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Fate of a Reissner-Nordstro¨m black hole in the Einstein-Yang-Mills-Higgs system
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We study an evaporating process of black holes in the SO~3! Einstein-Yang-Mills-Higgs system. We con-
sider a massless scalar field which couples neither with the Yang-Mills field nor with the Higgs field surround-
ing the black hole. We discuss the differences in the evaporating rate between a monopole black hole and a
Reissner-Nordstro¨m ~RN! black hole. Since a RN black hole is unstable below the point at which a monopole
black hole emerges, it will transit into a monopole black hole as suggested via catastrophe theory. We then
conjecture the following: Starting from a Reissner-Nordstro¨m black hole, the mass decreases via the Hawking
radiation and the black hole will reach a critical point. Then it transits to a monopole black hole. We find that
the evaporation rate will increase continuously or discontinuously according to the type of phase transition that
is either second order or first order, respectively. After its transition, the evaporation will never stop because
the Hawking temperature of a monopole black hole diverges at the zero horizon limit and overcomes the
decrease of the transmission amplitudeG.

PACS number~s!: 04.70.2s, 04.40.2b, 95.30.Tg, 97.60.Lf
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I. INTRODUCTION

For many years, there have been various efforts to fin
theory of ‘‘everything.’’ One of the candidates is superstri
theory which has been the cause of much attention for
last several years in the context of black hole thermodyn
ics. Since the discovery of black hole radiation by Hawki
@1#, which is now called Hawking radiation, black hole the
modynamics takes its position beyond the analogy of o
nary thermodynamics.

But Hawking radiation is a semiclassical phenomen
which means that space-time itself is treated classically
matter field is quantized around its metric. Although t
gravitational field should also be quantized when the cur
ture radius gets as small as the Plancknian length (l p;1.6
310233 cm!, usually we ignore it and estimate the effect
Hawking radiation, e.g., asg-ray sources of the early uni
verse@2#. When we consider the evaporation process o
Schwarzschild black hole, the Hawking temperature ari
monotonically and Hawking radiation does not stop, so cl
sical physics will break down and quantum gravity effe
should be considered. This is a serious unsolved prob
which will be a key to quantum gravity. But if we thin
about Hawking radiation of a Reissner-Nordstro¨m ~RN!
black hole in the Einstein-Maxwell~EM! system, its fate is
completely different because its temperature will go do
and the evaporation process will cease, if we assume tha
electric charge is conserved.

Such fates and related things have been investigate
many authors. But as for the black holes with non-Abel
hair @3–9#, they have not been much investigated beca
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their black hole solutions themselves are only obtained
merically, which takes much work compared with bla
holes analytically obtained. Another cause is perhaps du
their instability in which case the evaporation process n
not be considered. But for some types of non-Abelian bla
holes, there exist stable solutions. Particularly, a monop
black hole which is found in the SO~3! Einstein-Yang-Mills-
Higgs ~EYMH! system is important in the context of Hawk
ing radiation@10–13#. In the EYMH system, if we conside
the evaporation process of the RN black hole, its fate will
rather different from that in the EM system, since it m
experience a phase transition and become a monopole b
hole. Contrary to the RN black hole, when a monopole bla
hole evaporates, the Hawking temperature rises monot
cally like the Schwarzschild black hole and it may have t
possibility to become a regular monopole. If this is the ca
it may shed new light on the problem of the remnant
Hawking radiation. So we need to study its evaporation.

This paper is organized as follows. In Sec. II, we intr
duce basicAnsätze and the field equations in the EYMH
system. In Sec. III, we briefly review black holes in th
EYMH system and their thermodynamical properties. In S
IV, we investigate the evaporating features of RN and mo
pole black holes in the EYMH system. In Sec. V, we ma
some concluding remarks and mention some discuss
Throughout this paper we use unitsc5\51. Notations and
definitions such as Christoffel symbols and curvature foll
the Misner-Thorne-Wheeler@14#.

II. BASIC EQUATIONS

We consider black hole space-time in the SO~3! EYMH
model as

S5E d4xA2gF R

2k2
1LmG , ~2.1!
©2000 The American Physical Society41-1
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wherek2[8pG with G being Newton’s gravitational con
stant.Lm is the Lagrangian density of matter fields which a
written

Lm52
1

4
Fmn

a Famn2
1

2
~DmFa!~DmFa!2

l

4
~FaFa2v2!2.

~2.2!

