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In recent papers it has been observed that non-Hermitian Hamiltonians, such as those degesibing
—g¢* field theories, still possess real positive spectra so long as the weaker condiidnsgmmetry holds.
This allows for the possibility of new kinds of quantum field theories that have strange and quite unexpected
properties. In this paper a technique based on truncating the Schwinger-Dyson equations is presented for
renormalizing and solving such field theories. Using this technique it is argued that/d scalar quantum
field theory in four-dimensional space-time is renormalizable, is asymptotically free, has a nonzero value of
(0] #|0), and has a positive definite spectrum. Such a theory might be useful in describing the Higgs boson.

PACS numbgs): 11.30.Qc, 11.10.Gh, 11.15.Tk, 11.30.Er

[. INTRODUCTION arbitraryN>2 the anti-Stokes’ lines at the centers of the left
and right wedges lie below the real axis at the angles
It has recently been observgt 2] that quantum mechani-

cal theories whose Hamiltonians aReT symmetric have = — N-2|m
positive definite spectra even if the Hamiltonian is not Her- et™ " TTI\N¥2) 2"
mitian. A class of such theories that has been studied exten-
sively is defined by the Hamiltonian N—2\ 7
Oign=~ | NT2] 2 (1.3

H=p2—(ix)V (N=2). (1.9

It is believed that the reality and positivity of the spectra are! '€ OP€ning angle of these wedges is/@N+2). In Ref.

a direct consequence T symmetry [1] the time-independent Schitimger equation was inte-
The positivity of the spectra for .aIN is an extremely grated numerically inside the wedges to determine the eigen-

surprising result; it is not at all obvious, for example, that theV&!ues to high precision. o
The quantum mechanical Hamiltonian in Ed..1) has

HamiltonianH = p?—x* corresponding tdN=4 has a posi- o .

tive real spectrum. To understand this result it is necessary fgdditional remarkable properties. For example, foalt 2

define properly the boundary conditions in the correspondind’® €xpectation valu€o|x|0) of the position operatox in

Schralinger equation. he ground state is nonzero. This surprising result is true
For the Hamiltonian in Eq(1.1) the Schidinger differ- €N wherN=4 [1]. , , _

ential equation corresponding to the eigenvalue problem These results for quantum mechanics raise some interest-

Hy=Ey is ing questions regarding quantum field theory. In particular,
does the self-interacting scalar quantum field theory defined
— " (X)— (iX)Ny(x) = Ep(x). (1.2 by the Lagrangian

The boundary conditions for this equation are discussed in 1 1 g .

detail in Ref.[1]. There, it was shown how to continue ana- L= E(M’)Z“L §m2¢2— N(' o)™ 1.4

lytically in the parameteN away from the harmonic oscilla-

tor valueN=2. This analytic continuation defines the bound-have a positive definite spectrum and a nonvanishing value

ary conditions in the complex-plane. The regions in the cut of (0| ¢|0) for all N>2? We believe that the answer to this

complexx plane in which(x) vanishes exponentially as question is yes. Because of these properties, we believe that

|x| -0 arewedges In Ref.[1] the wedges foN>2 were = when N=4 the resulting quantum field theory in four-

chosen to be analytic continuations of the wedges for thelimensional space-time could serve as a good description of

harmonic oscillator, which are centered about the negativéhe Higgs particle. As we argue in this paper, the¢*

and positive real axes and have angular openiig. For  theory is particularly advantageous because, like the conven-
tional g¢* theory it has a dimensionless coupling constant,
but unlike the conventional theory, it is asymptotically free

*Electronic mail address: cmb@howdy.wustl.edu and is thus not a trivial theory.
"Electronic mail address: milton@mail.nhn.ou.edu The question of how to determine the properties of
*Electronic mail address: vmsavage@hbar.wustl.edu P T-symmetric non-Hermitian quantum field theories has al-

0556-2821/2000/68)/08500113)/$15.00 62 085001-1 ©2000 The American Physical Society



CARL M. BENDER, KIMBALL A. MILTON, AND VAN M. SAVAGE PHYSICAL REVIEW D 62 085001

ready been examined. As we will see in this paper, conventhe coupling of the fields(x) to an externat-number source

tional Feynman diagrammatic perturbation theory is not adj(x):

equate for studying these theories. Thus, in previous work

[3,4] the perturbative approach that was used was to ke _ ) 5.0 9 N

=2+ 5, whered is treated as a small parameter. While some L= E(a¢) + >m ¢°= N(' $)"=Jo. 2.9)

interesting results regarding parity violati¢8] and super-

symmetry[4] were obtained, unfortunately this perturbative This Lagrangian represents a self-interacting scalar quantum

scheme has a severe drawback: It is not known how to carrffeld theory in D-dimensional Euclidean space-time. If we

out the renormalization procedure required to understand@ry the action with respect i(x) we obtain the field equa-

higher-dimensional theories. tion:
Why is it that Feynman diagrams cannot be used to per- - _

form galculations inytheories guch asg¢*? As we havep — P00 +MEP() —igli 00T 1=3(0). (22

already stated, in this theo(@| ¢[0)# 0. There is no way to Next, leaving the source turned on, we take the expecta-

obtain this result using the standard Feynman rules; one ca@y, value of the field equatiof2.?) in the vacuum state of

not obtain a one-point Green’s function using four-point ver-,o theory|0) and divide by the vacuum-vacuum functional
tex amplitudes. Indeed, as we will show in Sec. Il in theZ[J]:<0|O):

context of zero-dimensional theories, the standard Feynman

rules are incorrect for this theory. ; 5 . <O|¢N‘1(x)|0>
In this paper we perform a systematic truncation of the —@?G{”(x)+m?G{ )(X)—QINW:J(X%
Schwinger-Dyson equations as a calculational procedure. 2.3

This idea has already been applied in a simple context to

obtain Green’s functions and energy levels in conventiona{NhereG(lJ)(x) is the one-point Green’s function in the pres-

quantum mechanical pr0b|emi5] Truncating the ence of the external source:

Schwinger-Dyson equations is an inherently variational ap-

proach; including more and more of the higher Green’s func- 9 (0] #(x)|0)

tions is equivalent to enlarging the space of variational pa- Gy (X)Ew- (2.9

rameters. In a recent study of theT-symmetric, non-

Hermitian quantum mechanical Hamiltonian in EG.1)  Note that the functiod(x) appears alone on the right side of

variational methods were found to be extremely accU@te  Eq. (2.3) because it is @number and therefore can be fac-
This paper is organized as follows: In Sec. Il we reviewigred out of matrix elements.

