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Frequency-domain filters for time-windowed gravitational waves from inspiraling compact binaries are
constructed which combine the excellent performance of our previously developed time-d®mpproxi-
mants with the analytic convenience of the stationary phase approximation without a serious loss in event rate.
These Fourier-domain representations incorporate the “edge oscillations” due (@sthenefabrupt shutoff
of the time-domain signal caused by the relativistic plunge at the last stable orbit. These new analytic approxi-
mations, the SPP approximants, are not aflectualfor detection andaithful for parameter estimation, but
are also computationally inexpensive to gener@ed arefaster by factors up to 10, as compared to the
corresponding time-domain template3he SPP approximants should provide data analysts the Fourier-
domain templates for massive black hole binaries of total mesg0M ., the most likely sources for LIGO
and VIRGO.

PACS numbg(s): 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym

I. INTRODUCTION AND SUMMARY in the detector output. Consequently, the overlap of template
and signal wave forms will be less than if they had exactly
The discovery of the first binary pulsar in 1974 has  matched, leading to a loss of potential events. Data analysis
had a very important impact on gravitational wave researchissues such as these for inspiraling compact binaries of neu-
First, it proved the reality of gravitational radiation by mea- tron stars and black holes have been formulated and ad-
suring the orbital period decdy] entailed by the propaga- dressed for the last 12 yb,6], even though interferometric
tion at the velocity of light of the gravitational interaction gravitational wave detectors such as the GEOJ®r La-
between the two neutron stars making up the syst8n ser Interferometer Gravitational Wave ObservatdryGO)
Second, it provided the first experimental evidence that gen8] and VIRGO[9] are a year or three in the future. Much of
eral relativity correctly describes gravity in the strong-field the work in this area has addressed practical issues of direct
regime[4]. Third, it led to a shift in perception regarding the relevance to data analysis strategies. These include: construc-
most promising sources for future gravitational wa@W) tion of templates for detectigriQ], the number of templates,
detectors, away from the then assumed, violent—but lestheir placement, spacing, the required computing power and
predictable—gravitational collapse associated with supernahe storage or memory requiremdatl], the order of post-
vae, to the more predictable, final inspiraling phase of comNewtonian(PN) approximation adequate for detectipi?2—
pact binaries of neutron stars and black holes driven byl4], parameter estimation by covariance mat%—17 and
gravitational radiation reaction. This also led to the thrust inMonte Carlo simulationg18], determination of cosmological
the laser interferometric gravitational wave detectors whictparameter§l9], tests of general relativity20], one step ver-
are inherently broadband rather than in the narrow-band baus hierarchical searchgal], effects of precessiof22], and

detectors. of eccentricity[17,23. For the time-domain wave form, all
of these works use the restricted PN approximation to qua-
A. Data ana|ysis a|gorithms for inspira| wave searches SiCiI’CUlaI’ inSpiI’al. Th|S keepS the Crucial phase information

o the best order of approximation then availaf#d], but

Consider a compact binary system such as the binary Iout’estricts the amplitude to be Newtonian and the harmonic to
sar after it has been inspiraling inwards for 300 million yr

o o . e the second harmonic of the orbital frequency. Such an ap-
due to gravitational radiation-reaction. The inspiral wave

f he d bandwidth during the last f . —proximation should be adequate for the on-line search of
orm enters the detector bandwidth during the last few mln'gravitational wave signal®5]. Evidently, it is assumed that
utes of evolution of the binary. Our ability, in principle, to

the offline analysis of the data will use the best available
compute the wave form very accurately, allows Us to tracky, epricted P)representation of the inspiral signals.
the gravitational wave phase and enhance the signal-to-noise
ratio by integrating the signal for the interval during which it
lasts in the detector band. This, in turn, requires a template
with which the detector output may be filtered. Though tem- The PN approximation is basically a Taylor expansion
plate wave forms should, optimally, be exact copies of thepowers ofv/c) and all the above treatments use as building
expected signal, in practice they are constructed by sombelocks the straightforward Taylor expansionwitt of some

approximation scheme and will differ from the actual signalintermediate quantitiegorbital energy and gravitational-

B. Modeling inspiral wave forms
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wave fluy. We shall refer to the templates based on suctsignal—see Table Il of DI$ and commented on these “in-
straightforward PN expansions as “Taylor approximants” accuracies of the SPA.” In the above by SPA one means not
(or simply T approximants The very slow convergence and only the problem of the formal accuracy of the stationary
oscillatory behavior of the PN expansion, and therefore ofphase estimate to the Fourier transform of an analytically
the sequence of Taylor approximants, made imperative axtended, mathematical signal but also some issues linked to
search for better approximants for phasing. This prompted uthe physics, and observability, of the real signal. In particu-
[13] [Damour, lyer, and Sathyapraka$bIS)] to propose lar, in DIS, we were considering templates which are shut
new approximants, with much improved convergence propeff, in the time domain, at the last stable ortlitSO). The
erties, for application to gravitational-wave data analysigpresent paper will also consider suime-truncated inspiral
problems. signals We shall discuss this point in more detail below, but
DIS [13] showed how to construct a new type tihe-  the idea is that the postinspiral sigriplunge+ mergey will
domainapproximant, called P approximants,” which not have a frequency content very different from the inspiral one
only converged faster and more monotonically, but were alsg@probably pushed to much higher frequengid$ should,
more effectual (larger overlaps for detectiprand faithful ~ therefore, make sense to try to construct filters that represent
(smaller biases for parameter estimajitiman the standard  as best as possible an inspiral signal which lasts only up to
approximants. Our construction was two pronged: on the onesome maximum timetime windowing. For such signals,
hand, it introduced new basic energy and flux functions, an®IS noted a worsening of the usuédiequency-windowex
on the other hand, it made systematic use of Radeniques SPA approximation, both as the total mass of the system
(a well-known convergence-acceleration technjgueecon-  increases and as the PN approximation order is increased,
struct successive approximants of our new basic energy anghd mentioned that this worsened performance was due to
flux functions. These new functions form a pivotal aspect ofihe fact that “such systems emit many less wave cycles in
our construction and successfully handle issues related e effective detector bandwidth” centerédr initial LIGO)
appearance of non-rational functions in the energy functiorhearfdet: 167 Hz. In this papef 4 denotes the frequency at
and logarithmic terms in the flux function that for long \yhich the noise power spectrum per logarithmic bin of the
proved to be hurdles to the application of well-known Padegetector is the leagbr equivalently the frequency at which
techniques to this problem. For initial LIGO, the 2.5 BN the detector is most sensitive to a broadband bufstavoid
approximants are likely to provide overlaps in excess ofirelevant, uncontrolled sources of inaccuracy, DIS used the
96.5% with exact wave formso that more than 90% of the EET of the time-windowed chirp rather than its SPA to gen-

potential events can be detected. In contrast, the correspongrate the frequency-domain wave form and make compari-
ing 2.5 PN Taylor approximants can only detect about 50%;0ns petween th& and P approximants.

of the potential events for massive systefasthe price of The use of FFT rather than SPA in DIS makes fhe
large biases-15%). Later studies have confirmed the per-approximant computationally expensive. As will be dis-
formance of thesd> approximants[27] and assessefP8]  cussed in detail in Sec. VI, the use of SPA or similar
their need in related contexts of space based interferometeﬁ%quency_domam representations is far less expensive. The

such as the Laser Inteferometer Space Antenna. obvious need to incorporate this desirable feature makes ur-
gent and mandatory a critical investigation of the possibility
C. Fourier representation of inspiral signals and validity of marrying together the excellent performance of Ehap-
of the stationary phase approximation(SPA) proximants to the relative inexpensiveness of the SPA with-

Independent of the choice betweBrmndP approximants, Ut & serious loss in event rate.
another desirable approximation in data analysis for inspiral- R€cently, some issues related to the accuracy of the SPA

ing compact binaries is the stationary phase approximatiof@veé been investigated. For general chirps, Chassande-
(SPA), which is a simple, explicit analytic approximation to Mottin and Flandrif 30] have studied whether the usual con-
the Fourier transform of the time-domain chifgee, e.g. ditions assumed for the validity of the SPA are necessary and
Ref.[29]). In fact, most work on inspiral wave forntexcept sufﬂ_ment and attempted a quantitative control of the approxi-
DIS) has used only SPA approximants to the frequencyMation. Droz, Knapp, Poisson, and Owgsi] have exam-
domain chirps. In the course of oBrapproximant work we ined other issues related to the accuracy of the SPA of par-

noticed a progressive worsening of the overlap between thiicular relevance to gravitational wave data analysis. Unlike
SPA and the “exact” Fourier transform—numerically com- P!S, by SPA, Droz, Knapp, Poisson, and Owen imply only

puted by a fast Fourier transfortFFT) of the time-domain the stationary phase estimate of the Fourier transform and
discuss separately the issue of windowing—the fact that the

signal in the time domain lasts only frotg,, to t,,. Or @
— o time-window. To improve the SPA estimate ofN@wtonian
This statement was proven by DIS by quantifying the CONVer-chirp, they compute the next order contribufigto the Fou-

gence of the sequence Bf approximants toward some "fiducial rier integra) by the method of steepest descent, show that it
exact” wave form. Ir_1 t!we test-particle case this wave.form’used thqS of orderv}\f’l relative to the leading order SPA estimate,
known Schwarzschild’s energy functidg(v) and Poisson’s nu-

merically computed GW flux26]. In the comparable mass case, it

was constructed by modeling thg dependent higher PN correc-

tions to the best known analytical results. 2We shall give below the general result for any chirp.
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and conclude that it is small enough to be justifiably ne-cannot be meaningfully extended férF 0. Hence the
glected.[Herev , is an invariantly defined “velocity® re-  values quoted in Table Il of DIS were obtained by comput-
lated to the instantaneous gravitational wave frequefcy ing the overlap of the DFT of the truncated time-domain
and chirp mass\ by v = (7 MF)¥3. The chirp mass is waves with the truncated SPA representation of the wave.
related to the total masmm=m;+m, and dimensionless On the other hand, a critical examination of Droz, Knapp,
mass ratio =m;m,/(m;+m,)? by M=7%%m.] They Poisson, and Owefi81] reveals that their claim regarding the
point out the importance of windowing, estimate the ampli-adequacy of the SPA in fact has only a restricted domain of
tude and phase modulations induced in the frequency domair@lidity. It is relevant to SPA considered asvathematical
by the time window and conclude that all casesthese @lgorithm to be applied to a generic smooth signal and low
modulations have a negligible effect on overlaps. Howevermass binariesi=13Me). As acknowledged by the au-
their analytic expression for the effects of windowing is only thors, they do not address physical issues related to an even-
valid for values of frequenciewell away from the bound- tual time-domain cutoff of the signal & so. What they call
aries of the natural frequency window induced by the time “Newtonian signals” are unphysical, formally defined
window, denoted byF = F(tmi) andF ma= F(tna)—the chirps whose mstan;aneous frequenue; are extendeq to
gravitational wave frequencies at timgg, andt, ., respec- Fma= Fnyquis®™ Fiso. in fact, better described as “analyti-
tively. In this paper we provide a formalism allowing one to cally eéxtended Newtonian signals.” It is the SPA of this
compute analytic approximations to the Fourier transform oformal, analytically extended signal which is shown to pro-
a time-windowed signal in the most cruciedige-frequency dpce Qverlaps with exact EFTs better than 0.99 even for mas-
domains f-F, and f~F . (including f<F,,, and f  Sive binary systems of chirp mase(=10M,, correspond-
>Fa . As first noticed in DIS and discussed in detail in theiNg to a total mass ofn~23M¢, for an equal mass system
present work, the effect of window oscillations on overlaps(7=1/4). These large overlaps, in our view, & proof of
(claimed to be negligible in Ref31]) starts to be noticeable the validity of the SPA to compute, physically relevant, ac-
when the total massi=13M,, and becomes very significant curate frequency-domain inspiral templates, as they do not
for m=20M,. (Here we consider equal mass systems address the important issue of inspiral-signal termination at
=1/4) Since the difference between the statements in DIPF hear theF so whenF so~fqe, the frequency at which
and Droz, Knapp, Poisson, and Ow@i] can be disconcert- the broa(_jband noise of the detector is the least. It tur_ns out
ing and a serious source of confusion to the potential usehat for binary systems of total mass=28M ¢ the power in
community, we discuss this in further detail next. the Fourier domain beyonti=F, 5, for a relativistic signal,

In DIS, what was meant in Table (the only place where is a significant fraction ¥10%) of the total power. If the
it was usedl by “stationary phase approximation” was the usual (frequency-windowed SPA is used in constructing

product of the usual SPA by a simple Heaviside step funcfrequency-domain inspiral waves we are risking the loss of
tion O(Fu—f) ie Fl(f) was truncated above a Fourier More than 30% of the events from binaries with masses
max s}

frequencyf = F ., whereF .. is the instantaneous gravita- ZZSM@. (This will be |I.Iustrated in Fig. 1 below.This is in
tional wave frequency at which the time-domain signal iSaddltlon to the losses |_nduced by the inaccuracy of the PN
itself terminated, assumed to lfi@ DIS and hergthe fre-  Wave forms and the discreteness of the bank of templates

quency at the LSCF go. [In the following, we shall, for used in data analysis.

brevity, refer to this frequency windowed usual stationary . o . .

phase approximation as the “USPAW.'We were moti- D. Massive blacl_< hole binaries and first detections

vated to do this from the stationary phase result itself. The in LIGO /VIRGO

SPA (to the Fourier transform of the chirays that the Let us first establish our notation. We define the Fourier
dominant contribution to a certain Fourier amplituéf)  transform(FT) Ri(f) of a time-domain signah(t) by

comes from a neighborhood of tingm the Fourier integral
when the instantaneous frequerfegt) numerically reaches (" ConiftE e, Toen | o mift

the corresponding Fourier frequentylt is therefore to be h(t)= f_mdfe h(f);  h(f)= f_wdte h(t).
expected that the signal essentially terminate$=aF, oo, (1.1
i.e., that there is no significant power in the Fourier trans-

form of the signal beyondr so. This is indeed true in the
first approximation, as is evident from Fig. 6 below, which
shows that the power in the exact Fourier transform of the

time-windowed signal[computed via a discrete Fourier how=h(t)+n(t), (1.2
transform(DFT)] falls off much faster than the SPA fdr
>F so. Moreover, as is discussed in detail below, in the
relativistic case the usual SPA breaks downFaty and

We write the(suitably transformedoutput of the detector as

whereh(t) is the signal andi(t) the noise. The correlation
function of the noise reads

3Note that, following DIS, we shall use=(7mF)*3, instead of n(t)N(ty)=Cp(t;—t,)= ) dfS,(f)e?mfti—t2)
_ 15 . . . 1 2 nitl 2 _ 1
v =m"v, in all our analysis. We also use units such t@atc ®
=1. 1.3
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Fiso (HZ%OO above numerical value fofy and S leads tof yo= 167 Hz
and corresponds th]""=2.5868< 10~ 2.

For VIRGO on the other hand, the corresponding noise
curve is given by

5

fo
+2 T +1+

fo

sn(f)z%[m(% , f=fs

(1.5a
—w, f<f, (1.5b

10#1/h

In this case, f;=20 Hz, f;=500 Hz, while S;=3.24
X107 *®Hz~* [33]. The minimum of h,(f)=\fS,(f) is
reached af =103 Hz and is equal th)""=4.2902x< 10" 22,

It should be noted that the VIRGO noise curve is used only
in this section, while discussing Fig. 1. In the rest of the
L ] paper and all the figures and tables, the scalar product is

_____ h defined using the LIGO noise curve.
Inspiral signals from binaries at 100 Mpc ] Anticipating on formulas to be discussed in Sec. Il B, the

'1'0 —_— ‘1(')0 square of the signal to noise ratiSNR) is given by

m (in M)

5 (5)2 (k,h)? e
FIG. 1. Comparison of the signal-to-noise rat®NR) for an PN (k,k) (1.6
inspiral signal searched by means of two different filters, in two
different interferometerginitial LIGO, Eq. (1.49 or VIRGO, Eq.  where the scalar product is defined by
(1.53]. The exact signah is assumed to be a time-truncated New-
tonian chirp (sufficiently well approximated by the INSBAThe +oo 'R*(f)ﬁ(f)
solid lines represent the optimal SNR, obtained when the filisr (k,h>5f dfw- (1.7
identical to the exact signdd. The dotted lines represent the sub- o

optimal SNR, obtained when the filtkiis the frequency-windowed . . .
usual SPA(USPAW). In the case of LIGO, for low mass binaries Here, h denotes the exact signal, akdhe filter used in the

USPAW extracts the full SNR, but at higher masses, which are th&lata analysis. We assume in this paper that the signsl
most crucial ones for initial interferometers, it loses SNR up to adiven by a time-truncated adiabatic inspiral sigiigbr sim-
factor of 1.5 leading to a loss in the number of detectable events upliCity, we consider in this subsection Newtonian wave
to 70%. In the case of VIRGO, USPAW performs quite well when forms, and we approximate the Fourier transform of a time-
the total massn<50M, , and requires INSPA for heavier binaries. truncated Newtonian signal by the very accuraproved
The loss in the number of events caused by USPAW for heavieNewtonian stationary phase approximatiogiNSPA) to be
mass binaries in the range>50M, is unacceptable. constructed below.In computingp? we average over all the
angles(determining both the detector and the source orien-
whereS,(f)=S,(—f) is the two-sided noise power spectral tations, and we place the source at a fiducial distance of 100
density. In all the present work, we shall consider a noisévipc. (Note that a coalescence rate of £0per galaxy and
curve of the type expected for initial interferometers. Forper year implies that in 2 yr one event should happen within
initial LIGO we take[32] 100 Mpc)
) L In most of the literature one uses as Fourier-domain filter
Sn(f)=§ i) i i) } f=f, (148 ~k(f) th_e fre_zque_ncy-windoyved USP_AW to estimate Fhe _SNR
2 fo fo for an inspiral signal. We illustrate in Fig. 1 the loss in signal
strength extracted by using as a filter the USPAW in LIGO
=0, f<f,. (1.4b and VIRGO|cf. Egs.(1.49 and(1.53], instead of using the
optimal filterk=h (leading to the optimal SNR?=(h,h)).
with fs=40 Hz, ;=200 Hz, andS,=1.47<10"*Hz . In  The plot also shows on the top horizontal axis the last stable
the above we have included a factor of mne's'ded orbit frequency corresponding to the total mass in question.
=28Wosided hacause Eq(1.43 gives thetwo-sidednoise;  The left vertical axis shows the SNR extracted and the right
the one-sidednoise would be given by the same formula vertical axis shows the sensitivittal;1E[f31(f)]‘l (both of
without the factor of 1/2. The minimum d§,(f) is at f which are dimensionlegsof LIGO-I and VIRGO instru-
=f, and is equal toS;,=2.55,. However, a physically ments. While reading the sensitivity curve one should use the
more relevant quantity is the minimum of the dimensionlesgop and right axes and while reading the SNR curve one
quantity h2(f)=fS,(f) (effective GW noise, see below should use the bottom and left axes. The SNR values plotted
This is reached at theharacteristic detection frequency f in Fig. 1 have been computed numerically by inserting the
= f4e=0.8347,, and is equal to {"")?=2.2761,S,. The  relevant values oh(f) andk(f) in Eq. (1.6). Although we

