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Bousso has conjectured that in any spacetime satisfying Einstein’s equation and satisfying the dominant
energy condition, the “entropy flux'S through any null hypersurface generated by geodesics with non-
positive expansion starting from some spacelike 2 surface offaraast satisfyS<A/4G#. This conjecture
reformulates earlier conjectured entropy bounds of Bekenstein and also of Fischler and Susskind, and can be
interpreted as a statement of the so-called holographic principle. We show that Bousso’s entropy bound can be
derived from either of two sets of hypotheses. The first set of hypothe@g¢associated with each null surface
L in spacetime there is an entropy flux 4-vecipwhose integral ovek is the entropy flux through, and(ii)
along each null geodesic generatoiLofve have s?k,|< 7(\..— ) T.,k?kP/%, whereT,, is the stress-energy
tensor,\ is an affine parametek?= (d/d\)&, and\.. is the value of affine parameter at the endpoint of the
geodesic. The secon@urely loca) set of hypotheses i§) there exists an absolute entropy flux 4-vectdr
such that the entropy flux through any null surfdcés the integral ofs? over L, and(ii) this entropy flux
4-vector obeys the pointwise inequalitiesK?)%< T, k?kP/(167%2G) and |k3kPV ,s,|< 7T, k3k"/ (4%) for
any null vectork?. Under the first set of hypotheses, we also show that a stronger entropy bound can be
derived, which directly implies the generalized second law of thermodynamics.

PACS numbd(s): 04.70.Dy, 04.20-q, 04.60-—m

I. INTRODUCTION AND SUMMARY validity of the generalized second ldwin addition, the
bound fails when the number of species of particles is suffi-
ciently large? Finally, it is far from clear what the precise
In recent years, a number of independent universal enmeaning of ‘R” in the conjecture is supposed to be, particu-
tropy bounds have been postulated to hold for arbitrary sysgrly in curved spacetime; in curved spacetime, it is also far
tems. The first such bound was conjectured by Bekensteifyom clear what “E” means. Nevertheless, a case can be
who proposed that the entrof$and energye of any matter  made that the bound..1) may hold for all physically realis-
put into a box must obej/l] tic systems found in nature; see RES] for further discus-

sion.
SE<27R, (1.9 More recently, an alternative entropy bound has been con-

A. Background and motivation

where R denotes some suitable measure of the size of the
box. [Throughout this paper, we use units wi@=c=1% Wery recently, Bekensteifb] has used the fact that the buoyancy

L o formulas must be modified due to finite box size effects to again
=k=1.] The original motivation for the bound..1) was the . o
belief tr]1at it is r?ecessary for the validity of the generalizedargUIe that a bound of the forfd.1) is needed for the validity of the

second lawm(GSL) of thermodynamics, which states that in GSL. However, we believe that an analysis of the type giveigjn
Il physical th lized ent could be used to show that no such entropy bound is needed. In-
all physical processes (he generalized entropy deed, if a violation of the GSL could be obtained in any process

involving the quasi-static lowering of a box toward a black hole,
then we expect that it should be possible to obtain a violation of the
S' =S5+ Sy (1.2 ordinary second law by a similar quasi-static lowering of a box into
a real star composed of unconstrained thermal matter.
2In the canonical ensembile, it is easy to show that the byl

must always increase, whe8is the entropy of matter out- also fails at sufficiently low temperatures for all systems whose
side of black holesS,,=Ay/4, and Ay denotes the total ground state energy vanishes. However, a detailed analysis of a
surface area of all black hole horizons. Subsequently it wasariety of systems given in Ref6] provides strong evidence that
shown[2—-4] that the bound1.1) is not necessary for the this failure does not occur in the microcanonical ensemble.
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sidered: the entrop$inside any region whose boundary has ample spacetimes, including cosmological models and gravi-

areaA must satisfy[ 7] tational collapse spacetimes, are consistent with his
conjecture.
S<A/4. (1.3 Bousso’s conjecture is as follows. LeM(g,,) be a

spacetime satisfying Einstein’s equation and also the domi-

An argument given in Ref8] suggests that the bourd.3) nant energy c':ond|t|0tﬁ17].. Let B be a conngqted 2 dimen-
should follow from the GSL together with the assumptionSional spacelike surface iM. Suppose thak® is a smooth
that the entropy of a black hole counts the number of poshull vector field onB which is everywhere orthogonal &.
sible internal states of the black hdlén addition, whene ~ Then the expansion
=R, this bound would follow from the original Bekenstein
bound(1.1). The inequality(1.3), like the bound(1.1), can 9=V Kk (1.4)
be violated if the number of massless particle species is al-
lowed to be arbitrarily largé.The inequality(1.3) is related
to the hypothesis known as the holographic principle, whichof k2 is well defined and is independent of hdW is ex-
states that the physics in any spatial region can be fully detended offB. Suppose tha¥<0 everywhere orB. Let L
scribed in terms of degrees of freedom living on the bound-denote the null hypersurface generated by the null geodesics
ary of that region, with one degree of freedom per Planckstarting atB with initial tangentk?, where each null geodesic
area[12,8]. If the holographic principle is correct, then since is terminated if and only if a caustic is reach@ehere 6—
the entropy in any region should be bounded above by the-«), and otherwise is extended as far as possible. Then the
number of fundamental degrees of freedom in that region, antropy flux,S, , throughL satisfies
bound of the form(1.3) should be valid for all systems,
including those with strong self-gravity.

