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Bousso has conjectured that in any spacetime satisfying Einstein’s equation and satisfying the dominant
energy condition, the ‘‘entropy flux’’S through any null hypersurfaceL generated by geodesics with non-
positive expansion starting from some spacelike 2 surface of areaA must satisfyS<A/4G\. This conjecture
reformulates earlier conjectured entropy bounds of Bekenstein and also of Fischler and Susskind, and can be
interpreted as a statement of the so-called holographic principle. We show that Bousso’s entropy bound can be
derived from either of two sets of hypotheses. The first set of hypotheses is~i! associated with each null surface
L in spacetime there is an entropy flux 4-vectorsL

a whose integral overL is the entropy flux throughL, and~ii !
along each null geodesic generator ofL, we haveusL

akau<p(l`2l)Tabk
akb/\, whereTab is the stress-energy

tensor,l is an affine parameter,ka5(d/dl)a, andl` is the value of affine parameter at the endpoint of the
geodesic. The second~purely local! set of hypotheses is~i! there exists an absolute entropy flux 4-vectorsa

such that the entropy flux through any null surfaceL is the integral ofsa over L, and ~ii ! this entropy flux
4-vector obeys the pointwise inequalities (saka)2<Tabk

akb/(16p\2G) and ukakb¹asbu<pTabk
akb/(4\) for

any null vectorka. Under the first set of hypotheses, we also show that a stronger entropy bound can be
derived, which directly implies the generalized second law of thermodynamics.

PACS number~s!: 04.70.Dy, 04.20.2q, 04.60.2m
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I. INTRODUCTION AND SUMMARY

A. Background and motivation

In recent years, a number of independent universal
tropy bounds have been postulated to hold for arbitrary s
tems. The first such bound was conjectured by Bekens
who proposed that the entropySand energyE of any matter
put into a box must obey@1#

S/E<2pR, ~1.1!

where R denotes some suitable measure of the size of
box. @Throughout this paper, we use units withG5c5\
5k51.# The original motivation for the bound~1.1! was the
belief that it is necessary for the validity of the generaliz
second law~GSL! of thermodynamics, which states that
all physical processes the generalized entropy

S85S1Sbh ~1.2!

must always increase, whereS is the entropy of matter out
side of black holes,Sbh5AH/4, and AH denotes the tota
surface area of all black hole horizons. Subsequently it w
shown @2–4# that the bound~1.1! is not necessary for the
0556-2821/2000/62~8!/084035~11!/$15.00 62 0840
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validity of the generalized second law.1 In addition, the
bound fails when the number of species of particles is su
ciently large.2 Finally, it is far from clear what the precis
meaning of ‘‘R’’ in the conjecture is supposed to be, partic
larly in curved spacetime; in curved spacetime, it is also
from clear what ‘‘E’’ means. Nevertheless, a case can
made that the bound~1.1! may hold for all physically realis-
tic systems found in nature; see Ref.@6# for further discus-
sion.

More recently, an alternative entropy bound has been c

1Very recently, Bekenstein@5# has used the fact that the buoyan
formulas must be modified due to finite box size effects to ag
argue that a bound of the form~1.1! is needed for the validity of the
GSL. However, we believe that an analysis of the type given in@3#
could be used to show that no such entropy bound is needed
deed, if a violation of the GSL could be obtained in any proce
involving the quasi-static lowering of a box toward a black ho
then we expect that it should be possible to obtain a violation of
ordinary second law by a similar quasi-static lowering of a box in
a real star composed of unconstrained thermal matter.

2In the canonical ensemble, it is easy to show that the bound~1.1!
also fails at sufficiently low temperatures for all systems who
ground state energy vanishes. However, a detailed analysis
variety of systems given in Ref.@6# provides strong evidence tha
this failure does not occur in the microcanonical ensemble.
©2000 The American Physical Society35-1



as

on
os

in

a

ic
d
nd
c
e
th

n,
,

-

a
ll

st
he

s-
x-

avi-
his

mi-
-

sics
c

the

ture
the

re
ne
e
e

e
ent

the
r-

ds

o’s
ting
ce

he
vin

t

ro
at

n

e

re

e

i-

q
t

en

FLANAGAN, MAROLF, AND WALD PHYSICAL REVIEW D 62 084035
sidered: the entropyS inside any region whose boundary h
areaA must satisfy@7#

S<A/4. ~1.3!

An argument given in Ref.@8# suggests that the bound~1.3!
should follow from the GSL together with the assumpti
that the entropy of a black hole counts the number of p
sible internal states of the black hole.3 In addition, whenE
&R, this bound would follow from the original Bekenste
bound ~1.1!. The inequality~1.3!, like the bound~1.1!, can
be violated if the number of massless particle species is
lowed to be arbitrarily large.4 The inequality~1.3! is related
to the hypothesis known as the holographic principle, wh
states that the physics in any spatial region can be fully
scribed in terms of degrees of freedom living on the bou
ary of that region, with one degree of freedom per Plan
area@12,8#. If the holographic principle is correct, then sinc
the entropy in any region should be bounded above by
number of fundamental degrees of freedom in that regio
bound of the form~1.3! should be valid for all systems
including those with strong self-gravity.

