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Fate of a Reissner-Nordstron black hole in the Einstein-Yang-Mills-Higgs system
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We study an evaporating process of black holes in thé3SBinstein-Yang-Mills-Higgs system. We con-
sider a massless scalar field which couples neither with the Yang-Mills field nor with the Higgs field surround-
ing the black hole. We discuss the differences in the evaporating rate between a monopole black hole and a
Reissner-Nordstrm (RN) black hole. Since a RN black hole is unstable below the point at which a monopole
black hole emerges, it will transit into a monopole black hole as suggested via catastrophe theory. We then
conjecture the following: Starting from a Reissner-Nordstialack hole, the mass decreases via the Hawking
radiation and the black hole will reach a critical point. Then it transits to a monopole black hole. We find that
the evaporation rate will increase continuously or discontinuously according to the type of phase transition that
is either second order or first order, respectively. After its transition, the evaporation will never stop because
the Hawking temperature of a monopole black hole diverges at the zero horizon limit and overcomes the
decrease of the transmission amplitude

PACS numbegps): 04.70-s, 04.40-b, 95.30.Tg, 97.60.Lf

I. INTRODUCTION their black hole solutions themselves are only obtained nu-
merically, which takes much work compared with black
For many years, there have been various efforts to find §oles analytically obtained. Another cause is perhaps due to
theory of “everything.” One of the candidates is superstringthe'r InStabl!Ity in which case the evaporation process need
theory which has been the cause of much attention for thﬁOt be con5|de(ed. But for some types qf non-Abelian black
last several years in the context of black hole thermodynamt-)ggli'hggr\?vrﬁ)ém:;ga[‘ed ?r?lﬁrfgog%) E?r:tslf(;ﬁr\l(yéna _nl\}ltﬁg?pole
ics. Since the discovery of black hole radiation by HawkingH. (EYMH) system is i tant in th t tgf Hawk-
[1], which is now called Hawking radiation, black hole ther- 199s system IS important in the context ot Haw

modvnamics takes it ition bevond the anal f rdiing radiation[10—13. In the EYMH system, if we consider
odynamics takes Its position beyo € analogy of ordi,q evaporation process of the RN black hole, its fate will be
nary thermodynamics.

But Hawki diation i iclassical oh rather different from that in the EM system, since it may
But Hawking radiation Is a semiclassical phenomenon,, o ience a phase transition and become a monopole black
which means that space-time itself is treated classically an ole. Contrary to the RN black hole, when a monopole black
matter _f|eld IS quantized around its metric. Although thehoIe evaporates, the Hawking temperature rises monotoni-
grawtatlpnal field should also be quantlzeq when the CUNVaEally like the Schwarzschild black hole and it may have the
ture radius gets as small as the Plancknian lenggh- 1.6~ ,¢5ihility to become a regular monopole. If this is the case,
%10 cm), usually we ignore it and estimate the effect of jt oy shed new light on the problem of the remnant of
Hawking radiation, e.g., ay-ray sources of the early uni- yayking radiation. So we need to study its evaporation.
verse[2]. When we consider the evaporation process of a This paper is organized as follows. In Sec. II, we intro-

Schwarzschild black hole, the Hawking temperature arise§ce pasicAnsize and the field equations in the EYMH

monotonically and Hawking radiation does not stop, so Claséystem. In Sec. Ill, we briefly review black holes in the

sical physics will break down and quantum gravity effectSgy\y system and their thermodynamical properties. In Sec.
should be considered. This is a serious unsolved problern/, we investigate the evaporating features of RN and mono-

which will be a key to quantum gravity. But if we think 56 piack holes in the EYMH system. In Sec. V, we make
about Hawking radiation of a Reissner-NordstrdRN)  g5me concluding remarks and mention some discussion.

black hole in the Einstein-MaxwelEM) system, its fate is Throughout this paper we use units-# = 1. Notations and

completely different because its temperature will go downyefinitions such as Christoffel symbols and curvature follow
and the evaporation process will cease, if we assume that thg, Misner-Thorne-Wheelda4].