As it stands, the boun(lL..3) is ambiguous, since the pre- S <Ag/4, (1.5
cise meaning of the “bounding area,A, has not been
spelled out. In particular, note that any world tube can al-

ways be “enclosed” by a two-surface of arbitrarily small whereAg is the area oB.
yS D . y ) X y SM: There is a close relationship between Bousso’s conjecture
area, since given any two-surface in spacetime, there exists

tWo-surface of arbitrarily small area arbitrarily close t thea%d the generalized second law. Consider a foliation of the
o 0 Y AU y close to horizon of a black hole by spacelike two-surfad®éa),
original two-surface(obtained by “wiggling” the original

two-surface suitably in spacetinélowever, very recently, a where « is a continuous label that increases in the future
e ; y P  Very Y, direction (with respect to the time orientation used to define
specific conjecture of the fornil.3) was suggested by

Bouss0[13,14], who improved an earlier suggestion of Fis- the black hole. Let A(a) be the area of the two surface

X _B(a), and letS(a) be the total entropy that crosses the
chler and SusskinfiL5,16. Bousso showed that several ex horizon before the 2-surfad®(«). Then if one assumes the

ordinary second law, the GSL is equivalent to the statement
that for anya;<a, we have
3The argument is attributed to Bekenstein in Ré&f} (see also
Ref. [9]) and goes as follows. If black hole entropy counts the L
number of internal states of a black hole, then any system having
S=A/4 is not a black hole. Then, one would expect to be able to S(az) = S(ag) < Z[A(aZ)_A(al)]' (1.9
make that system into a black hole with ar&aby collapsing a
sufficiently massive spherical shell of matter around it. In this pro-
cess, it appears that no entropy escapes, but this means that @ the other hand, Bousso’s entropy bound applied to the
convert anS=A/4 system into a black hole of aréa violating the  2-surfaceB(a)—with k? taken to be the past directed nor-
generalized second law. An antecedent to this argument can h@al to the horizon, so that we hawe<0 on B(«) when the

found in Ref.[11]. For a counterargument, see REf0] null energy condition is satisfied—demands merely that
4For example, conside¥ free massless scalar fields in flat space-

time, in a cube of edge lengthwith Dirichlet boundary conditions.

In the canonical ensemble, the thermal state with temperdture 1

with T<1/L has energyE which scales a&~N exd —/(LT)J/L S(a)< ZA(a) 1.7
and entropyS which scales likeS~N exd —#/(LT)J/(LT). For the

system to be weakly self-gravitatirig necessary condition for the

flat-spacetime analysis to be a good approximative must have  for all @. Thus, Bousso’s bound implies that the GSL holds
E=¢L for somee<1. Using this restriction to solve for the maxi- for the case when the initial timey,, is taken to be the time
mum allowed value oN yields S/L2~¢/(LT), which can be arbi- when the black hole is first formddo thatS(«;)=A(a;)
trarily large. In the microcanonical ensemble, the violation of Eq.=0]. In general, however, it is clear that the statem@ni)
(1.3 for sufficiently largeN follows immediately from the fact that is weaker than the stateme(iL6).

the density of states at a fixed total enefgygrows unboundedly This observation motivates a generalization of Bousso’s
with N at fixed L. (Note, however, that Casimir energy has beenconjecture. Namely, if one allows the geodesics generating
ignored here. the hypersurfacé to terminate at some spacelike 2-surface
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B’ before coming to a caustic or singularity, one can replacd8ousso’s conjecture, like the conjecture itself, is limited to
the conjectured inequalit{l.5) by the condition “classical regimes” in which local energy conditions are
satisfied.

Clearly, in order to derive the bounds.5) and(1.8), we
must make some assumptions about entropy. The entropy
that the conjecture refers to presumably should include
gravitational contributions. It seems plausible that any gravi-

It is clear from the above discussion that this more generdigtional entropy flux through the null hypersurfacevill be
bound implies both the original Bousso entropy bound andssociated with a shearing of that hypersurface, which has
the GSL (assuming of course the validity of the ordinary the same qualitative effect in the Raychaudhuri equdtee
second law. Eq. (2.13 below] as a matter stress-energy flux. Thus, it may
In this paper we shall prove Bousso’s entropy bo(h&)  be possible to treat gravitational contributions to entropy in a
under two independent sets of hypotheses concerning theanner similar to the matter contributions. However, our
local entropy content of matter. Furthermore, under the firspresent understanding of quantum gravity is not sufficient to
set of hypotheses, we will prove the more general entropwttempt to meaningfully quantify the gravitational contribu-
bound(1.8). We note that proofs of the GSL that are moretions to entropy. Consequently, in our analysis below, we
general than the proof of this paper have previously beeshall consider only the matter contributions to entropy.
given[18]; however, the previous proofs used specific prop-  with regard to the matter contribution to entropy, for both
erties of black-hole spacetimes, unlike our analysis. the GSL and the Bousso bound, there is an apparent tension
Finally, we note that, as discussed further at the end ofepyeen the fact that these statements are supposed to have
Sec. Ill, our results can be generalized straightforwardly tQne status of fundamental laws and the fact that entropy is a
arbitrary spacetime dimensions greater than 2. quantity whose definition is coarse-graining dependent.
However, this tension is resolved by noting that the number
of degrees of freedom should be an upper bound for the
B. Derivations of entropy bound and of generalized second entropy S irrespective of choice of coarse-grainifg4].
law: framework, viewpoint and assumptions Equivalently, we may restrict attention to the case where the
The starting point for our derivation of the entropy matter is locally in thermal equilibriunii.e., maximum en-

bounds(1.5) and(1.8) is a postulated phenomenological de- tropy density for its given energy densityf the bound holds
scription of entropy, which differs from assumptions thatin this case, it must hold in all cases.