Fmn
a is the field strength of the SU~2! YM field and is ex-

pressed by its potentialAm
a as

Fmn
a 5]mAm

a 2]nAn
a1eeabcAm

b An
c , ~2.3!

with a gauge coupling constante. Fa is a real triplet Higgs
field andDm is the covariant derivative:

DmFa5]mFa1eeabcAm
b Fc. ~2.4!

The theoretical parametersv andl are a vacuum expectatio
value and a self-coupling constant of a Higgs field, resp
tively. To obtain black hole solutions, we assume tha
space-time is static and spherically symmetric, in which c
the metric is written as

ds252 f ~r !e22d(r )dt21 f ~r !21dr21r 2dV2, ~2.5!

where f (r )[122Gm(r )/r . For the matter fields, we adop
the hedgehogAnsatzgiven by

Fa5vrah~r !, ~2.6!

A0
a50, ~2.7!

Am
a 5vm

c eacbrb
12w~r !

er
, ~m51,2,3!, ~2.8!

wherera andvm
c are a unit radial vector in the internal spa

and a triad, respectively.
Variation of the action~2.1! with the matter Lagrangian

~2.2! leads to the field equations

dd

dr̃
528p r̃ ṽ2K̃, ~2.9!

dm̃

dr̃
54p r̃ 2ṽ2@ f K̃1Ũ#, ~2.10!

d2w

dr̃ 2
5

1

f F1

2

]Ũ

]w
18p r̃ ṽ2Ũ

dw

dr̃
2

2m̃

r̃ 2

dw

dr̃
G , ~2.11!

d2h

dr̃ 2
52

dh

dr̃

1

r̃
1

1

f F ]Ũ

]h
18p r̃ ṽ2Ũ

dh

dr̃
2

1

r̃

dh

dr̃
G ,

~2.12!

where

Ũ[
~12w2!2

2r̃ 4
1S wh

r̃
D 2

1
l̃

4
~h221!2, ~2.13!
08404
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K̃[
1

r̃ 2 S dw

dr̃
D 2

1
1

2 S dh

dr̃
D 2

. ~2.14!

We have introduced the following dimensionless variable

r̃ 5evr , m̃5Gevm, ~2.15!

and dimensionless parameters:

ṽ5vAG, l̃5l/e2. ~2.16!

Although the solution exists whenv<M Pl , whereM Pl is
the Planck mass, it can be described by a classical field c
figuration in the limit of a weak gauge coupling constante,
because its Compton wavelength;e/v is the much smaller
than the radius of the classical monopole solution (;1/ev)
in this case. Moreover, since the energy density is;e2v4

!M Pl
4 , we can treat this classically if we ignore the effect

gravity. The boundary conditions at spatial infinity are

m~`!5M,`, d~`!50, h~`!51, w~`!50.
~2.17!

These conditions imply that space-time approaches a
Minkowski space with a charged object.

To obtain a black hole solution, we assume the existe
of a regular event horizon atr 5r H . So the metric compo-
nents are

mH[m~r H!5
r H

2G
, dH[d~r H!,`. ~2.18!

We also require that no singularity exists outside the horiz
i.e.,

m~r !,
r

2G
for r .r H . ~2.19!

For the matter fields, the square brackets in Eqs.~2.11! and
~2.12! must vanish at the horizon. Hence we find that

dw

dr̃
U

r̃ 5 r̃ H

5
wH

F
~12wH

2 2hH
2 r̃ H

2!, ~2.20!

dh

dr̃
U

r̃ 5 r̃ H

52
hH

F
@2wH

2 1l̃ r̃ H
2~hH

2 21!#, ~2.21!

where

F52p ṽ2r̃ H@2r̃ H
22~12wH

2 !214wH
2 hH

2

1l̃ r̃ H
2~hH

2 21!2#2 r̃ H . ~2.22!

Hence, we should determine the values ofwH andhH itera-
tively so that the boundary conditions at infinity are fulfille

A nontrivial solution does not necessarily exist for give
physical parameters. However, for arbitrary values ofṽ and
l̃, there exists an RN black hole solution such as
1-2
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w[0, h[1, d[0, m̃~ r̃ ![M̃2
2p ṽ2

r̃
. ~2.23!

M̃ is the gravitational mass at spatial infinity andQ̃
[2Ap ṽ is the magnetic charge of the black hole. The rad
of the event horizon of the RN black hole is constrained
be r̃ H>Q̃. The equality implies an extreme solution.