the general approach used in this paper. We show how to The objective is now to use Eq2.3) to calculate the

derive the Schwinger-Dyson equations using simple funcGreen’s functions of the theory. Theonnectedl Green’s

tional methods and we explain our truncation procedure. Ifunctions in the presence of the sourtare defined as func-

Sec. Ill we examine the numerical accuracy of our truncationjonal derivatives of the logarithm & J] with respect to the
method in the context of zero-dimensional field theory. Wesouyrced(x):

study the massless zero-dimensional version of (Ed) in

very high order in the truncation process for the cales ) "
=3 andN=4. In the case of a zero-dimensional massive Gn (X1.Xz, ... Xn)= 53(x0) 83(xg) - - 8I(X) In(Z[J]).
theory we show that the Feynman rules are inapplicable. In (2.5

Sec. IV we examine the theory in Ed1.4) in one-

dimensional space-timé¢quantum mechani¢s Finally, in  To obtain the standard connected Green’s functions of the
Sec. V we apply our methods to field theory in arbitrarytheory (the connected part of the vacuum expectation value
dimension. As an application of our procedure we calculatef the time-ordered product of the fields; that is, the sum of
the Callan-Symanzik functio@(g) for a four-dimensional the connected-point Feynman diagramsve then turn off
—g¢* theory for smallg. We show that to leading order the source:

B(0) is negative and thus the theory is asymptotically free.

This result is in distinct contrast with the result for a conven- Gn(X1. X2, - - - X)) =GP (X1.%, .. Xn)|s=0. (2.6)

tional g¢* theory. _ o
Note that turning off the source restores translation invari-

ance. As a result, the one-point Green’s functi®p is a
constant independent of the two-point Green’s function
depends only on the difference-y, G,(X,y)=Gs(x—Y),
G3(x,Y,2)=G;3(x—Yy,x—2) depends on two differences, and
The Schwinger-Dyson equations are an infinite set ofko on.
coupled equations relating the Green’s functions of a quan- Before one can proceed, one must express the third term
tum field theory. In this section we derive the Schwinger-in Eq. (2.3) in terms of the connected Green’s functions of
Dyson equations using elementary formal functional meththe theory. To do this we recall that functionally differenti-
ods. ating with respect td(x) is equivalent to insertings(x) in
We begin with Eq(1.4) and append a term that representsmatrix elementg$5].

Il. ELEMENTARY DERIVATION OF THE
SCHWINGER-DYSON EQUATIONS
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Let us consider the simple cadé=3. In this case it is equation contain§&; andG,, the second containg,, G,,
necessary to calculate the quantiéf #%(x)|0). To do sowe andGs, and so on. Thus, each new equation contains a new

begin with Eq.(2.4) multiplied by Z[ J]: unknown Green’s function and the system never closes.
@ However, we can force the system to close by truncating the
G1(x)Z[J]=(0[#(x)|0). (2.7)  sequence of coupled equations and setfig ;=0 in the

last equation. We will use this method throughout the re-
mainder of the paper.

As a second example we derive the first four Schwinger-
g 271 31+ G (x,x)Z[ I1= (0| $2(x)|0). (2.8 Dyson equations from Ecq_2.3) for the caseN=4. Using the
[GI7 001211+ G5 (X)) 2[I]=(0]¢()[0)- (2.8 same approach as we did for the caée 3, we begin by

Hence, we can eliminatd| $2(x)|0) from Eq. (2.3 to ob-  reexpressing0|¢*(x)|0). We do this by taking the func-

Taking the functional derivative of this equation with respect
to J(x) gives

tain tional derivative of Eq(2.8) with respect taJ(x) to obtain
— G (x) + MG (x) + gi( G () 12+ GP(x,%)) [GP(x)132[31+ 3G ()G (x,)Z[I]+ GE (x,x,x)Z[ J]
=J(x). (2.9 =(0|¢°(x)|0). (2.14
We now obtain the first of the Schwinger-Dyson equationsSubstituting this result into thid=4 version of Eq(2.3), we
by settingJ=0 (turning off the source have
m2G,+gi[ G2+ G,(0)]=0. (2.10 - ?GP(x) + m?GP (x) - g (G (%) ]®
Remember that by translation invariar@e is a constant, so +3GP ()G (x,%) + G (x,x, %)= I(x).
that its derivative vanishes and th&@,(0)=G,(x—X)
(2.19
=G5,(X,X).

To obtain the second of the Schwinger-Dyson equationgve obtain the first Schwinger-Dyson equation fo=4 by
for N=3 we take a functional derivative of E.9) with  settingJ=0:
respect tal(y),
m2G,—g[G3+3G,G,(0)+G4(0,0]=0. (2.19
- G5 (x,y)+m?GE (x,y) +gi[ 26 () GL(x,y) T OLEITEICCA0 T C(0.0)]
Using the same procedure as fid=3 we now take a

() — _
GO0y ]=0x—y), (21D functional derivative of Eq(2.195 with respect toJ(y) to
and then sef=0 in this equation: obtain
2 2 i — G (x,y) + MG (x,y) —g(B[GL (x) 2GS (x,y)
—3°Go(X—y) + M°Gy(x—Yy)+gi[2G,G,(X—Y) 2 Xy 2 (X\y)—g 1 2 (XY
+G4(0x—Yy)]=8(x—Y). (2.12 +3GP ()G (x,x,y) + 3G (x,x) G (x,y)
If we continue the process of functionally differentiating +GP(x,x,%,y))=8(x~y). (2.17)

with respect toJ and settingJ=0, we obtain the infinite ) ) )
tower of coupled differential equations known as theNOW SettingJ=0 gives the second of the Schwinger-Dyson

Schwinger-Dyson equations. For example, the third in thééguations folN =4:
sequence is
q — #Gy(x—y) + M’ Gy(x—y) — g[3GIGs(xy)

_ 12 _ _ 2 _ _
FCaXmyX= 2+ MGo(x—y,x=2) +3G(0)G(x~y) +3G;Go(0X~Y) + G4(0,0x~Y)]

=5(X—Y). (2.18

Repeating this process once more by functionally differ-
Note that these Schwinger-Dyson equations iamm-  entiating Eq.(2.17) with respect toJ(z) and settingJ=0
pletein the sense that there are too many unknowns. The firgives