As it stands, the bound~1.3! is ambiguous, since the pre
cise meaning of the ‘‘bounding area,’’A, has not been
spelled out. In particular, note that any world tube can
ways be ‘‘enclosed’’ by a two-surface of arbitrarily sma
area, since given any two-surface in spacetime, there exi
two-surface of arbitrarily small area arbitrarily close to t
original two-surface~obtained by ‘‘wiggling’’ the original
two-surface suitably in spacetime!. However, very recently, a
specific conjecture of the form~1.3! was suggested by
Bousso@13,14#, who improved an earlier suggestion of Fi
chler and Susskind@15,16#. Bousso showed that several e

3The argument is attributed to Bekenstein in Ref.@8# ~see also
Ref. @9#! and goes as follows. If black hole entropy counts t
number of internal states of a black hole, then any system ha
S>A/4 is not a black hole. Then, one would expect to be able
make that system into a black hole with areaA by collapsing a
sufficiently massive spherical shell of matter around it. In this p
cess, it appears that no entropy escapes, but this means th
convert anS>A/4 system into a black hole of areaA, violating the
generalized second law. An antecedent to this argument ca
found in Ref.@11#. For a counterargument, see Ref.@10#

4For example, considerN free massless scalar fields in flat spac
time, in a cube of edge lengthL with Dirichlet boundary conditions.
In the canonical ensemble, the thermal state with temperatuT
with T!1/L has energyE which scales asE;N exp@2p/(LT)#/L
and entropyS which scales likeS;N exp@2p/(LT)#/(LT). For the
system to be weakly self-gravitating~a necessary condition for th
flat-spacetime analysis to be a good approximation! we must have
E5«L for some«!1. Using this restriction to solve for the max
mum allowed value ofN yields S/L2;«/(LT), which can be arbi-
trarily large. In the microcanonical ensemble, the violation of E
~1.3! for sufficiently largeN follows immediately from the fact tha
the density of states at a fixed total energyE grows unboundedly
with N at fixed L. ~Note, however, that Casimir energy has be
ignored here.!
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ample spacetimes, including cosmological models and gr
tational collapse spacetimes, are consistent with
conjecture.

Bousso’s conjecture is as follows. Let (M ,gab) be a
spacetime satisfying Einstein’s equation and also the do
nant energy condition@17#. Let B be a connected 2 dimen
sional spacelike surface inM. Suppose thatka is a smooth
null vector field onB which is everywhere orthogonal toB.
Then the expansion

u5¹aka ~1.4!

of ka is well defined and is independent of howka is ex-
tended offB. Suppose thatu<0 everywhere onB. Let L
denote the null hypersurface generated by the null geode
starting atB with initial tangentka, where each null geodesi
is terminated if and only if a caustic is reached~whereu→
2`), and otherwise is extended as far as possible. Then
entropy flux,SL , throughL satisfies

SL<AB/4, ~1.5!

whereAB is the area ofB.
There is a close relationship between Bousso’s conjec

and the generalized second law. Consider a foliation of
horizon of a black hole by spacelike two-surfacesB(a),
where a is a continuous label that increases in the futu
direction ~with respect to the time orientation used to defi
the black hole!. Let A(a) be the area of the two surfac
B(a), and let S(a) be the total entropy that crosses th
horizon before the 2-surfaceB(a). Then if one assumes th
ordinary second law, the GSL is equivalent to the statem
that for anya1,a2 we have

S~a2!2S~a1!<
1

4
@A~a2!2A~a1!#. ~1.6!

On the other hand, Bousso’s entropy bound applied to
2-surfaceB(a)—with ka taken to be the past directed no
mal to the horizon, so that we haveu<0 onB(a) when the
null energy condition is satisfied—demands merely that

S~a!<
1

4
A~a! ~1.7!

for all a. Thus, Bousso’s bound implies that the GSL hol
for the case when the initial time,a1, is taken to be the time
when the black hole is first formed@so thatS(a1)5A(a1)
50]. In general, however, it is clear that the statement~1.7!
is weaker than the statement~1.6!.

This observation motivates a generalization of Bouss
conjecture. Namely, if one allows the geodesics genera
the hypersurfaceL to terminate at some spacelike 2-surfa
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PROOF OF CLASSICAL VERSIONS OF THE BOUSSO . . . PHYSICAL REVIEW D62 084035
B8 before coming to a caustic or singularity, one can repl
the conjectured inequality~1.5! by the condition

SL<
1

4
@AB2AB8#. ~1.8!

It is clear from the above discussion that this more gen
bound implies both the original Bousso entropy bound a
the GSL ~assuming of course the validity of the ordina
second law!.

In this paper we shall prove Bousso’s entropy bound~1.5!
under two independent sets of hypotheses concerning
local entropy content of matter. Furthermore, under the fi
set of hypotheses, we will prove the more general entr
bound~1.8!. We note that proofs of the GSL that are mo
general than the proof of this paper have previously b
given @18#; however, the previous proofs used specific pro
erties of black-hole spacetimes, unlike our analysis.