Around these black holes, we consider a neutral a
massless scalar field which does not couple with the ma
fields, i.e., neither Yang-Mills nor Higgs fields. This is d
scribed by the Klein-Gordon equation as

F ,m
;m50. ~2.24!

The energy emission rate of Hawking radiation is given b

dM

dt
52

1

2p (
l 50

`

~2l 11!E
0

` G~v!v

ev/TH21
dv, ~2.25!

wherel andG(v) are the angular momentum and the tran
mission probability in a scattering problem for the sca
field F. v and TH are the energy of the particle and th
Hawking temperature, respectively. We defineJ[
2dM/dt.

The Klein-Gordon equation~2.24! can be made separabl
and we should only solve the radial equation

d2x

dr̃* 2
1x@ṽ22Ṽ2#50, ~2.26!

where

Ṽ2[
f

r̃ e2d H l ~ l 11!

r̃
2 f d81

2~m̃2m̃8 r̃ !

r̃ 2 J , ~2.27!

dr̃

dr̃*
[ f e2d, ~2.28!

where 8 denotesd/dr̃ and x is only the function ofr. We
need the normalization asṽ5v/ev, Ṽ5V/ev. The trans-
mission probabilityG can be calculated by solving the radi
equation numerically under the boundary condition

x→Ae2 ivr* 1Beivr* ~r * →`!, ~2.29!

x→e2 ivr* ~r * →2`!, ~2.30!

whereG is given as 1/uAu2. In our case, if we obtained th
black hole solution, i.e., the shooting parameterswH andhH ,
we should integrate Eqs.~2.26! and ~2.9!–~2.12! simulta-
neously.

III. BLACK HOLES IN THE EINSTEIN-YANG-MILLS-
HIGGS SYSTEM

In this section, we briefly explain about black holes in t
EYMH system, particularly about thermodynamical prop
08404
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ties. We show the relation between horizon radiusr̃ H and

gravitational massM̃ in Fig. 1~a!. We denote RN and mono
pole black holes by a dotted line and a solid line, resp

tively. We chose asl̃5 ṽ50.1. In this figure, we can see tha
RN and monopole black holes emerge at the pointB which

does not change even if we changel̃. On the contrary, if we

changeṽ, the pointB moves and disappears for largeṽ ~i,e.,
they do not emerge.!. The precise points are shown in@10#.
We only consider the parameter region where the poinB
exists, because it is shown in@11# that the RN black hole
becomes unstable via linear perturbation below the poinB
and later analysis showed that the RN black hole may tra
to the monopole black hole only in this case.

Before denoting the stability of the monopole black ho
we show the difference between the horizon radius o
monopole black hole and that of a RN black hole in terms

the gravitational massM̃ in Fig. 1~b! near pointB in Fig.
1~a!. We find a cusp structure at pointA which exists forl̃
,l̃crit . l̃crit slowly depends onṽ. We can understand them
via swallow tail catastrophe@13#. We can see in Fig. 1~b!
that for some mass range which corresponds toB to A, there
appear three types of solutions~stable RN black hole, stable
and unstable monopole black holes! which suggests the vio
lation of weak no-hair conjecture. By contrast, forl.lcrit , a
cusp structure never appears and the monopole black
solution merges with the RN black hole at pointB. From the
analysis in@13#, we can summerize the stability of blac
holes as follows:~i! As for the RN black hole, the stability
changes at pointB. It is stable or unstable according to bein
above or below pointB; ~ii ! as for the monopole black hole
when l̃,l̃crit , it is unstable along the curve fromA to B,
otherwise it is stable. Whenl̃.l̃crit , it is always stable.

We also show the inverse temperature 1/TH in terms of
the gravitational massM /(M pl

2 /ev) in Fig. 1~c!. Assuming
the conservation of charge and starting with the RN bla
hole, pointB is a key to the fate of the black hole. Because
we consider the RN black hole in the EM system, the R
black hole is always stable and the evaporation will ceas
the extreme limit because the temperature vanishes ther
we have the RN black hole in the EYMH system, the R
black hole becomes unstable below the critical pointB and
will change to a monopole black hole by either second-
first-order transition according tol.lcrit or l,lcrit . After
this transition, because the temperature diverges to infinit
the r H→0 limit, we may not stop evaporating a monopo
black hole and find that one of the candidates for the remn
is a self-gravitating monopole. We show the diagram forl̃

5 ṽ50.1. But the results are qualitatively the same for oth
parameters†see Fig. 9~a! in @13#‡.