1
S = 7[As—Ag/]. (1.9

have been used in the past to derive the GS8&). In this We shall proceed by assuming that a phenomenological
section we describe our phenomenological description of erdescription of matter entropy can be given in terms of an
tropy and its motivation. entropy flux 4-vectos?. We shall then postulate some prop-

First, note that one of the hypotheses of Bousso’s conjecerties ofs?. In fact, we shall postulate two independent sets
ture is the dominant energy condition, which is often vio- of hypotheses og?, each of which will be sufficient to prove
lated by the expected stress energy tensor of matter in semhe bound1.5); the first set of hypotheses also will suffice to
classical gravity. Hence the conjecture cannot have the statygove the bound1.8). Note that it is not a central goal of this
of a fundamentali law as i.t is curr_ently stated, but rath(_ar Calhaper to justify our hypotheses, although we do discuss some
only be relevant in “classical regimes” where the dominant yqiyations below. Instead we shall merely observe that they

energy condition is satisfield9]. It may be possible to re- an504r 10 hold in certain regimes. Note also that, at a funda-
place the dominant energy condition by a quantum inequality, ., .-\ level, entropy is a non-local quantity and so can be

of the type invented by Ford and Rom@20-24 to over- well described by a entropy flux 4-vector only in certain

come this difficulty’ In this paper we will assume the null . . . . .
L ab regimes and over certain scales. This fact is reflected in our
convergence condition, that,,k®k®=0 for all null vectors
hypotheses below.

a L
k* [see Eqgs(1.9 and(1.10, (1.11) below], which is weaker The first of our two sets of hypotheses is very much in the

than the dominant energy condition. Thus, our proof Ofspirit of the original Bekenstein bound.l). Suppose that

one has a null hypersurfack, the generators of which ter-

5 ) _ minate at a finite valua ., of affine parameteik. Suppose
Lowe [1_9]_ argues that the Bqusso conjecture must_ fall for_ a sySthat one puts matter in a box and drops it throligim such
tem consisting of an evaporating black hole accreting at just theé1 way that the back end of the box croskea \... Then, if

right rate to balance the Hawking radiation mass loss. For such a

system, it would seem that the black hole can accrete an arbitrara bound of the nature of Eq1.1) holds, the amount of en-

amount of entropy without changing its area, and in addition it is%opy crossing- should be limited by the energy within the

hard to see how a modified Bousso conjecture incorporating a qua0X and the box “size.” The box size, in turn, would be
tum inequality rather than a local energy condition could be satisf€lated to the affine parameter at which the front end of the

fied. However, this counterexample might be resolved by the facPOx crossed.. On the other hand, suppose that matter flow-
that it may be appropriate to assign a negative entropy flux at théhg throughL near ., were not confined by a box. Then
horizon to states with an outgoing Hawking flux, or it might be there would be no “box size restriction” on the entropy flux

resolved by making adjustments to the Bousso conjecture. near\. . However, in order to have a larger entropy flux
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than one could achieve when using a box, it clearly would be |kakaaSb|$a2 Tabkakb, (1.11

necessary to put the matter in a state where the “modes”

carrying the entropy “spill over” beyond... In that case, it whereT,, is the stress-energy tensoHere a; and a, can

is far from clear that the entropy carried by these modeske any positive constants that satisfy

should be credited as arriving prior xq,, so that they would

count in the entropy flux through. In other words, it seems (may) Y+ (aylm)YP=1. (1.12

reasonable to postulate that the entropy flux throughannot

be higher than the case where the matter is placed in a badRecall that we are using Planck units with=c=#=k

whose back end crosskst)\ .., and to consider a bound on =1.) A specific simple choice ofr; and «, that satisfy the

this entropy flux of the general form of E(L.1). condition(1.12) is @y =1/(16w) anda,= w/4, which are the
The above considerations motivate the following hypoth-values quoted in the abstract above. Note that, like(Eg),

esis concerning the entropy flux. We assume that associatéefls.(1.10 and(1.11) are independent of the choice of scal-

with every null surfacé. there is an entropy flux 4-vectsf ~ 'N9 of k% Also note that both of our sets of hypothe$&®)

from which one can compute the entropy flux through et and(1.10, and(1.11) imply the null convergence condition

a| b ;
v be a null geodesic generator lof with affine parametex Tapk®k°=0, as mentloned abpve. . . .
and tangenk®=(d/d\)2. If y is of infinite affine parameter We now tumn to a discussion of the physical regimes in

length, thenT,,k®P=0 along y by the focusing theorem which we expect the pointwise assumptidhsl0 and(1.11)

- of our second set of hypotheses to be valid. The first assump-
[17], and we assume thaf=0 alongy. On the other hand, i, (1 10 of our second set of hypotheses says, roughly

if -y ends at a finite value\.., of affine parameter, then we gpeaking, that the entropy density is bounded above by the
assume thét square root of the energy density. One can check that the
condition is satisfied for thermal equilibrium states of Bose
|S?Kal < (Ao — N) T k3P, (1.9 and Fermi gases except at temperatures above a critical tem-
perature of order the Planck temperattirne can also

The inequality(1.9) is a direct analog of the original Beken-

stein bound1.1), with |s?k,| playing the role ofS, T,k "The stress energy tensor appearing in these inequalities should be
playing the role ofE, and\..—\ playing the role ofR As interpreted as a macroscopic or averaged stress energy &psor
discussed above, the motivation for the bouh®) is essen- rather than a microscopic stress energy terfsgr. For example,
tially the same as that for the bouftl1). Note that Eq(1.9) for an atomic gas, the fundamental microscopic stress-energy tensor
is independent of the choice of affine parameterizatioy;of Tab Will vary rapidly over atomic and nuclear scales, while a suit-

i.e., both sides of this equation scale the same way under able averaged macroscopic stress tefisgrcan be taken to vary
change of affine parameter. only over macroscopic scal¢ike the conventional entropy current