electric charge is conserved.
Such fates and related things have been investigated by Il. BASIC EQUATIONS
many authors. But as for the black holes with non-Abelian

hair [3—9], they have not been much investigated because \:jvel consider black hole space-time in the (SCEYMH
model as
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where k>=87G with G being Newton’s gravitational con- 1 /{dw\? 1/dn\?
stant.L,, is the Lagrangian density of matter fields which are Ke=S| =] t5| = (2.149
written re\dr) 2\dr

1 1 Y We have introduced the following dimensionless variables:
Lm=— 7 FLF¥"=5(D,0%)(D 0% — 2(d*D?—v?)?2

4 MY ~ ~
2.2 r=evr, m=Gevm, (2.15
FZV is the field strength of the SB) YM field and is ex- and dimensionless parameters:
H TN a ~ ~
pressed by its potenti#l’, as b=vJG, N=\e?. (2.16
a _ a__ a bcab pcC
Flv=0,AL = d,AS+ee®™A AT, (2.3 Although the solution exists whem<Mp,, whereMp, is

the Planck mass, it can be described by a classical field con-
figuration in the limit of a weak gauge coupling constant
because its Compton wavelengtte/v is the much smaller

D ®3=g D3+ eedbAPPC (2.4) than the radius of the classical monopole solutienl(ev)

K’ K H” in this case. Moreover, since the energy density-is’v*

The theoretical parametessand\ are a vacuum expectation <M, we can treat this classically if we ignore the effect of
value and a self-coupling constant of a Higgs field, respecgravity. The boundary conditions at spatial infinity are
tively. To obtain black hole solutions, we assume that a
space-time is static and spherically symmetric, in which case  M(*®)=M<=, §(*)=0, h(=)=1, w(x)=0.
the metric is written as (217

with a gauge coupling constaat ®? is a real triplet Higgs
field andD , is the covariant derivative:

—_ ~28(N g2+ ~14r2+ 12402 _ These conditions imply that space-time approaches a flat
ds’ f(ne dr+f(N=dri+rid0s, - 29 Minkowski space with a charged object.
wheref(r)=1-2Gm(r)/r. For the matter fields, we adopt 10 obtain a black hole solution, we assume the existence

the hedgehod\nsatzgiven by of a regular event horizon at=r. So the metric compo-
nents are
d2=prah(r), (2.6
'y
ASZO 2.7 mHEm(rH):%a Op=0(ry)<e. (2.18
A o achplTW() We also require that no singularity exists outside the horizon,

A= @, e ——, (n=123, (28 e,
wherera_andw; are a unit radial vector in the internal space m(r)<L for r>ry. (2.19
and a triad, respectively. 2G

Variation of the action2.1) with the matter Lagrangian

(2.2 leads to the field equations For the matter fields, the square brackets in Egsl1) and

(2.12 must vanish at the horizon. Hence we find that

20 s (2.9 dw w

—=—omlv , . H ~

dr — =?(1—Wﬁ—hﬁrﬁ), (2.20

dr Tr

- H

dm ~ ~ ~

— =471 B fK+0], (2.10 dh MH ey s

dr prd I CUR U R A s

~ ~ r=r
d?w 1 L0 podw 2mdw) "
2 Tlzaw BV E = ) G where
— ~Zy yy —2 232 212
~ = - +
dh_ dn1 1[40 _dh 1dh F=2motrl2ry (L= wia) ™ 4w
=, =T =< T 7| oo v U——= —=|, ~~ ~
dr? drr f|dh dr T dr +ATA(hG—1)%] =Ty, (2.22
(212 Hence, we should determine the valuesagf andhy, itera-
where tively so that the boundary conditions at infinity are fulfilled.
- by - A nontrivial solution does not necessarily exist for given
UE(l_lN ) " vz_h " E(hz— 1)2 2.13 Bhysical parameters. However, for arbitrary values afnd
2r4 4 ’ \, there exists an RN black hole solution such as
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. 2m? ties. We show the relation between horizon ra&iusand
w=0, h=1, =0, m(r)=M- S (223 gravitational mas#l in Fig. 1(a). We denote RN and mono-
pole black holes by a dotted line and a solid line, respec-
M is the gravitational mass at spatial infinity ar@ tively. We chose a& =v=0.1. In this figure, we can see that

