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Extremely charged static perfect fluid distributions with dilaton in curved spacetimes
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We examine charged static perfect fluid distributions with a dilaton field in the framework of general
relativity. We consider the case when the Einstein equations reduce to a nonlinear version of the Poisson
equation. We show that the Maxwell equation and an equation for a dilaton imply the relation among the
charge, mass, and dilatonic charge densities.
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I. INTRODUCTION to the Maxwell term is governed by a constanfThe New-

. . n constant is normalized to unity.
Recently, there has been much interest in the study otTO Incorporating coupling to matter, we obtain our basic

Majumdar-Papapetrou metridd—3], describing the static equations
equilibrium state of extremely charged black holes. For the q
static Einstein-Maxwell equation with charged dust as the
external source of the fields, one can reduce the electro- G,w—m
vacuum field equations to the Poisson equation in flat space

1
V,U,¢VV¢_ Eg,uv(vqs)z}

[4—6]. In such a system, one can show that the charge and 1
mass densities are equal. —e_[4a/(N_1)]¢{2Fiy— §9MVF2
In the low energy limit of string theory, the dilatonic
forces as well as gravitational and electric forces act among =87nT,,, (2
charged matter as long-range forces. In this paper, we study
the charged perfect fluid distributions which also couple to a 8 _, 4a [4al(N-1)]ép2_ 8a
dilaton field in static N+ 1)-dimensional spacetimes. We No1V et For=a4m 7 Pl )
find that field equations reduce to a nonlinear type of Poisson

equation and that the Maxwell equation and an equation for V, [e WIN-DICpur]— g qjv, (4
a dilaton show the relation among the charge, mass, and

dilatonic charge densities. We also examine some simple exyhere G, is the Einstein tensor. The energy momentum

y2%

act solutions. _ _ tensorT ,, for a perfect fluid is given by
The organization of this paper is as follows. In the next
section, we will show the action and the assumptions on the T.,,=(ptp)u,u,+pg,,, (5

charged perfect fluid distributions in the static

(N+1)-dimensional spacetimes, which we consider in thewherep is the energy density and” is the four velocity.
present paper. We reduce the field equations to the nonlinedihe electric current vectgr is defined as

version of Poisson equation in Sec. Ill. We find some simple )

solutions and discuss them in Sec. IV. Finally, Sec. V is 1#=peu”, 6

devoted to conclusion and discussion. _ . . _
wherep, is the charge density. We have introduced the dila-

tonic charge densityy; in the right hand side of the equa-
Il. THE MODEL tion for a dilaton field.

The action for the fields which mediate long-range forces
is Ill. DERIVING THE NONLINEAR VERSION

OF POISSON EQUATION
v—g

167

We assume that the fluid is static and the metric of the

_ N+1
s f d™ static spacetime takes the form

4
" 2_ a—[4al(N—-1)]p2

D o
ds?=—U"2dt?+ U?N-2)g, dx'dx, (7)

where N(N=3) denotes the dimension of spade,is the o -
scalar curvature ang is the dilaton fieldF2=F#*F,, and ~ Wherei,j=1,... N, and both the background metgg and

F,, denotes the Maxwell field strength. The dilaton coupling! depend only on the space-like coordinates .
The Ricci and Einstein tensor components derived from

the metric(7) are given by
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N-1YV,U "V‘ju 1N-1., VU YU, = e [a/N=2)19= 2 (10)
N2 U U T2n29 U Ut

Gijz_

(9) wherea is a constant.
~ Then the (00) component in the left hand side of Ej.
whereV, denotes thé\ dimensional covariant derivative in becomes

terms ofg;; . Gj; is constructed frony;; .

Here we should assume that there is only the electric field, __[4al(N—-1 2 1 2
Roo— e~ 1*&/(N"11% 2F oo
namelyFq# 0 and the others are set to be zero. Then we get 0 N-1
Foo=U 20" 2IgkE g Fo, =—U 27 2AN-2§2|ny —2y2e-2MN-2)
=—U%FqFy, N-2.
XN=19 FoxFor (13)

F2= _ 2U272/(N72)Fg‘k|F0kF0| )

In addition, we also put an assumption on the dilatonic fieldwhile the (j) component in the left hand side of E@) is

4 1 )
Gij— N=1 VioVid— Egij(V@

—[4a/(N— 1)]d)|i2|:2 _ _glj F2}

_ N-1Vu VU N1 a?V,u V,u U2at 2 IN-1., VU VU
="N2u u NYET Ut oo+ 5 y=29" 5 U 9
1 . VUV U
+§(N_ )_2 le gl] U2a+2§le0kF0|g”+G” (12)

Here we should suppose thdf "=V, then Eq.(11) is changed into

1 Vv 1 VWi 2N 2V e 13
i1V arld Vv Vv “0FoFol. (13

ROO_ e—[4a/(N—1)]¢ 2F(2)0_ I

gOOF21| =—U —2-2/(N-2)

In order that the second term is canceled by the third one in the right hand side @f3;qgve adopt

\/Z(N 2) \/ailﬁ\ﬁl ' (14

On the other hand, assuming E@G4), we can reduce Eq12) to

rho 1-v?
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FIG. 1. (@) The energy density of Eq.(27) is plotted against in the case oN=3. (b) 1—U? is plotted against for the same coupling
constants. Here the energy density is matched to the one for the vacuum solutie@.afhe solid line corresponds &= 0, the dashed
line corresponds ta?=1/3, the dot-dashed line correspondsafe=1, and the dotted line correspondsad=3.