Finally, we note that, as discussed further at the end
Sec. III, our results can be generalized straightforwardly
arbitrary spacetime dimensions greater than 2.

B. Derivations of entropy bound and of generalized second
law: framework, viewpoint and assumptions

The starting point for our derivation of the entrop
bounds~1.5! and~1.8! is a postulated phenomenological d
scription of entropy, which differs from assumptions th
have been used in the past to derive the GSL@18#. In this
section we describe our phenomenological description of
tropy and its motivation.

First, note that one of the hypotheses of Bousso’s con
ture is the dominant energy condition, which is often v
lated by the expected stress energy tensor of matter in s
classical gravity. Hence the conjecture cannot have the st
of a fundamental law as it is currently stated, but rather
only be relevant in ‘‘classical regimes’’ where the domina
energy condition is satisfied@19#. It may be possible to re
place the dominant energy condition by a quantum inequa
of the type invented by Ford and Roman@20–24# to over-
come this difficulty.5 In this paper we will assume the nu
convergence condition, thatTabk

akb>0 for all null vectors
ka @see Eqs.~1.9! and~1.10!, ~1.11! below#, which is weaker
than the dominant energy condition. Thus, our proof

5Lowe @19# argues that the Bousso conjecture must fail for a s
tem consisting of an evaporating black hole accreting at just
right rate to balance the Hawking radiation mass loss. For su
system, it would seem that the black hole can accrete an arbi
amount of entropy without changing its area, and in addition i
hard to see how a modified Bousso conjecture incorporating a q
tum inequality rather than a local energy condition could be sa
fied. However, this counterexample might be resolved by the
that it may be appropriate to assign a negative entropy flux at
horizon to states with an outgoing Hawking flux, or it might b
resolved by making adjustments to the Bousso conjecture.
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Bousso’s conjecture, like the conjecture itself, is limited
‘‘classical regimes’’ in which local energy conditions a
satisfied.

Clearly, in order to derive the bounds~1.5! and~1.8!, we
must make some assumptions about entropy. The ent
that the conjecture refers to presumably should inclu
gravitational contributions. It seems plausible that any gra
tational entropy flux through the null hypersurfaceL will be
associated with a shearing of that hypersurface, which
the same qualitative effect in the Raychaudhuri equation@see
Eq. ~2.13! below# as a matter stress-energy flux. Thus, it m
be possible to treat gravitational contributions to entropy i
manner similar to the matter contributions. However, o
present understanding of quantum gravity is not sufficien
attempt to meaningfully quantify the gravitational contrib
tions to entropy. Consequently, in our analysis below,
shall consider only the matter contributions to entropy.

With regard to the matter contribution to entropy, for bo
the GSL and the Bousso bound, there is an apparent ten
between the fact that these statements are supposed to
the status of fundamental laws and the fact that entropy
quantity whose definition is coarse-graining depende
However, this tension is resolved by noting that the num
of degrees of freedom should be an upper bound for
entropy S, irrespective of choice of coarse-graining@14#.
Equivalently, we may restrict attention to the case where
matter is locally in thermal equilibrium~i.e., maximum en-
tropy density for its given energy density!; if the bound holds
in this case, it must hold in all cases.

We shall proceed by assuming that a phenomenolog
description of matter entropy can be given in terms of
entropy flux 4-vectorsa. We shall then postulate some pro
erties ofsa. In fact, we shall postulate two independent s
of hypotheses onsa, each of which will be sufficient to prove
the bound~1.5!; the first set of hypotheses also will suffice
prove the bound~1.8!. Note that it is not a central goal of thi
paper to justify our hypotheses, although we do discuss s
motivations below. Instead we shall merely observe that t
appear to hold in certain regimes. Note also that, at a fun
mental level, entropy is a non-local quantity and so can
well described by a entropy flux 4-vector only in certa
regimes and over certain scales. This fact is reflected in
hypotheses below.

The first of our two sets of hypotheses is very much in
spirit of the original Bekenstein bound~1.1!. Suppose that
one has a null hypersurface,L, the generators of which ter
minate at a finite valuel` of affine parameterl. Suppose
that one puts matter in a box and drops it throughL in such
a way that the back end of the box crossesL at l` . Then, if
a bound of the nature of Eq.~1.1! holds, the amount of en
tropy crossingL should be limited by the energy within th
box and the box ‘‘size.’’ The box size, in turn, would b
related to the affine parameter at which the front end of
box crossedL. On the other hand, suppose that matter flo
ing throughL near l` were not confined by a box. The
there would be no ‘‘box size restriction’’ on the entropy flu
near l` . However, in order to have a larger entropy flu
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than one could achieve when using a box, it clearly would
necessary to put the matter in a state where the ‘‘mod
carrying the entropy ‘‘spill over’’ beyondl` . In that case, it
is far from clear that the entropy carried by these mo
should be credited as arriving prior tol` , so that they would
count in the entropy flux throughL. In other words, it seems
reasonable to postulate that the entropy flux throughL cannot
be higher than the case where the matter is placed in a
whose back end crossesL at l` , and to consider a bound o
this entropy flux of the general form of Eq.~1.1!.