=2./mv is the magnetic charge of the black hole. The radiusRN and monopole black holes emerge at the pBinthich
of the event horizon of the RN black hole is constrained todoes not change even if we changeOn the contrary, if we

beT,=Q. The equality implies an extreme solution. changev, the pointB moves and disappears for largi,e.,

Around these black holes, we consider a neutral andhey do not emergg. The precise points are shown [it0].
massless scalar field which does not COUple with the matte\Ne 0n|y consider the parameter region where the pB|nt
fields, i.e., neither Yang-Mills nor Higgs fields. This is de- exists, because it is shown 1] that the RN black hole
scribed by the Klein-Gordon equation as becomes unstable via linear perturbation below the pBint

d #=0 (2.24 and later analysis showed that the RN black hole may transit
’l‘L - . . - .
to the monopole black hole only in this case.

The energy emission rate of Hawking radiation is given by ~ Before denoting the stability of the monopole black hole,
we show the difference between the horizon radius of a
monopole black hole and that of a RN black hole in terms of
the gravitational mas# in Fig. 1(b) near pointB in Fig.
1(a). We find a cusp structure at poiAtwhich exists forx

wherel andI'(w) are the angular momentum and the trans-_ ¢

et ) ATe ! <Ngit. Mgt Slowly depends om. We can understand them
mission probability in a scattering problem for the scalarvia swallow tail catastrophglL3]. We can see in Fig. (b)
field ®. w and Ty are the energy of the particle and the

: ) < that for some mass range which correspondB to A, there
Hawking temperature, respectively. We defin&= ;550 three types of solutiofstable RN black hole, stable
—dM/dt. ) ) and unstable monopole black holeghich suggests the vio-

The Klein-Gordon equatio(2.24 can be made separable, |54jon of weak no-hair conjecture. By contrast, foF \ ¢, a
and we should only solve the radial equation cusp structure never appears and the monopole black hole
solution merges with the RN black hole at poBitFrom the
»2—V2]=0 (2.26 analysis in[13], we can summerize the stability of black
holes as follows{i) As for the RN black hole, the stability
changes at poir. It is stable or unstable according to being
where above or below poinB; (ii) as for the monopole black hole,

I whenX <X\, it is unstable along the curve frow to B,
f olII+1) 2(m—m'r)

T gy (227 otherwise it is stable. WheR>Xy, it is always stable.
re| r re We also show the inverse temperaturdLin terms of
the gravitational masM/(Mgllev) in Fig. 1(c). Assuming
dr the conservation of charge and starting with the RN black
dr* =fe" " (2.28 hole, pointB is a key to the fate of the black hole. Because if
we consider the RN black hole in the EM system, the RN
where' denotesd/dF and y is only the function ofr. We black hole is falvyays stable and the evaporation_ will cease at
o 2 ~ the extreme limit because the temperature vanishes there. If
need the normalization as=w/ev, V=V/ev. The trans- e have the RN black hole in the EYMH system, the RN
mission probabl!ltyF can be calculated by solvm_g the radial 3¢k hole becomes unstable below the critical p&rand
equation numerically under the boundary condition will change to a monopole black hole by either second- or
first-order transition according 0>\ i Or A<\ ;. After
this transition, because the temperature diverges to infinity at
. thery—0 limit, we may not stop evaporating a monopole
x—e 't (rf——x), (230 black hole and find that one of the candidates for the remnant

is a self-gravitating monopole. We show the diagramXor

dM 1 % . 1fwr(w)wd -
ar ZIZO( +1) 0 goTi_1 ¢ (2.29

de

Vo=

y—Ae O LB (1% o0, (2.29

whereT is given as 1A|%. In our case, if we obtained the

black hole solution, i.e., the shooting parametegsandh,, , =v=0.1. But the results are qualitatively the same for other
we should integrate Eq€2.26 and (2.9—(2.12 simulta- Parametergsee Fig. ) in [13]].
neously. The criterion stable or unstable is based on casastrophe

which coincides with the analysis via linear perturbation
[11]. One may think that the poi@ in Fig. 1(b) becomes the
point where the stability changes, but it is not correct as we
explained in a previous papgt3]. So if we think about the

In this section, we briefly explain about black holes in theevaporation process and time evolution of them, the results
EYMH system, particularly about thermodynamical proper-may change. But it may be laborious to calculate such an