+0i[2G1G3(X—Y,X—2)+2G,(X—2)Gy(X—Y)
+G4(0x—y,x—=2)]=0. (2.13

— ?G3(x—Yy,X—2) + MPG3(Xx—y,X—2) —g[6G1G,(X—y)Gy(X—2) + 3G2G3(X—y,x— ) + 3G,(x—2)G3(0x—Y)
+3G,(Xx—y)G3(0x—2)+3G,(0)G3(x—Yy,Xx—2)+3G1G4(0x—y,x—2)+ G5(0,0,x—y,x—2)]=0, (2.19

the third of the Schwinger-Dyson equations fr=4. The fourth Schwinger-Dyson equation is
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— ?G4(X—Y,X—Z,X—W) + MG 4(X— Y, X— Z,X— W) — g[ 6G (X~ ¥) G(X— 2) Go(X— W) + 6G;G,(X—y) Gz(X— Z,X— W)
+6G1Go(X—2)G3(X—Y,X—W)+6G1G,(X—W)G3(X—Y,X—2) +3G3(0x—Y)G3(X—2,Xx—W)
+3G3(0,x—2)G3(x—y,x—w)+3G5(0, x—W)Gg(x—y,x—z)+3G§G4(x—y,x—z,x—w)
+3Go(X—Y)G4(0,X—=2Z,X—W) +3G,(X—2)G4(0, Xx—y,X—W) + 3G, (X—W)G,4(0x—y,X—2)
+3G,(0)G4(Xx—Yy,Xx—2,Xx—W)+3G,G5(0, Xx—y,Xx—2,Xx—W) + Gg(0, 0OX—y,x—z,x—w)]=0. (2.20

Again, we observe that the set of equations is incompletet0| #3(x)|0), (2.20) for (0|4*(x)|0), and (2.22 for
for this case the number of unknown Green’s functions ig0|#°(x)|0). Also, in these equations the powers of the
two more than the number of equatioiisstead of one more Green'’s functions are the numbexg.

as in the cas&N=3). That is, the first equation fok=4 To be precise, for each we must take all possible com-
contains the three unknowr@,, G,, and Gs, the second binations of the numbers, satisfyingn=a;+2a,+---
containsG,, G,, G3, and G4, and so on. To solve this +na,. Inthe notation of Ref[7], w=1%,2%2, ... n%. This

system of equations we truncate after tite equation, but allows us to read off the subscripts of the Green'’s functions

now to close the system of equations we mustGet,;=0 and the powers to which they are raised; the numbgsre

andG, ,,=0 in the last and next to last equations. the powers and the numbers they exponentiate are the sub-
How do we generalize this derivation to arbitra?  scripts of the Green’s functions in that term. From this we

Clearly, whenN is anintegerandN>2 we can use the two calculate the quantity

casedN=3 andN=4 discussed above as paradigms. All that

is needed is to functionally differentiate E¢R.7) N—2

times. This gives an expression 60| ¢N"1(x)|0) in Eq. Ms=(nja1.8;, ... an)
(2.3). For example, wheilN=5 we have ni
= ' , (223
Z[INCGP )14+ 6[ G () 126 (x,x) + 3[ G (x,%) 12 (11)%ay!(2!)%a,! . . . (n!)%nay!

+4GL ()G (x,%,3) + G (x,%,%,))
which is the coefficient for that particular combination of

=(0]¢*(x)[0), (22)  Green's functions.
For example, giver{0| #3(x)|0) there are three possible
whenN=6, we have combinations of the numbers, that satisfyn=a,+2a,
+---+na,: a;,=3; a;=1 anda,=1; and azg=1. This
Z[3(GP () P+10 G (x)1°GH (x,x) gives7=13%; 7=1,2; andw=3. Thus, there are terms of the

form G3, G,G,, and G;. CalculatingM; we find that the
coefficients of these terms are 1, 3, and 1. Hence, we are able
+10G5(x,x) G (x,x,x) + 5GP (x) G (x,x,x,x)  to reconstruct Eq(2.14.
When N is noninteger, the situation is much more diffi-
+ G (x,%,%,%,%))= (0] °(x)|0), (222 cult. To derive an expression 60| N~ 1(x)|0) in this case,
we assume first that is integer and use the general formula
and so on. Once this calculation is completed, repeated funder (0| #"N"1(x)|0) in terms of multinomial coefficients.
tional differentiation with respect td followed by settingJ Then, in principle, we can continue analytically off the inte-
=0 gives the complete set of coupled Green’s function equagers using analytical expressions in terms of gamma func-
tions. tions for these multinomial coefficients.

Note that while these equations are rather complicated, Of course, this procedure is complicated, but we illustrate
they are easily expressible in terms of multinomial coeffi-it below by considering the simplest truncation possible in
cients. Following the notation of Abramowitz and Stegunwhich we keep only the first two Schwinger-Dyson equa-
[7], the multinomial coefficients are defined as follows: Fortions and seiG,=0 for all n>2. In this case, for integer
each integen, there is a set of multinomial coefficients; each values ofN we have the beautiful result that the only multi-
coefficient expresses the number of possible ways to partnomial coefficients that appear are precisely the coefficients
tionn=a,;+2a,+ - - - +na, different objects int@, subsets of the Hermite polynomials. Thus, fmonintegevalues ofN
containingk objects k=1,2, ... n). For the first few inte- we have parabolic cylinder functions with the exponential
gersn the sets of multinomial coefficien{salledM s in Ref.  divided off. It is in this fashion that we are able to continue
[7]) are {1} for n=1, {1, for n=2, {1,3,1} for n=3,  off the integers.

{1,4,3,6,1 for n=4, and{1,5,10,10,15,101for n=5. Ob- To be explicit, we use the standard notatibn(x) to
serve that these are precisely the coefficients that appear mepresent the parabolic cylinder functif8| and define the
Eq. (2.7) for {0]¢(x)|0), (2.8 for (0|43(x)|0), (2.14 for  functionw,(x) by

+156(x)[GY(x,x) 12+ 10 GV () 12G (x,%,%)
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D,(x)=e "W, (x). (2.24

— ?Gy(x—y) +m?Gy(x—y) —giN[ (N-1)G} 2

Then, for integeN we factor[G(f)]N out of the equation for
(0]¢N(x)|0) and introduce the variableg? andy by Ga(x—y)

X Gy(Xx—Y)Wy_1(¥)+iGY w{_( Y)G—(O)
V92

(2.25 =6(X—Y). (2.30

This equation can be simplified by using the recurrence
relations for parabolic cylinder functiori§],

XWy—1(X)=(N=1)[wy_o(X) —wy_1(x)], (2.3D)

We then obtain for arbitrary nonintegis

<O|(’;N[—E]);)m:[G(ld)(x)]N\,\,N(),(J)) to obtain
. ; — 9*Gy(x—y)+m?Gy(x—y)
—1)*N! _
=[GP 001N e ZL), [T +(N=1)g(iG)" 2wy () Ga(x—Y)

=5(x—Yy). (2.32

Thus, Eq.(2.28 and Eq.(2.32 are a closed system of two
(This series terminates M is integer but is an infinite series equations and two unknowns. The solution of this system for
if N is nonintege). As we will see, wherd=0, the constant various choices of space-time dimension will be discussed in
G, is a negative imaginary number and the cons@&(0) is  the following sections.