2+2
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did not use it, it might help the reader to see #malytical  ||GO, i.e.,F 5o~ f4e. The most likely sources to detect are
expression op? obtained in the simple approximation where in the problematic region discussed in this paper. This makes
k(f)=h(f)=h"P2{f). Using the equations of Sec. Il below it imperative not to lose SNR when dealing with such signals
(and averaging over angles as explained in Sec. IV A belowand provides the other major motivation for our work. If our

leads to assumption that the best models of inspiral wave forms must
be abruptly shut off in the time domain holds, it is essential

7 (m\2 (Fsodf 1 1 to use the improved SPA formulas discussed in this work in
(p?)= —(a> f T o s’ (1.8 order to maximize our chances of detecting inpiralling bina-

15w 0 v(f) TS5(F) ries. The analysis presented in this paper provides insights

and techniques to deal with binary black hole signals in

where( .. .) denotes the angular averagkthe distance to probably the most crucial mass range.
the sourcep(f)=(7mf)*3 andS,(f) the two-sidednoise
given by Eg.(1.49. We indicated no precise detection
threshold in Fig. 1 because this depends on many parameters
(like the number of detectors involvedThe reader should,
however, keep in mind that a reasonable detection threshold In this paper we propose analytical approximations to the
is, at leastpyreshold™ - FT of the LSO-truncated time-domain inspiral waves that are

We note that theeffective sensitivity of LIGO-I peaks very accurate even for the massive black hole binaries, the
near a frequency of 167 Hz which is the last stable orbitmost likely sources for LIGO and VIRGQ@overlaps with
frequency for a binary of total mass of about\2Z. The  FFT >0.99 form=40My) and are at the same tinc@mpu-
effective sensitivity of VIRGO peaks at a much lower fre- tationally inexpensiveWe call our final new, frequency-
quency of 103 Hz. This low-frequency sensitivity of VIRGO domain filters the SPP approximants because they combine
means two important things: First, lighter binarig®., m  the computational convenience of stationary phase approxi-
<30M.) are integrated for a longer time in the low- mants with the accuracy of théime domain P approxi-
frequency regime and, therefore, the corrections to the Fants. Our strategy is twofold: On the one hand we intro-
introduced in this paper are less important for such systemsluce a correction factof(f) to the usual SPA forf <f
This means that the USPAW is quite good in extracting thesF so, which improves the SPA by taking into account the
full signal power of such binaries as evidenced in Fig. 1.“edge” oscillations present whefi<f . (f,, will be de-
Notice that, for VIRGO, the USPAW curve follows the fined below. For Newtonian-like signalg,=F so, while
INSPA curve form=30M, . On the contrary, LIGO’s lower for relativistic signalsf ,<F so.) On the other hand, we
sensitivity to lower frequencies makes it important to includeintroduce a new approximation to the FT fbr f, which
the corrections to the FT of LSO-truncated signals from bi-efficiently recovers the signal power around and beyond the
naries of massn=15M, . In LIGO’s case USPAW extracts frequency corresponding to the last stable orbit. These fea-
only 75% of the full SNR, implying a loss of more than 40% tures are important new steps forward as there was no for-
of all massive binary coalescences. On the other hand, thaalism until now that could computespecially forrelativ-
low-frequency peak of VIRGO sensitivity means that weistic signalg Fourier transforms analytically fof~F g0,
will have to employ the accurate Fourier domain modelsand in particularf >F go. These new features now make it
discussed in this paper for more massive binaries, me., possible to generate templatdsectly in the Fourier do-
=30M . [Note, however, that the low-frequency sensitivity main, leading to a saving on the computational cost of tem-
of VIRGO means that, for low-mass and medium-mass biplate generation by a factor of 10 or more.
naries, it is even more crucial to uBeapproximantginstead Our concrete proposal to the interferometer data analysis
of the usually considered approximantsthan for LIGO, in  groups that are building the gravitational wave search soft-
order to accurately keep track of the phasing of the manyvare and wish to have Fourier-domain filters, which are both
cycles accumulated at low frequencies. accurate and fast-computed, is thus the following: First, we

It is fair to say that at present the most well-understoodconfirm that foraccuratepost-Newtonian template genera-
gravitational wave form is the inspiral one and thus the onlytion of binary systems of total mass<40M one needs to
reliable templates correspond to inspiral signals. It is alsaise a frequency-domain version of tReapproximant(pre-
generally believed that binary black holes are better candiviously defined only in the time domainFor m<5Mg a
dates for gravitational wave sources than binary neutron stargraightforward(uncorrected for edge effegtSPA of theP
due to their larger massdshe average mass of observed approximants is sufficientThey match with the exact DFT
black hole candidates is arount¥g, [34]). Theoretical com- of the same time signal with overlaps0.999) On the other
putations based on stellar evolution indicate that binary blackand, in the total mass rangd/%,<=m=40M, andassum-
holes with individual massess15M, may be the only ing that one wishes an accurate frequency-domain
known sources that exighopefully) in sufficient numbers (f-domain representation of a time-windowed signal it is
[35—38. When looking at Fig. 1, one clearly sees the impor-crucial to use our new SPP approximants. Fee40M a
tance of dealing with binary black holes with total masses instraightforward DFT is recommendébut, anyway, the sig-
the range of 28-3d . They lead to signals with the best nal is not known with enough precision in this high mass
SNR. However, it is precisely for such systems thatfhg,  range, where the plunge and merger signals become obser-
is around the middle of the detection bandwidth for initial vationally important

E. Summary of the present paper and proposals
for data analysis groups
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It is important to stress the position we assume in this Il. PRELIMINARY DISCUSSION
paper: Given the absence of any detailed and precise infor-
mation about the plunge signal today, we suggest that a timss-s-e

truncated chirgtime-windowed signalis currently our best . imations to the FT of the gravitational wave inspiral

bet and the modified SPA presented in this paper is the aRggnain(t) let us start by discussing some general issues that
propriate Fourier-domain representation one must use. H_omgre central to this paper.

ever, this should not be taken to imply that we are claiming
to have logically excluded the other possibility that the
window may turn out to be the better choice, when we have
further details about the transition from inspiral to plunge We briefly recall the principle underlying the optimal lin-
and, about the plunge wave form. Even so, we emphasizear filter techniquéWiener filten. A (rea) linear filter is a
that a definitive contribution of the present work is to pro-linear functional of the detector’s outpury,, Eq.(1.2), say
vide explicitly for the first time the frequency-domain ver-

_sion of the Fime_-d(_)mairlP_app_roximants which were shown K[ houd = jm AtK(t) hou(t) = J'w dfR(—F)Rgulf)
in DIS to bring indispensible improvements over the usually — —o

consideredT approximants. Consequently, even in the un-

likely case where a straightforward frequency window turns _ fw dfR* (F)Rgul ).
out to be a better model than the time window assumed in —w o
most of this work, one will still require the formulas given in

this papeffwith the trivial change of replacing the correction

chtct)lrsC(g) bytéaof fU”_Cti?R G(FL_Fﬁ_fza_to gerllerate S“Iﬁt') Let us associate to ari(t) the time-domain functiork(t)
ciently accuratg-domain Tifters. *hus this work may not be peh that its FT equalg(f)=S,(f)K(f) and let us introduce

the complete final answer but only a step ahead and a parti : , . .
contribution toward defining gooddomain filters. Assump- ﬁqe Wiener scalar produttefined on real time-domain func-

tions that seem the best we can accept require special tootl'g ns
for their analysis and this paper provides them. B
This paper is organized as follows: In Secs. Il A, Il B, and (g,h>EJ _"g*(f)ﬁ(f)
[l C as a prelude to later technical material, we introduce = Sn(f)
several useful physical notions and employ them to give a o o
preliminary discussion of the questions raised by the detect- :J f dt,dt,g(ty)wy(t;—t)h(ty), (2.2
ability of massive-binary signals. In Sec. Il D we summarize —oJ -
the mathematical tools used in the paper to estimate the time-

As a preface to the technical treatments of the following
ctions in which we shall construct optimal analytic ap-

A. Wiener filters and time-truncated inspiral signals

(2.1

truncated chirps. In Sec. Ill we consider time-windowedWhere,

Newtonian-like signals. Section Ill A provides a short sum- . df

mary pf the wgll known SPA. Seption I_II B sets up the basic wy( T):J e27rifT:Wl(_ 9, 2.3
equations to discuss the FT of time-windowed signals. Sec- —=Sy(f)

tion 1l C estimates the edge contribution to the FT coming

from the nonresonant integral. This is followed by Secsis the convolution inverse of the noise correlation function
[11 D and Il E where we elaborate in detail the construction Cn(7)=C,(—17), i.e.,

of optimal analytic approximations to the FT of the time-

windowed gravitational wave chirgimproved Newtonian (Wy* Cp)(t)=8(1). (2.4
SPA). In Sec. Ill F we compare and contrast in detail the

usual SPA with our improved SPA for Newtonian-like sig- [Here * denotes the convolution product:gxh)(t)
nals. Section IV A addresses the new issues related to the FFJ~..d7g(7)h(t— 7)]. With this notation the action of the
of time-windowed relativistic signals. In Sec. IVB we filter K on hy, reads

present a new method to estimate the small nonresonant con-

tribution in the relativistic case. In Sec. IV C we construct a K[ houd = (K,houp=S+N, (2.5
new form of improved SPA for such signdisnproved rela-

tivistic SPA). Combining this improved relativistic SPA with WhereSis the filtered “signal” andN the filtered “noise”
the P approximants of DIS leads to the construction of thedefined by

frequency-domain SPP approximants. In Sec. V we use the

SPP approximants constructed earlier and investigate their S=K[h]=(k,h);  N=K[n]=(k,n). (2.6)
faithfulnessandeffectualnesi detail for the test mass case. o ) )

Based on this we comment on the corresponding situation i, "€ definition of the symmetric Wiener scalar product Eq.
the comparable mass case. In Sec. VI we compare the corlg-2 is such that thg stfitlsncal average of a product of fil-
puting costs for template generation using the time-domaifered — noises  simplify:  (ky,n)(kz,n)=(ky,n)(n.k)
FFT with corresponding costs for the frequency-domain SPA=(Ki.Kz). In particular, the variance of the filtered noisie
and improved SPA both for Newtonian and relativistic casesreadsN?=(k,n)?=(k,k), so that the square of the SNR for
Section VII contains our concluding remarks. the filter defined by any functiok(t) reads
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2:S_2_<k,h)2
PN (kk)

2qirf.

teo df ~ 1
=] @ e

(2.10
where we have defined the “overlap,” or normalized ambi-
guity function, betweerk andh For any functiorg(t), the action of the kernet/;;, ong(i.e.,
the “whitened” version of the functiolg) can be denoted by
(k,h)

V() (h.h) Gu2(t) = (W12 9)(1) = f drw(g(t- ).

Schwarz’s inequality guarantees théX(k,h)| <1, the equal- (2.1
ity being reached only whek(t) =X\h(t). (We work here in
the space of real signaldzor a given signah(t), the choice
of filter K« k which maximizeghe SNRp is, in view of Eq.
(2.7), k(t)=X\h(t), where the proportionality constant is un- "
important and can be taken to be diwéiener theorern This Nyt Nyo(ty) = f df 7= = s5(t, —t,).

optimal linear filter theorem applies when the full time de- —o

velopment of the signah(t) is known, the noise is station- (2.12

ary, and has a known spectral distributiSg(f). o )

It is important to note the following: The statement that NOt€ thatwy, is simply the convolution square root of the
the best “associated” filtek(t) is simplyk(t)=h(t) means Wiener kernelw, introduced abovewy*wy,=w;. The
that the best time-domain filté€(t), which must be directly ~iener theorem states then that, after having whitened all
correlated  with the detector's  output K[hy] the functions, th_e optimal filter is s_lmply the usual straight-
= [ dtK(t)hy,(1), is a nonlocal(in time) functional of forvx_/ard cor_relatlo_n between th@vhitened output and the
h(t). Explicitly, (whitened signal, i.e.,

=[0(k,h)|*(h,h), (2.7

O(k,h)

(2.9

The name “whitening kernel” comes from the fact that the
transformed nois@.,(t) is “white,” i.e., uncorrelated

K(t)=(wy*h)(t)= f:d'fwl(T)h(t_T)- 2.9 K optimal Noutl = j_wdt hya(Hh35(t), (2.13

This poses the question whether, for an off-line analysis of'herehiz=wa*h, hgf’;: Wi* ho{ft- In other words, we can
the data, one would like to store a bank of these nonlocaihink of the optimal filter as being local-in-time after the
time-domain filters< (t), which densely cover the expected @Pplication, to all signals, of the convolution kerngi,.
parameter space. In the present paper, we shall assume t\Mpen worlt<|ng with the transformed tlme-domam funct|_ons
one computesnearly on-line the FFT of the detector’s out- Nu2(t), hij(t) - - -, we shall say that we work in the “whit-
put (which is needed to factor out the frequency dependergned time domain.” In this language, the best filter in the
effect of the interferometer on the GW signaind we shall ~Whitened time domain is to simply correlaas when trying
set ourselves the task of providing the best possible analytfo visually superpose two time functionthe output with a
cal representations of the FT of the expected sighgfy. ~ copy of the signal. This “whitened time domain” is concep-
Moreover, the availability of a fast Fourier algorithm makestually useful in the present context because it introduces only
the filtering problem computationally less intensive in the@ small nonlocalityby small we mean much smaller than the
Fourier domain. It is well-known that the computation of a nonlocality introduced by the Fourier transformatiom-
discrete correlation for alidiscrete time lags between the deed, as the function {8,(f) has a rather flat maximum, its
output and the filter, i.e., the discrete version of E2.1) Fourier transformwy»(7) is nearly a delta function as seen
requiresO[ N?] operations in the time domain while it takes in Fig. 2 wherein we have plotted the whitening kernel for
only O[N log,(N)] operations in the Fourier domdibecause the initial LIGO interferometer. More precisely,,(7) is an
a time lagr adds a factor exp@f 7) in thef-domain version even function made of a positive spike aroune 0, fol-
of Eq. (2.1), which is equivalent to computing a certain in- lowed (on each sideby a slightly negative wing, which de-
verse Fourier transforinDiscrete correlation in thedomain ~ cays fast toward zero ds|— +. The half width at half
suffers from spurious correlations for nonzero time lags butmaximum of the central spike is 0.18 ms. The location of the
this is easily taken care of by padding the tail part of awings is aroundr=*+0.002 s. Therefore the nonlocality con-
template with a large number of zertsee, e.g., Ref6] for  tained in the whitening transformation is only between 0.2
details. and 2 ms(depending on the function on which it act$his

As the problem of the locality/nonlocality in time will be nonlocality together with the one and a half cyclewiy, is
crucial to our discussion of the inspiral signals, we wish tosufficient to efficiently damp both high and low frequencies
give an alternative discussion of Wiener’s optimal linear fil- so thath,,=w3,h is a chirp whose amplitude is important
ter theorem. Indeed, another proof of the theorem can benly when the instantaneous frequency is arofyv 165 Hz
obtained by introducing a “whitening” transformation say (see below. We shall use below this whitened time-domain
w1/, Which simplifies the properties of the noise. We definepicture to discuss the important features of the expected
the “whitening kernel” wq,(7) by chirp that we should try to model it as well as possible.
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1500 T T T T T T M@

EN: |:Lso:44oc(F Hz. (2.19
)

M|

- However, in our actual numerical calculations and plots we
= shall use then-dependentr, 5o corresponding to the ap-
o 1000 7 proximation used for the energy functidBa(v). For in-
% i stance, in the case of the 2HNapproximantP, we have
< [13]
7‘: 1 312
Q P 1+37

L, 500 Flao=4397.
~— 36
3/2

s 1+37 Mo
~ X|2— ——=——=—=—=| — Hz. (2.19

o Vi-fsntgsn?] M

= I | | | | | In the equal-mass casen€1/4) this vyields F go

_ _ =5719.M /m Hz. Note that the most recent determination
0.004 0.002 ¢ ° 0.002 0.00¢ of the LSO[40] suggests that when+ 0 the GW frequency
(Sec) at the LSO lies between EqR.14) and (2.15

FIG. 2. The whitening kernely,,,(t), Eq.(2.10), is shown[for Mo
the initial LIGO noise curve, Eq(1.4g] plotted as a function of Flso=4397.21+0.3155))| —
time. We see that it is quite sharply peaked-a0. The peak drops m

i idl f h igin, thus indicating th . L . .
quite rapidly as we move away from the origin, thus m_dnc_atmgt at Preliminary studies indicate that the plunge signal, emit-
we have almost local-in-time filters. The curve also indicates the

importance of knowing the plunge signal over a time scale of sev:[ed during the fast fall of the two masses toward each other

eral 10's of milliseconds so that the inspiral signal can have a goodP!loWing the crossing of the LSO, will laswhen 47~1)
overlap. only for a fraction of an orbital perio@see Refs[40] and

[43]).* As usual, one can also assume that the subsequent

In the present paper, we are primarily interested in masmerger signal Iipked.to fche formafcion of a black hole of total
sive compact binaries with total mass=m,+m, in the Mass~m contains significantly hlgher' frgquenues than the
approximate range Mo<m=40M,. We recall that the inspiral ones. Indeed, the charac_terlstlc frequency of the
GW signal from a compact binary is made of an inspiralMerger signal may be taken to be given by the real part of the
signal followed, after the last stable orbit is reached, by oSt slowly damped quadrupolar normal mode of a black
plunge signal that leads to a final merger signal. Thanks t&©!€ (Which when neglecting the black hole spin, has a com-
the analytical work on the motiof8] of and GW emission P!€X circular frequencyw;mg,=0.37367-0.088 96[44)),
[24,39 from general relativistic binary systems we have € (With Mpy~m)
quite a good analytical control of the inspiral signal. In the 0.374 M
present paper, we shall further argue that we have also a fmergef\,fbh:'_:lz 000—2Hz. (2.17)
rather good analytical control on the location of the LSO, 2mm m

i.e., on the transition between the inspiral and plunge. First . .
DIS [13] introduced a new, more robust approach to theEquatlons(2.14) and(2.17 lead us to accept that there is a

determination of LSO based on the invariant functégn). significanfc frequency separation between the inspiral and
More recently[40], a new approach to the dynamics of bi- Plunge signals and the merger ongjerge/FLso~2.75.
nary systems has confirmed the result of Dégting that the Therefore_, nf we restr.|ct our attention to systems such th_at the
LSO was slightly more “inwards” for comparable mass sys- characteristic detgcuon frequenéy,;, defined by the noise
tems than as predicted by the test-mass Jiraitd predicts CUTVe, stays logarithmically nearer Fq so than tof mergen it
values for the important physical quantities at the L&©-  S€€MS plau5|blg that a good filter _to use for GW detection
tably the orbital frequendywhich are even nearer to the ¢&n neglect théill-known) merger signal, but should try to
(Schwarzschild-like ones obtained in the test-mass limit. Model as accurately as possible the inspiral and plunge sig-
We anticipate that further analytical progress in the problenf'@l- For the initial LIGO noise curve, E¢1.43, the charac-

of motion of binary systemf41], combined with the LSO- teristic detection frequencyye; is 167 Hz. It is then for a
determination techniques given [ib3] and[40,42 will soon  fotal massm=43.8M¢ that f e/ FLso=fon/fger-

allow one to know with more certainty and more precision

the gravitational wave frequency at the LSO. Pending such a

determination, we shall use as a fiducial value for the GW “we assume here that we are in the generic case where the spins
frequency at the LSO—when we need it for simple analyticalof the coalescing objects are small compared to their maximal Kerr
estimates—the usual “Schwarzschild-like” approximation value.