Ill. BLACK HOLES IN THE EINSTEIN-YANG-MILLS-
HIGGS SYSTEM
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FIG. 1. (a) The gravitational maskl/(M?/ev) and the horizon
radiusry, /(ev) ! relation and(b) the difference between the hori-
zon radius of a monopole black hole and a RN black hole in termd

of the gravitational masM/(Mf,,/ev) near pointB and (c) the

inverse Hawking temperaturd (/e M;‘;|)’1 in terms of the gravi-

tational masd\/l/(Mf,,/ev) of the monopole black hole with/e?
=0.1 (solid lines and of the RN black holddotted lines. We
choosev/M,=0.1 in these diagrams. At poirg, the RN black
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(Viev)?

r/(ev) !

FIG. 2. We show the potential?/(ev)? in terms of the radial
coordinate with\/e’=1, v/M=0.05 andry/(ev) *=0.1, 0.3
for thel =0 mode. It shows that when horizon radiys becomes
small, the potential barrier becomes large. It seems that if we take
ry— 0, the potential barrier diverges.

evolution, here we consider mainly the transmission ampli-
tude of a scalar field assuming black holes as a background.

IV. EVAPORATION OF BLACK HOLES IN THE
EINSTEIN-YANG-MILLS-HIGGS SYSTEM

Even if we assume that the background space-time is
fixed and ignore the backreaction, it is not evident to predict
the final fate of black holes. Naively speaking, the tempera-
ture is the main cause to decide evaporation process. But the
transmission amplitudé” may also affect the results. For
example, a dilatonic black hole in the EM-dilaton system has
different properties via a coupling constamtof the dilaton
field to the matter field15]. If > 1, the temperature of the
black hole diverges and the effective potent&l grows in-
finitely high simultaneously at the extreme limit6]. In this
case, it is not evident how to decide whether or not the emis-
sion rate diverges. Ifl7], it turned out that the divergence
of the temperature at the extreme limit overcomes that of the
effective potential, resulting in a divergence of the emission
rate.

In the case of a monopole black hole, it is not even evi-
dent whether or not the effective potential diverges at the
ry—0 limit, because its solution is only obtained numeri-
cally. Figure 2 shows the effective potentiaV/ev)? in
terms of the radial coordinate fo/M ;= 0.05, Ne?=1 and
u/(ev) 1=0.1, 0.3. Taking the horizon radius as smaller,
the potentialV?> becomes larger and our numerical results
suggest that its potential diverges within that limit, so we
must analyze the emission rate to decide whether or not the
evaporation will stop. Another interesting point is how
Hawking radiation changes at poiBtin the transition pro-

hole becomes unstable and changes to a monopole black hole. THigSS of an RN black hole to a monopole black hole. Near

process is first or second order corresponding to whethetdarger

point B we can suggest something concrete under some as-

than\ . or not. (c) shows that temperature of the monopole black sumptions. For this, we assume the followirtd: The cou-
hole diverges at the,—O0 limit like the Schwarzschild one. We Pling constante is small enough so that we can treat the

showed the one example, which is irrelevant to the re$séte Fig.
9(a) in [13]].

gravitational field classically at point Bii) A discharge pro-
cess does not occur during the evaporafit8]. (i) The
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(b) FIG. 4. Energy spectrum of the d?m/dtde for black holes

o corresponding to Figs.(8), 3(b). They show why we can neglect
FIG. 3. The energy dependence of the transmission amplitude ihe contribution from =2.

for monopole black holes with/e?=0.1 (solid lines and \/e?
=1 (dot-dashed linesand of RN black hole¢dotted line$ for the
I=0, 1 modes which make the main contributions to the Hawking
radiation. We choosey/M=0.05 in these diagrams an(h)

what follows, we will ignore the contributions fron=2.
Although T" is the largest for an RN black hole, these are
ry/(ev) 1=0.55(b) r,/(ev) L=0.3. Though the RN black hole almost indistinguishable. So, when evaluating the value of

has the largesf among them, these are almost indistinguishble inthe emission rate of a monopole black hole, we may con-