The above considerations motivate the following hypo
esis concerning the entropy flux. We assume that assoc
with every null surfaceL there is an entropy flux 4-vectorsL

a

from which one can compute the entropy flux throughL. Let
g be a null geodesic generator ofL, with affine parameterl
and tangentka5(d/dl)a. If g is of infinite affine paramete
length, thenTabk

akb50 along g by the focusing theorem
@17#, and we assume thatsL

a50 alongg. On the other hand
if g ends at a finite value,l` , of affine parameter, then w
assume that6

usL
akau<p~l`2l!Tabk

akb. ~1.9!

The inequality~1.9! is a direct analog of the original Beken
stein bound~1.1!, with usL

akau playing the role ofS, Tabk
akb

playing the role ofE, andl`2l playing the role ofR. As
discussed above, the motivation for the bound~1.9! is essen-
tially the same as that for the bound~1.1!. Note that Eq.~1.9!
is independent of the choice of affine parameterization og;
i.e., both sides of this equation scale the same way und
change of affine parameter.

The above set of hypotheses has the property that
entropy flux,2sL

aka , depends uponL in the sense~described
above! that modes that only partially pass throughL prior to
l` do not contribute to the entropy flux. In our second set
hypotheses, we assume the existence of an absolute en
flux 4-vectorsa, which is independent of the choice ofL. We
assume that thissa obeys the following purely local, point
wise inequalities for any null vectorka:

~saka!2<a1 Tabk
akb ~1.10!

and

6From Eq.~2.13!, our proof also works if we replace the hypoth
esis~1.9! with the weaker hypotheses that

usL
akau<~l`2l!@pTabk

akb1ŝabŝ
ab/8#,

whereŝab is the shear tensor@Eq. ~9.2.28! of Ref. @17# # associated
with the generators ofL. In this context, we can interpretsL

a to be
the combined matter and gravitational entropy flux, rather than
the matter entropy flux.
08403
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ukakb¹asbu<a2 Tabk
akb, ~1.11!

whereTab is the stress-energy tensor.7 Herea1 anda2 can
be any positive constants that satisfy

~pa1!1/41~a2 /p!1/251. ~1.12!

~Recall that we are using Planck units withG5c5\5k
51.! A specific simple choice ofa1 anda2 that satisfy the
condition~1.12! is a151/(16p) anda25p/4, which are the
values quoted in the abstract above. Note that, like Eq.~1.9!,
Eqs.~1.10! and~1.11! are independent of the choice of sca
ing of ka. Also note that both of our sets of hypotheses~1.9!
and ~1.10!, and~1.11! imply the null convergence condition
Tabk

akb>0, as mentioned above.
We now turn to a discussion of the physical regimes

which we expect the pointwise assumptions~1.10! and~1.11!
of our second set of hypotheses to be valid. The first assu
tion ~1.10! of our second set of hypotheses says, roug
speaking, that the entropy density is bounded above by
square root of the energy density. One can check that
condition is satisfied for thermal equilibrium states of Bo
and Fermi gases except at temperatures above a critical
perature of order the Planck temperature.8 One can also

st

7The stress energy tensor appearing in these inequalities shou

interpreted as a macroscopic or averaged stress energy tensorT̄ab ,
rather than a microscopic stress energy tensorTab . For example,
for an atomic gas, the fundamental microscopic stress-energy te
Tab will vary rapidly over atomic and nuclear scales, while a su

able averaged macroscopic stress tensorT̄ab can be taken to vary
only over macroscopic scales~like the conventional entropy curren
sa). Thus our results apply to null surfacesL of an averaged, mac

roscopic metricḡab rather than the physical metricgab @25#. Note

that null surfaces ofḡab can differ significantly from the null sur-
faces ofgab , since with suitable microscopic sources~for example
cosmic strings! a null surface ofgab can be made to intersect itse
very frequently without the occurrence of caustics. However,
boundary of the future~or past! of the 2-surfaceB with respect to

ḡab should be close to the boundary of the future~respectively,
past! of B with respect togab . Thus, if one wishes to work with the
exact metricgab , one should presumably replace the null hypers
face,L, in the Bousso conjecture and our generalization~1.8! with a
suitable portion of the boundary of the future~or past! of B. This
new formulation of the conjectures should hold whenever Eq.~1.9!
or Eqs. ~1.10! and ~1.11! hold for the macroscopically average
entropy current and macroscopically averaged stress energy te
An alternative interpretative framework would be to assume
existence of an ‘‘entropy current’’ which varies rapidly on th
smallest scales that are compatible with our gradient assump
~1.11! ~atomic and nuclear scales in our example!, in which case
our result would apply directly to the microscopic metric.