Hz. (2.16
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We shall see below that, just before reaching the LSO, thélack-hole—neutron-star and the black-hole—black-hole sys-
inspiral signal is still significantly “quasiperiodictwith =6  tems, while ¢4, is the phase when the signal enters the
cycles before a significant change in instantaneous frelower frequency(seismig cutoff of the detector bandwidth.
quency. By contrast though the plunge signal may not decaywe have also rewritteiN,,; as an integral over the running
monotonically and may be oscillating, it seems reasonable tmstantaneous gravitational wave frequeicyHowever, the
assume that the plunge lasts for only a fraction of the orbitalarge numbeiN.; [Eq. (2.18] is not significant because the
period T,_SO=2FL‘310. Thus, in the absence of a precise only reallyusefulcycles are those that contribute most to the
knowledge of the plunge signal, a good model of the time-SNR. To have a clearer idea of what one might mean by the
domain signal consists in abruptly shutting off by a stepnotion of auseful number of cycleet us first introduce the
function 6(t, so—t) the (adiabati¢ inspiral signal beyond the instantaneous number of cyclspent near some instanta-
time t, 5o When the last stable orbit is reached. We also for-neous frequenc¥. It is naturally defined by multiplying the
mally tested the robustness of our approach by showing thamtegrand in Eq(2.18 by F, considered as the length of an
our model(discussed aboVéhas a good overlap with a sig- interval = AF=*F/2 aroundF, i.e.,
nal that decays smoothly on a time scale of a feyy to 3 5
F oo beyond the LSO. Because of the likely oscillatory be- N(F)= F d_qu F (2.19
havior of the plunge signal, details of the oscillations are 2w dF  dF/dt’ '
necessary for any further improvements and we are currently )
working toward improving our understanding of the transi-Where we have used¢/dt=2mF(t). Note that the instan-
tion between the inspiral and the plungs]. taneousN can be con5|d_ered elther_ as a function of the run-

These considerations motivate us to propose that, in thBiNg frequencyF(t) or, directly, of time. .
absence of knowledge of the optimal filter which should be The instantaneous number of cycles plays an important
Koptima(t) = Kexac(t), OUI best bet is to use the time-truncatedrole bqth in defmmg the c.)b.servablllty of.a signal, and in
inspiral signalh;yepira(t) O(tLso—t) as a(suboptimal filter. controllm_g partially the validity o_f the stationary phase ap-
In other words, we think that the best strategy is to use all th@roximation. The square of theptimal SNR reads
information available about the signal in the time domain ) =~ 2
and to replace the transient plunge and higher frequency 2=<§ _f+°°df|h(f)|

; : pr= = . (2.20
merger signals by zero as a measure of our current igno- N —w Sh()
rance. But having settled on this tactic in the time domain,
the aim of this paper is to provide the best possibleln the stationary phase approximatidtiscussed at length
frequency-domain description of such a time-windowed sig-and improved below; but here we use standard results for
nal. We shall see in detaibelow) that the Fourier transform orientation the modulus of the FT of the real signa(t)
ho(f)=FT[hy(t)] of the time-windowed signalhy,(t) =2a(t)cosq(t) reads|F1(f)|:a(tf)/\/F(tf), wheret; is the
=hinspiralt) O(t so—t) has a nontrivial structure that is not time when the instantaneous frequenéyt) reaches the
captured by the usually considered frequency-windowed staraluef.’ Therefore, the squared modulus can be written as

tionary phase approximatid]gpam(f). In particular, for mas- 5
sive systems, a significant fraction of the total power is con- |~ £)|2= if)E iN(f)az(f). (2.21
tained in the “tail” of hy,(f) beyondf=F go. The general df/dt 2

result[Eg. (2.7)] for SNR obtained with any filter then as-
serts that the Fourier-domain filtag,(f), although subopti-

Finally, the SNR can be rewritten as

mal, should still be significantlbetterthanﬁspam(f) because 2 . 2 . 2

(under our assumptions about the plungenerger signalit 2E(§) - f+ ﬂmz f+ ﬂ hs(f),

has better overlaps with the exact signal. We shall return N —» £ f5(F) -« t h2(f)
below to this important issue and give further argumeints (2.22

the time domaipto confirm the superiority oﬁtw(f) over

. . _ 2
Repelf) (Se€ Figs. 9 and 10 and text around it where we have introduced the notatlhé(f)—N(f)a (f)

andh2(f)=fS,(f). Here,h?(f) is the usual squared ampli-
tude of theeffective gravitational wave noisat the fre-
quencyf, i.e., the minimum gravitational wave amplitude

Often one mentions that, in the total time development of
an inspiral signal, the total number of gravitational wave
cycles

B. The number of useful cycles

SIn the following, it will be necessary to distinguish carefully
between the instantaneous frequefand the Fourier variable In
(2.18 the present section this distinction is not very important and we
shall freely change notatioin— F. Similarly, the gravitational wave
flux and factored flux functions which, following standard notation,
is very large. Herep is the gravitational wave phaséenqiS  was denoted by (v) andf(v) in Ref.[13] are denoted byF(v)
the phase at the end of the inspiral regifdefined by the andl(v) in this paper to avoid confusion with the instantaneous
last stable orbit for sufficiently massive systems, i.e., for thegravitational wave frequency and Fourier variable, respectively.

1 Fend 1 d¢
Niot= om (bena— ¢begir) = fF dF o7 dFE

beg
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TABLE I. Number ofusefulcycles for some representative sys-
tems and approximants. For each of the cases the correspondin
total number of cycles is listed within rounded brackets on the line
below.

100 200 300 401
[

1000
1000

100
T

System Newtonian Relativistiey
1.4Mo-1.M 173 169 st
(1588 (1586
1.4M 5—10M o 51 37 -
(348 (320 S osr =
10M 5—10M ¢, 12 7.6 i ©
(57) (47) (10,10) My | —
20M o —20M ¢, 9.2 3.4 h-?
(15) (10) fdp2/df |,

10
T

detectable in a bandwidth f/2 around frequencl Equation L \

(2.22) exhibits that the squared amplitude of the correspond- . L L L
ing effective gravitational wave signad hi(f)EN(f)az(f) 100 200 300 400
—2[R(f)|? i.e., that the “bare” amplitude(f)=a(t(f)) is f (Hz)
effept_ively multiplied bY VN(f.) [5’6].‘ Equation(2.22 also FIG. 3. The Newtonian instantaneous number of cy®és),
exhibits the relative weight with which each cycle counts for, square of the amplituda®(f), their productN(f)a(f), the
dgtecta_bﬂny_ purposes. Per logarithmic frequency |ntervalreciproca| of the effective GW noiseh?(f)=fS,(f), and
this weight is simply d(SNR)d(log f) are plotted as a function éf The scale on thg
_ s 2 axis corresponds tdN(f) on the left and all other functions are
w(f)=a“(f)/hy(f). (2.23 plotted on an arbitrary scale indicated on the right. The top panel is

L ) for a lighter mass binaryng;=1.4M,, m,=10My) and the lower
Therefore it is natural to define the numberusiefulcycles  gne for a heavier mass system,(=m,=10M).

as

the right-hand sidgRHS) of Eq. (2.22 for two different
Fmax d Frmax d f -1 binary systems. The instantaneous number of cyldg in
Nusefulz(f TW(f)N(f)>(f TW(f)) ' the Newtonian approximation is plotted, together with the
m mn (2.24  square of the amplituda®(f), their product of theeffective
gravitational wave amplitudeg(f)=N(f)a2(f), the recip-
whereF ., is the low-frequency seismic cutoff below which rocal of effective noisehﬁ(f)=fSn(f) (cutoff after F
h2(f) is essentially infinite and where the upper cuteff,, = =F_so), and the power per log bin of the square of the SNR
is the frequency at which the signal itself shuts off. For il- dp?/d(logf). On the left, the scale on theaxis corresponds
lustration, we list in Table | the number abefulcycles and to N(f). On the right it corresponds to the amplitude on an
the total number of cycles for representative systems andarbitrary scale. Other quantities are on an arbitrary scale. The
orders of approximation. For Newtonian chirps the totaltop panel is for a lighter mass binaryn(=1.4My, m,

in

number of cycles is =10My) and the bottom panel for a heavier oma;&Em,
Newt_ (Mg 73— (mmfo )~ 20 The last figure exhibits two useful lessons that are well
ot 327y ' (229 known, but are particularly important to keep in mind when

reading the present paper. First, because of the mass scaling
wheref is the seismic cutoff. The total number of cycles for of the gravitational wave frequency at the last stable orbit,
relativistic chirps is always smaller thatfc™". From Table |  given in the lowest(Schwarzschild-likg approximation by
it is clear that the numbe s is usually much smaller than Ed. (2.14), it is only for systems with total massi=m;
Nit, EQ. (2.18. Note that for massive systemMgeq be- ~ +Mx=13Mg that the peak of the SNR logarithmic
comes quite small. The number of useful cycles given infrequency-distribution f becomes comparable, within a fac-
Table | have been computed for the initial LIGO noise curvetor of 2, toF ,.,=Fso. This statement critically depends on
Eg.(1.43. The corresponding numbers for the VIRGO noisethe characteristic frequency entering the considered noise
curve[Eq. (1.5a] would be larger both because the VIRGO curve. For instance, in Fig. 3 we have used the initial LIGO
sensitivity curve peaks at a lower frequency, and because @turve[Eq. (1.43] for which f ;= 0.825 ;=165 Hz. Note that

is flatter. the peak of the logarithmic SNR integrafglis very close to
To explore the case of systems with a small number othe minimum of the effective noise amplitudbﬁ(f)
useful cycles in more detail we display in Fig(dh a linear— =fS (f), which is located(as mentioned aboyeat f .

log plot) the various factors of the logarithmic integrand on =0.8347%,=167 Hz. This is because, the frequency depen-
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dence of the factoN(f)« (7v®) ~tecf 53 [which in the ef- R ., | B .
fective signalhg(f)=N(f)a2(f), favors lower frequencigs .
is nearly compensated by the frequency dependence of th
bare amplitude?(f) «v*= f*3 (which favors higher frequen-
cies.

A second lesson to be drawn from Fig. 3 is that the num-
ber of useful cycles also becomes small in the same prob
lematic case of massive systems. To see this more clearly, le
us write down the explicit expression for the instantaneoush, (t)
number of cycles. In the Newtonian ca$er which the basic ‘
formulas are recalled in Sec. Ill A belgywone has

m,=m,=20M,

N Newt(t)

5 1
NNeWtoniar(f):EEE, (2.26)

wherev = (rmf)¥3. The lowest value oN is physically that /

formally reached at the upper frequency cutdfeF .« e L L g
e . -0.03 0.02 0.01 0

=F|so. Foruv so=1/\/6 (the “Schwarzschild” valug the t—t . (sec)

above equation reads 1s0

FIG. 4. Instantaneous number of cycles, E2.19, near the

Niewtoniad FLso) = i 5/2i2 5'8477, (2.27) LSO as a function of time for the Newtonian case, E4j26), and
24w 4ng 4y the relativistic cases, Eq2.28, defined by the 2PN approximant

P,. Also plotted is the development of the wave fohm4(t) on an

where we recall thaty<1/4 and that the upper valugnax  arbitrary scale. The plots show how the number of useful cycles

=1/4 is reached for equal mass systems=m,. Therefore  diminishes as one gets close to the LS8, € m,=20M,).

for comparable-mass, massive systems, the Newtonian ap-

proximation suggests that the useful number of cycles will benals whose LSO is near the most sensitive part of the fre-

rather small ¢-6) and concentrated near the LSO. As wequency response of the detector.

shall see later, if we were interested in estimating the FT of

an analytic Newtonian-like signal, even such a small number C. Loss of SNR due to edge effects

of cycles(and even a smaller one, downfb~1) would be ) ) .

enough to ensure that the leading correction to the stationary AS We already mentioned, in addition to the problem of a

phase approximation is small. However, the COmp|ic(,jltionvanlshm_g_m_stantaneous nu_mber of Cycl_es near the LSO in

comes from the combination of two fact) the signal es- the rela_t|V|st|c case, the main prqblem with the acccuracy of

sentially terminates at the LSO crossing tithao, and (i) the stationary phase approximation comes from the fact that

one crucially needs a relativistic description of the evolutionthe FT of a time-windowed signdi,(f)=FT[hy(t)] dif-

near the LSO. Using the formulas and the notation of Sec. IMers from the frequency-windowed SPKpav(f): O(F max
we find that the relativistic prediction for the instantaneous_f)ﬁspa(f) because of some “edge effects” in the fre-

number of cyclegin the adiabatic inspiral approximatibis  quency domain, linked to the abrupt termination of the signal
1 E'v) in the time domain. These edge effects comprise some addi-
4

Nyeaf )= — 3,V Fo) (2.28 tional oscillatory behavior if(f) for f<F o, as well as a
v decaying oscillatory tail in the usually disregarded frequency
domain forf>F go.

Let us anticipate the results below and use a first-order
pproximation to discuss the main features of the corrections
rought by the time windowing. Roughlgsee below the

h. exact Fourier transform can be written as

By definition of the LSO(see, e.g., the discussion in Dlhe
derivativeE’ (v) vanishes ab =vgo. Therefore, the instan-
taneous number of cycles is smaller in the relativistic cas
than in the Newtonian one and actually tendgeconear the
LSO. In Sec. IV we will tackle the problem that this vanis
ing of N(F so) causes for the stationary phase approxima-
tion. In this introductory section let us only illustrate the

roblem by plotting the Newtonian and relativistic values of ~ ~ . .
RI(F(t)). I)rll pFig. é?we plot the instantaneous number Ofwherehjﬁﬁ(f):hSPa(f)a(Fmax—f) is the usually considered

cycles for the Newtonian and second post-Newtoniar{re?ulencﬁk’]\'in?owedspp" The differences(f) is approxi-
P-approximant wave forms in the last few cycles of the pi-Mately of the form
nary inspiral for a (2Mg, 20Mg) system. We also show

hy(f)=hPa(f)+e(f), (2.29

~ S
the development of the wave form in this interval on an s(f)=D(H*A), (230
arbitrary scale. These plots demonstrate how the number gfhere
useful cycles diminishes as one gets close to the LSO and
lead us to anticipate the subtleties in the detectability of sig- D(H)=C(f)— O(F o ), (2.3)
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with the correction factoC(f) given by Eq.(3.23 below
[with any choice of{(f) in the present approximati¢rand

wherehsP{f) is some smooth continuation &fP(f) from
the domainf <F| g to the domairf >F go. [For the present

purpose one can assume th&tqf) is simply given by the
Newtonian approximatiof.
Starting from Eq(2.29 one can compute the overlap be-

tween the exach(f) and the usually considered frequency-
windowed SPARSA(f)

(hx,hiie
V(hxhx (i,

As seen abovésee EQ.(2.7)] this overlap, if it is signifi-

(2.32

spa,
win

h

cantly smaller than one, represents a loss in SNR. To lowes

order ine the overlap Eq(2.32 differs from 1 by

1
2[IhyI?

(llell>=1¢e.hy)I?), (2.33

where| e||?=(e,&), and hy=hy/||hy|. In inserting the ex-

plicit result Eqgs.(2.30 and (2.31) for £ one sees that the
second term on the RHS of E(.33 is much smaller than
the first [because the oscillations i®(f) are integrated
against the smooth variation b#*{f)]. Finally, if we define

the weight function

f _f[RPA012 N(HaA(f)  hi(f)
oD="gm - ()  hah)’

(2.39

which is the full logarithmic weight function appearing in the
squared SNRLEq. (2.22], we can write

Fmax df
0
(2.35

As will be discussed late(see Fig. % the functionD(f)
=C(f)— 0(F na— ) is concentrated in an interval of order

\/I':(tmax) around f=F,, and decays on both sidé¢&ke
1/Z(f)o<1/(f — F a9 ] whenf gets away fronf ... The total
integral of|D(f)|? is finite and of order unity. Thus, we see
from Eq. (2.39 that when the characteristic frequenty
around whicho(f) is concentrated satisfieg,<F .« we
shall have a rough estimate

T(Fmax) V I.:(tmax) _ o (Fmax) 1
o(fp) - o(fp) UN(Frad
(2.3

-1

1 [~df
1-0= EJO Tcr(f>|i/><f)|2(

1-0

F max

6

while in the opposite limit wheré,>F ., we get the rough
estimate

1-0~ Fllwad _ 1 . (2.37)
F max IN(F max)
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FIG. 5. The real and imaginary parts of the complex correction
factor C({)—in terms of which the new frequency domain approxi-
mants are represented in the Newtonian-like cases—as a function of
{. The real part is a “softened step” while the imaginary part is an
oscillatory function vanishing at the origin and at large positive and
negative values of its argument.