(a). But when the horizon radius becomes small, their differenceclude thatl’ may not be the main origin of the difference

becomes large because the YM field and Higgs field outside th&0m that of the RN black hole. However, for a monopole
horizon become large and contribute to the black hole structure. black hole with a smaller horizon radius, its difference from

an RN black hole becomes clear. Figufe)3hows the same

coupling of the matter field§YM and Higgs field$ to the  diagram in Fig. ) with the same parametersand\ but
scalar field(even if it exist$, would not affect the results. With a smaller horizon radius,=0.3kv. We can see the
The lastansatzmay seem to be strong, but it might turn out difference clearly. It is because the size of nontrivial struc-
to be true near poinB because the monopole black hole ture becomes larger compared with the horizon radius for the
around there is very close to the RN black hole, which is anonopole black hole of smaller horizon. We also show the
vacuum solution. In fact the field strength of the YM field for examples of the radiation spectrurd®M/dtdw in terms of
such a monopole black hole is much smaller than that in the> in Figs. 4a) and 4b). The parameters correspond to Figs.
other cases. 3(a) and 3b). One can see the reason why we can ignore the

Before seeing such properties, we show the transmissiogontribution forl=2. Actually, the difference caused by it is
probabilityI" of a RN black hole and a monopole black hole below 1% from one of our calculations.
in terms of w for the horizon radius ,/(ev) *=0.55 and We return to the first concern, i.e., what happens when the
v/M,=0.05, Ae?=0.1, 1 in Fig. 3a). We depict only the horizon radius changes via Hawking radiation. In Figa)p
=0, 1 modes. The RN black hole, monopole black holewe show the emission ratg in terms of the gravitational
with A/e*=0.1, monopole black hole with/e?=1 corre- massM of an RN black hole and a monopole black hole for
spond to the dotted lines, the solid lines, and the dot-dasheldl\/lp|=0-05,?\/ez= 1. The difference between an RN black
lines, respectively. As we see the dominant contribution fohole and a monopole black hole is mainly caused by the
the Hawking radiation i$=0, because the contributions of Hawking temperaturd, because the emission ratel}, .
the higher modes are suppressed by the centrifugal barrier. In Fig. 5b), we show the emission rafé in terms of the
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FIG. 6. The evaporation time scalg;,c in terms of the gravi-
tational massdM in the MKS units for the same solutions in Fig. 5.

where the transition is first order, the emission rate will also
change discontinuously as shown by an arrow in Fig. 7.

It may be interesting to ask in which direction the RN
black hole jumps to the monopole black hole or how much
black hole entropyor radius of event horizorwill increase
after the phase transition. In order to analyze this problem
properly, we have to include a back reaction effect of Hawk-
ing radiation, which is very difficult and has not yet been
solved. However, we may find some constraints through the
following considerations. Because the RN black hole emits
particles, it will lose some of the gravitational mass. But,
whether the horizon radius increases or not may depend on
two time scales, i.e., the evaporation time and the transition
=0.05,\/e’=1. If we assume the charge is conserved, though th ime. If we a_pp_ly the catastrophe theory, th,e ent.ro.py of the
RN black hole will stop evaporating at the extreme limit, the mono- lack hole will I'nclrease and the horizon raQIus will increase.
pole black hole may not stop evaporating as in the Schwarzschil@Ut this analysis is based on the assumption that the change

black hole. If we consider the effects of quantum gravity, the result®f black hole states can be treated adiabatically. Since the
nearr,,~!, may be changed. coupling constane is so small that each state can be de-

scribed by a quasistationary solution, we may expect that the

/(ev)
2

=

=t
I
<
>
a*

T

(b)

FIG. 5. The emission rat&/ev in terms of the gravitational
massM/(Mﬁ,/ev) for RN and monopole black holes far/M

horizon radiu§H for the same parameters in Figah This o5 10
diagram strongly suggests that the evaporation will not stop
even at they—0 limit. This resembles the situation of the
dilatonic black hole at the extremal limit, i.e., whether or not
evaporation stop depends only @i [17]. Thus whenever
we think of black hole space-times as the background, they 751"
transmission amplitude does not change the scenario estima §

ing from the temperature. 5 —

We estimate the time scale of the evaporation using
Time=M/E as the indicator, and show this time scale in
terms of the gravitational madd in Fig. 6 for the same
solutions in Fig. 5 in the CGS units. Near the bifurcation
point B, T,ime~1037e%s, and below the bifurcation point, 610
the time evolution of the monopole black hole is completely ' ' M/M 2/ew") '
different from that of an RN black hole. P!