The above set of hypotheses has the property that the)- Thus our results apply to null surfacesf an averaged, mac-
entropy flux,— sk, , depends upoh in the sensédescribed roscopic metriag,y, rather than the physical metra,, [25]. Note
above that modes that only partially pass througlprior to  that null surfaces og,, can differ significantly from the null sur-
\.. do not contribute to the entropy flux. In our second set of &€S 0fGap, since with suitable microscopic sourdésr example
hypotheses, we assume the existence of an absolute entro\fl) ryrn;feztﬂgﬁfyavcitfﬂosiﬁﬁffgzibrfeanncgeo?qf:fsﬁéntﬁffv?vgfeItfhe
flux 4-vectors?, which is independent of the choice lofWe ) '

. . . boundary of the futuréor pasj of the 2-surfaceB with respect to
assume that this* obeys the following purely local, point- — i
. - Jap Should be close to the boundary of the futrespectively,
wise inequalities for any null vectd®:

pas} of B with respect tay,,. Thus, if one wishes to work with the
exact metriag,p, one should presumably replace the null hypersur-
face,L, in the Bousso conjecture and our generalizatibB) with a
(Saka)zS a; Tabkakb (1.10 suitable portion of the boundary of the futuer pasj of B. This
new formulation of the conjectures should hold whenever(E®)
or Egs.(1.10 and (1.11) hold for the macroscopically averaged
and entropy current and macroscopically averaged stress energy tensor.
An alternative interpretative framework would be to assume the
existence of an “entropy current” which varies rapidly on the
smallest scales that are compatible with our gradient assumption
(1.17) (atomic and nuclear scales in our exampie which case
our result would apply directly to the microscopic metric.
o 83pecifically, for a free massless boson gas at temperattine
|5Pkal < O\ = N[ T+ 07250278, stress energy tensor has the fofigy=(p+ p)u,u,+ pda, and the
wherea,, is the shear tensgEq. (9.2.29 of Ref.[17] ] associated ~ entropy flux vector is®=ou?, wherep=p/3 ando=4p/(3T). It
with the generators of. In this context, we can interpref to be  follows that for any null vectork® we have §,k?)%/T kK"
the combined matter and gravitational entropy flux, rather than just 4p/(3T?)=2m2gN,T?/45, whereg is the number of polarization
the matter entropy flux. components andllg is the number of species.

From Eq.(2.13, our proof also works if we replace the hypoth-
esis(1.9) with the weaker hypotheses that
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check that for quantum fields in a box at low temperatures In summary, we expect our second set of hypotheses to be
(the example discussed in Sec. | A abpvthe condition valid in regimes where the following conditions are satisfied:
(1.10 is violated only if the box is Planck size or smaller, or (i) Spacetime structure can be accurately described by a clas-
if the number of species is allowed to be very large. Thus, iical metric,g,,, and the gravitational contributions to en-
seems plausible that the bouri@l.10 will be universally tropy, other than that from black holes, are negligikie.
valid if one assumes a Planck scale cutoff for physics and iThe matter entropy can be accurately be described by an
one also assumes a limit to the number of species. Also onentropy currens®. In particular, this condition will be valid
can argue as follows that a bound of the form of EQ10  in familiar hydrodynamic regimegiii) The vacuum energy
should follow from the Bekenstein bourid.1). Consider a contributions to the stress-energy tensor are negligible, so
region of space of that is sufficiently small th@t the en-  that the stress-energy tensor satisfies classical energy condi-
tropy density and energy density are approximately uniformtions.
over the region, andi) the region is weakly self-gravitating We shall refer to regimes satisfying the above three con-
so that its total energi satisfiesE<R, whereR is the size  ditions as “classical,” even though, in such regimes, quan-
of the region. Then, iSis the total entropy in the region, the tum physics may play an essential role in accounting for the
ratio of entropy density squared to energy density isentropy of matter. In classical regimes, our hypothé&ek)
~S?/ER®<47%E/R by Eq.(1.1), which is<1 asE<R. and(1.11) should be valid. We have argued above that hy-

The second assumptidfi.11) states roughly that the gra- pothesis(1.9) also should hold. Hence our arguments show
dient of the entropy density is bounded above by the energthat the Bousso boundl.5 and its generalizatior(1.8)
density. For a free, massless boson or fermion gas in locahould hold in classical regimes. While our arguments do not
thermal equilibrium, this condition reduces to the conditionshow that the entropy bound4.5 and (1.8) hold at any
that the temperature gradieh¥, T|, be small compared with fundamental level, they do show that any counterexample
T2, i.e., that the fractional change Thover a distance T/be  either must involve quantum phenomena in an essential way
smaller than unity. This condition must be satisfied in order(in the sense of failure to be in a classical regim@ must
for the notion of local thermal equilibrium to make sense. violate Eq.(1.9) and/or Eq.(1.10 or Eq.(1.11).