In the case wheré,<F . the factoro(F )/ a(f,) on the
RHS of Eq.(2.36 is very small. Therefore, even if the num-
ber of cyclesN(F .., is not very large, Eq(2.36) predicts
that a simple frequency-windowed SPA will have excellent

overlap with the exach(f). On the other hand, Eq2.37)
shows that in the reverse limft,;>F ., which means in
fact when f,=F. the overlap will become bad if
UN(F ma) is not very large. As we have seen tha(F )
becomes as low ag5.85~=2.4 in the Newtonian case, and
reaches smaller values in the relativistic case, we expect that
the cases where the frequency-windowed SPA has a bad

overlap withh(f) are those wheré, becomes comparable,
say within a factor of 2, td~,,=F so. We come to the
same conclusion as above, which was the conclusion already
pointed out in DIS: namely the signal fromassive systems
[m=13My, if f,=165 Hz, corresponding td,=200 Hz,
more generally,m=13(165Hzf )M], when treated(as
they should bgrelativistically will be badly represented by
the usual frequency-windowed SPA. This conclusion ob-
tained from an analytical approximation is borne out by the
numerical computations shown in Fig. 1 abofsee also
Table Il). It is mainly for such systems that the work pre-
sented in the following sections will be mandatory. But even
for lower mass systems, we shall construct here for the first
time the Fourier-domain version of tlfgme-domain P ap-
proximants introduced in DIS. Sindeapproximants provide
better templates than the usually considefeapproximants
[13], the work of this paper will be useful for all types of
systems, even the less massive ones.
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TABLE Il. Accuracy of the various approximations to the Fourier transform of the chirp signal for
Newtonian wave forms. The accuracy is estimated via the overlag 2By, of a wave form generated in the
time domain and then Fourier transformed using an FFT algorithm, with wave forms of exactly the same
parameters generated directly in the frequency domain via one of the following approximations: The usual
stationary phase approximation truncated @t,=F nyquist (USPAN, column 3, the usual stationary phase
approximation truncated dt,,,= F so (USPAW, column 4, the corrected SPACSPA, column 5 and the
improved SPA(INSPA, column 6, both extended up tbyyquis: for different values of the total magsolumn
1). The corresponding so is listed in column 2(We deal only with equal mass binarigs=1/4.) In the last
column we also list the total overlap “intot” to exhibit the relative importance of the “nonresonant”
contribution. In this table and all others the smooth time window starts at 30 Hz; the seismic cutoff for LIGO
is atfs=40 Hz.

m/M o FLSO/HZ <’F]EFT"F]HSPAN> ('FI EFT’EHSPA% <hEFT ”ﬁﬁsP% (’HEFT”F]I’\II\ISPA> <’F] ’E‘FT ,’Fli,{‘]wt>

70.0 63 0.1536 0.6361 0.9231 0.9763 0.9944
60.0 73 0.2294 0.7302 0.9489 0.9721 0.9873
50.0 88 0.3336 0.8062 0.9724 0.9824 0.9934
40.0 110 0.4708 0.8589 0.9862 0.9952 0.9993
30.0 147 0.6682 0.9214 0.9964 0.9987 0.9977
20.0 220 0.8811 0.9681 0.9968 0.9974 0.9986
15.0 293 0.9431 0.9838 0.9999 0.9998 0.9997
14.0 314 0.9528 0.9868 0.9995 0.9997 0.9993
13.0 338 0.9641 0.9900 0.9986 0.9989 0.9993
12.0 366 0.9700 0.9912 0.9996 0.9997 0.9995
10.0 440 0.9839 0.9953 0.9989 0.9990 0.9994
5.0 880 0.9983 0.9988 0.9991 0.9991 0.9992
3.0 1466 0.9987 0.9987 0.9985 0.9985 0.9984
D. Fourier transform of time-truncated chirps where A(¢)=[a(t)/¢(t)]t(¢), where t(y) denotes the

To introduce the detailed analysis that we shall give in thguniqug solution int of ¢=y(t) and wherey,=y(ta), ¢y
following sections, let us start by delineating some generaf= ¢(ty). Using e'"'*=(e/i)(d/dy)(e'""), integrating by
mathematical facts about the integrals we have to deal wittparts, and usingthanks to assumptiofii)] the vanishing of
We will be interested in evaluating the Fi(f) of a time- A(¢) at the edges, leads to
truncated chirgh(t) =2a(t) cos¢(t) it t). After decom- y
posing the cosine into complex exponentials, the Fourier in- |(8)=isf bde,(w)ei yle. (2.40
tegral leads to a sum of two integrals of the form ba
S'medta(t)el”t O with phasesy; =27ft= ¢(t). Let us
then, for generality, discuss the properties of integrals of th
type

éJsing [assumption(iii )] the vanishing of all the derivatives
of A(¢) at the edges, we can iterate the result €440 to
any order

tp )
- i(w(t)/e) )
I(g) ftadta(t)e w()le), (2.39 |(s)=(is)”f¢bdz/;A(")(z,/;)eW’g. (2.41
¥a

Here, we have introduced a formal “small parameter{set
to unity at the end of the calculatipo formalize the fast The result [Eq. (2.41)] means that, where—0, |(¢)
variation of the phase compared to that of the amplitude. =©(e") for any integem, i.e.,| (&) vanishes faster than any
Let us first note that(i) if the phase has no stationary power ofe. It does not mean thd(e) is zero for any finite
point (t)#0 for te[ty,ty], (i) if the amplitude vanishes (but smalj value ofe. For instance, under stronger assump-
smoothly at the edge points, and t,, which might be tions about the existence and properties of an analytic con-
pushed to+oe, and (iii) if the functionsa(t) and (t) are tinuation of the functionA(¢) in the complexy plane it
smooth C*) within the interval[t,,t,], the integrall(¢)  follows thatl (¢)~Ae™ ®'®) for some constanta andB. For
tends to zero with, faster than any power. This can be seenreasonably small values ef such exponentially small con-
by integrating by parts. To simplify the calculation we cantributions are numerically negligibl¢We shall see later that
[thanks to assumptiofi)] use s as an integration variable. the “small parameter’s (or bettere/B) is typically of order
This yields 1/(27N), where N=F?/F is the instantaneous number of
e cycles]
I :J' dyA(p)e', (2.39 Therefore, we conclude that the integralill be (in most
Ya relevant casgsnumerically non-negligible only if the as-
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sumptions above are violated. In other words, the value opressions for the first two terms in both expansions, Egs.

[(e) will be dominated by the contributions coming from
either: (i) stationary-phase point(ts)=0; or (i) the edge
pointst, and/orty, . Let us(for simplicity) assume that there
is (at mos} one stationary-phase poity, and that it is of the
normal parabolic type, i.e.,(t)= s+ 1/21)s(t—1tg)?
+O((t—tg)®) with #0. Let us also assume tha(t,)
#0, a(t,) #0. [We maintain here for the moment assump-
tion (iii) above about the regularity of the functioast),
¢(t) in the closedinterval[t,,t,].] Then, assuming analyt-
icity of the involved functions, the mathematically most rig-
orous way of decomposinigas the sumimodulo nonpertur-
bative small contributions of the type discussed abmfea
stationary-point contributiofgionarya@nd of edge contribu-
tioNs | egge= | 3uget | oageiS 10 deform the originalrea) con-
tour of integration into the complex plaié5,31. The de-
formed contour must be such that neait leads to a basic

integral of the typef‘fadx e*bxz[co+clx+czx2+...],

(2.44 and (2.45. We shall see that each coefficient
Dy,D4, -+ in Egs.(2.44) and(2.45 is a
combination of derivativeof increasing total ordégof a(t)
and(t) evaluated at for Eq. (2.44) and att, or t,, for Eq.
(2.45. We note in advance that, for actual calculations, the
simplest way to evaluate the explicit forms of the expansions
Egs. (2.44) and (2.495 is not necessarily to follow the
complex-contour route sketched above. In the case of Eq.
(2.44) one can deal directly with the original stationary-
point-expanded integral written aseX2[dre ¥ 7o+ c,7
+---], and in the case of Eq2.45 the simplest is to keep
the boundary terms in the integration-by-parts approach, Egs.
(2.40 and(2.41), given above for the simple case where they
were neither stationary phase points nor boundary contribu-
tions.

To put in context the analysis that we shall perform be-
low, let us finally mention two serious limitations of the
assumptions leading to EgR.44) and (2.45. First, in the

while near each end point it leads to integrals of the typeanalysis above, based on the introduction of the formal pa-

Jydy € [ do+dy+dyy?+---]. Itis then easy to find the
structure of the expansion of bolly,gonary@Nd | eggein POW-
ers ofe, ase—0. For instance, it is convenient ne@grto
introduce a scaled variable=t= 27 (before rotatingr to
complex values=e“(™4)x), so that the phase scales as

2

&€ &€

1.

+ _lps

5 (2.42)

Je
T

wherey¥=d%y,/dt®. Expanding then the integrand of this
7 integral in powers ot leads to an integral of the sym-
bolic type

2
ISIationary\'(“;l/zJ‘ dxe X [1—|— 81/2X0dd—|— oxeven

+g¥2y0ddy

, (2.43

wherex° (x€¥®) denotes a sum of terms x?k™1 (x?X).

This yields (using the fact that the term&* _dx e x"x°%
are exponentially smallan expansion of the type
Istationarfgllz[co+C18+C282+ o]

(2.44)

The structure of the “edge” contributioihgyye can be ob-

rametere —0, we have assumed that the stationary-phase
point t; was parametrically separated from the edgesr
t,, i.e., that|t;—t,| and|ts—t,| were much larger than the

characteristic Gaussian widtht=\/z/¢s= (&) associ-
ated to the stationary point. As we shall see, this limitation is
unacceptable for the application we have in mind and we
shall have to introduce new tools to overcome it. A second
limitation (which compounds with the first and will lead to
an unavoidable complexity of our treatmgms the seem-
ingly innocent assumptiofiii ) above, namely the hypothesis
that the functionsa(t) and ¢(t) are infinitely differentiable
within the closedinterval[t,,t,] (i.e., including also the end
points. As we shall see, in the physically relevant case of a
relativistic (adiabati¢ chirp the functionsa(t) and ¢ (t) will

not beC” at the physically imposed upper cutdff=t,so.
This will require us to introduce new types of expansions
and new tools to deal with the relativistic edge contribution
in addition to the modification of the stationary-phase ap-
proximation needed in the case whégés near the edge, in
the sense thdt,—t,|=O(z).

Ill. IMPROVED STATIONARY PHASE APPROXIMATION
FOR TIME-WINDOWED NEWTONIAN-LIKE
SIGNALS

tained by a similar technique. Now the appropriate scaling is

different, e.g.t—t,=e, and one ends up with integrals of
the type[3'®dy e Yy". This yields
ledge=€[Do+Dye+Dye? - -]. (2.45
The aim of this preliminary discussion is to point out the
structured Egs.(2.44 and(2.45] of the two main contribu-

tions to a generic oscillatory integral of the form EQ.38.
Note that while the leading contribution is given by the

lowest-order term in the stationary-point or saddle-point ex-

pansion[Eq. (2.44)], the next-to-leading contribution comes
from the lowest-order edge correction Eg8.45. One gen-
erally expects thal gqge Will be only Je, ie., 1N27N,
smaller thanl gaionary We shall give below the explicit ex-

A. The usual stationary phase approximation

Let us begin by a quick recall of the usual treatment of the
stationary phase approximation to a chirp. Consider a signal

h(t)=2a(t)cos¢(t)=a(t)e *O+a(t)e' ¢V,
(3.1a

where

de(t)

at 2m7F(t)>0.

(3.1b

We shall say that a signal is “Newtonian-like” if the
instantaneous frequencly(t), defined by Eq.(3.1b), in-
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creases without limit whe runs over its full(mathemati- =t;. When the second time derivative of the phase at the

cally allowed range.(Note that we conventionally consider saddle point does not vanish, i.e., whE(t;)#0, one can

only positive instantaneous frequencjeor instance, at the estimate Eq(3.4a by replacingy;(t) [and a(t)] by trun-

phase, and frequency of the gravitational waves are, respec-
tively, given by

(D)= (t) — mF (t) (t=17)?, (359
a(t)=C(mMF(1))??, (3.29
a(t)=a(ty). (3.5b
I (] 3.2
¢ = 5M ' (3.2 [The zeroth-order term in Eq3.5b) is enough because the
38 first-order terma(t;)(t—t;) vanishes after integration over
TMF(t)= M (3.20 t.] This leads to a Gaussian integral
256(t.—t)| '

where M is the chirp mass given 1= 7*°m in terms of
the total massn and the symmetric mass ratig; ¢. the
gravitational wave phase at instant of coalesceép@nd(C,, ) ) o _ )
is the product of a function of different angles, characterizingEvaluating this Gaussian integral, one finally obtains the
the relative orientations of the binary and the detector, witivell-known expression for thasual SPA (hereafter abbre-
the ratio M/d, whered is the distance to the sourdeee Viated as USPA

below). Note that the functiofr(t) increases without limit as

E(f):fw dta(ty)e Ut -ITF-? (3

t tends to the formal coalescence tie - a(ty) Y
Coming back to a general signal, the FT is defined by Eq. hUsPY f) = ——=¢'lVr(tN =74, (3.7
(1.1). Because the signdi(t) is real, we have the identity F(ty)

h(—f)=(h(f))*. It therefore suffices to compute the FT for _

positive values of the frequendy[Note that we use a lower Whereyi(ty) is the value ofy(t) att=t;.
case letter to distinguish the Fourier variablrom the in- The conditions for the validity of the SPA are usually
stantaneous frequend(t).] The Fourier transform of a ge- assumed to be;<1, e,<1, where

neric signal of the form Eq3.139 reads .

1 F(t)

2m F2(1)

a(t)
a(t) (1)

1

27N’

€1=

h(f)=h_(f)+h,(f), (3.33 =

| sz‘é%_w
SR P

where

One can assess in a more precise quantitative manner the
accuracy of the SPA by computing the leading correction to
the integral Eq(3.6). This leading correction will be given

by keeping more terms in the Taylor expansipBgs.(3.53

ﬁ_(f)zf dta(t)e!(?ft=¢0), (3.3b

Fu(f)zﬁ dta(t)e'@mft+ ), (3.30

The integrands of. (f) are violently oscillating and thus

their dominant contributions come from the vicinity of the

stationary points of their phas@vhen such points exist
When >0 (which we shall henceforth assumenly the

and(3.5b]. To keep track of what one means by the “next
order term” in the SPA expansion it is convenidéas in Sec.

II D) to formalize the fast variation of the phas¢ét) and
Y(t) by considering an integral of the forml

= [dt a(t)exp(i (t)/e) with a “small” parameteres (set to
unity at the end of the calculatipnit is then easy to sde.qg.,
after the introduction of a rescaled time varialte t;

h_(f) term has such a saddle point. Therefore, we can write= Y27, wheret; denotes, as above, the saddle point of the

the approximation

’ﬁ(f):ﬁ,(f):f:dta(t)ewf“), (3.4a

where
Ye(t)=2mft— o(t).

The saddle-point of the phasg(t) is the value, say;, of
the time variablé wheredy;(t)/dt=0, i.e., it is the solution
of the equatiorF(t;)=f. The dominant contribution to the
integral Eqg.(3.4a@ now comes from a time interval near

(3.4b

phasey;(t)] that the leading correction to the result of Eq.
(3.7 will be of fractional ordere [as exhibited in Eq(2.44)]
and will come from keepingwo more termsn both the
Taylor expansiongEgs. (3.53 and (3.5b]. Expanding in
powers ofe 2 leads to integrals of the form

7 drrexp(—i WF(tf)TZ)

with n=<6. Finally, one finds that the sum of the usual SPA
and of its leading correction is equivalent to multiplying Eq.
(3.7) by the correcting phase factet’, where € denotes
d3F/dtd)
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2 5 (3) =\ 2 case where the saddle-pointis (below and far away from
1 la l1aF 1F 5(F
o= — 53 + 732 —+ 8 ol . the upper cutofft,ox has been recently considered in Ref.
2mF(t) a <car F FIlie, [31]. However, this case is not the physically relevant one.

As pointed out in DIS, the case where the usual SPA be-
comes unacceptably inaccurate is the case of massive sys-
Therefore, a quantitatively precise criterion for foeal va-  tems for which the signal emits very few cycles in the detec-
lidity of the SPA isg,=|6|<1. In the case of power-law tor's bandwidth before crossing the last stable orbit. In this
chirps, g,c is equal to one-fifth of the criterion explicitly case the most important frequencies are located around the
given in the recent study80] of the validity of the SPA. In  effective cutoff frequencyF .~ F so (@and as we shall see
the case of Newtonian chirps, E.9) yields below, it is important to estimate the FT accurately, both for
. f<Fmax and for f>F ). Here, we shall provide a valid
5o 23(1 F} 23/ 1 ) 31 approximate analytical treatment in this crucial range of fre-
" 24\ 97 g2) 24\ 97N) (3.10 guencies.
Let us first state clearly our notation. We decompose the

Written in terms ofy = (wmF) ¥ this readss=(92/45)yv5, ~ FT of the time-windowed signal Eq3.11) as
which agrees with the corresponding result in R81]. It is ~ ~ ~
interesting to note that Eq3.10 formally predicts, at the h(f)=h_(f)+h.(f), (3.123
LSO, 6, 50=(47)x0.58%), which is quite small. Alterna-
tively, one can say that Eq3.10 predicts that even if the
instantaneous number of cycles were as smalNasl, the 5 tmax o
local correction to the SPA would be smai<0.0339N). h,(f)=f dt a(t)e'¥ O, (3.12b
This result doemnot mean, however, that we can use the -
usual SPAE(. (3.7)] to estimate with sufficient accuracy the .
FT of a real |ns_p|ra[ S|gqal. Indeed, even if we were consid- F1+(f)=f At a(t)e“/’:“), (3.120
ering a Newtonian-like signdlvhereN stays away from zero -
at the LSQ the correcting phase factfEq. (3.9)] represents

where

o0

just thelocal correction to the SPA, i.e., the correction due to Y () =ye(t)=2mft— p(1), (3.129
higher terms in the local expansion near the saddle point.
There are als@lobal corrections to the SPA coming from Ji()=2mft+ (1), (3.12¢8

the entire integration domain and, most importarilg em-

phasized in Ref{30]), from the end points of the time inte- \ve shall refer to the contributioh_(f) as the “resonant”
gration. In addition, there is also a correction coming fromeontribution because the equation defining the saddle point it
the neglected contributioh (f) in Eq. (3.3b. Before con-  contains,F(t;) =f, corresponds to a resonance between the
sidering them in detail, let us also note that E8.9) indi-  Fourier frequency and the instantaneous gravitational wave
cates thaty blows up to infinity, at the LSO, in the case of a frequencyF(t).

relativistic GW chirp [becauseF (t)~F so— a(t so—t)*?
there; see beloy This shows again that, independently of
the problems linked to the time windowing, relativistic sig- _ ] _ ) )
nals will pose special difficulties. But let us start by studying ~Before dealing with the oscillatory and tail corrections to
the simpler case of time-truncated Newtonian-like signalsthe resonant contributioh_(f) of h(f), we shall first deal

by which we mean thall=F?%/F stays away from zero atthe with the nonresonant contribution, (f). When f>0, the

C. Edge contribution to the nonresonant integralh . (f)

upper time cutoff. phasey; (t) in contrast tay; (t) has no stationary point. Let
us therefore consider the general problem of approximating
B. Beyond the usual stationary phase approximation an integral of the form
We therefore consider time-domain signals of the form ty )
|=f dta(t)e'"®, (3.13
h(t)=2a(t)cosd(t) O(tmax—1), (3.11) ta

where # denotes the Heaviside step functiod(X)=1, for ~ where ¢(t) is always monotonically varying#+0). We
x>0 and #(x)=0, for x<0). This time windowing has can then use/ as the integration variable. This yields, as
three effects(i) it induces oscillations in the usually consid- above,

ered frequency domaih<F,.,; (ii) it generates a tail in the

usually disregardeq _frequency“dometil:r FmaX;” and (iii_) it_ | = Jwbdl//A( W)ei, (3.14
renders non-negligible the *“nonresonant” contribution Va

h. (f). Here, F . denotes the instantaneous gravitational )

wave frequency reached &t tn,y, i.€., Fna=F(tmad. The  where A(y)=[a(t)/4(t) ]y, where t(y) denotes the
main purpose of the present paper is to analytically modef{unique solution int of = i(t) and wherey,= s(t5), ¥y
and estimate as accurately as possible all these effects. They(t,). One can treas as a fast varying phase, so that by
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comparison, the amplitud&(y) varies slowly wheny var- D. Improved stationary phase approximation whenf<F
ies by 27 (as above this could be formalized by the formal
replacementy— i/ &). In other words, instead of a SPA, we
are in a Wentzel-Kramers—Brillouin like approximation
where one can expand in the slowness of variatioA(@f),
i.e., we can expand in successive derivatidéa(y)/dy".
This expansion is obtained by successively integrating E
(2.39 by parts[usinge'¥=(d/d)(e'*/i)]. Contrary to Sec.