8Specifically, for a free massless boson gas at temperatureT the
stress energy tensor has the formTab5(r1p)uaub1pgab and the
entropy flux vector issa5sua, wherep5r/3 ands54r/(3T). It
follows that for any null vectorka we have (saka)2/Tabk

akb

54r/(3T2)52p2gNsT
2/45, whereg is the number of polarization

components andNs is the number of species.
5-4
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PROOF OF CLASSICAL VERSIONS OF THE BOUSSO . . . PHYSICAL REVIEW D62 084035
check that for quantum fields in a box at low temperatu
~the example discussed in Sec. I A above!, the condition
~1.10! is violated only if the box is Planck size or smaller,
if the number of species is allowed to be very large. Thus
seems plausible that the bound~1.10! will be universally
valid if one assumes a Planck scale cutoff for physics an
one also assumes a limit to the number of species. Also
can argue as follows that a bound of the form of Eq.~1.10!
should follow from the Bekenstein bound~1.1!. Consider a
region of space of that is sufficiently small that~i! the en-
tropy density and energy density are approximately unifo
over the region, and~ii ! the region is weakly self-gravitating
so that its total energyE satisfiesE&R, whereR is the size
of the region. Then, ifS is the total entropy in the region, th
ratio of entropy density squared to energy density
;S2/ER3<4p2E/R by Eq. ~1.1!, which is &1 asE&R.

The second assumption~1.11! states roughly that the gra
dient of the entropy density is bounded above by the ene
density. For a free, massless boson or fermion gas in l
thermal equilibrium, this condition reduces to the conditi
that the temperature gradient,u¹Tu, be small compared with
T2, i.e., that the fractional change inT over a distance 1/T be
smaller than unity. This condition must be satisfied in ord
for the notion of local thermal equilibrium to make sense

In addition, it would appear that condition~1.11! is nec-
essary for our entire phenomenological description of
tropy as represented by an 4-currentsa to be valid. To see
this, consider the following illustrative example. Conside
wavepacket mode of a quantum field, where the wavelen
is l and where the volume occupied by the wavepacke
f l3 for some dimensionless factorf *1. Consider a state
where this wavepacket mode is occupied byN particles.
Such a system has a well defined expected stress en
tensor^T̂ab&, whose corresponding energy density will be
order

r;
N

f l4 . ~1.13!

We now imagine that we are to somehow model such a
tem with a smooth entropy flux vectorsa. We expect that the
total entropy carried by the system should be of orderN, so
that the entropy densitys should be approximately

s;
N

f l3 . ~1.14!

Clearly the concept of local entropy flux here cannot ma
sense on scales short compared to the wavelengthl; only in
an averaged sense, on scales comparable tol or larger, does
the concept of entropy flux make sense. Thus, the lengths
L5s/u¹su over which the entropy density varies should
greater than or of the order ofl. From the estimates~1.13!
and ~1.14!, the conditionL*l is equivalent tou¹su&r,
which is essentially our assumption~1.11!. Hence, our sec-
ond condition~1.11! rules out the class of entropy currentssa

which vary significantly over scales shorter thanl, allowing
only the more appropriatesa that vary over scales of a wave
length or longer.
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In summary, we expect our second set of hypotheses t
valid in regimes where the following conditions are satisfie
~i! Spacetime structure can be accurately described by a
sical metric,gab , and the gravitational contributions to en
tropy, other than that from black holes, are negligible.~ii !
The matter entropy can be accurately be described by
entropy currentsa. In particular, this condition will be valid
in familiar hydrodynamic regimes.~iii ! The vacuum energy
contributions to the stress-energy tensor are negligible
that the stress-energy tensor satisfies classical energy c
tions.

We shall refer to regimes satisfying the above three c
ditions as ‘‘classical,’’ even though, in such regimes, qua
tum physics may play an essential role in accounting for
entropy of matter. In classical regimes, our hypotheses~1.10!
and ~1.11! should be valid. We have argued above that h
pothesis~1.9! also should hold. Hence our arguments sh
that the Bousso bound~1.5! and its generalization~1.8!
should hold in classical regimes. While our arguments do
show that the entropy bounds~1.5! and ~1.8! hold at any
fundamental level, they do show that any counterexam
either must involve quantum phenomena in an essential
~in the sense of failure to be in a classical regime!, or must
violate Eq.~1.9! and/or Eq.~1.10! or Eq. ~1.11!.

II. DERIVATION OF ENTROPY BOUNDS

In this section we derive the generalized entropy bou
~1.8! from the assumption~1.9! and the Bousso bound~1.5!
from the assumptions~1.10!, ~1.11!.

We start with some definitions and constructions. Fir
we can without loss of generality take the vector fieldka on
the 2-surfaceB to be future directed, since the conjecture
time reversal invariant. Letl a be the unique vector field onB
which is null, future directed, orthogonal toB and which
satisfiesl aka521. We extend bothka andl a to L by parallel
transport along the null geodesic generators ofL. Thus,ka is
tangent to each geodesic. Then the expansionu5¹aka is
well defined onL and independent of howka is extended off
of L, since

u5~gab1kal b1kbl a!¹akb . ~2.1!

By the hypotheses of Bousso’s conjecture and of its gen
alization ~1.8!, u is nonpositive everywhere onL. Let $xG%
5(x1,x2) be any coordinate system onB. Then one obtains a
natural coordinate system (l,x1,x2) on L in the obvious
way, whereka5(d/dl)a and we takel50 on B.

