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Extremely charged static perfect fluid distributions with dilaton in curved spacetimes

Yoshinori Cho,* Yoshitaka Degura,† and Kiyoshi Shiraishi‡

Graduate School of Science and Engineering, Yamaguchi University, Yoshida, Yamaguchi 753-8512, Japan
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We examine charged static perfect fluid distributions with a dilaton field in the framework of general
relativity. We consider the case when the Einstein equations reduce to a nonlinear version of the Poisson
equation. We show that the Maxwell equation and an equation for a dilaton imply the relation among the
charge, mass, and dilatonic charge densities.

PACS number~s!: 04.50.1h, 04.20.Jb
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I. INTRODUCTION

Recently, there has been much interest in the study
Majumdar-Papapetrou metrics@1–3#, describing the static
equilibrium state of extremely charged black holes. For
static Einstein-Maxwell equation with charged dust as
external source of the fields, one can reduce the elec
vacuum field equations to the Poisson equation in flat sp
@4–6#. In such a system, one can show that the charge
mass densities are equal.

In the low energy limit of string theory, the dilatoni
forces as well as gravitational and electric forces act am
charged matter as long-range forces. In this paper, we s
the charged perfect fluid distributions which also couple t
dilaton field in static (N11)-dimensional spacetimes. W
find that field equations reduce to a nonlinear type of Pois
equation and that the Maxwell equation and an equation
a dilaton show the relation among the charge, mass,
dilatonic charge densities. We also examine some simple
act solutions.

The organization of this paper is as follows. In the ne
section, we will show the action and the assumptions on
charged perfect fluid distributions in the stat
(N11)-dimensional spacetimes, which we consider in
present paper. We reduce the field equations to the nonli
version of Poisson equation in Sec. III. We find some sim
solutions and discuss them in Sec. IV. Finally, Sec. V
devoted to conclusion and discussion.

II. THE MODEL

The action for the fields which mediate long-range forc
is

S5E dN11x
A2g

16p FR2
4

N21
~¹f!22e2[4a/(N21)]fF2G ,

~1!

where N(N>3) denotes the dimension of space,R is the
scalar curvature andf is the dilaton field.F25FmnFmn and
Fmn denotes the Maxwell field strength. The dilaton coupli
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to the Maxwell term is governed by a constanta. The New-
ton constant is normalized to unity.

Incorporating coupling to matter, we obtain our bas
equations

Gmn2
4

N21 F¹mf¹nf2
1

2
gmn~¹f!2G

2e2[4a/(N21)]fF2Fmn
2 2

1

2
gmnF2G

58pTmn , ~2!

8

N21
¹2f1

4a

N21
e2[4a/(N21)]fF254p

8a

N21
rdil , ~3!

¹m@e2[4a/(N21)]fFmn#54p j n, ~4!

where Gmn is the Einstein tensor. The energy momentu
tensorTmn for a perfect fluid is given by

Tmn5~r1p!umun1pgmn , ~5!

wherer is the energy density andum is the four velocity.
The electric current vectorj m is defined as

j m5reu
m, ~6!

wherere is the charge density. We have introduced the d
tonic charge densityrdil in the right hand side of the equa
tion for a dilaton field.

III. DERIVING THE NONLINEAR VERSION
OF POISSON EQUATION

We assume that the fluid is static and the metric of
static spacetime takes the form

ds252U22dt21U2/(N22)g̃i j dxidxj , ~7!

wherei , j 51, . . . ,N, and both the background metricg̃i j and
U depend only on the space-like coordinatesxi .

The Ricci and Einstein tensor components derived fr
the metric~7! are given by

R0052U2222/(N22)¹̃ l S ¹̃ lU

U
D , ~8!
©2000 The American Physical Society38-1



n

el
g

ld

CHO, DEGURA, AND SHIRAISHI PHYSICAL REVIEW D62 084038
Gi j 52
N21

N22

¹̃ iU

U

¹̃ jU

U
1

1

2

N21

N22
g̃kl

¹̃kU

U

¹̃ lU

U
g̃i j 1G̃i j ,

~9!

where¹̃ i denotes theN dimensional covariant derivative i
terms ofg̃i j . G̃i j is constructed fromg̃i j .