Il D above we now keep the edge contribution coming from
the boundaries. For instance at second order this leads to F—F,]= (few) m

Let us now consider the dominant contribution(f), Eq.
(3.12h. We start by considering the case where the Fourier
variablef [of the Fourier transform of the time-windowed
signal Eq.(3.11] is smaller tharF .., but nearF .. As
will become clear from the formulas below, the interval
q<‘;1roundFW,D(where it is needed to improve the usual SPA, is
the range

(3.19

b+i2f¢/bd¢ ")l In the case wherd is in the range EQq.3.19 with f
a Vo <Fmax, there is a saddle poinj in the first term of the exact
(3.15 integral Eq.(3.3b, and one can still use the parabolic ap-

proximation Eq.(3.59 to the phase/;(t), and the lowest

It is easy to re-express this result in terms of the original timeapproximation Eq(3.5b) to the amplitudea(t). [Indeed, the

variable t by replacing A(¥)=a(t)/¥(t) and d/dy  work of the previous section has shown that tbeal cor-

= ()~ d/dt. We deduce from Eq(3.15 the full “edge” rections to the ?ntegral Ed3.4a, coming from the inclusion

contribution to the integral (as explained in Sec. Il D, the ©Of more terms in Eqs3.53 and(3.5h), were quite small as

“pulk” contribution is exponentially smajl Ipng asN=1]. T_herefore, in this case, the resonant contribu-
tion to the Fourier transform becomes

el

=== (A +IA" ()]

ot b
Iedge: T(A(¢)+iA'(¢)+-~-+i”A(”)(¢)+--~) . 'ﬁi(f):‘[tmaxdta(t)ei%(t) (3.20a

(3.16

This is the explicit form of the parametric expansion :a(tf)ei‘/’f(tf)f
sketched in Eq(2.45. It can be expressed in terms of the -

time derivatives oR(t) and y/(t) by using the replacement The crucial difference between Ed8.6) and(3.20h is that

rules just mentioned. In particular, at the leading and next; L .
. ) o the full Gaussian integral has become a complex Fresnel in-
to-leading order it reads explicitly

tegral, which may be evaluated in terms of the complemen-
. : t tary error function. Let us recall that the complementary er-
é(t) el w(t)[ 1+ 1 ( (48 a(t)) H ror function erfcg)=1—erf(z) is defined by

i(t) i(t)

tmax

dte iTFt)t—t)? (3.20h

P(t) at)

edge—

t61(3-17) erfo(z) = iJme*xzdx. (3.21)
Jmlz

If we apply this general result o, (), Eq. (3.120, we get

the estimate It takes on the real axis the particular values etfe() =0,

erfc(0)=1, and erfc{-»)=2. By rotating the integration
contour in the complex planex& —e'™4¢) and shifting the
new integration variablé&, we get the following useful inte-
gration formula:

h. (f)=h%"9%1)

_A0mad iy
s+
“ﬂf (tmax) frdeefi(arz+2br+c)

1 iz.bz—(tmax) é(tmax)
X| 1+ — - - 3.18
{ i‘ﬂ:—(tmax) ( ‘pr(tmax) a(tmax)) ( i zl\/Ee‘(i”’4)e‘((b2‘a°)’a)erfo[ —¢ 7TM\/E T -l'E .
2Va " a
1 3.22

a(tmax) ei ‘//er (tmax)

=i (f+ Fro) 1

271 (T + Fmay) The formula Eq/(3.22 motivates us to define the following

Frax  @(tmad auxiliary function:
|\ T P altom) | || (3.18H L
C({)=zerfdeay). (3.23
Note that, in the approximation where the amplitude is takery is yseful to note that(+)=0, C(0)=1/2, andC(— =)
as Newtonian-like, j.e.a(t)=Cy§x(F(t))2/3, e oSt torm e s A ) o
in Eq. (3.18D readsa(tma)/a(tmad = 5 Fmax/ Fnax- sions ofC({) as{— + are
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o~ (iml4) e—igz

—=—x, C({)~1+————, (3.24
{ (0) +2J§ 7 (3.243
e (im4) g=id?

— 400w, (i ~ -
{(—+ (0 N
(3.24b

As the auxiliary functiorC(¢{) plays an important role in
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have verified that the replacementffby ¢ improves both

the visual agreement and the overlap with the ekét}. Let
us also note in passing that an amplitude proportiongl tb

of the correction term toh'sP¥f) derived from the
asymptotic expansion of Ed3.244 is consistent with the
different analytical treatment used in R¢81] which was
valid only for f<F .y, i.e., large, negativé. By contrast
our approach based on the functi6y) is adequate in the
full range —oo</<0 without exhibiting any fictitious

our work we plot it in Fig. 5. From the figure we note that blowup at =0 [rememberC(0)=1/2]. [Our approach is
the real part of the above complex function is a softenedysq valid in the region>0, i.e., f>F.., but for an im-

version of a step functiod(— ¢) and the imaginary part an
oscillating function vanishing in the limits e, as well as at
{=0.

Armed with this definition one finds that the RHS of Eq.
(3.20D yields the approximation

h_(f)=C(Lo(F))RUPR 1), (3.253
where
Lo(F)=VaF (1) (t—trao- (3.25h

In other words, wheri<F,,,0ne can correct for the “edge
effects” caused by the cutoff &t,,, by multiplying the usual
SPAhUP{f) given in Eq.(3.7) by a complex “correction
factor” C(Zo(f)). The expressiodEg. (3.253] gives very
good overlaps with the exact DFT of the time-windowed
signal, Eq.(3.11). However, it is possible to do even better
by a slight modification of the argumedt(f), Eq. (3.250.

proved treatment of this domain, we shall find it convenient
to modify further the argumeng(f) in the following sec-
tion.]

In summary we propose as a final result for theonant
part of ourimproved SPA for Newtonian-likesignals (or
INSPA)

a(ty)

F(ts)

F]if3<Pa: C(L-(F)) el (r(ty) —ml4)

f<Fpa

(3.27

The corresponding total improved approximatfof® to the
Fourier transformh=h_(f)+h,(f) is the sum of Egs.
(3.18h and(3.27). Note that the ratidv_ /h_. is (whent; is

neart,,) of order 4mF au/ VF max= 47N may [this is con-
sistent with thes scaling of Eqs(2.44) and(2.45, remem-

bering thate ~1/27N]. The contribution ofh. is expected

To understand how a slight modification of the argument© be non-negligibleonly for signals that are really discon-

{(f) of the auxiliary functionC(¢{) can improve both the
visual agreementeven quite far away fronk,,,) and the
overlap with the exact DFT of the time-windowed signal, Eq.
(3.11), we have to take into account the asymptotic expan
sion, Eq.(3.243. Indeed, on the one hand, when inserting
the expansion Eq3.243 into Eq. (3.253, using EQ.(3.7)

for hUP¥f), and allowing for a more general frequency de-
pendent argument(f), we find thath(f) differs from
husPg£) [in the domainZ(f)— —, i.e., f<F 4 by a cor-
rection term proportional tee™'™2%eil¥(t)~¢l1s On the

tinuous in time. As the real sign@ivhatever the subsequent
plunge signal may bewill be continuous(and even smoojh

it is clear that one shouldot add any contribution fronf,
when applying our above treatment to real signals. In fact,
we shall see below that, even for discontinuous signals, the
addition ofh, has only a minute effect on overlaps.

E. Approximate Fourier transform when f>F .

Let us now consider the evaluation bf (f) in the case
when the Fourier variablé is larger thanF .., [but near

other hand, a different way of estimating this edge correctiofmax, in the sense of Eq3.19]. In that case the integral

consists of writing Eq(3.20h as an integral between «
and +o~ minus a “correcting” integral between,,,, and

[Eq. (3.12B] giving h_(f) no longer has a saddle point.
However, it “nearly” has a saddle point and therefore we

+0o0. As was discussed in Sec. Il D the latter integral can beexpect that

estimated by successive integration by parts. This dises
Eq. (3.17)] a first-order correction term proportional to
e 2a(t ) € Y(tmad [ i (tay). The phasing of this edge
correction can be made to agree perfectly with the phasin
predicted by the form Eq.3.253 written with a generalized
argumentZ(f) if ((te) — £2) = ¢¢(tma) - This leads us to
define, in the domaig<O0, i.e.,f<F 4, the new argument

{e=—Ni(ty) = hi(tmay) - (3.26

In the left part of the crucial region, E(3.19), the argument
{-(f) [Eq. (3.26] is nearly identical to the previous result
Lo(f) [Eq. (3.25D], as is seen from Eq3.59. However, we

t
f "dta(t)el

h =

_(f) (3.28

g ~
will still dominate overh, (f). One could think of two ways

of analytically approximating the integrfiEqg. (3.28]. One
way is to still use the fact thdfor Newtonian-like signals
where the mathematical functidf(t) continues to exist and
increase beyond=t,,,] though there is no saddle point in
the domain of integratiofi—<,t,,,,], there exists a nearby
saddle point of the analytically continued phase function
J(t). More precisely, for Newtonian-like signals the math-
ematical equatior-(t;)=1f still defines a unique valug
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(with t;>1t,,. Whenf>F,..). Capitalizing on the existence P (1) = hi(tna T 27 (F = Fra) (t—tmay

of this nearby saddle-point one can still try to insert the ex- .

pansions, Eq93.5a and(3.5b). This leads to a result of the —7F (tmax) (t—tmaw %, (3.303
form Eg. (3.27 with the correction factor Eq3.25b, i.e.,

now considered for positive values of the argumégif) a(t)=a(tma . (3.30b

= 7F(t;)(t;—tma). In other words, a simple uniform ex-

pansion toh_(f) on both sides of ~F ., would seem to be Thanks to the parabolic nature of the approximation Eq.

simply (3.303 this again leads to an incomplete complex Gaussian
integral (i.e., a Fresnel integrawhich can be evaluated as
before in terms of the complementary error function. Using

RO ) = C(£o(F)) a(ty) elit)=74 (3203 Eq. (3.22, this leads to our final proposal for theearly
- 0 Ety) ’ ' resonant part oh_(f) for Newtonian-like signals
with fBFmax:F]iES;)a(f)
s a(tmax)
£o(H) = TF ()t~ tmad. (3.29 —Ae )
F(tmax)
Here “cspa” meangzeroth-order correctedSPA. Note that . 7(f—Frna?
whenf>F ..., t;, and therefore all the quantities evaluated X expl| Pi(tmad + — —ml4l,
att; are defined by using thesupposedly existinganalytic ma
continuation of the mathematical functidf(t) beyondt (3.313
= tmax-
In our first attempts at improving the SPA in the presense \/;(f —Fra)
of time windowing we came up with the simple proposal fl=— e
. ' £-(H) : (3.31b
[Egs. (3.299—(3.29h] and it gave excellent overlaps with ‘/F(tmax)

the exact FT. However, we realized later that we could fur-
ther improve on this simple proposal. We already stated th

for f<F . 0ur best proposal is to modify the argument Eq.Or (3.303 hold, the functionZ-(f) is approximately equal

proposal s nher 1 use the Svaghtoruard-argument 2 0%(1),£6.(3290,and o e analytc contnuaton of
Wwih 2 posKive sigh in ffontof the Square rthich. row.  Note o tha the phase facior in'H3.31a (which is ex
ovr. il mproves over e chico 58250l buttoolow PG SPSSS0 T s o e osmivmea el
e S e oo SPDERING 1 E0(327, 1. i) 4] Faly
required, the expressions, Eg8.27 and (3.313, match

tion. : .
To motivate our proposal in the case-F ., let us re- continuously atf = Fmax with common value

mark that the integral to be approximated, i.e., E328),

aIglote that, in the parabolic approximation where E@53

having no saddle-point in the domain of integration, is for- _ » 1 a(tmaw .

mally of the general type Eq3.14 with the phasey(t) hPAF mad = WP F ) = E,—e'(wf(tma’%m)-
= i;;(t) being a monotonically increasing function ©fThe F(tmax

important information we wish to deduce from Eq8.15 (3.32

and (3.17 is that there exists an expansipvalid when f

>F max, 1-€., {o(f) is large and positivkin which 'ﬁ_(f) is In summary, our best analytical estimate for the FT of dis-
entirely expressed in terms of the values of the functiongontinuous Newtonian-like signals is the sum

(1) anda(t), and their derivativesgvaluated at the edge

point t=t,,.. This contrasts with the “corrected” result hintet( £) =hinsPq )+ hedoq ), (3.33
Egs. (3.293, (3.29D, which relied on the existence of the

functions ¢¢(t) and a(t) in the “unphysical” regiont ~edg _ _

>tma. This motivates us to look for an approximation to Whereh {f) is approximated by Eq(3.18D and where
Eq. (2.39 valid all over the domairi,(f)>0 [and not only —h"*P{f) is given, whenf<F,, by Eq. (3.27 and for f
when/y>1, which will be seen to be the domain of validity =F,ox by Eq. (3.319. As stated earlier, we shall in fact
of Egs.(3.15 and(3.17)] but expresseentirelyin terms of recommend that the edge correctibf% not be included
the edge values af(t) anda(t). We propose to define such when applying our result to real signdlse also see that it
an approximation by replacing the phase and amplitude ibrings only a negligible improvement to the overlaps of
Eq. (3.28 by time-windowed signals
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F. Comparison between the improved SPA, the usual SPA, 1000 [
and the “exact” SPA (numerical DFT)

Before proceeding to a quantitative comparison of the
various approximants in Table I, it is important to remark
that one needs to be more specific when using the terminol.
ogy USPA. One could compute the USPA truncated at the *~
Fso that we refer to as USPAWwvhere W stands for win-
dowed or the USPA truncated at the Nyquist frequency that ©
we designate as USPANvhere N stands for Nyquistin .
Table 1l we have listed the overlaps, as defined by E®), T
of a signal model generated in the time domain and then(\)\\
Fourier transformed using a numerical DFT algorifhnith Q. 4ok
the same signal model but directly generated in the fre- O
guency domain using the USPA, the corrected SEBPA),
and the INSPA discussed earlier. For simplicity, we consider
only equal-mass systems € 1/4) and parametrize them by

100 ¢

m,=m,=10M,

the total masam=m;+m,. The total mass is the crucial \
parameter that measures the location offfhgy with respect 1 PR S '
to the bandwidth of the detector. The parameieis also 100

important because it determines the number of cycles nea f (HZ)

the LSOJ[EQ. (2.27 shows thalN(F so) scales as ¥f]. The

worst casefor the sensibility to the shutting off of the signal ~ FIG. 6. The power per logarithmic bin of the squared SNR
after the LSQ is 7= 5,a= 1/4, and this is why we focus on d(p?)/d(log f)=f[h(f)|%/S,(f) for an arbitrarily normalized Newton-
this case[We are also motivated by the fact that because 1/4an signal computed from its DFT and its various approximate rep-
is the maximum value of the functiop(m,,m,), the ob-  resentations computed up to the Nyquist frequency: USPAN,
served values 0"7, Corresponding to a random Samp'e of of CSPAN, and INSPAN. In the most sensitive range of frequencies,
m, andm,, are expected to have an accumulation point afyr final proposal INSRAN agrees with _the FFT quite well. Thg
nmax=1/4] As we have numerically checked, if our filters USPAN grossly overestimates the true signal power at frequencies

i _ ; f>F so. The last stable orbit frequency in this casa;Em
exhibit good overlaps forn=1/4 they will have even better LSO 1™ 12
overlapg fory<1/4 gnd tze same v>z/ilue fon =10M) is at about 220 H#the vertical ling. Observe that, there-

The error function needed in computidgf) is numeri- fore, even USPAW would significantly overestimate the signal

cally computed using the NAGhe Numerical Algorithms ~ PO"¢" P tFuso0-
Group Limited, Oxford, United Kingdojnlibrary S15DDF.  massive systems very much. As remarked earlier, this is why
The overlaps are shown for the usual SPA with a frequencyn DIS, while comparing the DFT to the SPA, the USPAW
windowing (USPAW) together with the overlaps for the US- was used. On the other hand, computing overlaps up to the
PAN, CSPA, and INSPA, computed up fiQquist- Table Il Nyquist frequency, i.e., USPAN, produces much smaller
shows that the improvements on the SPA that we propose iaverlaps.
this paper(both the simple CSPA and our final INSPAuc- To understand this further in Fig. 6 we plot the power
ceed very well in modeling the edge effects due to timePer_logarithmic bin of the squared SNRip?/dlog f
windowing. The overlaps in the case of CSPA/INSPA are=f[h(f)|%S(f), which is the Fourier-domain quantity of most
better than 0.99 for equal-mass systems with total mmass sSignificance when discussing overlaps. We compare this
<40My . For a system ofm=40M., USPAW gives an quantity for various approximations to the FT of éarbi-
overlap of 0.8589, resulting in a loss in the number of eventdrarily normalized time-windowed signal: DFT, USPA,
by 37%. Although the overlaps of CSPA and INSPA seem td>SPA, and INSPA. In the important range of frequencies our
always be about the same, we think that INSPA is a bettep€St analytical approximant INSPA agrees with the exact re-
. TP . sult (FFT) quite well, the USPA grossly overestimates and
representation oh(f); it has better overlaps in the case of

. L CSPA somewhat underestimates the actual signal power.
the most massive syster(eee the first lines of Table)land, This is why, although analytically continued up tQyquist

as shown by Fig. 6, it better captures the decayh@f)  the USPAN returns a smaller overlap as compared to the
beyondF .. In the table for the usual SPA we have listed windowed SPA (USPAW) because it overestimates the
the overlaps for USPAW i.e., USPA terminatedfatF,s5 ~ power in the signal beyonH sq [46].
=4400(my) ! Hz and the overlagUSPAN) up to the Ny- In all the comparisons above, it is worth stressing that the
quist frequencyf yyquis=2 kHz. As is very clear from these FFT calculation is delicate: the “exact” time-domain chirp
entries, windowing of the SPA improves the overlaps forcontains an infinite number of cycles in the far past, with
instantaneous frequencies tending to zero. It is not physically
important as to what happens to frequencies below the seis-
) ) . . _ . mic cutoff fs=40 Hz and therefore we wish to simplify the
.GThIS defines for us the “exact” Fourier representatlgn of .the numerical calculation of the FFT by essentially discarding
signal, after due care has been take_n to use a smooth time W'”dofﬁe(infinite) part of the signal, having instantaneous frequen-
belowfs, and a high enough sampling rate. ciesF(t)<f.=F(t). We started doing that by simply time

084036-20



FREQUENCY-DOMAIN P-APPROXIMANT FILTERS FQR . .. PHYSICAL REVIEW D 62 084036

windowing the signal fot<t,;,<ts by a sharp, lower-time scale after the LSO. It leads us also to propdfieally) that
window 8(t—t,,,,). However, this method introduces physi- We use as an analytical representation of the FT of real sig-
cally spurious oscillationgwhich are the lower-cutoff ana- nals theh™P? part of our formula abovéwithout the edge
logue of the physically important upper-cutoff oscillatipns term). (To simplify the notation, we shall henceforth drop the
present in botf, (f) andh_(f). One way to deal with this ~€xtra subscript minus oh'*%)

problem is to subtract from the FFT these spurious edge N computing the above overlaps we have matched all the
oscillations by using the general formula E§.17), whichin ~ Parameters of the two wave forms, including the time of

. TEET, arrival and the starting pha8éThe overlaps in this table as
%hFeFT(present context, can be applied bothhlg™(f) and well as all other tables in this paper are found to be insensi-

f). For instance, to lowest order the FFT corrected forijye to the sampling rate at the level of a fraction of a per-
these oscillations would read cent, provided that it is large enough to obey Shannon’s sam-
pling theorem.