real and positive. Thus, the argumentof wy is real and
positive. I1l. ZERO-DIMENSIONAL THEORIES

Using EQq.(2.26) we write the field equatio2.3) explic-
itly in terms of the Green’s functions of the theory:

(2.2

In zero-dimensional space-time the integral representation
for the vacuum-vacuum functiond[ J] corresponding to the
Lagrangian in Eq(1.4) is an ordinary integral
=600 +m*GY (%)~ giN G 0N w1 ()

o 1
=J(x). (2.27 Z[J]:fxd¢exp{—§m2¢2+%(i¢)N+J¢ . (3

(Remember that in the derivation of this equation we havelo demonstrate the numerical accuracy of our truncation
discarded all Green'’s functions higher th@g.) As before, method we first study massless theories of the form in Eq.

we obtain the first of the Green’s functions for arbitrdrpy (3.1 where all quantities are exactly calculable. We find that
setting the sourcd=0: for arbitrary N the Green’s functions can be expressed ex-

actly in terms of gamma functions. Then, we examine mas-
sive theories and show that weak-coupling diagrammatic

2 iNN-1 —
m°G,=gi"Gy Wn-1(7)=0. (2.28 methods are inadequate for the analysisPaf-symmetric
theories.
We obtain the second of the Schwinger-Dyson equations
for arbitrary N by taking the functional derivative of Eq. A. Massless theories in zero dimensions

(2.27) with respect ta)(y): Using Egs.(3.1), (2.5, and(2.6) we express the expecta-

tion value of the fieldthe one-point connected Green'’s func-

- ?GP(x,y) + m*GH(x,y) tion) as
_ 5 5 1 T
—gi" (N=D[GP ()N 2GH (x,y)wy—1(¥?) aninTl g+ 5] cos iy
G,= —i(— , 3.2
; 1 g \/; ( )
() IN= Ly ) GE(x.y)
FI[GT(X) 7wy (¥ )m =8(X—Y),  and the expectation value of the field squared as
2 l
3 T T
(2.29 Slare ™| il
(0|¢2|0>_(N)2’NF N sir? N 3 cod N
where we have se8$”=0. Now, setting)=0 in the above 0oy \g oL
equation yields the second of the Schwinger-Dyson equa- N
tions: (3.3
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Using Eq.(2.8) with J=0 we express the two-point con-  TABLE I. Exact valuegG %N andGgp2N [see Eqs(3.2
nected Green’s function a&,=(0|4?%(x)|0)/(0|0)— G2, af;% (g/f»)] compared with the first appl_VOXimatiori@f _g”N and
which can be calculated exactly using the two equation§>2 9°, which are obtained from the first two Schwinger-Dyson
given above. equations and given in Eq$3.5 and (3.6). This is done for the
Observe that for anN=2, G, is pure imaginary and _three casedl=3, N=4, andN=5. Observe that the percent error
negative ands, is real and positive, as claimed earlier. This Ncréases with\ for G, and decreases witi for G,. These trends
is in fact true in any dimension. The reality &, and the continue untilG; has a maximum error of 23.2% &t=53, and
. L ) until G, has a minimum error of 0.34% &t=8. For N>53 the
ITJZ?]It?t?ensty A?f(.?li r1:oII:I)otv(\)/stroCrE ;:eez-l;hseygmnetxhﬁ; tzesle _ error for G, decreases until it levels off at 21.3%. Fi>8 the
iqng P 1o G Ipeilzesg the Sigl;n inta?:t Henceg u,ndErWhiF(;Ely error forG, increases likeN. The largeN behavior of our approxi-
2 . ’

- . - . mations is more fully discussed later.
acts as complex conjugatioB, changes sign again and thus

irseaplure imaginary, whilé&, does not change sign and thus is G xacyIN iGSPgIN Ggracy2N GSPg2N
The first truncation approximations 16, and G, ob- 3 0.72901 0.79370 0.53146 0.27516

tained by keeping just the first two Schwinger-Dyson equa# 0.97774 1.10668 0.28000 0.14907

tions are found by solving the zero-dimensional massles§ 1.07865 1.24829 0.16433 0.10158

versions of Eqs(2.28 and(2.32. Observe that witim=0,
Eqg. (2.28 demands that

around the correct answer. For the case of a Hermitian

Wn-1(7)=0. (3.4 Hamiltonian we would expect that the approach to the cor-

. : . L ._rect answer is monotone. This is because the calculation that
In zero-dimensional space-time there are no derivatives with

respect tox and the delta function is unity. Thus, all we are performing is variational in nature. Keeping more and

) i . ore Green’s functions corresponds to enlarging the param-
Schwinger-Dyson equations are algebraic. The secon o A

. S eter space. However, in this case the Hamiltonian is not Her-
Schwinger-Dyson equation is

mitian, so this oscillation is not surprising. Indeed, it is con-
(N=1)g(iG )N 2wy_»(70)Go=1, sistent with our variational studies oP T-symmetric
guantum mechanical systems in Rfg].

wherevy, is the solution of Eq(3.4). (Note that there is some Apart from the oscillations, we would hope that succes-
ambiguity with regard to which zero to choose. Our numeri-sive approximations would come closer to the correct value.
cal studies suggest that the most positive zero is always thehus, the fact that the sixth approximation is worse than the
correct choice, but we do not have a proof. We find that it isfifth and that eventually most of the approximations become
this zero that gives the most accurate numerical resites:  complex is a startling result. We believe that this is also due
calling the definition ofy, we insertG,=— G2/ to obtain ~ to the non-Hermiticity of the Hamiltonian. Indeed, while
an expression fo6: these approximations are numerically extremely accurate, we
find that the convergence is rather slow and it may even be

, 73 N that this truncation method does not converge. To examine
Gi=—1i (N=1)gwy_2(70) 39 the convergence we have numerically solvedy largesys-
tems of coupled Schwinger-Dyson equations lfor3; we
Again using the definition ofy, we expresss, as have plotted in Fig. 1 all solutions for the one-point Green’s
2-N 2IN
Yo 0.1
Go=| (3.6
(N—=1)gwy-2(70) 0 075t
Table | compares the exact results with the corresponding 0. o5k

first approximations foN=3, N=4, andN=5.
Deriving an expression for the second approximation in 0.025¢}

terms of N is difficult. However, for a specifidN, solving hoot

larger and larger systems of Schwinger-Dyson equations ir = 0.65 0.675 ~ P e g e 0.75 0.775 0.8 0.825

which more and more Green’s functions are included can be -0.025¢}

done symbolically on a computer. The case-3 is com-

paratively simple. If we keep equations, then fok<n, the ~0.05¢

kth equation is linear irG, , ;. Thus, we can systematically -0.075}

solve a sequence of linear equations for the Green’s func:

tions, substitute the results into tikh equation, and solve -0.1°

the resulting polynomial equation f@;. FIG. 1. Solutions of the first 150 coupled Schwinger-Dyson

