)u0& is correctly predicted, the behavior ofG2 is not
because the first-order behaviors ofG1 and ^0uf2(0)u0&
cancel, leaving a second-order term to describeG2. Also,
this calculation predicts thatM2 increases likeN2/(22D). That
is, for largeN the separation between the energy levels
verges and hence, the energy levels must diverge. InD51
our approximation suggests thatM grows likeN. In fact, M
grows likeN2 in D51 as discussed in Ref.@10#. This is the
simplest possible truncation, but it suggests the correct
havior.

B. Perturbative renormalization of the Schwinger-Dyson
equations in D-dimensions and leading-order calculation

of the beta function

Let us first consider thePT-symmetricigf3 theory in six
space-time dimensions. The Green’s functions for that the
are governed by the system of equations beginning with E
08500
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ns

e
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e

m

i-
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ry
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~2.10!, ~2.12!, and~2.13!. Let us seek a perturbative solutio
to this system of equations in whichGn;gn22. In leading
order we have first, from Eq.~2.10!,

G15 i
m2

g
. ~5.8!

Then, from Eq.~2.12!, the two-point function in momentum
space is

G̃2~p!5E d6xeip(x2y)G2~x2y!5
1

p21M2 , ~5.9!

where

M25m212igG152m2. ~5.10!

Thus, in order to avoid unphysical singularities, we mu
have for this type of solutionm2,0. The leading solution to
Eq. ~2.13! is

G̃3~p,q!5
2ig

~p21M2!~q21M2!@~p1q!21M2#
,

~5.11!

which has an obvious interpretation as a vertex with th
external lines.

More generally, the solution to Eq.~2.10! is

G15
1

2
@ im2/g6 iA~m2/g!214G2~0!#, ~5.12!

which corresponds in the perturbative case, whereuG2(0)u
!(m2/g)2, to

G15H i
m2

g
,

2 i
g

m2 G2~0!.

~5.13!

The second solution given in Eq.~5.13! corresponds to the
usual perturbative tadpole contribution to the vacuum exp
tation value of the field, while the first is the new, nontrivi
solution given in Eq.~5.8!.

Perturbatively solving the next in the sequence
Schwinger-Dyson equations, we obtain for the four-po
function in leading order
erm,
the
G̃4~p,q,r !5
22ig

„~p1q1r !21M2
…~p21M2!~q21M2!~r 21M2!F 1

~p1q!21M2 1
1

~p1r !21M2 1
1

~q1r !21M2G .
~5.14!

Inserting this back into Eq.~2.13!, we obtain the one-loop correction to the three-point function. Apart from a tadpole t
this is just the same as that found in the conventionalf3 theory; correspondingly, the beta function is obtained from that in
conventional theory by the replacementg→ ig ~see, for example, Ref.@11#!

b~g!5m
]g

]m
5

3

2 S g

4p D 3

, ~5.15!
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where g(m) is the running coupling at scalem. Unlike the usualf6
3 theory, thePT symmetric theory given here is no

asymptotically free.
Of course, thef4

4 theory is of far greater interest. In particular, it plays a crucial role in the standard model as the or
particle masses through the Higgs mechanism. Yet the triviality of that theory is a source of difficulty. What happen
when we setN54 in Eq. ~1.1!?

The first few Schwinger-Dyson equations are given in Eqs.~2.16!, ~2.18!, ~2.19!, and ~2.20!. Note that the last three
equations can be simplified through the introduction of the renormalized mass

M25m223gG2~0!23gG1
2 . ~5.16!

Thus we obtain the following equations for the two-point function,

~2]21M2!G2~x2y!2gG1G3~0, x2y!2gG4~0,0,x2y!5d~x2y!, ~5.17!

the three-point function

~2]21M2!G3~x2y,x2z!26gG1G2~x2y!G2~x2z!23g@G2~x2y!G3~0, x2z!1G2~x2z!G3~0, x2y!#

23gG1G4~0, x2y,x2z!2gG5~0,0,x2y,x2z!50, ~5.18!

and the four-point function

~2]21M2!G4~x2y,x2z,x2w!26gG2~x2y!G2~x2z!G2~x2w!23g@G2~x2y!G4~0, x2z,x2w!