TEFT  _TRFT, A+ -
hcorrected— h +Amin+Amin7 (3-343
where IV. IMPROVED STATIONARY PHASE APPROXIMATION
FOR RELATIVISTIC SIGNALS IN THE ADIABATIC
) altmin) e APPROXIMATION: THE SPP APPROXIMANTS
s = @'¥ min, ) o ) o )
™ 2ai(f £ Fyin) Although one might priori think that it is a simple mat-

(3.34b ter to generalize the improved SPA discussed above for
Newtonian-like signals to the relativistic case, it does not
rived from Eq.(3.17)]. However, it seems better to use an turn out to be so. What complicates matters is that there are

alternative approach which does not require one to correct pycIous quallt§t|ye, nonpertur.bauve differences between
hand the FFT. The alternative approach we have actuall{’® wo cases: first, the value B{t) formally tends to+
used in our calculations consists of imposingsmooth at the LSO which physically defines the upper-cutgff, of
(rather than a shaypower time window on the exact chirp, the inspiral signal, and, second, the mathematical function
not introduce spurious edge oscillations in the frequency do¥oNd tma=tiso. [These two facts are evidently related; in-
main. The smooth time window that we used consists ofléed we shall see th&(t) behaves in the nonanalytic man-
multiplying the chirp by the function ner F(t) ~ ¢y +Ca(tso—t) ™ whent—t o] Remembering
the crucial role of a finité=(t) in the results Eq43.27) and
(3.313, it is clear that we need to tackle afresh the problem
of finding a good, analytic approximation to_(f). Simi-
larly, in view of the appearance " (t,,,) in the next-to-

> = o leading contribution td, (f) Eq. (3.180, we shall also need
whent=1,—0. We used, such thaF,=F(t,)=30 Hz and to revisit the calculation ofi  (f) (although we shall, again,

=15 !.e., F(t;)=Ts. Moreover, we need to be careful with find that it makes only a negligible contribution to the over-
sampling and phase factors to correctly reproduce the edqus)

correction toh®4%,
In addition to the comparative evaluation of the variousa The phasing formula for relativistic signals in the adiabatic

approximants, Table Il also provides numerical proof regard- approximation

ing the effect 0h®%on the overlaps. It is quite important to

note that the inclusion of the nonresonant edge tef##*has

only a very minute(but positive effect on overlaps. This is

good news for our formal time-windowing ansatz, becaus

we expect that this contribution will b@xponentially neg-

ligible in the case of realcontinuous signals. We interpret

the fact that even for our formal discontinuous mduf%’lgeis

negligibld as a confirmation that our improved SPA can viso  E'(v)

adequately model not only signals that vanish after the LSO, t(ve)=tLsot mf dvm, (4.1

but also signals that shut off rather quickbn theF[Slo time F

whereF in=F (tmin) <fs [@ better approximation can be de-

1 t—t, to—t,
U(tltlytz):ez_! = . T

1 Z_t—tl . (3.35

which smoothly interpolates between 0 whent,;+0 and 1

To extend the treatment of the previous section and go
beyond the Newtonian approximation, let us begin with the
eDhasing formulas for gravitational waves from compact bi-
haries written in a parametric form in terms of the variable
ve=(mmF)2 defined by the total massi=m;+m, and
instantaneous gravitational wave frequericy

v E’
pw=disora [ FanT D @2

"Note that our statement here is only th&f9{f) can be effec- °F

tively omitted without significantly worsening the overlaps. We are

not claiming thath®%{f) is pointwise numerically negligible com-

pared toh_(f). Indeed, because the instantaneous number of cycles®The lag is set equal to zero in testing the accuracy of the Fourier
is rather small near the LSO, our analytical estimates above showepresentation but chosen optimally when tesfaighfulnessof a

that h®%99f) is not much smaller thah_(f) nearf=F 5. family of templates, e.g., in Sec. V.
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whereE(v) is the dimensionless energy function related tosame expression E¢4.1) as above with the replacement of
the total relativistic energy or Bondi mass By,=m(1  ve=(mmF)¥® by v;=(7mf)13, i.e., the stationary poirty
+E), F(v) is the flux function denoting the gravitational is given by

wave luminosity of the system, angsg is the time andp, 5o )

is the phase of the signal when=v,so. The parametric to=t +mJULSOE (v) v 4.5
representation Eqg4.1) and (4.2) of the phasing formula fso o Flv) '

¢ = ¢(t) holds under the assumption of “adiabatic inspiral,”

i.e., that gravitational radiation damping can be treated as a@ne then substitutes this value tefin Eq. (4.2) to compute
adiabatic perturbation of a circular motion. See R48] for  the phasej;(t;)=2nft;— ¢(t;) of the Fourier component

a treatment of radiation damping going beyond this approxi-

mation. _ vso 5 5 E'(v)
t)=2mft go— +2f - ———dv.
In the restricted post-Newtonian approximation, one uses Vit =2mftiso™ diso vy (vi=v%) Fo)
a Newtonian approximation for the amplitud25]. How- (4.6

ever, in order to extract an inspiral signal that may be burie
in noisy data by the method of matched filtering, we need t
employ PN accurate representations for the two functions

d iy
dn terms of these quantities one has

2
E’(v) and F(v) that appear in the above phasing formulas. Fuspq f)— EC Ui oLt~ (n14)] @.7)
To any approximanE,(v), Fa(v), correspondgby replac- 2, /I':(tf) ' '

ing E(v)—Ea(v), Flv)—Fa(v) in Egs. (4.1) and (4.2)]
some approximate parametric representatistis(ve), ¢

= ¢a(vEg), and therefore a corresponding approximate time
domain template

The inclusion of relativistic effects ihUPYf) is then simply
‘accomplished by using relativistic accurate expressions for
E’(v) and F(v) in the formulas givingy(t;) and F(t;).

The coefficient, in Eqg. (4.4), determining the actual ampli-

A_ At
hA=hA(t;C,t s, brso.M, 7)., 43 {ude of the wave form reads
obtained by replacing g, in the following vg-parametric —— m, @
representation of the wave form Cr.i,0.6,4)=(4n)| 5]C1.0.4,4), (4.9
hA(vF)ICvﬁ cospa(vE) (4.4  whered is the distance to the source, and where
C o TN [AZiR2
by the function of timevg=wvs(t), obtained by inverting C(i,0,¢,9)= VA"+ B, (4.93
:tA(U |:). with
The standard approximants fBv) andF(v) are simply
their successive Taylor approximarﬁsn and Fr ., respec- A=3(1+cogi)F,; B=cosiF,, (4.9b

tively. The DIS strategy for constructing new approximants
to E(v) and F(v) is two pronged: Starting from the more With the beam-pattern factors
basic energy-type and flux-type functionsv) and I(v)

S _
[13], we construct Padtype approximants, sagp , Ip , of F.(6,¢,4)=3(1+Ccos6)cos 2 cos 2)

the “basic” functions e(v), I(v).° We then compute the — cosfsin 26 sin 2¢, (4.103
required energy and flux functions entering the phasing for-

mula. The successive apprOX|m§1rEBepn] aan[epn,l pn] Fx(a,a@: 1(1+co26)cos Zasin 2?

have better convergence properties than their Taylor counter- o .

parts ETn[eTn] and }‘Tn[eTn,ITn]. In DIS we were working +c0s6 sin 2¢ cos 2. (4.10n

In these formulas the angiedenotes the inclination of the

parametric representatiart(v ). By contrast, if one wants  OrPit with respect to the plane of the sky, and the angles

to compute the usual stationary phase approximation of. andy parametrize both the propagation direction and the
h(t)=Cv2(t)cosg(vg(t)) there is no need to invert this polarization of the gravitational wave with respect to the de-
parametric representation. Indeed, from By7), it is suffi-  tector(see Ref[5] for exact definitions; we added a bar over
cient to know the instantaneous amplitude and the phase & and ¢ to distinguish them from the GW phasg and

the timet, , wheref = F(t;). This time is simply given by the Fourier phasey, respectively. Performing averages over the
angles in the squared SNR leads to

. N _ (F2og0=(Foss=3. (4.19
For explicit formulas representirg(v) and F(v) see Eqs(3.9),

(4.2), and(4.3) of DIS. The associatee(v) andl(v) functions are  and finally

given by Eqgs.(3.7), (3.9 and Eqgs.(4.49—(4.9 in DIS . See also

Egs.(3.5), (3.1) and Egs(3.18—(3.23 there. (C®)i 0 a0=125- (4.12
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We are finally in a position to write down the rms and ideal
SNR’s. For a binary at a distandgrom the earth consisting
of stars of individual massem; and m, (total massm
=m; +m, and symmetric mass ratip=m;m,/m?) the rms
and ideal SNR'’s, obtained by using the rms and ideal values
of C, namelyC=2/5 andC= 1, respectively, when replacing
Eq. (4.7) in Eqg. (2.20, or equivalently, when replacing
a(f)=(1/2)Cv?(f)=2y»md Cv?(f) in Eq. (2.22 [with
Eq. (2.26 and a truncation &, 5] are given by

) pidealziprms-

T B
( ) fo 45
(4.13

prms:m 15
Note that the SNR depends only on the combinatioh
=m»*®*—the chirp masgsee e.g., Ref{19)]), and that the
first Eq. (4.13 is equivalent to Eq(1.8).

Let us next delineate the qualitative differences between
the relativistic and nonrelativistic cases by considering the
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1 d?°¢ 3v? Flv) FIG. 7. The instantaneous GW frequerfft) vst for the New-

FlO=5_ e 2 Er ()’ (4.14  tonian and relativistic cases during the last few orbits before the
mm (v) plunge at LSO. Notice the rapid increase in the inspiral rate close to

o S the last stable orbit in the relativistic case.
At the LSO, the gravitational wave fluf(v) is finite (it

blows up only later, when reaching the light rifig3]) while,
by definition,E’ (v) vanishes linearlyE’' (v)=v—v go. AS
we shall see below this means tHagt) blows up as (so
—t) Y2 A consequence of this blowup is that the last two” . : .
terms in Eq.(3.9) blow up like (t_so—t) 2 confirming the orbits before the LSO. The blowup &f(t), i.e., the fact that

need for a special treatment of the Fourier transform near thif1€ slope ofF(t) becomes vertical is an effect which is lo-
LSO. We are here speaking of the exact behavior of th&alized in the last part of the last cycle before the LSO. Note

functionsE(v) and F(v), as supposedly known from com- also in 'Fig. 7 that a less localized consequence of this
bining the test-mass limit resulf89] with the best available PlOWuUp is that the average frequency a few cycles before the
results on the physics underlying the existence of the LSG-SO is smaller (for a givenF o) in the relativistic case,
[13], and the emission of gravitational waves in comparabldn@n n .the(unphyswa] Ne\_/vtpnlan one. Note that the physi-
mass systemg24]. In DIS, we have incorporated this infor- cal origin of the blowup of is that, just before the LSO the
mation so that all theP approximantsEp =E(ep ),Fp “effective potential” for the radial motion becomes very flat
— Fep ,|p ] that we define share, with tr:e “exagt” funnc- (before having an inflection point at the LEdn picturesque

. non . . . . terms, the radial motion becomes “groundless” at the LSO.
tions E and F the crucial properties mentioned abdve.,

s ) Evidently, the blowup of is due to our use of the “adia-
finite (v so) andE’ (v)*v —v go]- The (less-convergent o e . L
successiver approximantsETn and Fr do not incorporate batic” approximation down to the LSO. In reality, radiation

his inf ) | donl . do th d reaction will cause a progressive transition between the in-
this information exactly, and only asincreases do they ten spiral and plunge which will modify the evolution &f(t) in
to incorporate it. In our opinion th&, approximants dis-

. ¥ A . . the last cycle before the LSO. We shall discuss this issue in
qualify as “relativistic” approximants since they do not con- detail in a forthcoming papd#3] and subsequently its data
sistently incorporate the expectatidmased on several differ-

analysis consequences.
ent methods; see referenced40]) that the frequency at the 4 d
LSO is (for any #»=<1/4) numerically near the
Schwarzschild-like prediction, Eq2.14). Indeed, if we de- B. Edge contribution to the non-resonant relativistich . (f)

fine the 2PN Taylor estimate df go by the value ofv ) o ~ .
= (7mF)3 where the straightforward Taylor approximant _AS In the Newtonian-like case we decompdié) in two
ET4(v)=Eﬁ:0Ek(n)u" reaches a minimum, we find, e.g., contributions: Egs.(3.12hH and (3.129. The nonresonant

that: (i) whenm=40M, and =0, F,=200 Hz, which is contributionh , (f) will be dominated by the “edge” contri-

. N bution to an integral of our usual type, E@.38. Though
very different from the exactT\:aIue of 110 Hz, 6_1(“3 .When the problem is similar to the one we have generically solved
m=40Mo and 7=1/4, thatF ¢,=221.4 Hz, which is very jn Sec. |1l D wecannotapply the results Eq€3.16), (3.17),

different from the other prediction§f§o= 143 Hz and (3.183, and(3.18h, because of the limiting hypothegis )

FReM40= 118.6 Hz. We compare and contrast in Fig. 7 the
Newtonian and relativistic behaviors of the wave amplitude
and instantaneous frequenEyt) during the last couple of
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mentioned in our introductory discussion of Sec. Il D. In- We are interested in evaluating the edge contribution to the
deed, the problem is that in tiiphysically relevantcase of integral
relativistic signals the functionsa(t) and ¥(t) are not

smooth at the upper edde-t 5. Let us see explicitly in _T _ fLso i) — f” iy (7)
what way they violate smoothness there. Let us first define I=h.(f) f—x dta(t)e” (t)=m 0 dr a(r)e™ .
(4.23
d (E'(v)
ey(n)= E(m) : (419 Near the LSO boundary, i.e., near the edge0 in the r
ULso form of the integral, the amplitude behaves as Eg22b

while the appropriate phase; (7) behaves, from Egs.

so that near the LSO we may write (4.218 and (4.21D, as

E'(v)
——=e(v— +0[(v— 2. (41 442
o) 1(v—v1s0) + Ol (v —v1s0)°] (4.16 U (7) = s s 2mM(F Lo f) 7+ = 026
1
If we were to use the test-mass approximation for the energy (4.24
function E’ (v) and the Newtoniariquadrupol¢ one for the h
flux function F(v) this would give where
flso= Ui (tLso) =27ft g0t : 4.2
) )~1_5i 1 27492 Urs0= s (tLso) =27t 5ot diso (4.29
()= 2 4y Ufso(l—?’vfso)?’lz_ 4y The appearance of fractional powersoin the expansions

(4.17) Egs.(4.223 and(4.22h show explicitly the violation of the
C” property ofa(t) andy(t) at the edge. We cannot use the
We have numerically estimated the functioalp“(n) integration-by-parts method to evaluate the expansion of
=47e,(7), when using the?, approximant of Ref[13] in leqge HOWever, we can still use the general method sketched

the definition of Eq(4.15. We find that to a good approxi- in Sec. Il D. Without rotating explicitly the the contour in
mation the complex plane the edge contributionlts obtained by

inserting the expansions, Eq&1.22h and (4.24), in Eq.
4,7e'°4( n)=e"*(7)=26091.611 94 expp- 4.474 405 683). (4.23 and expanding everything out, except for the main
1 1 n . .
(4.18 phase,y;| so— 27mm(F 5ot f) 7 which must be kept in the
exponent. This yields

In terms of \/—
- * . 22 1
tiso—t | edge= Ma 5oe' ‘ﬂsoJ dTelyf( I s V-
™="m =0 for v<vso, (4.19 0 Je, Viso
i 142
and using n \/ei—vfson), (4.263
1
vwso  E'(v) 1 ) 5
— =) :Eel(v_ULSO) +O[(v—v1s0)°], where
(4.20 y=2mm(Fsotf). (4.26h

and Eq.(4.2 for ¢(v), we find the following approximate Note that, instead of rotatingin the complex plane, we can
representatiorfvalid near the LSQfor the phasep(t): (equivalently consider thaty possesses a small negative
imaginary contributiony—y—i0. The integrals appearing

t=tiso=—m, 42138 Eq. (4.26b are evaluated by the general formula
4.2 " _ e—i(m/2)(a+1)
B(t)— P(tis0)=—2visom+ —=0viso™ % (4.21B i,=| dre ¥V r%=—T'(a+1). (4.27
\/e—l 0 ya+1

Note also that Eq(4.20 gives the following representation This yields finally
for v(t), and therefore for the amplitudg(t) = Cv?(t)

m al_soei [¥1Lsd

Tedg ~
V=V so— \/£7'1/2, (4223 h+ %f) ly
€1
x| 14[3 Frso —1)e“’*’4—2w !
22 1 2 Frootf :
a(t)=a s 1222 1 ) (4.22h Hs0 Ver visoly
Ve, Viso (4.29
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The leading contributior(iy) ~*) to the relativistic result We shall use this expansidawhich replaces the parabolic
Eqg. (4.28 agrees with the leading contribution in Eq. approximation Eq.(3.58 used in the Newtonian caké¢o
(3.18h. Note that the next-to-leading contribution does notevaluate the Fourier integral E(.28. To this end we must
have the same dependencefenF 5o as the corresponding introduce a new special functidicharacteristic of the rela-
term in the nonrelativistic result in E¢3.180. In spite of tivistic phasing near the LSGo replace the error function.
the breakdown of the formal expansion, E8.18h the frac-  Let us define the function

tional correction given by the last term in the bracket of Eq.
(4.28 is checked to be numerically small. This check was

the main motivation for us to compute®®®® to next-to-
leading order in the relativistic case. The lesson is that the

formal blowup ofF near the LSO has only a small numerical where the new variable is related tor by 7= a7 where

effect onh®%. This is again a confirmation that our results
are robust under a refinement of our knowledge of the signal.