In addition, it would appear that conditiqi..11) is nec-
essary for our entire phenomenological description of en- Il. DERIVATION OF ENTROPY BOUNDS
tropy as represented by an 4-currefitto be valid. To see
this, consider the following illustrative example. Consider a In this section we derive the generalized entropy bound
wavepacket mode of a quantum field, where the wavelengthl.8) from the assumptiof1.9) and the Bousso bound.5)
is A and where the volume occupied by the wavepacket igrom the assumptiongl.10), (1.11).
fA3 for some dimensionless factdi=1. Consider a state We start with some definitions and constructions. First,
where this wavepacket mode is occupied Nyparticles. we can without loss of generality take the vector fikfdon
Such a system has a well defined expected stress enerffye 2-surfaceB to be future directed, since the conjecture is

tensor(T,,), whose corresponding energy density will be of ime reversal invariant. Ldf be the unique vector field dB

order which is null, future directed, orthogonal #® and which
satisfied ?k,= — 1. We extend both® andl® to L by parallel

N transport along the null geodesic generatorg.ofhus,k® is

P NE (113 tangent to each geodesic. Then the expangerV k@ is

well defined orL and independent of how” is extended off

We now imagine that we are to somehow model such a sy$f L, since
tem with a smooth entropy flux vectef. We expect that the
total entropy carried by the system should be of ofdeso 0=(g?°+ k" +K°I1#)V .k . (0
that the entropy density should be approximately
By the hypotheses of Bousso’s conjecture and of its gener-

N alization (1.8), # is nonpositive everywhere ob. Let {xr}
ST 114 _ (x*,x?) be any coordinate system & Then one obtains a

natural coordinate system\ (x!,x?) on L in the obvious
Clearly the concept of local entropy flux here cannot makevay, wherek?=(d/d\)? and we takex=0 on B.
sense on scales short compared to the wavelengtmly in For the generatoy which starts at the point' on B, let
an averaged sense, on scales comparabledolarger, does  \..(x") be the value of affine parametguossibly\.,= =) at
the concept of entropy flux make sense. Thus, the lengthscathe end point of the generator. This endpoint can either be a
L=sl|Vs| over which the entropy density varies should becaustic @= —) or have a finite expansiof. We can with-
greater than or of the order af. From the estimate€l.13  out loss of generality exclude the casg=, since other-
and (1.14), the condition£=\ is equivalent to|Vs|<p,  wise we must havd ,,k?%k°=0 and §=0 along y by the
which is essentially our assumptigh.11). Hence, our sec- focusing theorem, and then either version of our hypotheses
ond condition(1.11) rules out the class of entropy curresfs  implies thats®=0 alongy, so that there is no contribution to
which vary significantly over scales shorter thepallowing  the entropy flux. Thus, generators of infinite affine parameter
only the more appropriats® that vary over scales of a wave- length make no contribution to the LHS of the inequalities
length or longer. (1.5 and (1.8 while making a non-negative contribution to
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the RHS, and so can be ignored. For the generators of finitdlote thats is non-negative for future directed, timelike or
affine parameter length, we can without loss of generalitynull s?, which we expect to be the cagelowever, our proof
rescale the affine parameter along each generator in order tloes not require the assumptions teabe timelike or null
make the end point occur at,=1. and future directed.Now as discussed above(\)=0 for
those generators of infinite affine parameter length, so it fol-

A. Reducing the conjecture to each null geodesic generator ~ lows that

Next, we show that it is sufficient to focus attention on ' 1
each individual generator df, one at a time. More specifi- SL=J d?x/dethr, (x) J das(M)AN), (2.9
cally we have the following lemma. B 0

Lemma. ‘A sufficient condition for the generalized en'Wheref’dzx denotes an integral only over those generators
tropy bound (1.8) is that for each null geodesic generagor B 9 y 9

of L of finite affine parameter lenath. we have of finite affine parameter length. Now we see that if the
P gth, condition(2.2) is satisfied, then we obtain from E@.9) that

1 1
dN(—s,kH AN < —-[1—-A(1)], 2.2 1
fo (=SakDAMN) 4[ AD)] 2.2 SIS Zdezx\/dethrA(x)[l—A(l,x)]. (2.10
where The generalized entropy bourdl.8) now follows from Eq.
x (2.10, using the fact that the arefg of the 2-surfaceB is
A()\)Eex;{ f dx 9(>\)} (2.3 given by
0
is an area-decrease factor associated with the given genera- Ag= deZXVdethFA(X)* (211
tor. Similarly, a sufficient condition for the Bousso bound
(1.5) is that while the arealg, of the 2-surface8’ composed of the end
L 1 points of the generators is
f d)\(—saka)A()\)$Z (2.9
0

Ag = f E;dzx\/dethFA(x)A(l,x). (2.12

along each generator.
To prove the lemma, first note that by assumption theSimilar arguments show that the Bousso bo(h#) follows
entropy flux through. is given by from the assumptioii2.4).

SL:f S, (2.5 B. Preliminaries
L From the lemma, its sufficient now to prove the condition

(2.2) or, respectively, the conditiofi2.4) for each finite-
affine-parameter-length null generatgrof L. For ease of
notation we henceforth drop the dependence orxtheoor-
- dinates in all quantities. Now the twist along each of the null
€bca=!"€apca- (2.6) generators will vanish, since it is vanishing initially on the
) . ) two surfaceB, and the evolution equation for the twist7]
Here we are using the notation of Appendix B of Réf7]  then implies that it always vanishes. The Raychaudhuri equa-

for integrals of differential forms, and we also use the ab+ion in the relevant case of vanishing twist can thus be writ-
stract index notation of Refl17] for all Roman indices ten as

throughout the paper. The formul@.5 applies for either

where the orientation on the hypersurfacds that deter-
mined by the 3-form

version of our phenomenological description of entropy; i.e., de 1,

we can use eithes? or s? in the integrand. In Appendix A Tdh 50 +iN), (2.13
we derive the following formula for the integré2.5) in the

coordinate systemx(x'): wheref=87T k%" + ,,02° and o, is the shear tensor.