For the generatorg which starts at the pointxG on B, let
l`(xG) be the value of affine parameter~possiblyl`5`) at
the end point of the generator. This endpoint can either b
caustic (u52`) or have a finite expansionu. We can with-
out loss of generality exclude the casel`5`, since other-
wise we must haveTabk

akb50 and u50 along g by the
focusing theorem, and then either version of our hypothe
implies thatsa50 alongg, so that there is no contribution t
the entropy flux. Thus, generators of infinite affine parame
length make no contribution to the LHS of the inequaliti
~1.5! and ~1.8! while making a non-negative contribution t
5-5
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the RHS, and so can be ignored. For the generators of fi
affine parameter length, we can without loss of genera
rescale the affine parameter along each generator in ord
make the end point occur atl`51.

A. Reducing the conjecture to each null geodesic generator

Next, we show that it is sufficient to focus attention o
each individual generator ofL, one at a time. More specifi
cally we have the following lemma.

Lemma. A sufficient condition for the generalized e
tropy bound (1.8) is that for each null geodesic generatog
of L of finite affine parameter length, we have

E
0

1

dl~2saka!A~l!<
1

4
@12A~1!#, ~2.2!

where

A~l![expF E
0

l

dl̄ u~ l̄ !G ~2.3!

is an area-decrease factor associated with the given gen
tor. Similarly, a sufficient condition for the Bousso bou
(1.5) is that

E
0

1

dl~2saka!A~l!<
1

4
~2.4!

along each generator.
To prove the lemma, first note that by assumption

entropy flux throughL is given by

SL5E
L
saeabcd, ~2.5!

where the orientation on the hypersurfaceL is that deter-
mined by the 3-form

êbcd[ l aeabcd. ~2.6!

Here we are using the notation of Appendix B of Ref.@17#
for integrals of differential forms, and we also use the a
stract index notation of Ref.@17# for all Roman indices
throughout the paper. The formula~2.5! applies for either
version of our phenomenological description of entropy; i
we can use eithersa or sL

a in the integrand. In Appendix A
we derive the following formula for the integral~2.5! in the
coordinate system (l,xG):

SL5E
B
d2xAdethGL~x! E

0

l`(x)

dls~l!A~l!. ~2.7!

Herex[(x1,x2)5xG, hGL(x) is the induced 2-metric on th
2-surfaceB, l`(x) is the value of affine parameter at th
endpoint of the generator which starts atx, and

s[2saka. ~2.8!
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Note thats is non-negative for future directed, timelike o
null sa, which we expect to be the case.~However, our proof
does not require the assumptions thatsa be timelike or null
and future directed.! Now as discussed above,s(l)50 for
those generators of infinite affine parameter length, so it
lows that

SL5E
B

8
d2xAdethGL~x! E

0

1

dls~l!A~l!, ~2.9!

where*B8d2x denotes an integral only over those generat
of finite affine parameter length. Now we see that if t
condition~2.2! is satisfied, then we obtain from Eq.~2.9! that

SL<
1

4EB

8
d2xAdethGL~x!@12A~1,x!#. ~2.10!

The generalized entropy bound~1.8! now follows from Eq.
~2.10!, using the fact that the areaAB of the 2-surfaceB is
given by

AB5E
B
d2xAdethGL~x!, ~2.11!

while the areaAB8 of the 2-surfaceB8 composed of the end
points of the generators is

AB85E
B

8
d2xAdethGL~x!A~1,x!. ~2.12!

Similar arguments show that the Bousso bound~1.5! follows
from the assumption~2.4!.

B. Preliminaries

From the lemma, its sufficient now to prove the conditi
~2.2! or, respectively, the condition~2.4! for each finite-
affine-parameter-length null generatorg of L. For ease of
notation we henceforth drop the dependence on thexS coor-
dinates in all quantities. Now the twist along each of the n
generators will vanish, since it is vanishing initially on th
two surfaceB, and the evolution equation for the twist@17#
then implies that it always vanishes. The Raychaudhuri eq
tion in the relevant case of vanishing twist can thus be w
ten as

2
du

dl
5

1

2
u21 f ~l!, ~2.13!

where f 58pTabk
akb1ŝabŝ

ab and ŝab is the shear tensor
The functionf is non-negative by the null convergence co
dition @which follows from either Eq.~1.9! or Eqs. ~1.10!,
~1.11!# sinceŝabŝ

ab>0 always. The assumption~1.9! of our
first set of hypotheses now implies that

us~l!u<~12l! f ~l!/8. ~2.14!

Similarly, our second set of hypotheses~1.10! and ~1.11!
implies that
5-6
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s~l!2<ā1f ~l! ~2.15!

and

us8~l!u<ā2f ~l!, ~2.16!

where

ā158pa1 , ā258pa2 . ~2.17!

We define the quantity

I g[E
0

1

dl s~l!A~l!. ~2.18!