The criterion stable or unstable is based on casastro
which coincides with the analysis via linear perturbati
@11#. One may think that the pointC in Fig. 1~b! becomes the
point where the stability changes, but it is not correct as
explained in a previous paper@13#. So if we think about the
evaporation process and time evolution of them, the res
may change. But it may be laborious to calculate such
1-3
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FIG. 1. ~a! The gravitational massM /(M pl
2 /ev) and the horizon

radiusr H /(ev)21 relation and~b! the difference between the hor
zon radius of a monopole black hole and a RN black hole in te
of the gravitational massM /(M pl

2 /ev) near pointB and ~c! the
inverse Hawking temperature (TH /eMpl

2 )21 in terms of the gravi-
tational massM /(M pl

2 /ev) of the monopole black hole withl/e2

50.1 ~solid lines! and of the RN black hole~dotted lines!. We
choosev/M pl50.1 in these diagrams. At pointB, the RN black
hole becomes unstable and changes to a monopole black hole.
process is first or second order corresponding to whetherl is larger
thanlcrit or not. ~c! shows that temperature of the monopole bla

hole diverges at ther̃ H→0 limit like the Schwarzschild one. We
showed the one example, which is irrelevant to the results@see Fig.
9~a! in @13##.
08404
evolution, here we consider mainly the transmission am
tude of a scalar field assuming black holes as a backgro

IV. EVAPORATION OF BLACK HOLES IN THE
EINSTEIN-YANG-MILLS-HIGGS SYSTEM

Even if we assume that the background space-time
fixed and ignore the backreaction, it is not evident to pred
the final fate of black holes. Naively speaking, the tempe
ture is the main cause to decide evaporation process. Bu
transmission amplitudeG may also affect the results. Fo
example, a dilatonic black hole in the EM-dilaton system h
different properties via a coupling constanta of the dilaton
field to the matter field@15#. If a.1, the temperature of the
black hole diverges and the effective potentialV2 grows in-
finitely high simultaneously at the extreme limit@16#. In this
case, it is not evident how to decide whether or not the em
sion rate diverges. In@17#, it turned out that the divergenc
of the temperature at the extreme limit overcomes that of
effective potential, resulting in a divergence of the emiss
rate.

In the case of a monopole black hole, it is not even e
dent whether or not the effective potential diverges at
r H→0 limit, because its solution is only obtained nume
cally. Figure 2 shows the effective potential (V/ev)2 in
terms of the radial coordinate forv/M pl50.05,l/e251 and
r H /(ev)2150.1, 0.3. Taking the horizon radius as smalle
the potentialV2 becomes larger and our numerical resu
suggest that its potential diverges within that limit, so w
must analyze the emission rate to decide whether or not
evaporation will stop. Another interesting point is ho
Hawking radiation changes at pointB in the transition pro-
cess of an RN black hole to a monopole black hole. N
point B we can suggest something concrete under some
sumptions. For this, we assume the following:~i! The cou-
pling constante is small enough so that we can treat t
gravitational field classically at point B.~ii ! A discharge pro-
cess does not occur during the evaporation@18#. ~iii ! The

s

his

FIG. 2. We show the potentialV2/(ev)2 in terms of the radial
coordinate withl/e251, v/M pl50.05 andr H /(ev)2150.1, 0.3
for the l 50 mode. It shows that when horizon radiusr H becomes
small, the potential barrier becomes large. It seems that if we
r H→0, the potential barrier diverges.
1-4
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coupling of the matter fields~YM and Higgs fields! to the
scalar field~even if it exists!, would not affect the results
The lastansatzmay seem to be strong, but it might turn o
to be true near pointB because the monopole black ho
around there is very close to the RN black hole, which i
vacuum solution. In fact the field strength of the YM field f
such a monopole black hole is much smaller than that in
other cases.