We shall further check below that, as in the Newtonian CaS8 the test-Mass Case Cores .
~edge o - ponding to(EdL.7) the value of
h% ™ has only a negligible effect on overlaps. a is 49.83/(47)Y. The value defined by thie, approximant
on the other hand is given by combining Eq2.15 and
C. Improved stationary phase approximation for relativistic (4.18. In particular,a equals 30.0554.579 for »=0.25
signals (0.2), respectively. The index in gg,(x) alludes to the

. . ~ 7312 P o2 .
Let us now consider the resonant contribuffor(f), con- ~ POWerr replacing the power? in the usual error function,

sidered in the crucial domain where the stationary point i@nd where the conventional coefficients 3 and 2 have been
near the edgé,so. As before, the optimal approximants to chosen to simplify some formuldalthough they complicate

~ X . | i i i i i
R_(f) that we can construct are also given by different ana_others). The final result is conveniently written in terms of a

. ) . variablex given by
lytical expressions according to the valuefoHowever, we
now need to introduce a new definition of the two ranges of 20
frequencies in which one muéhinimally) divide thef axis. x=—am(F go— ). (4.39
More precisely, we introduce a frequenty,, near but be- 3
low F,ax, @and we shall construct a “lower” approximation
h__(f) in the rangef <f,,,, and an “upper” onéh_(f) in
the rangef>f,, (which includesf=F,). The optimal f
value of f,,, will be determined below.

In the lower rangef<fy,, we can draw on the work of .Note thatf<F gq corresponds tox>0 (saddle point do-

Sec. lll D. Indeed, in that range there exists a saddle-point in__. :
R . ; > <
the domain of integration. However, as that saddle-point carr'}nam)’ while f>F_so corresponds tox<0 (absence of a

become rather nedps (becausef, is nearF ), we can saddle-point Roughly speaking the variable(f) corre-
X u 1

significantly improve the usual SPA estimate by using ourSporlds to—£(f) of the nonrelativistic case, am/Z(X) IS

previous result, i.e., by defining f[he relativistic gnalogue of the combinati6()e' & appear-
ing in the previous treatmemsee, e.g., Eq3.313].

Gara(X)= J ; drel @27 (4.3

—4/3.1/3

This improved relativisticSPA is thus written as

=fupr AP f)=mae'’ a(t s0)gan(x). (4.35

_ a(ty) It is useful to summarize some properties of the function
f<fup: hEPAf)=C(Lo(f)) —==e'l"(D =74, Ja/2(X):
F(tp)
(4.293 C1(1-iV3) (2}
9a2(0)=3 — 15 I'|3)=02843470.492 508,

<(B)= = Vihe(te) — ¢e(tman) - (4.29n (4.363

The label “irspa” in Eqg.(4.299 stands forimproved rela- a
L mX .
tivistic SPA. Gara(X) ~ 7 / 3 e.(x3—77/4)’ x>0, >1, (4.36b

Let us finally explore the optimal analytic approximation

to h_(f) in the upper rangé=f,. Proceeding as in Sec.
IV B in this case one has

i
93/2(X)~§; x<0, —x>1. (4.360
(D)=t 502 Fien—f _iEZ 312
s (D) =tps g0t 2m7M(F 50— )7 \/e—leSO’T : By expanding the integrand afu,(x) in powers ofx, and

(4.30 integrating term by terrhusing the properties of the Eulér
integral after having changed the variable of integratien:

where =e (73)(u/2)?3], one proves thags,(x) is given by the
B B following, everywhere convergent, Taylor—Maclaurin ex-
Yiso= i (tiso) =27ft so~ diso- (4.3)  pansion
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FIG. 8. The real and imaginary parts of thg(x) function Eg. FIG. 9. Visual comparison of a chirp generated directly in the
(4.37) in terms of which the improved relativistic SPARSPA) is  time domain(solid line) with the inverse Fourier transforms of the
represented. The thick lines represent the asymptotic behavior gfual SPA terminated at LSQSPAW) (dashed lingand the im-

X— * o given by Egs(4.360 and(4.360. proved relativistic SPAIRSPA) extended up to the Nyquist fre-
guency(dotted ling, all during the last few cycles before the last
213 "= P[2(n+1)]( 3x n stable circular orbit frequency is reached, for the relativisteczond
— _  a—im3 e TN =2 iwle . . . .
O32(X)= e 2 PN P-approximant caseR,)] inspiral of a binary of total mass
3 i=o Nl 273 —40M .

(4.37

With about 300 terms the above series represeaisx) Actually, as in the case of Newtonian signals, we have found
accurately enough for values of in the range xe thatthe inclusion oh®¥®has only a minimal(though favor-
[—2.3,2.3. We used this series to generate the plot ofable effect on overlaps. Moreover, such a contribution is
Js0(X) represented in Fig. 8. Although we do not use it in absent in the case of real signals. Therefo~rle, our finat-
this paper, note that for x—, the following (divergeny tical and bestproposal consists of using onh/*"® (for sim-

asymptotic expansion is also valid: plicity we henceforth drop the subscript minusVe shall
henceforth refer to the improved frequency domain station-
1 "=7T(n+1) —2 " ary phaseP approximants based on the IRSPA as the SPP
Oap(X)~— =— > e (im4(n+2) approximants.
3X =0 n! (_3)()3/2

(4.38
D. Comparison between the usual SPA, the improved
In all our calculations of overlaps we shall define the fre- relativistic SPA and the “exact” SPA (numerical DFT)
quencyf,, separating the lower range from the upper range

by choosingx,,=0.36 as the RHS of Eq4.34. This value  oyimations in various ways. Figure 9 compares an inspiral
is chosen so that &, one has' a smooth transition from the , -ve from a(20,20 M, binary generated by three different
lower to the upper approximation. We have also checked thahethodsi) directly in the time domain and terminated when
the overlaps do not change very significantly ¥gg between b jnstantaneous gravitational wave frequency reaches the
0.2 and 0.4. value at the LSdsolid line); (ii) in the Fourier domain using

_In summary our best analytic representation of time-pe a1 SPA but with a square window betwégp,= 40
windowed relativistic signals in the Fourier domain would be,, f =FLso (USPAW) and then inverse Fourier trans-
’ X

defined by combining th€-approximant construction of the .14 (dashed ling and (i) again in the Fourier domain

functionsE'’ (v), F(v) [13] with the totalimproved refativ-  ,t ysing IRSPA with Fourier components computed up to
istic approximantgirtot) defined as Nyquist frequency and then inverse Fourier transformed to
ot irspa, Tedge obtain its time-domain representatitiotted ling. We only
h™(f) = h =P s (4.39 exhibit the comparison near the crucial LSO regiomuch
_ . before the LSO the USPA is nearly equivalent to the IRSPA
whereh®®®is defined in Eq(4.28 andh"™P?is defined for and they both do a good job in representing the actual sig-
f<f,,by Egs.(4.293, (4.29, and, forf=f, by Eq.(4.39. nal). We observe that the USPAW begins to get out of phase

In this section, we test the accuracy of our analytical ap-
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© ; ; : TABLE Ill. Accuracy of the various approximations to the Fou-

I Whitened time—dor] . . . . L
L = =20 M rier transform of a chlrp signal computed in the te;t-mass limit for
L 2 © P approximants at different PN ordey$ (column 1 is measured
by their overlaps with a wave form of exactly the same parameters
but computed in the time domain and then Fourier transformed
using an FFT algorithm. The approximations considered are the
usual SPAW(column 2, INSPAW (column 3, and IRSPA(col-
umn 4 (with the choicex,,=0.36). Both USPA and INSPA are
windowed in frequency beyonid, 5. Only the IRSPA has a spec-
trum extending beyon#, ¢ although we put a numerical cutoff at
Xeutof= — 20. X p=0.36 andX = — 20 in all subsequent tables.

<+ -

USPAW INSPAW IRSPA
n <’F'I;FT ’F'gSPAW> <’|‘,‘]|;FT ’I‘,‘]g\ISPAW> (’EEFT ’E:BSPA>
T; m1:1.4M®, m2:10M®
4 0.9967 0.9986 0.9994
A 5 0.9965 0.9990 0.9997
034 0.36 038 04 0.42 6 0.9965 0.9986 0.9993
t(s) my=m,=10M
FIG. 10. This plot is the same as in Fig. 9 except that we com~4 0.9764 0.9762 0.9951
pare whitened signals to show the effect of the detector responsg 0.9771 0.9775 0.9955
function on the time development. The inset shows the entire timeg 0.9751 0.9786 0.9953
domain signal starting frori gy=30 Hz and terminating & so.
ml: m2: 20M o)
with the wave directly generated in the time domain duringg 0.8613 0.8613 0.9891
the last cycle and rings a few times beyond the shutoff pointg 0.8680 0.8773 0.9819
Our new proposal, IRSPA, keeps in phase with the timeg 0.8897 0.9038 0.9829

domain signal until the last moment although it too has a
couple of low amplitude cycles beyond the LSO.

Matched filtering involves not just the correlation of two ~ TO compare the approximants more quantitatively, in
signals but rather their weighted correlation—the weightTa_ble [l we list the overlap; of the exact Fourier represen-
coming from the detector spectral noise density. To furthefation of a model wave fornfi.e., a signal generated in the
compare and contrast our néwlomain approximants to the time domain and then Fourier transformed using a DFT al-
usual frequency-windowed SPA it is conceptually useful tod°rthm with their approximate Fourier representations ana-
compare various approximations in the “whitened-time-\ytically computed using one of the following: the

domain” introduced in Sec. Il A. As discussed above, in thisTequency-windowed usual SPAi.e., USPAW, cf. Eq.
picture(and only in this picturgthe optimal filter consists of (3: 7], the improved Newtonian SPANSPA is the same as
correlating the output of the detector with an exact copy of RSPAW, cf. Eq.(4.290], and the improved relatlylst|c SPA
the expected signal. The whitenice., convolved with the L E- (4.39]. The USPA and the 'NSAPA used mAconjput—
whitening kernelw,,, Eq. (2.10] signals are plotted and N9 these overlaps are terminatedfatF 5o, whereFigois
compared in Fig. 10, which is the same as Fig. 9 except thatf‘,e last stable orbit frequency determined by the condition
all the waves here are whitenfice., divided by\/S,(f) and  Ea(v)=0 (hence the labels SPAW and INSPAW where W
then inverse Fourier transformpdhe inset in Fig. 10 shows Stands for windowed—in the frequency domaifhis is be-
the full whitened signal that was originally generated in thec@use both USPA and INSPA vanish at the L&lDe to the
time domain. Several observations are in order. First, we sefactor 1A/F so) and are either not defindih the case of the
how low-frequency components are suppressed relative tosual SPA or formally vanishindaccording to the definition
high-frequency components which occur in a more sensitivéeq. (3.313 in the case of INSPAbeyond the LSO. Contrast
band of the detector. Second, we can very clearly see thihis with the Newtonian case where it is possible to analyti-
nonlocal behavior of the whitening kernel. It has the effect ofcally extend the usual SPA beyoidgo.

softening the window imposed on the wave that was directly It is generally true, as stated in DIS, that the stationary
generated in the time domain and curbing the oscillations irphase approximation to the Fourier transform worsens very
the IRSPA beyond~,so. Finally, this same whitening is significantly as we consider more massive binaries. In this
seen to have worsened the mismatch of USPAW with thesense the USPA poorly represents the exact chirp. We con-
whitened version of the original time-truncated signal. Theclude that, for massive systems with total mass-m,
conclusions drawn from these visual comparisons are borneé m,<40M 4, the only uniformly acceptable analytic repre-
out by detailed numerical experiments we performed. sentation of the Fourier transform is the IRSPA.
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TABLE 1V. Faithfulnessof the Fourier domairP approximants in the formakest-massase. Values
quoted are theninimaxoverlap(see DIS of an approximant wave form generated directly in the frequency
domain with the exact wave form generated in the time domain and Fourier transformed using the FFT
algorithm. The approximations considered are the usual USR&dNimn 2 and IRSPA(column 3. As
mentioned earliex,,=0.36, X¢,of= — 20. For compactness of presentation, in this table and Tables V and VI
we use for the column headings the abbreviation USPAW to defdte’,hp>"*"), IRSPA to denote

(REFT ,’F]IPRHSPA> .

n (1.4,20 (10,10 (13,13 (20,20

USPAW IRSPA USPAW IRSPA USPAW IRSPA USPAW IRSPA

4 0.8360 0.8316 0.9596 0.9707 0.9513 0.9965 0.8248 0.9785
5 0.9755 0.9729 0.9727 0.9914 0.9473 0.9973 0.8283 0.9855
6 0.9921 0.9903 0.9739 0.9938 0.9479 0.9972 0.8285 0.9856
V. FAITHFULNESS AND EFFECTUALNESS OF SPP In Table IV and Table V we use as fiducial exact signal the
APPROXIMANTS formal “test-mass case” for which the functiokR(v) is

So far we have concentrated on developing an ac:curat‘énOWn analy_tical_ly andF(u)_numericaIIy[ZG]. I_n Ta?'e Vi
Fourier representation of the inspiral wave form at variousV® Use as fiducial exact signal the one defined in DIS for
levels of approximation from Newtonian ®@approximants. comparable mass¢see Eq (4.1 there for the definition of
In order to quantify the accuracy, we used the overlap of théhe exact new energy function, and E¢2.1) (7.2 for the
DFT of the wave form computed using a FFT of the time-€xact factored flux function; we took the valkg=47/39 for
domain signal with an analytical approximation of the FT ofthe parameter defining formal higher PN effects in Eq.
the same time-domain signal using the improved SPA sug4.11]. As above we consider that the exact time-domain
gested in Secs. Ill and IV. However, an important questiorsignal is shut off after the LSQFor each considered wave
still remains: What is the total loss of accuracy due to comform, defined by some approximate energy and flux func-
bining the loss oprecisionentailed by the use of an analyti- tionsE(v) andFA(v), we shut it off at the LSO defined by
cal approximant to the FTloss that we have shown how to the corresponding energy functi@p(v).]
minimize by defining the IRSPAwith the loss ofaccuracy® In Tables IV and VI we list the overlaps for different
entailed by the use of some finite order in the PN approXiapproximants for the three “massive” archetypal binaries
mation of the exact signal. In other words, how accurate i§(1.4M,,10M),(10Mo,10M ), and (2M ,20M )] that
the approximate frequency-domain representation of a PNould be searched for in GEO-LIGO-VIRGO data. These
approximant in modeling the exact FT of the exact generapyerlaps are computed using the expected LIGO noise Eq.
relativistic signal? More precisely, what fraction of the SNR (1.4 by maximizing over the lag parameter [47] and
of a true signal is the Fourier-domain approximant likely tophase ¢, but without readjusting the intrinsic parameters,
extract? Addltlona”y, one is also interested in knOWing thEi_e_, the masses of the two stars in the approximantS, to maxi-
biases induced in the estimation of parameters when usingize the overlap(This implies that the value d¥, o used in
the frequency-domain approximants introduced in this workihe approximant is different from that in the “exact” signal.

We shall follow DIS in saying that a representation of aThe overlaps are therefore a reflection of how accurate the
signal is faithful if it has a good overla} with the exact various representations are in an absolute sense. In other
signal for the same values of titdynamical parametersor  \ords, they compare tHaithfulnessof the different approxi-
more precisely, if the overlap is maximized for template pa-mants. Two independent aspects of approximation are inves-
rameters which have acceptably small biases with respect {@yated in these tables. First, the comparison between the two
the exact signal parametgrd\s in DIS, we employ as nec- ajternatives in the frequency domain: the usual SPA
essary criterion for faithfulness the requirement that the “di'(USPAV\b and our improved relativistic SPARSPA), and
agonal” ambiguity function be larger than 0.965. On thesecond, the PN order to which the phasing is computed. To
other hand, we shall say that a representation of a signal igvestigate further the performance of these approximants we
effectualif the overlap, maximized over the template param-symmarize in Table V the overlaps obtained by maximizing
eters, iS Vel’y near one. To use these deﬁnitions we fo”Ovaer all the parameters in the approximants inc|uding the
DIS in introducing diducial exactgeneral relativistic signal. intrinsic ones. Thus in addition to maximizing over the lag

parameterr and the phase. one also extremizes over the
masses of the two stans; andm,. In other words, we com-
19ve distinguishprecision and accuracyin the same way that Pare theeffectualnessf the various approximants. We also
they are distinguished in metrology. compute the bias introduced in the total mass
“when discussing faithfulness and effectualness we always as- From Tables IV-VI one can conclude the following)
sume, as in DIS, Eq2.17) there, that the overlap EqR.9) is first ~ The improved relativistic SPA is significantly more faithful
maximized with respect to the relative time lend relative phase  and more effectual for massive systems with total nrass
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TABLE V. Effectualnesf the Fourier domairP-approximants in the formakst-massase. We list
minimaxoverlaps of the approximate wave forms generated directly in the frequency domain with the exact
wave form generated in the time domain and Fourier transformed using an FFT algorithm. However, in
addition to maximization over the lag parameteand the initial phase of the approximate wave form we also
maximize over the two masses, andm,. The percentage bias in the estimation of the total mass 100(1
—myp/m) are listed in parenthesis below the overlaps.