"0 T.h.e functilonf is non—negativc_a by the null convergence con-
SL:J' dzxmf ” dAsOVAN).  (2.7) dition [wh|chA fo!ows from either Eq(1.9) or Egs.(1.10,
B 0 (1.11)] sinceo,,02"=0 always. The assumptig.9) of our
first set of hypotheses now implies that
Herex=(x*,x?)=x", hp,(x) is the induced 2-metric on the
2-surfaceB, \..(x) is the value of affine parameter at the Is(N)[<(1—N)f(N)/8. (2.19
endpoint of the generator which startsxatand
Similarly, our second set of hypothes€s10 and (1.11)
=—s.k? (2.8  implies that
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s(\)2<a;f(N) (2.15 G(0)-G(1)=1-G(1)<1-A(1), (2.23
and since G(0)=1 and G(1)=JA(1)=A(1). Also the third
— term in Eqg.(2.22) is negative. It follows that
IS (V)= aaf(h), (2.16 a-(2:22 s neg
where 1
B B = (1= A, (2.24
a1=8may, a,=8ma,. (2.17
We define the quantity as required.
1 .
— D. Proof of the original Bousso bound under
Ly fo dA S()AR). 218 the second set of hypotheses

First, note that without loss of generality we can assume
that the functiors()\) is nonnegative. This is because we can
. o K _ replaces(\) by |s(\)] in the integral2.18 without decreas-
hold, using only the definitiof2.3) of the area-decrease fac ing the value of the integral, and the assumptiéha5 and

tor and the Raychaudhuri equatiGh13). I X ) -
Now by ass)l/Jmption anngeoglsi?generator must termigz.lg are satisfied by the functids| if they are satisfied by

nate no later than the poifif it exists) at which A(\)—0. s, since|| |$|S_ |: . .

Hence we haved(\)=0 everywhere orb. It is convenient We start by fixing ak, in (0,1), the value of which we

to define G(\) = JA(N), from which it follows from the will pick later. We then choose &g in [0A;] which mini-

definition (2.3) of the area-decrease factor and from the Ray_m|zesf in the interval[OA4]; i.e., we choose &, which

chaudhuri equatioli2.13 that satisfies

Our tasks now are to show they<[1—.A(1)]/4 when Eq.
(2.14 holds, and that ,<1/4 when Egs(2.15 and (2.16

" f(Ng)= min f(\). 2.2
BRCIEY 216 (No) Jmin. ) (2.25
- G(A’) . .
[We assume that the functidif\) is continuous so that this

. . -
It follows thatG” is negative. Also the expansidhis always minimum is attainel® We now show that

negative, and henc&’ is always negative, so thdb is
monotonically decreasing, starting at the val@)=1, and )

ending at some valu&(1) with 0=G(1)=<1. In particular, < T

we have G=sG(\)=<1 for all X. For those generators which f(ho) 2>\§[1 AD] (2.29
terminate at caustics we haw&(1)=.4(1)=0, but not all

generators will terminate at caustics; some might terminatg-, gee this leBo(\) and Ay()\) be the expansion and area-

at the auxiliary spacelike 2-surfa€e . decrease factor that would be obtained by solving the Ray-
chaudhuri equatiori2.13 with f(\) replaced byf(\,) and

C. Proof of the generalized Bousso bound under using the same initial conditio®,(0)= 6(0). Since f(\)
the first set of hypotheses =f(\g) for 0SA<\,, it is clear that we must have
Using the formula(2.14 and the definitionG=+.A4 we
find that the integra(2.18 satisfies AN)<Ap(N) (2.27
11
l,=< gf d\ (1—=N)F(NG(N)2 (2.20  for 0=<\=\,. But the explicit solution of the Raychaudhuri
0

equation forfy(\) and Ag(\) is

r{ fhog) .
0o(N) = —2F (N g)tan \/ 5 (\+R)

From the formula(2.19 for f(\), this can be written as

(2.28

Iys—fold)\(l—)\)G”()\)G()\)M. (2.20)

Now we have B=G(A)<1, so we can drop the factor of and

G(\) in the integrand of Eq(2.21). Integrating by parts and
using the fundamental theorem of calculus now gives
®The proof extends easily to the non-continuous case. If we

| < 1 G(0)—G(1)+G' (0 29 choosee>0 and choose y so that
y<3zLG0)=G)+G(0)]. (2.22 f(hg)=(1+¢) g.Lb{F(\)|0O=A=A,},

then we can come as close as we please to satisfying the inequality
Now (2.55. Hence the inequality2.55) is satisfied.

084035-7
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f(N\o) R Since A(\) and\q both lie in[0,1], this is bounded above
cos 5 (A M) by s(\o). If we now use our assumptic(2.15, we find
Ao(N) = : (2.29 —
0 Cog{ \/f()\o)x} Lt 1= Ve f(N\o), (2.40
2

and using the boun(R.26 on f(\y) finally yields

where is a constant ifi0,1]. Applying the inequality(2.27) Jaom
at A=\, now yields Lt lp<——[1—A(1)]¥2 (2.41
: V2N,
(230 Turn now to the integral; . Inserting the assumptia(®2.16)
into the formula(2.34 for 1; and using the formul#2.19
Using the inequality siy=2y/m which is valid for 0<)  for f(\) yields
<m/2, and the inequalityd(1)<.4(\,), one can obtain the

f(Ao)