Here we should assume that there is only the electric fi
namelyF0iÞ0 and the others are set to be zero. Then we

F00
2 5U22/(N22)g̃klF0kF0l ,

Fi j
2 52U2F0iF0 j ,

F2522U222/(N22)g̃klF0kF0l .

In addition, we also put an assumption on the dilatonic fie
08403
d,
et

:

e2[4a/(N22)]f5U2a, ~10!

wherea is a constant.
Then the (00) component in the left hand side of Eq.~2!

becomes

R002e2[4a/(N21)]fF2F00
2 2

1

N21
g00F

2G
52U2222/(N22)¹̃2ln U22U2a22/(N22)

3
N22

N21
g̃klF0kF0l , ~11!

while the (i j ) component in the left hand side of Eq.~2! is
Gi j 2
4

N21 F¹ if¹ jf2
1

2
gi j ~¹f!2G2e2[4a/(N21)]fF2Fi j

2 2
1

2
gi j F

2G
52

N21

N22

¹̃ iU

U

¹̃ jU

U
2~N21!

a2

a2

¹̃ iU

U

¹̃ jU

U
12U2a12F0iF0 j1

1

2

N21

N22
g̃kl

¹̃kU

U

¹̃ lU

U
g̃i j

1
1

2
~N21!

a2

a2
g̃kl

¹̃kU

U

¹̃ lU

U
g̃i j 2U2a12g̃klF0kF0l g̃i j 1G̃i j . ~12!

Here we should suppose thatUa115V, then Eq.~11! is changed into

R002e2[4a/(N21)]fF2F00
2 2

1

N21
g00F

2G52U2222/(N22)F 1

a11

¹̃2V

V
2

1

a11
g̃kl

¹̃kV

V

¹̃ lV

V
12

N22

N21
V2g̃klF0kF0l G . ~13!

In order that the second term is canceled by the third one in the right hand side of Eq.~13!, we adopt

F0k56A N21

2~N22!
A 1

a11

¹̃kV

V2
. ~14!

On the other hand, assuming Eq.~14!, we can reduce Eq.~12! to

FIG. 1. ~a! The energy densityr of Eq. ~27! is plotted againstr in the case ofN53. ~b! 12U2 is plotted againstr for the same coupling
constants. Here the energy density is matched to the one for the vacuum solution atr 52. The solid line corresponds toa250, the dashed
line corresponds toa251/3, the dot-dashed line corresponds toa251, and the dotted line corresponds toa253.
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Gi j 2
4

N21 F¹ if¹ jf2
1

2
gi j ~¹f!2G2e2[4a/(N21)]fF2Fi j

2 2
1

2
gi j F

2G
5S 2

1

N22

1

a11
2

a2

a2

1

a11
1

1

N22D N21

a11

¹̃ iU

U

¹̃ jU

U
2

1

2 S 2
1

N22

1

a11
2

a2

a2

1

a11
1

1

N22D
3

N21

a11
g̃kl

¹̃kU

U

¹̃ lU

U
g̃i j 1G̃i j . ~15!

FIG. 2. ~a! The energy densityr of Eq. ~27! is plotted againstr in the case ofN55. ~b! 12U2 is plotted againstr for the same coupling
constants. Here the energy density is matched to the one for the vacuum solution atr 52. The solid line corresponds toa250, the dashed
line corresponds toa252/5, the dot-dashed line corresponds toa251, and the dotted line corresponds toa255.
gh

:

In order to eliminate the first and second terms in the ri
hand side of Eq.~15!, we take

a5
a2

N22
. ~16!

Consequently, we reduce the left hand side of Eq.~2! to
the following equations:

R002e2[4a/(N21)]fF2F00
2 2

1

N21
g00F

2G
52U2222/(N22)

N22

N221a2

1

V
¹̃2V, ~17!
08403
t
Gi j 2

4

N21 F¹ if¹ jf2
1

2
gi j ~¹f!2G

2e2[4a/(N21)]fF2Fi j
2 2

1

2
gi j F

2G
5G̃i j . ~18!