For N=3, the first six approximations t6G;g"® are  equations for the dimensionless one-point Green’s fundog"’>
0.79370, 0.69336, 0.74690, 0.71256, 0.73987, and 0.7123%r the case of a massless zero-dimensidial3 theory. Note that

The exact answer, taken from E@3.2) with N=3, is  the solutiongiindicated by dotslie in a small portion of the com-
0.72901(see Table)l Note that the approximations oscillate plex plane very close to the exact answer 0.72901.
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0.2y B. Massive theories in zero dimensions
In zero-dimensional space-time, massless theories are so
0.15¢ simple that it is possible to solve the Schwinger-Dyson equa-
tions as algebraic systems. However, in higher dimensions,
¢ o 1l the coupled Schwinger-Dyson equations are quite compli-
s ' cated. Thus, we will be interested in obtaining perturbative
solutions for the case of small coupling constgnt
0.05} To gain a rudimentary understanding of the perturbative
. nature of the theories in E¢L.4), we study in this subsection
, , , , , - | o , the path-integral expressions for timepoint disconnected
0.5 0.6 0.7 0.8 0.9 1.1 Green’s functionsF, of a zero-dimensionalg¢* field
b theory. These disconnected Green'’s functions are expressed
-0.05¢1 as ratios of integrals:
s -0.1] - n 1 52,9 4
. 0.1 J_wdd)d) ex;{ Em 1] +Z¢
Fo=—rx (3.7
-0.15¢ f d¢exp<—}m2¢2+g¢4>
— 2 4
-0.2

Although these integrals cannot be done exactly, we can
FIG. 2. Solutions of the first ten coupled Schwinger-Dysonuse the method of steepest descents to obtain an asymptotic

equations for the dimensionless one-point Green’s fundtym*  result for smallg with m fixed. We will see that, depending

for the case of a massless zero-dimensidwal4 theory. The so- on whether the sign ah? is positive or negative, we obtain

lutions (indicated by dotglie in a small portion of the complex drastically different results.

plane very close to the exact answer 0.97774. We begin by replacingp by the dimensional quantity

according tog= \/2/g|m|x. This gives

function in the complex plane for the system of 150 coupled

Schwinger-Dyson equations that lie near the exact answer. In - fw dx ¥ exg — A(£x2—x%)]

this figure we see that the algebraic solutions for the one- _ 2|m| — 3.9
point Green’s function form a very smaltbop around the "l g o 0 ar :
exact value. The largest dimension of the loop is along the J_wdxexq—A(tx —x7]

real axis and is approximately 0.04. The furthest distance of

a point on the loop from the correct answer is approximatelywyhere A =m?/g is a large positive parameter gs-0 and
0.034. A weighted average of the points on the loop is eXwe have distinguished between the two cas&s-0 and
tremely close to the correct answer 0.72901. m2<0.

The caseN=4 is more complicated than that &f=3 To calculate the integrals in E3.7) asymptotically, we
because now the last two Schwinger-Dyson equations, rathéind the stationary points of the functigin(x) in the expo-
than just the last equation, are nonlinear. As a result th@ent, where
largest number of equations we can solve and hence, the
largest number of Green'’s functions we can include, is ten. p(x)=*x>—x*. (3.9

The first five approximations taG,g'* are 1.10668, _ L . . :
0.90560 1.02988. 0.96159 and 1.02868. The exact value REMNY the derivative of this function equal to zero gives the
' ' T ’ ' ' solutions x=0, *+1/\/2 for m®>>0 and x=0, *i//2 for

0.97774(see Table)l Just as foN=3, the approximations g12<0 These stationary points are shown on Figs. 3 and 4
oscillate around the exact answer and successive approxima- Next, we find the paths of steepest ascent and descent that

tions are numerically accurate but appear to converge ver : . N )
slowly. In this case, the fifth approximation is worse than the; ass through these stationary points. Substitutingi +iv

fourth. We have plotted in Fig. 2 all solutions of the first ten'm0 Eq. (3.9 and separating the real and imaginary parts
coupled Schwinger-Dyson equations for the one-pointerIdS
Green’s function that lie near the exact answer. As in the
case of Fig. 1 these solutions form a small loop in the com-
plex plane around the exact answer. +i[*2uv—4uv(u®>-v?)].  (3.10

The numerical work that we have done on zero-
dimensional massless theories suggests that solving systerfiBus, the paths along which Ip=0 are given byu=0, v
of truncated Schwinger-Dyson equations gives extremely ac#0; v=0, u#0; andu?=v?+1/2, where the+ depends
curate numerical approximations to the Green’s functionson the sign ofm?.
The convergence of the method is still not understood and To determine whether each of these paths is a steepest
warrants further study. ascent or descent path, we perform a local analysis of the

p(u+iv)==*(u?—v?) —u*—v*+6u?
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lies on the real axis. Evaluating the integrals asymptotically
along the remaining parts of the contour gives an exponen-

m?>0 tially small result; apart from a multiplicative constant

DOWN Fone1~g "% M (g—07). (3.11
A)WN u The dominant contribution to Green’s functions of even sub-
up script comes from the portion of the contour along the real
DOWN axis. Evaluating the integrals near the saddle point at the

origin, we find that the small behavior of these Green’s
/6 \Stationary Pl functions is given by
Ehasie
ontour B
For~m~ 2" (g—07), (3.12

apart from a multiplicative constant. Note that the Green’s
FIG. 3. Saddle points and steepest-descent paths for the functidiinctions with even subscript behave very differently than
p(x) in Eq. (3.9 for the casem?>0. the Green'’s functions with odd subscript. Further, notice that
the behavior of the Green’s functions with odd subscript is
paths at each of the saddle points. The results of this analysisherently non-perturbative and, as a result, Feynman pertur-
are displayed in Figs. 3 and 4. The stationary phase contolrative methods cannot be used to calculate these Green's
is chosen such that the boundary conditions are obeyed. Ufinctions.
ing Eq.(1.3), we choose the end points that lie below the real Form?<0 the dominant contribution tall of the Green’s
axis at the angles- 7/6 and— 57/6. Form?>0 the contour  functions comes from the saddle point-ai//2. As a result,
follows the pathu= — \u?+ 1/2 from the lower left quadrant all of the Green’s functions exhibit similar behavior. To be
of the complexx plane up to the stationary point at1/y2,  specific, we have
then goes along the real axis from1/\2 through the sta- _ oo .
tionary points at the origin and at\I2, and finally leaves the Fo~(=1)"m["g"™ (g—07). 313
point 1A/2 and follows the pathu=\v?+ 1/2 down to the
lower right quadrant of the complexplane. Fom?<0 the
contour follows the pathv=—\u?+1/2, which passes
through the stationary point ati/+/2.