(1.4,10 (10,10 (13,13 (20,20

n USPAW IRSPA USPAW IRSPA USPAW IRSPA USPAW IRSPA

4 0.9942 09963 09798 09984  0.9651  0.9979 09166  0.9966
(—2.300) (-2.744) (-0.664) (~0.858) (~0.962) (~1.081) (-2.500) (—1.250)

5 0.9882  0.9987 09795 09979  0.9653  0.9968  0.9174  0.9965
(+0.480) (-1.301) (-0.626) (~0.467) (~0.631) (~0.481) (~1.875) (—0.340)

6 0.9970 09982  0.9805  0.9964  0.9649  0.9963  0.9174  0.9966

(-0.311) (-1.166) (0.000) (0.626) (~0.662) (0.000) {1.250) (—0.340)

=20M, and mandatoryfor m=26M; (i) Comparing Sion of the Wiener filtefsee first form of Eq(2.2)]. There-
with DIS, we see that the frequency-domain IRSPA does afore, in the computation of the correlation of a template with
well as the time-domain wave form even for massive binathe detector output, what is required is the Fourier transform
ries up to 404, ; (iii ) The 2.5PN SPP approximant is both a of the matched filter. However, the DIS proposal was to
faithful and an effectual approximant for a wide range ofcompute the templates in the time domain and compute their
binary systemsrai<40M,). It only introduces a small bias. exact DFT using FFT algorithms. Admissibly, this procedure
Note also that, in regard to effectualness, the gain in goinds still highly computation intensive. Let us determine why
from 2PN to 2.5PN accuracy is quite significgmainly in  this is so.

decreasing the biaseand especially for low-mass systems To compute the time-domain signal we need a phasing
(which have many useful cyclgswhile the gain in going formula ¢=¢(t). Since there is no explicit expression for
from 2.5PN to 3PN seems very slight. the phasing of inspiral waves as a function of time the stan-

To summarize, if one would like to lose no more than adard approach is to use the implicit formula, E@s1), (4.2).
tenth of the events that would be observable had one knowhhe binding energyE(v) and the gravitational wave flux
the exact general-relativistic signal, then the 2.5PN SPP apE(v) have been computed, e.g., using Pagehniques, as
proximants are a must. Furthermore, unbiased parameter egxplicit functions ofv and these when used in E¢4.1) and
timation requires 2.5PN SPP approximants in all cases. (4.2 yield an implicit relation betweer andt. However,
the problem is that we neegl at equal intervals of timéto
enable us to use the standard FFT algoritham&l this makes
the computation ofp(t) expensive: every time samplg;
= ¢(t;) is computed by first solving Ed4.1) iteratively for

The main purpose of this work is to provide a set of toolsv;, the lower limit in the integral for a givety, and then
to the experimenters so that they can generate templates witlsing thisv; as the lower limit in the integral of Ed4.2).

a minimal computational cost. We next, therefore, addresélthough the second step is the computation of a single in-
the issue of computational costs of various algorithms foitegral, the first step is a rather slowly convergingl1( it-
template generation. erations for every;) computation.

First, though the signal is initially given in the time do-  This problem could have been circumvented if it had been
main, the time-domain version of the Wiener filter contains aadequate to use the explicit analytical expressioft)
double time integratiofisee second form of E42.2)] which  =by(t so— 1)+ 2= 1b(t so—1)* 79”8 (modulo loga-
is (given the existence of FFT algorithjnsiuch more com-  rithms) obtained by (i) expanding the quantitz’ (v)/F(v)
putationally expensive than the single frequency-domain verin the integrands in a straightforward expansion in powers of

VI. WHY ARE TIME DOMAIN RELATIVISTIC SIGNALS
MORE EXPENSIVE TO COMPUTE?

TABLE VI. Faithfulnessas in Table IV but for wave forms constructed frgrost-Newtoniarformulas
for a binary with stars of comparable masses. The value of the pararmgtet7/39.

(1.4,20 (10,10 (13,13 (20,20

USPAW IRSPA USPAW IRSPA USPAW IRSPA USPAW IRSPA

>

0.7919 0.7898 0.9596 0.9584 0.9485 0.9665 0.8764 0.9790
0.9765 0.9736 0.9820 0.9924 0.9657 0.9921 0.8831 0.9815
0.9965 0.9958 0.9835 0.9947 0.9669 0.9921 0.8860 0.9868

(o206 R
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TABLE VIL. In this table we list times required to generate clearly shows that it is sensible to generate templates in the
templates first in the time domain and then Fourier transformingFourier domainThe SPA is up to a factor of 100 times faster
using an FFT(column 2 and compare them with times required to and the IRSPA is up to a factor of 10 times faster than the
construct the same templates directly in the Fourier domain usingorresponding time-domain construction and Fourier trans-
one of the three approximation schemes: USB#lumn 3, INSPA  formation. Table VII together with Table Viof overlaps
(column ?ﬁ”d IRSPA(column 3. For each PN familycolumn 3 qemonstrates that SPP approximants are necessary for effi-
the timetp, ™ required to compute time-domaapproximant tem-  sjant searches of inspiral signals in gravitational wave inter-
plates is the highest and we normalize all times by this value.  farometer data and although more expensive to generate than
the usual SPA are nevertheless “affordable.”

n FFT USPA INSPA IRSPA
tl;FT/tI;FT tgnSPA/t';iT tg\lnSPA/tI;I;T tg?SPA/tEFT
m=1.4Mo, my=10Mg VII. CONCLUDING REMARKS
4 1 0.013 0.021 0.089 After nearly 2 decades of detector-technology develop-
6 1 0.014 0.021 0.090 ment long-baseline interferometric gravitational wave anten-
nas LIGO-VIRGO are scheduled to become operational in
m;=m,=10M¢g about 2—4 yr with target sensitivities that are good enough to
¢ 1 o oosodn e e fow per year, Searches are pianned o
6 1 0.009 0.016 0.11 P per year. b

be carried out over a range of 0.2-N80 by the method of
matched filtering.

An important issue in matched filtering is the number of
v; (ii) integrating term by term; andii) inverting analyti-  cycles accumulated in the correlation integral since the SNR
cally by successive iteratiorisee e.g., Ref24]). However, grows as the square root of the number of cycles. While this
this straightforward PN expansion of the phasing formulas strictly true, if the noise power spectrum of the instrument
defeats the very purpose Bfapproximants and loses all the is independent of frequency, in practice one can only im-
benefits brought by the constructions given in REf3].  prove the SNR in proportion to the square root of a “useful”
Consequently, DIS had to use the iterative procedure to comhumber of cycledN ., Which is determined by a combina-
pute the signal phasing. By contrast, usif@y form of  tion of the detector noise power spectrum and the signal’'s
SPA, i.e., an explicit analyticdtdomain expression, brings a power spectrum. We have pointed out how the number of
tremendous reduction in computational costs. On the ong@seful cycles can be a lot smaller than the actual number of
hand, as we shall discuss below, there is no iterative procerycles for massive and relativistic systems: e.g., a
dure involved in computing SPA. Second they are computed10M ,10M ) [ (20M »,20M )] binary system has only 7.6
directly in the frequency domain and hence lead to a furthe[3_ 4] useful cycles in the detector’s bandwid#ee Table)l
cost reduction, since time-domain wave forms need to be priori, it may seem that the fewer number of cycles should
Fourier transformed using FFTs—costifglog,N floating  make it easier to model the massive black-hole binaries com-
point operations—in addition to floating point operations re-pared to the lighter neutron star-neutron star ones with its
quired to compute time-domain templates. corresponding large number of cycles to phase. Tables V-V

Let us recall that the usual SPA is given by E8.7). I show that there is some truth in this, but that for very mas-
this expressiont; is the stationary point of the phase in the sive black hole binaries, these fewer cycles are in fact more
integral of Eq.(3.4b). At a Fourier frequency=uv}/7mthe difficult to model than the neutron star—neutron star, or neu-
stationary point; is given by Eq.(4.5), which is a nonitera- tron star—black hole cases for two reasaisthey are near
tive computation. One then substitutes this valug;oh Eq.  the end of the inspiral, i.e., when the radiation reaction ef-
(4.6) to computey;—the phase of the Fourier component. fects drives a faster drift of the frequency which has to be
Moreover, the derivative of the frequency which occurs inmodeled accuratelythis is why we needP approximants
the amplitude of the Fourier transform can be computed usintroduced in DIS; (ii) they might terminate due to the tran-
ing Eq. (4.14 while the factora(t;)ef?? from Eq. (3.2a. sition from inspiral to plunge while in the detector's band-
Every quantity that appears in the SPA is computed using aidth, and this poses the problem of accurately describing
straighforward integral or a mere algebraic expressionthe Fourier transform of a time-windowed signdhis re-
Hence, from the computational-cost point of view, it is de-quires the correction factors introduced in this papéil
sirable to use some SPA to generate templates. Since thieis places stringent demands in modeling the wave form in
usual SPA has been shown to be inadequate for representitige Fourier domain and due attention needs to be paid to
time-windowed signals from massive binaries, we have prodelicate issues of detail. This task is all the more important
posed the use of corrections (or f<f <F so) and ana- since the first detections expected from LIGO/VIRGO are
lytic extensions offor f=F;) the usual SPA. In Table VIl likely to concern massive systems with~25+5M,, for
we compare for archetypal binaries, the computational costahich the LSO frequency lies near the middle of the sensi-
of templates that are generated in the time domain and Fouivity curve (see Fig. 1
rier transformed using an FFT algorithm with the computa- To this end, the present work makes two new roljust,
tional costs for the USPA, INSPA, and IRSPA. This tableassumption-independegrtontributions:
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(i) The proposal of stationary phaBexpproximantgSPH  claim to have conclusively ruled out the possibility that a
which combine the excellent performance of our time-frequency-windowed SPA may perform better compared to
domainP approximantg13] with the analytic convenience the time-windowed SPA we propose here. This important
of the stationary phase approximation without serious loss dfssue is not settled although we conjecture that this is un-
event rate. These Fourier-domarapproximants perform as likely. Anyway, this paper is the first one to explicitly con-
well as their time-domain counterparts in extracting the truestruct the frequency-domain version of the time-domiin
general relativistic signal. approximants which were shown in DIS to bring indispen-

(i) The definition of a universal Newtonian-like “edge- sible improvements over the usually consideifiedpproxi-
correction” factorC(¢(f)), as well as its relativistic comple- mants. Therefore, even in the unlikely case where a straight-
ment ga,»(X(f)) which take into account the frequency- forward frequency window turns out to be a better model
domain effects, concentrated aroufahd on both sidgsof than the time window assumed in most of this work, one will
Fmax=F (tmay , fOr signals which are abruptly shut off, in the still require the formulas given in this papevith the trivial
time domain, aftet . change of replacing the correction factgi(g) by a 6 func-

In addition to these new achievements, let us mention twdion 6(F so—f)] to generate sufficiently accuratalomain
other useful contributions of a more technical natdireour ~ filters. In view of these comments, we feel there is an urgent
recommendation to systematically use a smooth time winneed to model more precisely the transition from the inspiral
dow at the lower frequency side to conveniently and effi-signal to the plunge sign@#3] close to the last stable orbit.
ciently suppress spurious oscillations due to a numerical lowVe hope that the technique# not all the details of our
frequency cutoff andii) an emphasis on the comparison of construction used in this work to handle the blowup Bft)
the form of the signals in the “whitened” time domain. at the LSO will be usefu{maybe with some modifications

Based on the detailed analysis presented in this paper weyen if, on a later examination, this blowup turns out to be an
find that for PN template generation of binary systems ofartifact of an approximation which may drastically alter with
total massn=5Mg, it suffices to use the usual SR#ithout  a better treatment of the transition to the plunge. Only with
correction factor of the P approximants defined in DIS. On  this improved understanding and its implications for the con-
the other hand, in the total mass rangd 5=m=40M, it  struction of templates can one build even more optimal tem-
is crucial to use our new SPP approximants to construct thplates for massive binaries and maximize our chance of de-
frequency-domain templates. tecting them. Independently of issues such as windowing in

In addition to the construction of the SPP approximantstime versus windowing in frequency or the nature of the
the paper has examined in detail the Fourier-domain effectplunge we feel that in gener&l approximants are much bet-
entailed by a sharp time-domain windowing. As emphasizeder tools than the Taylor approximants. We hope to come
in the introduction, at our present stage of knowledge, onéack to this question in a future wofk8].
cannot be sure that a template wave form termingiredhe Another aspect that needs to be looked into is the issue of
time domain at the LSO is an accurate-enough representawhether the interferometers will work in the time domain or
tion of a real GW signal coming from massive binarisay  the frequency domain. If indeed, they would decide to work
with m<40M ). We have given several plausibility argu- in the time domain, i.e., to store the raw output, and to trans-
ments toward justifying this assumption: brevity of the form it nearly online in the defiltered time-domain equivalent
plunge, and an expected frequency separation from th&w amplitudeh(t), the analysis of this paper would be ir-
merger signal. In the absence of knowledge of the transientlevant. In that case, one should store the Wiener trans-
plunge signal and of the final merger signal, we have arguetbrmed time-domain filtelK (t) =w,*h(t). However, with
that it is best to use a template wave form that is terminatethe presently available computational resources it seems
at the LSO[Actually, we anticipate that the effectualness of hopeless to filter in the time domain. We therefore anticipate
the template wave form will be increased if we allow it to be that, although the raw detector output will be stored in the
terminated at a frequency somewhat larger theyso  time domain, all filtering will be done in the Fourier domain.
(thereby allowing it to approximately represent the plungeln this event, the robust aspects of the present analysis will
wave form).] Consequently, this work has concentrated onbe relevant even if not the details.
signal models that are truncated in the time-domain by a step The formalism developed in this paper can be applied not
function and has aimed at constructing the best associateshly to initial interferometers but also to future generations
Fourier-domain analytical representation for this possibility. of interferometers. We have refrained from applying our for-

We have also pointed out that the opposite assumption ahalism to the case of LIGO Il since the LIGO Il design is at
an abrupt termination &t go of the usual SPA in the fre- the moment in a state of flux and any quantitative results we
quency domain implies, when viewed from either the timemay quote will soon be irrelevant. However, we should ex-
domain or the whitened time domain, the existence of someect the results of this work to be important for any detector
coherent oscillations “ringing” after the LSO crossing. We that works with a lower seismic cutoff and a broader band-
have done another numerical experiment on this issue, byidth than LIGO I, since in such cases we will have to match
appending to the inspiral signal a smooth decay taking placthe signal's phase for a larger number of effective cycles.
over less than B, J time scales. We have found that our ~ There are several notable and obvious improvements that
improved SPA was a reasonably good representatigthef need to be pursued. The sensitivity to the valueFg§q
FT of) such a signal, and definitely a better representatiomeeds to be investigatdih particular, our improved SPA
than the usual SPA one. Let us finally reiterate that we do nowvill probably maximize their overlaps with the real signals if
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we allow some flexibility in the choice d¥ | 5o (within some  gg5(X)
limits)]. Once the results of 3PN generation of gravitationalgyy
waves are availabl§49] and are combined with the 3PN

results on the dynamicigtl] they must be included in the h2(f)
construction of templates. In our discussion we have not con-*
sidered wave forms from binaries with spinning compact ob- ,
jects, nor have we included the effect of eccentri€g@] on ha(f)
the detectability 23]. These are unarguably important physi-

cal effects that need to be incorporated into later data analyd(t)
sis algorithms. Future research in this area should shed ligffi(f)
on these issues.

h.(f)
h_(f)
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APPENDIX A: LIST OF SYMBOLS h"e'(f)
a(t) GW amplitude;h(t) = 2a(t) cose(t) ;?Spa
a =10 3Bl Eq. (4.33 | (SF;""
cspa corrected SPA; Eg&.293, (3.29h mv
Cn(t;—ty) correlation function of noise M
C(D) Lerfc(e ™47); correction factor; softened step n(t)
function Ns(t)
) leading phase correction to SPA; E8.9) Nl’z
i symmetric mass ratiesm;m,/(m; +m,)? Nt("":)
erfc(x) complementary error function; E¢3.22) N, o (F)
e;(7) [d (E’(v) EQ.(4.15 ne
=|— ; Eq.(4.
o \Fw)/], Nrel(F)
E(v) dimensionless energy function
. (t) (Nguseful
al
&1 = (t)éi)(t); Eq.(3.8)
al
é(t)
A | |1 K@ 1 n
€5 =|- =z = ; EQ.(3.8) p
$M)| |2mFAby| 27N SPA
FFT Fast Fourier transform Sn(f)
f domain  frequency-domain a(f)
f window frequency window o(t,z21,2,)
F(t) instantaneous GW frequency trmin
Fv) flux function tmax
I:min(Fmax) GW frequency atmin(tmax)
FLso GW frequency at LSO Th
F Nyquist Nyquist frequency
f Fourier frequency T
f det characteristic detection frequency; minima of
effective GW noise/fS,(f) uspa
fo frequency at whictd(SNR?)/d(Inf) peaks uspaw
fq seismic frequency uspan
fup transition frequency between the low- andv

high-frequency approximations for the IRSPA v
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=[5d7e @729, Eq. (4.32

Gravitational wave

Gamma function

squared amplitude of effective GW signal;
=N(f)a*(f)

squared amplitude of effective GW noise;
=fSy(f)

time domain signal

Fourier  transform  of h(t);  h(f)
=[” .dte?™h(t)

Fourier transform of nonresonant part (ft)

Fourier transform of resonant part bft)
improved Newtonian SPA corresponding to
h_(f); Egs.(3.27), (3.313

edge approximation th_ (f); Eq. (3.18H

= h®d9e4 hiSP2: total improved Newtonian SPA
of h(t)

improved relativistic SPA corresponding to
h_(f); Egs.(4.293, (4.29b, (4.35

= h®d9e4 KirsPa: total relativistic SPA ofh(t)
improved Newtonian SPA

improved relativistic SPA

factored flux function

total mass of the binary

chirp mass= 7*°m

noise

whitened noise=w.(t)*n(t)

total number of cycles; Eq2.18

instantaneous number of cycles; Eg§.19
instantaneous number of cycles in Newtonian
case; Eq(2.26

instantaneous number of cycles in relativistic
case; Eq(2.28

useful number of cycles; Eq2.24

overlap (normalized ambiguity function Eq.
(2.8

GW phase

P approximant of ordep”

signal to noise ratio

stationary phase approximation

two-sided noise power spectral density
weight function inp?; Eq. (2.34

smoothing time window; Eq3.35

starting time of the signal

time at which the signal terminates or is termi-
nated

Taylor approximant of ordes"

tso—t

m

Heaviside step function

usual SPA

usual SPA frequency windowed

usual SPA up to Nyquist frequency

invariant velocity grmF)*?

invariant velocity rAMF)Y3
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w(f) weight factor ol1) NTE(t) (4~ tnad i E0.(3.29
h2(f N et
wi(t) correlation inverse of noise correlation func- *<{) =—Vihi(t) = P(tmad; EQ.(3.26)
tion; Eq. (2.3 f—F
W1/(7) whitening kernel; Eq(2.10 ¢=(f) :M; Eq.(3.31b
_2_77 £\ F(tmay
X = 3 am(FLSO f), Eq(434;
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