084038-2



EXTREMELY CHARGED STATIC PERFECT FLUID . .. PHYSICAL REVIEW [B2 084038

rho 1-u?
0.02 o
-0.1
g7 -
0.015F===" o -0.2
“
...... i -0.3
0.01 -0.4
-0.5
0.005 o6
. -0.7
() 1 2 3 4 5 (o)

FIG. 2. (a) The energy density of Eq.(27) is plotted against in the case oN=5. (b) 1—U? is plotted against for the same coupling
constants. Here the energy density is matched to the one for the vacuum solutie@.afhe solid line corresponds &7=0, the dashed
line corresponds ta?=2/5, the dot-dashed line correspondsafe=1, and the dotted line correspondsad=>5.

4 1 1
Gij—N_JVid)VJfﬁ— Egij(v¢)2 —e NI ZFS_ZgijFZ}
B 1 1 a1 1 |\N-1VUVU 1 1 1 a1 1
T TN"2at1l Fatl N-2)atl U U 2| N-2a+l Zatl N-2

N-1. VuViu.

19 U U WtGi (15
w
In order to eliminate the first and second terms in the right 4 1 5
hand side of Eq(15), we take Gi—N—1 VigpV¢p— Egij(vd’)
1
a2 — e [4AI(N-DIg| pp2 _ Z g F2
a= (16) heo2s
N—-2 ~

Consequently, we reduce the left hand side of @yto  We should remember that
the following equations:

e—[4a/(N—1)]¢:UzaZ/(N—Z):VZaZ/(N—2+a2) (19
1 N—-1 V.V
Roo—e [4a/(N-11¢| 2p2 — _— g/ F2 Fom =\ ——————. 20
00 00~ N—1 Jo0 ok 2(N—2+a2) V2 (20)
— U 2-2(N-2) N-—2 E"V“ZV, (17) ~ Finally, using Egs(5), (6) and(17)-(20), we reduce the field
N—2+a?V equationg2), (3) and(4) simply to the following equations:
rho 1-u?
pr=momoTsTT] 2 r
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FIG. 3. (a) The energy density of Eq.(27) is plotted against in the case oN=9. (b) 1—U? is plotted against for the same coupling
constants. Here the energy density is matched to the one for the vacuum solutie@.afhe solid line corresponds &= 0, the dashed
line corresponds ta?=4/9, the dot-dashed line correspondsafe=1, and the dotted line correspondsad=9.
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FIG. 4. (a) The energy density of Eq.(29) is plotted against in the case oN=3. (b) 1—U? is plotted against for the same coupling
constants. Here the energy density is matched to the one for the vacuum solutie@ .afhe solid line corresponds 87=0, the dashed
line corresponds ta?=1/3, the dot-dashed line correspondsafe=1, and the dotted line correspondsa®= 3.

B N—2+a2 N +e PJIN-DI4;, hecause each electric chamyds a constant.
2 (N+a?)/(N—2+a?) - . & .
VV+8r— 7V ptN—2P|=0 In the next section, we discuss some explicit solutions of Eq.
~ 167p _ 2y~ IV. EXACT SOLUTIONS
Tl v A A TF (22) . .
For the dust casep=0), we find some simple exact so-
N lutions of Eq.(21), which do not have the singularities.
pai=p+ Wp’ (23 When spherical symmetry is assumed, the nonlinear version

of the Poisson equation takes the following form:

[2(N-2+a%)| N d2v. N—-1dV N-2+a2
=+eg [2a/(N-1)]¢ + ) v (N+a2)/(N-2+a2) _
Pe N_1 \p N_Zp + ; dr+877p N_1 \% 0.

dr?2
(24 r (26)

Therefore, these equations represent the Einstein, Maxwell |f we put the following condition on the energy density:
and dilaton equations.

Here we think about Eq24) for the dust casep=0). A N-1
The action for particles, of which coordinates are denoted by P 8T N_2+a2
x*, can be written as

V—(N+a2)/(N—2+a2)’ (27)

NG we can find that the solution is
- [2a/(N—1)]¢ .
Ea: fdsa m,e +eaA”dsa , (25 A2
V(r)=8—m. (28)

wherem, ande, stand for the mass and electric charges of

the particles. Suppose that the distribution of these particleslere A andB are constants.

represents the matter densities. One can find that the dila- We show that the energy densjsyfor a certain value of
tonic charge density is proportional to the charge densitytotal mass plotted againstfor a?=0, a?=(N—1)/2N, a®
Thus, we can recognize that the relationship between the=1 anda®=N in Fig. 1(a) in the case oN=3. In Fig. 1(b),
charge density and the mass density ipe> 1—U? is plotted against for the same coupling constants.