Now, we determine the disconnected Green’s function
F, for both them?>0 andm?<0 cases by evaluating the
integrals in Eq.(3.8) along the appropriate stationary phase V- NUMERICAL STUDY OF ONE-DIMENSIONAL
contours. Form?>0 the Green's functions with odd sub- THEORIES
script vanish(by oddnespalong the part of the contour that oy syccess with zero-dimensional massless theories
prompts us to study one-dimensioriglantum mechanichl
massless theories of the form in Ed.4). Numerical com-

Thus, once again, it is clear that these results cannot be ob-
tained using Feynman diagrams. As we will see in Sec. V
this theory is also the one that is asymptotically free in four
Sdimensions and the more interesting of the two cases.

v

up putations have been performed in one-dimension which al-
m?<0 low us to compare with exact numbdrs|.
DOWN ~—@<= DOWN In analogy with the last section, we find the first approxi-
up T Saddle mation toG,; and G, by solving the one-dimensional mass-
", Points less versions of Eq92.28 and (2.32. Observe that with
DOWN _— m=0 we obtain Eq(3.4) once again. In fact, Ed3.4) holds
u independent of the dimension. The second Schwinger-Dyson

equation is given by
—3*Gy(x—y) +(N=1)g(iG )" 2wy _»(70)Ga(Xx—Y)
=8(x—vy). 4.1

This equation depends on the dimensidrthrough the par-
tial derivative. If we introduce the variabl®l defined by
M2=(N—1)g(iG )N 2wy_»(70), it is clear that Eq(4.1)

IS,}?;;‘;“@ is just the equation for the Feynman propagator, whose so-
Contour lution in one-dimension can be written
. . 1
FIG. 4. Saddle points and steepest-descent paths for the function G.(X—V)= — e Mx-yl 4.2
p(X) in Eq. (3.9 for the caseam?®<0. 2(x=Y) 2M ' 4.2
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TABLE II. Exact values 0fG***andM®#°= E, — E, (see Ref. ~ = dg. ~
[1]) compared with the first approximation > and M SP, which (p?+M?)Gs(p)+ ZQiJ —G,(q)G,(p—Qq)=0,
" . . . o 27T
are obtained from the first two Schwinger-Dyson equati¢h8)
and(4.4). This is done for the three cashs=3, N=4, andN=5. (4.8
Note that the error is worse than for the zero-dimensional theories,

ggd that thl‘le etrr](0|;1\1l‘(J_h/AIlincreases WithN. However, the error for \here we have used the same definitiorvbhis above, the
151 1S smaflest Tomi=4. convolution property of Fourier transforms, and the transla-
tion invariance of Green’s function&;(0,x—y)=G3(x

: ~exact i~ SD exact SD
N Gy iGY M M Y X—y)=Gs(X—Y).
3 0.59007 0.37011 2.95293 2.70192 We now solve foréz(p) and obtain
4 0.86686 0.82548 4.52620 3.63424
5 1.01310 1.15416 6.70000 4.72160 2
~ 1 29 *» dg~ ~
Ga(p)= pZiMZ (2t MZ)Zf_w EGz(Q)Gz(p—Q)-
Consequentlyis,(0)=1/(2M). Recalling the definition of 4.9

we useG,(0)=—G2/y3 as we did in the previous section to

obtain an expression fdB;: . . . .
P ! The simplest approach to solving this nonstandard inte-

L(N+2) gral equation is to iterate it to high order in the small param-
4.3 eterg. This iterative procedure can be represented in terms of
diagrams. These diagrams all have a similar structure: They

o ] ) . begin with one line that branches into two lines. This branch-
SubstitutingG; into our expression foM yields ing process continues until the maximum number of lines is
N=272/(N+2) attained. Then the process is reversed, with lines combining

Yo in pairs until only one line remains. We were able to perform

(N=1)gwy- 70)(@) ] (44 the calculations symbolically on a computer. We calculated

the propagator to order @t%; the first three terms in the
expansion are

%
4(N—=1)gwn-_2(70)

Gl:_i

M=

which further allows us to writ&,(0) as

1 1 Yo 2—-N72/(N+2) _ 1 292
Ga(0)=3 Q(N—l)WN—2(70)<E> } : GZ(p):p2+M2_ M (pZ+ M2)Z(pZ+ 4M?)2
@9 (456M 4+ 70M?p?+ 4p*)g*
For field theories,M represents the renormalized mass, " IMO(p?+M?)?(p?+4M?)?(p?+9M?)
which is nothing more than the difference in energy between +0(gP). 4.10

the first excited state and the ground state- E,. Table I
compares the exact valuesMfandG, with the correspond-
ing first approximations for the casé=3, N=4, andN
=5. (Here, we must seg=N/2 and multiply M by 2 to
match the Lagrangians studied in REf].)

In one dimension it is difficult to obtain the second ap-

Now that we haveS,(p) to high order ing, we make the
ansatzthat it can be expressed in the form

proximation, even for a specifid, because it requires solv- ~ Z, Z, Z3

ing coupled systems of nonlinear differential equations. As Gap)=— 2t 3 2T 3 2T

: . . . ) p*+M1 p“+M; p°+Mj

in the previous section, the easiest case to stubty=8. The 4.11)

first three Schwinger-Dyson equations are given in Sec. | as

Egs.(2.10, (2.12, and(2.13 with m=0. To close this sys-

tem of equations we sdb,=0 andz=y. Then, the third where M =nM+b;,g?+b,,g%+bs,0°+ -+, Z;=1

Schwinger-Dyson equation becomes +a;,0%+a, 9% +az 0%+ -+, Zy=a; H°+a, 9% +a;.0°

+., Zg=a,9%+az 0%+ -+, and so on. By matching

— #?G3(x—Yy) +gi[2G;G3(x—y) + 2G5(x—Yy)]=0. this ansatzto our calculation, we determine the coefficients

(4.6 ay , andby . [The expansion of thansatzdoes not exactly
match the expansion of our calculation. This is easily under-

Next, we Fourier transform the second and thirdstgod because our calculation férz(p) only involves spe-

Schwinger-Dyson equations to obtain cial diagrams described above, while tesatzinvolves all
_ _ types of diagrams. However, the system of equations is nei-
(P2 +M?)Gy(p)+giGs(p)=1 (4.7 ther overdetermined nor underdetermined, so all coefficients
may still be calculated.
and The series for théM , are