A()\l)g.Ao()\l)gcog 2

A

- A G//
upper bound?2.26 from Eq. (2.30. ll<—2ay | —\dh. (2.42)
Next, we split the integra(2.18 into a contributionl ; o G
f he i ibutiont, f he inter- . . . .
Jg{?; el]lpterva[o,)\o] and a contribution from the inter SinceG is a decreasing function, we can replace the(d)
o in the integrand by B(\). If we then integrate by parts
o 1 and use the fundamental theorem of calculus, we obtain
Iy:f sA+j SA=1,+1,. (2.31 _
0 \o . 2ay
. 1= g [G(ho)=1=G (Ao)o]. (2.43
In the formula forl , we drop the factor of4 which is<1, (No)
insert a factor of &=dA/d\, and integrate by parts to obtain SinceG(Ao)=<1 this yields
|1$|1b+|1' (232 o ZEZG’()\O))\O (2 44)
Herel, is the boundary term that is generated, given by ! G(No) '
l1p=S(Ao)Ao, (2.33  We now show that for al\ in [0,1],
G'(N) 1
and _ < _
G0N < 1_)\[1 A(L)]. (2.45
Mo
1= —f d\ s’ (M. (2.349  To see this, apply the mean value theorem to the funcBon
0 over the interva[ \,1], which yields
Similarly we insert a factor of £d(A—1)/d\ into the for- G(1)—G(\)=(1-N)G'(\,), (2.46

mula for |, and integrate by parts, which yields
for somea, in [\,1]. But sinceG” is negative by Eq(2.19),

o=1lptI15, (235  we haveG'(\,)<G’(\), and it follows that
where the boundary term is B G'(N) _ 1 [ B G(1)
G(\) 1-A" G\
126= 500 Ak (1 No) (2.36 ) "IN
1 1

and where im[l—G(l)]i m[l—fl(l)].

1

|§=J IN[S'A(L-N)+sA(1-N)]. (237 (2.47
No

Here the last inequality follows frorG= A and 0<G<1.
An upper bound on the total integral is now given by theUsing the relatior(2.45), our upper bound2.44) for I; now
relation yields

N

A

| <l lop+1]+15. (2.39 ! _
1-\,

1-AD)

— 0 —
= .
20521 )\0 2a2 (2 4&

We now proceed to derive bounds on the integralsl ; and inall he i " Th in th
on the total boundary terry,+15y,. Finally, we turn to the integral,. The second term in the

Consider first the total boundary term, which from Egs.formula(2.37 for I; is negative and so can be dropped. In
(2.33 and(2.36) is given by the first term, we use the formuG= /A4, the formula(2.19

for f(\) and our gradient assumption in the fo&16) to
|1b+|2b:S(7\O)[)\O+(1_)\0)"4()\0)]' (239 obtain
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) _ (1 . including cases involving gravitational collapse or other
I2=< —Zazﬁ\ d\ G"G(1—N\). (249  strong gravitational interactions. As with Bousso'’s bound, if
0 the holographic principle is indeed part of a fundamental

Now since 6<G(\)=<1 for all A, we can drop the factor of theory, it may be that the hypotheses discussed here will

G(\) in the integrand. If we then integrate by parts and uséProvide clues to its formulation.
the fundamental theorem of calculus we obtain Note that we do not show in this paper that the entropy
bounds(1.5) and(1.8) can be saturated by entropy 4-currents

|éSZ;z[GO\o)—G(1)+(1—)\0)G'(7\o)]- (2.50  s* satisfying our assumptions. However, consideration of
simple examples shows that the boudds) comes within a
Now sinceG(\y)<1 andG= A we have factor of order unity of being saturated by currents satisfying
our second set of hypothesé¢$.10 and (1.11). Also, a
G(N)—G(1)=1-G(1)=1-A(1). (250  simple scaling argument shows that the least upper bound on
the ratioS, /Ag for currents satisfying our assumptions is of
the form azF(alagz) for some functionF. As a result, at
fixed alagz the least upper bound depends continuously on
re o1 a,. This guarantees that there exist some valuea 0énd
l2=2a;[1-A(D)]. (2:52 a,, of order unity, such the entropy bouft.5) is both sat-
Finally we combine Eq(2.38 with the upper bound&2.41), isfied and can be saturated by entropy currents satisfying the
(2.48), and(2.52) for the boundary ternh;,+1,, and for the  inequalities(1.10 and(1.11). A similar statement is true for

Also, the last term in Eq2.50 is negative. Hence we obtain
the upper bound

integralsl ; and!} to yield the bound(1.8) and the hypothesi€l.9). ' '
In our analysis above, we have taken the dimension of
— _ 1 spacetime to be 4. However, in ardimensional spacetime
l,< \/a—l—[l—A(l)]l’er 2a21_)\ [1-A(D)] with n>2, the Raychaudhuri equation continues to take the
V2, ! form (2.13, except that the coefficient @ on the right side

is now 1/(n—2). Consequently, if we defi@=.4Y""2) in

$|: Va— [1-A(1)]Y2 (253  then-dimensional case, an equation of the fof2n19 will
\/E)\l continue to hold with the factor of 2 on the right side re-
_ L ) placed by 6—2). The remainder of our analysis can then be

Choosing the value ok, that minimizes this upper bound c5ried out in direct parallel with the 4-dimensional case.