1-u?
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FIG. 5. (a) The energy density of Eq. (29) is plotted against in the case oN=5. (b) 1—U? is plotted against for the same coupling

constants. Here the energy density is matched to the one for the vacuum solutie@.afhe solid line corresponds &= 0, the dashed
line corresponds ta?=2/5, the dot-dashed line correspondsafe=1, and the dotted line correspondsad=>5.
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FIG. 6. (a) The energy density of Eq.(29) is plotted against in the case oN=9. (b) 1—U? is plotted against for the same coupling
constants. Here the energy density is matched to the one for the vacuum solutie@.afhe solid line corresponds &= 0, the dashed
line corresponds ta?=4/9, the dot-dashed line correspondsafe=1, and the dotted line correspondsad=9.

Here the energy density is matched to the one for the vacuungz,, N—2+a2 , i
solution atr =2. Figure 2 is drawn with the same conditions — +8mp ———————— 7~ 2(N"D/N=2)y(N+ad/(N=2+a%)
of Fig. 1, except foN=5 and Fig. 3 is also, except fo# ~ d7 (N=2)5(N—-1)
=09.

—0. (31)

If we put another condition

If we assume

_C NT1 e 29 E? (N-2)%(N—1)
P~ gn N—2+a? ' p=—— T 2N-1I(N-2)
8m N-2+a?
the solution is X (sinV)V~(N+a?)/(N-2+a?) (32)

Jon-2y4Cr) then, Eq.(31) reduces to the sine-Gordon equation

V(r)=D [ (N=2)72

(30 42V
—2+E25inV=0, (33

E
HereC andD are constants, ani,(z) is the Bessel function. ) .
If we chooseN=3 anda®=0, then we can obtain the same which has the solutions
results of Guses[4]. _ _ V(r)=2 arcsifitan E7+ F)]+2n, (34)

We show that the energy densijbyfor a certain value of

total mass plotted againstfor a0, a*>=(N—1)/2N, a®  \yheren is an arbitrary integerf is an integration constant,
=1 anda®=N in Fig. 4(a) in the case oN=3. In Fig. 4b),  andE is assumed to be positive. We consider only the case

1—U? is plotted against for the same coupling constants. n=0._ If we choose the integration constdhfor

Here the energy density is matched to the one for the vacuum

solution atr =2. Fig. 5 is drawn with the same conditions of Fo Eln

Fig. 4, except foN=5 and Fig. 6 is also, except foé=9. 2
Varela considered the case that E2Zp) can be reduced to

the sine-Gordon equatidB]. Using the new radial coodinate then the spacetime corresponding to E8¢) and Eq.(35)

7=1/rN"2 to rearrange Eq(26), we obtain becomes asmptotically fl&6].

1+sin(1/2)

1—sin(12)]’ 39

rho 1-u?
0.1 r

FIG. 7. (a) The energy density of Eq.(32) is plotted against in the case oN=3. (b) 1—U? is plotted against for the same coupling
constants. The solid line correspondsafo=0, the dashed line correspondsa%)= 1/3, the dot-dashed line correspondsafozl, and the
dotted line corresponds &@’=3.
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We show that the energy densijbyfor a certain value of In Sec. IV, we have found simple exact solutions of Eq.
total mass plotted againstfor a?=0, a?=(N—1)/2N, a? (21) corresponding to certain energy densities. We have
=1 anda®=N in Fig. 7(a) in the case oN=3. In Fig. 1b),  found that the energy density decreases as the coupling con-
1-U?is plotted against for the same coupling constants. stanta? increases. We have found that the difference be-

Here, in these figures, we find that the energy densityween the energy densities gets narrow for the various values
decreases as the coupling cons&hincreases. We also find of a2 and the contragi.e., the difference between the energy
that the difference between the energy densities gets narroMensity atr =0 and the one at=2) decreases as the dimen-
for the various values cd? and the contrasi.e., the differ- sion of spaceN increases.
ence between the energy densityratO and the one at We have not yet dealt with E¢21) on the condition for
=2) decreases as the dimension of spdacreases. p#0. Recently, Ida found some exact charged solutions in
this situation[5]. We will study the nonzero pressure case
with a dilaton field in N+ 1) dimensions. Also we have not

In this paper, we have investigated charged static perfectet considered the case ®i=2, which we have only
fluid distributions with the dilaton field in the framework of thought of as the equilibrium between the dilatonic attrac-
general relativity. As shown in Sec. Ill, the Einstein equa-tions and the electric repulsions. We must continue to make
tions have reduced to the nonlinear version of Poisson equ&very effort to study these situations.
tion, and the Maxwell equation and the equation for the di-
laton have implied the relation among the charge, mass and
dilatonic charged densities. For the dust case, one can find ACKNOWLEDGMENTS
that the relationship between the charge density and the mass
density ispex = e 24N "D’ because, for point particles,  The authors would like to thank N. Kan, M. Ooho, and T.
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V. CONCLUSION AND DISCUSSION
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