085001-9



CARL M. BENDER, KIMBALL A. MILTON, AND VAN M. SAVAGE PHYSICAL REVIEW D 62 085001

2 4 6 8 TABLE Ill. Schwinger-Dyson approximations fdl , compared
M;=M+ 9 7— 319 . 127% — 98284 with exact values of the energy differendg,— E,, calculated in
3M* 72M7 1944 9331M1° Ref. [1]. These approximations are based on the truncation of the
first three Schwinger-Dyson equations for ignp® field theory of
9641179° the type in Eq(1.4). Notice thatM, is greater than the numerical
+ m’ result in this case, while in Table IM; was less than the numerical
answer. This suggests that in one dimension the oscillatory nature
of successive approximations is present once again. Moreover, the
M.=2M + 292 _ 1194 + 13336 + 331613]8 percent error has decreased significantly; the error is 8.50%1 for
2 3M*  108M° " 1944u4 279936119’ calculated using the first two Schwinger-Dyson equations compared
with 3.52% calculated using the first three Schwinger-Dyson equa-
oy . gz . 2994 ) 101g6 tions.
8 M* " 216M° 4814 n E,—E, M:P % error
492  109* 1 2.952962 3.056763 3.52
My=aM+ o2+ Sooue: 2 6.406007 6.191828 3.34
3 10.158155 9.610135 5.39
5g2 4 14.135286 12.871434 8.94
Mz=5M + ETVER (412 5 18.295263 15.681836 14.28

Since we now have expressions fdr, in terms ofM, we in which it i di lizati
need only determind/ accurately to finish the calculation. D: I Which it is necessary to discuss renormalization.

This is done using the first Schwinger-Dyson equation

(2.10, which implies that A. Schwinger-Dyson equations forD <2
M= 402G, (0). 41 In this subsection we solve EgR.28 and(2.32 in ar-
9°G2(0) 4.13 bitrary dimensionD with m=0. This calculation is a
Observe that straightforward generalization of the one for=1.
As previously stated, whem=0, Eq.(2.28 implies Eq.
*» dp~ (3.4). In addition Eq.(2.32 continues to imply Eq(4.1),
Ga(0)= f 5.6Gp). (4.14

—9°Gy(x—y) +M?Gy(x—y)=8(x~y),  (5.1)
So, based on our calculation of the first three terms above

the first few terms are ih which we have defined the renormalized miss by
o 7g* M2=—giN(N—1)G} 2wy _»( o). (5.2)
Gy(0)= s — e —— (4.19
2M - OM” " gm ™ Equation(5.1) is just the differential equation satisfied by the
_ Feynman propagator.
This allows us to expresldl andg as We solve these two equations in arbitrary dimendioby
taking the Fourier transform to obtain the propagator:
M2: /4926 (0 = \/2_92_4_g4+ 796 +O(98)
2 M 9M® " gt ' Gy(p) = 1U(p?+M?). (5.3
(4.16

Fourier transforming this propagator back to position space

Keeping terms to order @(°) we obtainM =1.126153%°. 414 then setting=y gives

With this value ofM, the M, become numerical series
multiplied by an overall factor 0§?°. Successive terms in G,(0)=MP~2['(1-D/2)7~P/227P, (5.4)
this numerical series decrease in magnitude and thus the se-
ries appears to be convergent. To compare with the numerigsing Egs.(2.25 and(5.2) we solve forG;:
cal results and match the Lagrangian in Réfl, we setg
=3/2 and multiply theM, by 2; results are given in Table Gi=—i{[(N=1)gwWy_2(70)1®C~21(1-D/2)

. X(4,n_)—D/Z,Y%}Z/(—ND-%—ZN-PZD). (5.5)
V. SCHWINGER-DYSON EQUATIONS IN D DIMENSIONS

Substituting this result into Eq5.2) yields
In this section we show how to solve truncated systems of

Schwinger-Dyson equations [ dimensions. First, we con- M={[(N—1)gwy_»(y0) 1] (1—D/2)
sider the cas® <2, in which it is not necessary to perform D/ 2N 1
any renormalization. Then we consider the case of arbitrary X(4)~ PlRyg N2 VNPT ENT2D), (5.6
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and substituting the last two results into £§.4) gives an  (2.10, (2.12, and(2.13. Let us seek a perturbative solution

expression forG,. These expressions reduce to the zero4o this system of equations in whid®,~g" 2. In leading

dimensional and one-dimensional solutions given in the preerder we have first, from Ed2.10),

vious two sections. Notice that each of these expressions )

becomes singular & =2. G.—i 5.9
Using these approximate solutions we can determine the ! ' '

largeN behavior of the Greens functionslds—oc. To do so,

we need to determine the asymptotic behavior of the zeros dfhen, from Eq(2.12), the two-point function in momentum-

the parabolic cylinder function. According to R¢f], the  Space Is

largest zero ofw,_(y) for largen is given by y,~2+/n.

Substituting this into the integral representationvigr () 'éz(p):f dox P NG, (x—y)= >, (5.9
and using Eq(2.31) we perform a steepest-descent calcula- pe+M
tion to obtainw,,_,~ \/2/73 YT (1/3)2 "n%"2, We have
e : : . where
verified these results numerically to high accuracy. Taking
N— oo in the expressions fdg,, G,, andM above and using M2=m2+2igG,= — m?. (5.10
the asymptotic results for the parabolic cylinder function, we
obtain Thus, in order to avoid unphysical singularities, we must
, have for this type of solutiom?<0. The leading solution to
Gy~ —2i/\Je= —1.213086, Eq. (2.13 is
G,~1/(Ne), ~ 2ig
G y = L]
2 —D/2p12/(2-D (P.a) (P*+M?) (g +M?)[(p+q)°+M?]
M2~[el'(1—D/2)(4m) P/2N]?(2=D), (5.7) (5.10)

Observe thatG; is independent of bottN and D to this  which has an obvious interpretation as a vertex with three
order, G, depends orN but not onD, andM? depends on external lines.

both N andD. These results are valid for largéfor all D More generally, the solution to E¢2.10) is

<2. These properties are evident in zero dimensions from
Egs. (3.2 and (3.3. While the behavior ofG; and

(0| ¢?(0)|0) is correctly predicted, the behavior G, is not
because the first-order behaviors @f and (0| 42(0)|0)
cancel, leaving a second-order term to descie Also,  which corresponds in the perturbative case, wH&g(0)|
this calculation predicts tha? increases lik&N?(?~P) That  <(m?/g)?, to
is, for largeN the separation between the energy levels di-

Gl=%[im2/gti\/(m2/g)2+4G2(0)], (5.12

verges and hence, the energy levels must diverg® il iﬂ

our approximation suggests thst grows like N. In fact, M g’

grows likeN? in D=1 as discussed in RdfL0]. This is the G,= (5.13
simplest possible truncation, but it suggests the correct be- —j %GZ(O).

havior. m

The second solution given in E¢5.13 corresponds to the
usual perturbative tadpole contribution to the vacuum expec-
tation value of the field, while the first is the new, nontrivial
solution given in Eq(5.9).