Before seeing such properties, we show the transmis
probabilityG of a RN black hole and a monopole black ho
in terms ofv for the horizon radiusr H /(ev)2150.55 and
v/M pl50.05, l/e250.1, 1 in Fig. 3~a!. We depict only the
l 50, 1 modes. The RN black hole, monopole black h
with l/e250.1, monopole black hole withl/e251 corre-
spond to the dotted lines, the solid lines, and the dot-das
lines, respectively. As we see the dominant contribution
the Hawking radiation isl 50, because the contributions o
the higher modes are suppressed by the centrifugal barrie

FIG. 3. The energy dependence of the transmission amplitudG
for monopole black holes withl/e250.1 ~solid lines! and l/e2

51 ~dot-dashed lines! and of RN black holes~dotted lines! for the
l 50, 1 modes which make the main contributions to the Hawk
radiation. We choosev/M pl50.05 in these diagrams and~a!
r H /(ev)2150.55 ~b! r H /(ev)2150.3. Though the RN black hole
has the largestG among them, these are almost indistinguishble
~a!. But when the horizon radius becomes small, their differe
becomes large because the YM field and Higgs field outside
horizon become large and contribute to the black hole structur
08404
a

e

on

e

ed
r

In

what follows, we will ignore the contributions froml>2.
Although G is the largest for an RN black hole, these a
almost indistinguishable. So, when evaluating the value
the emission rate of a monopole black hole, we may c
clude thatG may not be the main origin of the differenc
from that of the RN black hole. However, for a monopo
black hole with a smaller horizon radius, its difference fro
an RN black hole becomes clear. Figure 3~b! shows the same
diagram in Fig. 3~a! with the same parametersv andl but
with a smaller horizon radiusr H50.3/ev. We can see the
difference clearly. It is because the size of nontrivial stru
ture becomes larger compared with the horizon radius for
monopole black hole of smaller horizon. We also show
examples of the radiation spectrum2d2M /dtdv in terms of
v in Figs. 4~a! and 4~b!. The parameters correspond to Fig
3~a! and 3~b!. One can see the reason why we can ignore
contribution forl>2. Actually, the difference caused by it i
below 1% from one of our calculations.

We return to the first concern, i.e., what happens when
horizon radius changes via Hawking radiation. In Fig. 5~a!,
we show the emission rateJ in terms of the gravitationa
massM of an RN black hole and a monopole black hole f
v/M pl50.05,l/e251. The difference between an RN blac
hole and a monopole black hole is mainly caused by
Hawking temperatureTH , because the emission rate}TH

4 .
In Fig. 5~b!, we show the emission rateJ in terms of the

g

e
e

FIG. 4. Energy spectrum of the2d2m/dtdv for black holes
corresponding to Figs. 3~a!, 3~b!. They show why we can neglec
the contribution froml>2.
1-5
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TAKASHI TAMAKI AND KEI-ICHI MAEDA PHYSICAL REVIEW D 62 084041
horizon radiusr̃ H for the same parameters in Fig. 5~a!. This
diagram strongly suggests that the evaporation will not s
even at ther H→0 limit. This resembles the situation of th
dilatonic black hole at the extremal limit, i.e., whether or n
evaporation stop depends only onTH @17#. Thus whenever
we think of black hole space-times as the background,
transmission amplitude does not change the scenario est
ing from the temperature.

We estimate the time scale of the evaporation us
Ttime[M /J as the indicator, and show this time scale
terms of the gravitational massM in Fig. 6 for the same
solutions in Fig. 5 in the CGS units. Near the bifurcati
point B, Ttime;10237/e3 s, and below the bifurcation poin
the time evolution of the monopole black hole is complet
different from that of an RN black hole.

Next, we study the evaporation rate near the bifurcat
point when either the first- or second-order transition to
monopole black hole occurs. In Fig. 7, we show the emiss
rateJ in terms of the gravitational massM of RN and mono-
pole black holes forv50.05M pl , l/e250.1, 0.2, 0.3, 0.4, 1
near the bifurcation point. The curves fromB to A corre-
spond to the emission rate of the unstable branch. In the

FIG. 5. The emission rateJ/ev in terms of the gravitationa
massM /(M pl

2 /ev) for RN and monopole black holes forv/M pl

50.05, l/e251. If we assume the charge is conserved, though
RN black hole will stop evaporating at the extreme limit, the mon
pole black hole may not stop evaporating as in the Schwarzsc
black hole. If we consider the effects of quantum gravity, the res
nearr H; l p may be changed.
08404
p

t

e
at-

g

n
e
n

se

where the transition is first order, the emission rate will a
change discontinuously as shown by an arrow in Fig. 7.