We should remember that

e2[4a/(N21)]f5U2a2/(N22)5V2a2/(N221a2), ~19!

F0k56A N21

2~N221a2!

¹̃kV

V2
. ~20!

Finally, using Eqs.~5!, ~6! and~17!–~20!, we reduce the field
equations~2!, ~3! and~4! simply to the following equations
FIG. 3. ~a! The energy densityr of Eq. ~27! is plotted againstr in the case ofN59. ~b! 12U2 is plotted againstr for the same coupling
constants. Here the energy density is matched to the one for the vacuum solution atr 52. The solid line corresponds toa250, the dashed
line corresponds toa254/9, the dot-dashed line corresponds toa251, and the dotted line corresponds toa259.
8-3
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FIG. 4. ~a! The energy densityr of Eq. ~29! is plotted againstr in the case ofN53. ~b! 12U2 is plotted againstr for the same coupling
constants. Here the energy density is matched to the one for the vacuum solution atr 52. The solid line corresponds toa250, the dashed
line corresponds toa251/3, the dot-dashed line corresponds toa251, and the dotted line corresponds toa253.
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s.
¹̃2V18p
N221a2

N21
V(N1a2)/(N221a2)S r1

N

N22
pD50,

~21!

R̃i j 52
16pp

N22
V2/(N221a2)g̃i j , ~22!

rdil5r1
N

N22
p, ~23!

re56e2[2a/(N21)]fA2~N221a2!

N21 S r1
N

N22
pD .

~24!

Therefore, these equations represent the Einstein, Max
and dilaton equations.

Here we think about Eq.~24! for the dust case (p50).
The action for particles, of which coordinates are denoted
xm, can be written as

I 52(
a
E dsaFmae[2a/(N21)]f1eaAn

dxa
n

dsa
G , ~25!

wherema andea stand for the mass and electric charges
the particles. Suppose that the distribution of these parti
represents the matter densities. One can find that the
tonic charge density is proportional to the charge dens
Thus, we can recognize that the relationship between
charge density and the mass density isre}
08403
ell

y

f
es
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6e2[2a/(N21)]fr, because each electric chargeea is a constant.
In the next section, we discuss some explicit solutions of
~21!.

IV. EXACT SOLUTIONS

For the dust case (p50), we find some simple exact so
lutions of Eq. ~21!, which do not have the singularities
When spherical symmetry is assumed, the nonlinear ver
of the Poisson equation takes the following form:

d2V

dr2
1

N21

r

dV

dr
18pr

N221a2

N21
V(N1a2)/(N221a2)50.

~26!

If we put the following condition on the energy density

r5
A

8p

N21

N221a2
V2(N1a2)/(N221a2), ~27!

we can find that the solution is

V~r !5B2
Ar2

6N
. ~28!

HereA andB are constants.
We show that the energy densityr for a certain value of

total mass plotted againstr for a250, a25(N21)/2N, a2

51 anda25N in Fig. 1~a! in the case ofN53. In Fig. 1~b!,
12U2 is plotted againstr for the same coupling constant
FIG. 5. ~a! The energy densityr of Eq. ~29! is plotted againstr in the case ofN55. ~b! 12U2 is plotted againstr for the same coupling
constants. Here the energy density is matched to the one for the vacuum solution atr 52. The solid line corresponds toa250, the dashed
line corresponds toa252/5, the dot-dashed line corresponds toa251, and the dotted line corresponds toa255.
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FIG. 6. ~a! The energy densityr of Eq. ~29! is plotted againstr in the case ofN59. ~b! 12U2 is plotted againstr for the same coupling
constants. Here the energy density is matched to the one for the vacuum solution atr 52. The solid line corresponds toa250, the dashed
line corresponds toa254/9, the dot-dashed line corresponds toa251, and the dotted line corresponds toa259.
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Here the energy density is matched to the one for the vac
solution atr 52. Figure 2 is drawn with the same condition
of Fig. 1, except forN55 and Fig. 3 is also, except forN
59.