Let us first consider th® T-symmetricig ¢ theory in six Perturbatively solving the next in the sequence of
space-time dimensions. The Green'’s functions for that theor$schwinger-Dyson equations, we obtain for the four-point
are governed by the system of equations beginning with Eqgunction in leading order

B. Perturbative renormalization of the Schwinger-Dyson
equations in D-dimensions and leading-order calculation
of the beta function

- —2ig [ 1 1 1
P41 = g T MAEZF M (G2 MO M) (pr a2 M2 | (prrZr w2 * (qrnZmz)
(5.19
Inserting this back into Eq2.13), we obtain the one-loop correction to the three-point function. Apart from a tadpole term,

this is just the same as that found in the conventiastalheory; correspondingly, the beta function is obtained from that in the
conventional theory by the replacement-ig (see, for example, Refl11])

dg 3 3
/3(9)=u£=§(%> , (5.15
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whereg(u) is the running coupling at scale. Unlike the usuaId)g theory, thePT symmetric theory given here is not
asymptotically free.

Of course, tha;Sj‘1 theory is of far greater interest. In particular, it plays a crucial role in the standard model as the origin of
particle masses through the Higgs mechanism. Yet the triviality of that theory is a source of difficulty. What happens here,
when we setN=4 in Eq.(1.1)?

The first few Schwinger-Dyson equations are given in Egslf, (2.18), (2.19, and (2.20. Note that the last three
equations can be simplified through the introduction of the renormalized mass

M?2=m?—3gG,(0)—3gG?2. (5.16
Thus we obtain the following equations for the two-point function,
(= P+ M?)Gy(x—y) —gG1G3(0,x—y) —gG4(0,0,x—y) = 8(x—Y), (5.17
the three-point function
(— P+ M?)G3(X—Y,X—2) =69 G1G(X—Y)Go(X—2) —3g[ Go(X—Y)G3(0, X—2) + Go(X—2)G3(0,x—Y)]
—39G;G4(0,x—y,x—2)—gGs(0,0,x—y,x—2)=0, (5.18
and the four-point function
(— P+ M?)G4(X—Y,X—Z,X— W) —6gG(X—Y)Go(X—2)Go(Xx— W) — 3g[ Go(X—Y)G4(0, X—Z,Xx— W)
+Go(X—2)G4(0, X—Y,X—W) + Go(X—W)G4(0,X—Y,X—=2)] —69G1[ Go(X—Y)G3(X—Z,Xx— W)
+ Gy (X—2)G3(X—Y,X—W) + Go(X—W)G3(X—Y,X—2)] —39[ G3(0,Xx—y)G3z(X— 2,Xx— W)
+G3(0, X—=2)G3(x—Yy,Xx—W) + G3(0,Xx—wW)G3(x—y,x—2)] —39G;G5(0, Xx—y,X—Z,Xx— W)
—g9Gg(0,0,x—y,x—2z,x—w)=0. (5.19

Now there are two regimes. th>>0 the only consistent

perturbative solution to the above system of equations is one
in which the odd Green’s functions are exponentially small,
62G G,ni1~€ ¥, and the even and odd Green’s functions de-
1

couple.[This result is analogous to that in E@®.11).] The

even Green'’s functions possess the same perturbative expan-
sion as in the usuap” theory except for a change of sign of
the coupling constant, so again the sign of the beta function
reverses:

6g
g 2
/\ ,8(g)=—27(§> . (5.20

This theory is asymptotically free. Furthermore, in the non-
perturbative regime it exhibits parity symmetry breaking, but
possesseB T symmetry becaus€; is imaginary.

62G,; 62G, The other regime is even more interestingmif<0 it is
consistent to proceed in analogy with our treatment ofg#Re
theory above. We may assume a perturbative solution of the
form G,~g"?~1. Then we have a purely imaginary vacuum
expectation value of the field, from E(R.16):

6gG1 m2
Gi=\/—, (5.21)

while the leading two-point function has the usual form of a
FIG. 5. Lowest order graphs contributing @. propagator:
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- 1 The leading three-point function has an evident diagram-
Ga(p)= RNVER (5.22  matic interpretation:
~ 1 1 1
Here the renormalized mass in leading order is positive: ~ G3(P.d)=69G; 02t M2 g2+ M2 (p+ )2+ M2" (5.24
M2 m?— 30 G2 o2 (523 The tree-level four-point function is easily extracted from
=m?—3gGi=—2m?. : Eq. (5.19:
= B 69 -l+ 3m? . 3m? . 3am?
AP = M T MO MOt gt nZME T (pr oMzt (pr Mz T (grnZeme)
(5.295

being composed of contibutions from primitive four-point  We have shown that the signs of the beta functions for a
and three-point vertices. conventionalg¢® theory and for aPT-symmetric ig¢®
Now we have perturbative parity symmetry breaking: thetheory in six space-time dimensions are reversed. Thus,
scalar field acquires a vacuum expectation value comparablghile the former theory is asymptotically free, the latter is
to that of the gauge bosons in the standard modé(;l_ not. Similarly, the beta fun_ctions for a co_nventiorga:b4
Further, it appears likely that the theory is asymptoticallytheory and for & T-symmetric—g¢* theory in four space-
free, because the sign of the four-point vertex is reversedime dimensions are reversed. Thus, while the former theory
Indeed, apart from one-particle-reducible graphs, B®5 is not asymptotlgally free, the Iatte_r is. S|m|IarIy_, as we have
gives just the usual primitive vertex in the high momentum@/réady argued in Ref12], we believe that while conven-
limit, except for a change in sign. The theory is renormaliz-tlonal quantum electrodynamlcs_ls not asyrr_lptotlcally free,
able because, apart from divergences associated with the fT -Symmetric ele(_:trodynamms_ Is asymptoiically free and
3-, and 4-point functions, no additional divergences occurP9SS€sses a nontrivial fixed point.
This is due to the fact that, for example, the 5-point function
has no primitive vertices, as can be easily seen from the next
in the sequence of Schwinger-Dyson equations after Eq. One of us, C.M.B., thanks Arthur Lue for many useful
(5.18. The lowest order diagrams contributing®g are as  discussions at the Aspen Center for Physics. This work was
sketched in Fig. 5. supported in part by the U.S. Department of Energy.
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