Our tasks now are to show thatI g<@12A(1)#/4 when Eq.
~2.14! holds, and thatI g<1/4 when Eqs.~2.15! and ~2.16!
hold, using only the definition~2.3! of the area-decrease fac
tor and the Raychaudhuri equation~2.13!.

Now by assumption any geodesic generator must ter
nate no later than the point~if it exists! at whichA(l)→0.
Hence we haveA(l)>0 everywhere onL. It is convenient
to define G(l)5AA(l), from which it follows from the
definition ~2.3! of the area-decrease factor and from the R
chaudhuri equation~2.13! that

f ~l!522
G9~l!

G~l!
. ~2.19!

It follows thatG9 is negative. Also the expansionu is always
negative, and henceG8 is always negative, so thatG is
monotonically decreasing, starting at the valueG(0)51, and
ending at some valueG(1) with 0<G(1)<1. In particular,
we have 0<G(l)<1 for all l. For those generators whic
terminate at caustics we haveG(1)5A(1)50, but not all
generators will terminate at caustics; some might termin
at the auxiliary spacelike 2-surfaceB8.

C. Proof of the generalized Bousso bound under
the first set of hypotheses

Using the formula~2.14! and the definitionG5AA we
find that the integral~2.18! satisfies

I g<
1

8E0

1

dl ~12l! f ~l!G~l!2. ~2.20!

From the formula~2.19! for f (l), this can be written as

I g<2E
0

1

dl ~12l!G9~l!G~l!/4. ~2.21!

Now we have 0<G(l)<1, so we can drop the factor o
G(l) in the integrand of Eq.~2.21!. Integrating by parts and
using the fundamental theorem of calculus now gives

I g<
1

4
@G~0!2G~1!1G8~0!#. ~2.22!

Now
08403
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G~0!2G~1!512G~1!<12A~1!, ~2.23!

since G(0)51 and G(1)5AA(1)>A(1). Also the third
term in Eq.~2.22! is negative. It follows that

I g<
1

4
@12A~1!#, ~2.24!

as required.

D. Proof of the original Bousso bound under
the second set of hypotheses

First, note that without loss of generality we can assu
that the functions(l) is nonnegative. This is because we c
replaces(l) by us(l)u in the integral~2.18! without decreas-
ing the value of the integral, and the assumptions~2.15! and
~2.16! are satisfied by the functionusu if they are satisfied by
s, sinceuusu8u<us8u.

We start by fixing al1 in (0,1), the value of which we
will pick later. We then choose al0 in @0,l1# which mini-
mizes f in the interval@0,l1#; i.e., we choose al0 which
satisfies

f ~l0!5 min
0<l<l1

f ~l!. ~2.25!

@We assume that the functionf (l) is continuous so that this
minimum is attained#.9 We now show that

f ~l0!<
p2

2l1
2 @12A~1!#. ~2.26!

To see this, letu0(l) andA0(l) be the expansion and area
decrease factor that would be obtained by solving the R
chaudhuri equation~2.13! with f (l) replaced byf (l0) and
using the same initial conditionu0(0)5u(0). Since f (l)
> f (l0) for 0<l<l1, it is clear that we must have

A~l!<A0~l! ~2.27!

for 0<l<l1. But the explicit solution of the Raychaudhu
equation foru0(l) andA0(l) is

u0~l!52A2 f ~l0!tanFAf ~l0!

2
~l1l̂ !G ~2.28!

and

9The proof extends easily to the non-continuous case. If
choosee.0 and choosel0 so that

f~l0!5~11e! g.l.b.$ f ~l!u0<l<l1%,
then we can come as close as we please to satisfying the inequ
~2.55!. Hence the inequality~2.55! is satisfied.
5-7
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A0~l!5

cos2FAf ~l0!

2
~l1l̂ !G

cos2FAf ~l0!

2
l̂G , ~2.29!

wherel̂ is a constant in@0,1#. Applying the inequality~2.27!
at l5l1 now yields

A~l1!<A0~l1!<cos2FAf ~l0!

2
l1G . ~2.30!

Using the inequality sinx>2x/p which is valid for 0<x
<p/2, and the inequalityA(1)<A(l1), one can obtain the
upper bound~2.26! from Eq. ~2.30!.

Next, we split the integral~2.18! into a contributionI 1
from the interval@0,l0# and a contributionI 2 from the inter-
val @l0,1#:

I g5E
0

l0
sA1E

l0

1

sA5I 11I 2 . ~2.31!

In the formula forI 1, we drop the factor ofA which is <1,
insert a factor of 15dl/dl, and integrate by parts to obtai

I 1<I 1b1I 18 . ~2.32!

Here I 1b is the boundary term that is generated, given by

I 1b5s~l0!l0 , ~2.33!

and

I 1852E
0

l0
dl s8~l!l. ~2.34!

Similarly we insert a factor of 15d(l21)/dl into the for-
mula for I 2 and integrate by parts, which yields

I 25I 2b1I 28 , ~2.35!

where the boundary term is

I 2b5s~l0!A~l0!~12l0! ~2.36!

and where

I 285E
l0

1

dl@s8A~12l!1sA8~12l!#. ~2.37!