If we put another condition

r5
C2

8p

N21

N221a2
V22/(N221a2), ~29!

the solution is

V~r !5D
J(N22)/2~Cr !

r (N22)/2
. ~30!

HereC andD are constants, andJn(z) is the Bessel function
If we chooseN53 anda250, then we can obtain the sam
results of Gu¨rses@4#.

We show that the energy densityr for a certain value of
total mass plotted againstr for a250, a25(N21)/2N, a2

51 anda25N in Fig. 4~a! in the case ofN53. In Fig. 4~b!,
12U2 is plotted againstr for the same coupling constant
Here the energy density is matched to the one for the vac
solution atr 52. Fig. 5 is drawn with the same conditions
Fig. 4, except forN55 and Fig. 6 is also, except forN59.

Varela considered the case that Eq.~26! can be reduced to
the sine-Gordon equation@6#. Using the new radial coodinat
t51/r N22 to rearrange Eq.~26!, we obtain
08403
m

m

d2V

dt2
18pr

N221a2

~N22!2~N21!
t22(N21)/(N22)V(N1a2)/(N221a2)

50. ~31!

If we assume

r5
E2

8p

~N22!2~N21!

N221a2
t2(N21)/(N22)

3~sinV!V2(N1a2)/(N221a2), ~32!

then, Eq.~31! reduces to the sine-Gordon equation

d2V

dt2
1E2sinV50, ~33!

which has the solutions

V~t!52 arcsin@ tanh~Et1F !#12np, ~34!

wheren is an arbitrary integer,F is an integration constant
andE is assumed to be positive. We consider only the c
n50. If we choose the integration constantF for

F5
1

2
lnF11sin~1/2!

12sin~1/2!G , ~35!

then the spacetime corresponding to Eq.~34! and Eq.~35!
becomes asmptotically flat@6#.
FIG. 7. ~a! The energy densityr of Eq. ~32! is plotted againstr in the case ofN53. ~b! 12U2 is plotted againstr for the same coupling
constants. The solid line corresponds toa250, the dashed line corresponds toa251/3, the dot-dashed line corresponds toa251, and the
dotted line corresponds toa253.
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We show that the energy densityr for a certain value of
total mass plotted againstr for a250, a25(N21)/2N, a2

51 anda25N in Fig. 7~a! in the case ofN53. In Fig. 7~b!,
12U2 is plotted againstr for the same coupling constants

Here, in these figures, we find that the energy den
decreases as the coupling constanta2 increases. We also find
that the difference between the energy densities gets na
for the various values ofa2 and the contrast~i.e., the differ-
ence between the energy density atr 50 and the one atr
52) decreases as the dimension of spaceN increases.

V. CONCLUSION AND DISCUSSION

In this paper, we have investigated charged static per
fluid distributions with the dilaton field in the framework o
general relativity. As shown in Sec. III, the Einstein equ
tions have reduced to the nonlinear version of Poisson e
tion, and the Maxwell equation and the equation for the
laton have implied the relation among the charge, mass
dilatonic charged densities. For the dust case, one can
that the relationship between the charge density and the m
density isre}6e2[2a/(N21)]fr, because, for point particles
the dilaton does not couple to the electric charge but to
mass.
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In Sec. IV, we have found simple exact solutions of E
~21! corresponding to certain energy densities. We ha
found that the energy density decreases as the coupling
stant a2 increases. We have found that the difference
tween the energy densities gets narrow for the various va
of a2 and the contrast~i.e., the difference between the energ
density atr 50 and the one atr 52) decreases as the dime
sion of spaceN increases.

We have not yet dealt with Eq.~21! on the condition for
pÞ0. Recently, Ida found some exact charged solutions
this situation@5#. We will study the nonzero pressure ca
with a dilaton field in (N11) dimensions. Also we have no
yet considered the case ofN52, which we have only
thought of as the equilibrium between the dilatonic attra
tions and the electric repulsions. We must continue to m
every effort to study these situations.
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