Next, we study the evaporation rate near the bifurcation g 7. The emission rat&/ev in terms of the gravitational
point when either the first- or second-order transition to thenassm/(M2/ev) for RN and monopole black holes far/ M
monopole black hole occurs. In Fig. 7, we show the emission- .05 )\ /e?=0.1, 0.2, 0.3, 0.4, 1 near the bifurcation pdThe
rate= in terms of the gravitational mass of RN and mono-  jines fromB to A correspond to the emission rate of the monopole
pole black holes for =0.08M,, M/e*=0.1, 0.2, 0.3, 0.4, 1 black hole which is thought to be unstable. So when the transition
near the bifurcation point. The curves froBito A corre-  from the RN black hole to the monopole black hole occurs, the
spond to the emission rate of the unstable branch. In the cagenission rate will rise above points

810™*
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00002 ] (i) We investigated the evaporation process of an RN
1 black hole, in particular, near the bifurcation point where this
merges with a branch of monopole black holes. Since the RN
black hole becomes unstable there, we expect that it transits
into a monopole black hole. This transition will be first- or
second-order according to whetheris smaller than some
critical valuel .;; or not. We show that the evaporation rate
1 changes continuously or discontinuously depending on
3 whether the transition which occurs is second or first order.
Our results suggest that the Hawking radiation near the bi-
furcation point is determined only by the temperature of the
black hole. We can understand this as follows. Because in
0.75 08 0.85 0.9 0.95 particular, around this region, we find little difference in the

M/(Mplzlev) transmission probability between a monopole black hole and

an RN black hole.

FIG. 8. The emission rat&/ev in terms of the gravitational (i) When the horizon radius becomes small, the transmis-
massM/(Mg/ev) for u/M;=0.2. We chosex/e’=0.1. In this  sjon probability of a monopole black hole becomes small
figure, we considered the situation where the bifurcation point a"compared with that of an RN black hole. Though it cannot
most coincides with the extreme RN black hole. This figure showsstop evaporating in our analysis because the increase of tem-
that evaporation featy_re d_rastically changes near the extreme pOiBterature of a monopole black hole at the—0 limit, quan-
because of the transition into the monopole black hole. tum effects of gravity may cause a serious effect on it and
horizon radius will increase after the transition. would overcome the decreaselbf_ .

We also confirm that another choice of valuesaddnd\ We finally remark on some subjects which we leave to the

future. When we consider the fate of an RN black hole via

does not prov'lde any serious difference n the e\{aporatlor|1_|awking radiation, we may take into account the effects of
process. In Fig. 8, we show one of the interesting case

8harge loss if it is to be expected, and have to include a
2__ _ . . . . ,
(\/e"=0.1 andy =0.2M,,) where the bifurcation poire is coupling to the YM field or Higgs field before we consider

very near the extreme RN solution. In this case, this diagranghe effects of quantum gravity. The second is the concern
suggests that the RN black hole first almost ceases t'\%ith the critical behaviof19]. There are several works about
evaporation process and becomes close to the extreme OR€i1 the EYM or Einstein-Skyrme systenfig0,21, in which
and then it transits to a monopole black hole and will start tqhe Schwarzschild black hole is the most s’tabyle one. But in
evaporate _again. In other parameters, these diagrams are l?ﬁé EYMH system, since a monopole black hole bécomes
smglly S|m|Iar'to.the abovg cases. o more stable than the RN black hole below a certain critical
(i) The emission rate diverges at the—0 limit. mass, it would be interesting to study the critical behavior in
(i) Near the bifurcation pointB, the emission rate the EYMH system. Finally, it may be more interesting to
changes continuously or discontinuously according ook for the “real” critical behavior in our present phase
whether\ is above or below ;; . transition via Hawking evaporation. Those are under inves-
tigation.
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V. CONCLUSION AND DISCUSSION

We have considered an evaporation process of the RN
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