— 1
+2a21_)\1

yields Thus, with suitable adjustments to the numerical factors ap-
— 2 pearing in Egs(1.9), (1.10, and (1.11), all of our results
a — continue to hold for all spacetime dimensions greater than 2.
< T ?+ V2a,| [1-A1)]Y2 (2.54
ACKNOWLEDGMENTS

Using the definition(2.17) of the the parametere; and o,
together with the assumptidi.12 yields We thank Warren Anderson and Raphael Bousso for help-
ful conversations, and the Institute for Theoretical Physics
(ITP) in Santa Barbara, where this work was initiated, for its
hospitality. We also thank Jacob Bekenstein for discussions
on the validity of the entropy boun¢l.1) at low tempera-
as required. Note that our proof actually implies the inequaltures. We particularly wish to thank Raf Guedens for bring-
ity ing to our attention an error in an earlier version of this
manuscript. E.F. acknowledges the support of the Alfred P.
SleAélz[AB_AB,]l/z_ (2.56 Sloan Foundation. This work has been supported by NSF
4 grants PHY 9407194 to the ITP, PHY 95-14726 to the Uni-
o o versity of Chicago, PHY 9722189 to Cornell University,
This inequality is stronger than the Bousso bouid) but  pHy 97-22362 to Syracuse University, and by funds pro-

1 1
L= Z[1-AW]=7, (2.55

weaker than the generalized Bousso bouha@). vided by Syracuse University.
I1l. CONCLUSION
L APPENDIX: FORMULA FOR INTEGRAL
We have shown that the generalizati@n8) of Bousso'’s OVER NULL HYPERSURFACE
entropy bound is satisfied under the hypothddi®), and
that the original Bousso bour(d.5) holds under the hypoth- In this Appendix we derive the formul@.7) for the inte-

eses(1.10,(1.12). While these hypotheses are unlikely to gral

represent relations in any fundamental theory, they appear to

be satisfied for matter in a certain semi-classical regime be-

low the Planck scale. As such, our results rule out a large s =< Al
. ; . L S"€apcd (A1)

class of possible counterexamples to Bousso’s conjecture, L
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of the entropy current over the null hypersurfdcécf. Eq.
(2.5 abovd, using the coordinate system \,&')
=(\,x1,x?) defined in Sec. Il.

PHYSICAL REVIEW D 62 084035

4-dimensional connectioff. Next, consider the Lie deriva-

tive Lie of exgc With respect tok”. Since the result is a
3-form we must have

We start by discussing the relation between tensors on the

spacetimeM and tensors on the null surfateWe introduce
the notation that capital roman indicésB,C, ... denote

(Lk€)asc= 7 €asc (A8)

tensors orL, in the sense of the abstract index convention offor some scalar fieldy. We can define a upper index volume

Ref. [17]. For any 1-formw, defined onL, we will denote
the pullback ofw, to L as
wa=Paw,; (A2)

this defines the operatd?3 . Sincek, is normal toL, the
pullback ofk, vanishes, sd®2k,=0. Using the null tetrad

form €*BC by the requirement that

~ABC

€ ;ABCZS!' (Ag)

[A definition is terms of raising indices is inapplicable here
since there is no natural non-degenerate metric. griNow

contracting both sides of EGA8) with €8¢ and using Eq.

introduced at the beginning of Sec. II, we can define a simi{A7) yields

lar mapping between vectors &hand vectors orh. At any
point P in L, the projection operation
Ua—>(5§+|akb)vb (A3)

maps the 4-dimensional tangent spatg(M) into the
3-dimensional tangent spade(L). Thus one can write the
mapping(A3) asv®—v”=QA5v?, which defines the operator
QQ. Note that the vectol® is annihilated by the projection
operation(A3), while k? and vectors perpendicular k8 and
|2 are unchanged. We defiké=Q4k?= (d/d\)A, which is
the tangent vector ih the generators df.

Consider now the integrand in the integ(All). It is pro-
portional to

Sa k[al becfd] s (A4)

n=DakA=Vk?, (A10)

which is just the usual expansidgh

Next, we define a 3-fornegc on L by demanding that it
coincide with exgc on the 2-surfaceB, and that it be Lie
transported along the generators lof If we write exgc

=(enpc, Where( is a scalar field or, it follows from Eq.
(A8) with =6 that

Lil=6C. (A11)

Solving this equation using the definitigg.3) of the area-
decrease factor yields=.A. Thus we see that the geometri-
cal meaning of the factad is that it is the ratio between the

Lie-transported 3-volume forr%ABc and the parallel trans-

where e® and f2 are spacelike vector fields such that ported 3-volume formeagc, Where in both cases one starts
{k?,12,e2,f3} is an orthonormal basis. When we pullback the from the 2-surface.

3-form (A4) to L, all the terms where the index dq is free
and not contracted wits? will be annihilated. Hence without
loss of generality we can replacd with — (s kP)I2. Thus
we obtain from Eqgs(Al) and(2.6) that

S = JLS €abc

wheres= —s,k? and where the 3-forna,,, is defined in Eq.
(2.6) above.

As a tool for evaluating the integrdA5), we define an
induced connectio 5 on L by

(A5)

DavB=PSQEV ¢ (AB)
wherev is any vector field oM with vA=Qfv"°. One can
check that this formula defines a derivative operatorLon
Next we note that the pullbackgc of the 3-form(2.6) is
parallel transported along each null generatot ofith re-
spect to the connectiofA6):
kADA’\GBCDZO. (A?)
This follows from the fact thak?®, 1* and e,,,c4 are parallel
transported along each generator with

Consider now the specific coordinate system,x{)

=(\,x%,%?). In this coordinate system the fact thetgc is
Lie transported along the generators translates into

J~
—€)x1x2(A,X)=0, (A12)

[N
so that

Erxl(N,X) = €xy1,2(0X) = Jdethr,(X),  (A13)

wheree, ,1,2(\,x) denotes one of the coordinate components

of the tensorengc in the coordinate systemi(x"), x
=(x!,x?) as before, antir-, is the induced 2-metric oB. It
follows that

exds2(N,X)=A(\,x) dethp,(x).

Combining this with the formuldA5) for the entropy flux
finally yields the formula2.7).

(A14)

19Note however that unlike the situation in the four dimensional
setting, in generaDAEBCDatO; ie., EABC is not covariantly con-

respect to thetant with respect t®,.
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