1G2~x2z!G4~0, x2y,x2w!1G2~x2w!G4~0, x2y,x2z!#26gG1@G2~x2y!G3~x2z,x2w!

1G2~x2z!G3~x2y,x2w!1G2~x2w!G3~x2y,x2z!#23g@G3~0, x2y!G3~x2z,x2w!

1G3~0, x2z!G3~x2y,x2w!1G3~0, x2w!G3~x2y,x2z!#23gG1G5~0, x2y,x2z,x2w!

2gG6~0,0, x2y,x2z,x2w!50. ~5.19!
one
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FIG. 5. Lowest order graphs contributing toG5.
08500
Now there are two regimes. Ifm2.0 the only consistent
perturbative solution to the above system of equations is
in which the odd Green’s functions are exponentially sm
G2n11;e21/g, and the even and odd Green’s functions d
couple.@This result is analogous to that in Eq.~3.11!.# The
even Green’s functions possess the same perturbative ex
sion as in the usualf4 theory except for a change of sign o
the coupling constant, so again the sign of the beta func
reverses:

b~g!5227S g

2p D 2

. ~5.20!

This theory is asymptotically free. Furthermore, in the no
perturbative regime it exhibits parity symmetry breaking, b
possessesPT symmetry becauseG1 is imaginary.

The other regime is even more interesting. Ifm2,0 it is
consistent to proceed in analogy with our treatment of thef3

theory above. We may assume a perturbative solution of
form Gn;gn/221. Then we have a purely imaginary vacuu
expectation value of the field, from Eq.~2.16!:

G15Am2

g
, ~5.21!

while the leading two-point function has the usual form o
propagator:
1-12
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G̃2~p!5
1

p21M2 . ~5.22!

Here the renormalized mass in leading order is positive:

M25m223gG1
2522m2. ~5.23!
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The leading three-point function has an evident diagra
matic interpretation:

G̃3~p,q!56gG1

1

p21M2

1

q21M2

1

~p1q!21M2 . ~5.24!

The tree-level four-point function is easily extracted fro
Eq. ~5.19!:
G̃4~p,q,r !5
6g

~p21M2!~q21M2!~r 21M2!@~p1q1r !21M2#F11
3m2

~p1q!21M21
3m2

~p1r !21M2 1
3m2

~q1r !21M2G ,
~5.25!
r a

us,
is

ory
ve
-
e,

nd

ul
as
being composed of contibutions from primitive four-poi
and three-point vertices.

Now we have perturbative parity symmetry breaking: t
scalar field acquires a vacuum expectation value compar
to that of the gauge bosons in the standard model,AgG1.
Further, it appears likely that the theory is asymptotica
free, because the sign of the four-point vertex is revers
Indeed, apart from one-particle-reducible graphs, Eq.~5.25!
gives just the usual primitive vertex in the high momentu
limit, except for a change in sign. The theory is renorma
able because, apart from divergences associated with th
3-, and 4-point functions, no additional divergences occ
This is due to the fact that, for example, the 5-point funct
has no primitive vertices, as can be easily seen from the
in the sequence of Schwinger-Dyson equations after
~5.18!. The lowest order diagrams contributing toG5 are as
sketched in Fig. 5.
le
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We have shown that the signs of the beta functions fo
conventionalgf3 theory and for aPT-symmetric igf3

theory in six space-time dimensions are reversed. Th
while the former theory is asymptotically free, the latter
not. Similarly, the beta functions for a conventionalgf4

theory and for aPT-symmetric2gf4 theory in four space-
time dimensions are reversed. Thus, while the former the
is not asymptotically free, the latter is. Similarly, as we ha
already argued in Ref.@12#, we believe that while conven
tional quantum electrodynamics is not asymptotically fre
PT-symmetric electrodynamics is asymptotically free a
possesses a nontrivial fixed point.
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