It may be interesting to ask in which direction the R
black hole jumps to the monopole black hole or how mu
black hole entropy~or radius of event horizon! will increase
after the phase transition. In order to analyze this probl
properly, we have to include a back reaction effect of Haw
ing radiation, which is very difficult and has not yet bee
solved. However, we may find some constraints through
following considerations. Because the RN black hole em
particles, it will lose some of the gravitational mass. B
whether the horizon radius increases or not may depend
two time scales, i.e., the evaporation time and the transi
time. If we apply the catastrophe theory, the entropy of
black hole will increase and the horizon radius will increa
But this analysis is based on the assumption that the cha
of black hole states can be treated adiabatically. Since
coupling constante is so small that each state can be d
scribed by a quasistationary solution, we may expect that

e
-
ild
ts

FIG. 6. The evaporation time scaleTtime in terms of the gravi-
tational massM in the MKS units for the same solutions in Fig. 5

FIG. 7. The emission rateJ/ev in terms of the gravitational
massM /(M pl

2 /ev) for RN and monopole black holes forv/M pl

50.05,l/e250.1, 0.2, 0.3, 0.4, 1 near the bifurcation pointB. The
lines fromB to A correspond to the emission rate of the monop
black hole which is thought to be unstable. So when the transi
from the RN black hole to the monopole black hole occurs,
emission rate will rise above pointsA.
1-6
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FATE OF A REISSNER-NORDSTRO¨ M BLACK HOLE IN . . . PHYSICAL REVIEW D 62 084041
horizon radius will increase after the transition.
We also confirm that another choice of values ofv andl

does not provide any serious difference in the evapora
process. In Fig. 8, we show one of the interesting ca
(l/e250.1 andv50.2M pl) where the bifurcation pointB is
very near the extreme RN solution. In this case, this diag
suggests that the RN black hole first almost ceases
evaporation process and becomes close to the extreme
and then it transits to a monopole black hole and will star
evaporate again. In other parameters, these diagrams ar
sically similar to the above cases:

~i! The emission rate diverges at ther̃ H→0 limit.
~ii ! Near the bifurcation pointB, the emission rate

changes continuously or discontinuously according
whetherl̃ is above or belowl̃crit .

V. CONCLUSION AND DISCUSSION

We have considered an evaporation process of the
and monopole black holes in the EYMH system. We ha
analyzed a real massless scalar field which couples to ne
the Yang-Mills field nor the Higgs field. We may sugge
how RN and monopole black holes evolve through an eva
ration process in the EYMH system. We have the followi
results.

FIG. 8. The emission rateJ/ev in terms of the gravitationa
massM /(M pl

2 /ev) for v/M pl50.2. We chosel/e250.1. In this
figure, we considered the situation where the bifurcation point
most coincides with the extreme RN black hole. This figure sho
that evaporation feature drastically changes near the extreme
because of the transition into the monopole black hole.
.
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~i! We investigated the evaporation process of an
black hole, in particular, near the bifurcation point where t
merges with a branch of monopole black holes. Since the
black hole becomes unstable there, we expect that it tran
into a monopole black hole. This transition will be first- o
second-order according to whetherl is smaller than some
critical valuelcrit or not. We show that the evaporation ra
changes continuously or discontinuously depending
whether the transition which occurs is second or first ord
Our results suggest that the Hawking radiation near the
furcation point is determined only by the temperature of
black hole. We can understand this as follows. Because
particular, around this region, we find little difference in th
transmission probability between a monopole black hole
an RN black hole.

~ii ! When the horizon radius becomes small, the transm
sion probability of a monopole black hole becomes sm
compared with that of an RN black hole. Though it cann
stop evaporating in our analysis because the increase of
perature of a monopole black hole at ther H→0 limit, quan-
tum effects of gravity may cause a serious effect on it a
would overcome the decrease ofG.

We finally remark on some subjects which we leave to
future. When we consider the fate of an RN black hole
Hawking radiation, we may take into account the effects
charge loss if it is to be expected, and have to includ
coupling to the YM field or Higgs field before we consid
the effects of quantum gravity. The second is the conc
with the critical behavior@19#. There are several works abou
it in the EYM or Einstein-Skyrme systems@20,21#, in which
the Schwarzschild black hole is the most stable one. Bu
the EYMH system, since a monopole black hole becom
more stable than the RN black hole below a certain criti
mass, it would be interesting to study the critical behavior
the EYMH system. Finally, it may be more interesting
look for the ‘‘real’’ critical behavior in our present phas
transition via Hawking evaporation. Those are under inv
tigation.
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