An upper bound on the total integral is now given by t
relation

I g<I 1b1I 2b1I 181I 28 . ~2.38!

We now proceed to derive bounds on the integralsI 18 , I 28 and
on the total boundary termI 1b1I 2b .

Consider first the total boundary term, which from Eq
~2.33! and ~2.36! is given by

I 1b1I 2b5s~l0!@l01~12l0!A~l0!#. ~2.39!
08403
.

SinceA(l0) andl0 both lie in @0,1#, this is bounded above
by s(l0). If we now use our assumption~2.15!, we find

I 1a1I 1b<Aā1 f ~l0!, ~2.40!

and using the bound~2.26! on f (l0) finally yields

I 1a1I 1b<
Aā1p

A2l1

@12A~1!#1/2. ~2.41!

Turn now to the integralI 18 . Inserting the assumption~2.16!
into the formula~2.34! for I 18 and using the formula~2.19!
for f (l) yields

I 18<22ā2E
0

l0G9

G
l dl. ~2.42!

SinceG is a decreasing function, we can replace the 1/G(l)
in the integrand by 1/G(l0). If we then integrate by parts
and use the fundamental theorem of calculus, we obtain

I 18<
2ā2

G~l0!
@G~l0!212G8~l0!l0#. ~2.43!

SinceG(l0)<1 this yields

I 18<2
2ā2G8~l0!l0

G~l0!
. ~2.44!

We now show that for alll in @0,1#,

2
G8~l!

G~l!
<

1

12l
@12A~1!#. ~2.45!

To see this, apply the mean value theorem to the functioG
over the interval@l,1#, which yields

G~1!2G~l!5~12l!G8~l* !, ~2.46!

for somel* in @l,1#. But sinceG9 is negative by Eq.~2.19!,
we haveG8(l* )<G8(l), and it follows that

2
G8~l!

G~l!
<

1

12lF12
G~1!

G~l!G
<

1

12l
@12G~1!#<

1

12l
@12A~1!#.

~2.47!

Here the last inequality follows fromG5AA and 0<G<1.
Using the relation~2.45!, our upper bound~2.44! for I 18 now
yields

I 18

12A~1!
<2ā2

l0

12l0
<2ā2

l1

12l1
. ~2.48!

Finally, we turn to the integralI 28 . The second term in the
formula ~2.37! for I 18 is negative and so can be dropped.
the first term, we use the formulaG5AA, the formula~2.19!
for f (l) and our gradient assumption in the form~2.16! to
obtain
5-8
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I 28<22ā2E
l0

1

dl G9G~12l!. ~2.49!

Now since 0<G(l)<1 for all l, we can drop the factor o
G(l) in the integrand. If we then integrate by parts and u
the fundamental theorem of calculus we obtain

I 28<2ā2@G~l0!2G~1!1~12l0!G8~l0!#. ~2.50!

Now sinceG(l0)<1 andG5AA we have

G~l0!2G~1!<12G~1!<12A~1!. ~2.51!

Also, the last term in Eq.~2.50! is negative. Hence we obtai
the upper bound

I 28<2ā2@12A~1!#. ~2.52!

Finally we combine Eq.~2.38! with the upper bounds~2.41!,
~2.48!, and~2.52! for the boundary termI 1b1I 2b and for the
integralsI 18 and I 28 to yield

I g<Aā1

p

A2l1

@12A~1!#1/212ā2

1

12l1
@12A~1!#

<FAā1

p

A2l1

12ā2

1

12l1
G @12A~1!#1/2. ~2.53!

Choosing the value ofl1 that minimizes this upper boun
yields

I g<FApAā1

2
1A2ā2G 2

@12A~1!#1/2. ~2.54!

Using the definition~2.17! of the the parametersā1 and ā2
together with the assumption~1.12! yields

I g<
1

4
@12A~1!#1/2<

1

4
, ~2.55!

as required. Note that our proof actually implies the inequ
ity

SL<
1

4
AB

1/2@AB2AB8#
1/2. ~2.56!

This inequality is stronger than the Bousso bound~1.5! but
weaker than the generalized Bousso bound~1.8!.

III. CONCLUSION

We have shown that the generalization~1.8! of Bousso’s
entropy bound is satisfied under the hypothesis~1.9!, and
that the original Bousso bound~1.5! holds under the hypoth
eses~1.10!,~1.11!. While these hypotheses are unlikely
represent relations in any fundamental theory, they appea
be satisfied for matter in a certain semi-classical regime
low the Planck scale. As such, our results rule out a la
class of possible counterexamples to Bousso’s conject
08403
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including cases involving gravitational collapse or oth
strong gravitational interactions. As with Bousso’s bound
the holographic principle is indeed part of a fundamen
theory, it may be that the hypotheses discussed here
provide clues to its formulation.

Note that we do not show in this paper that the entro
bounds~1.5! and~1.8! can be saturated by entropy 4-curren
sa satisfying our assumptions. However, consideration
simple examples shows that the bound~1.5! comes within a
factor of order unity of being saturated by currents satisfy
our second set of hypotheses~1.10! and ~1.11!. Also, a
simple scaling argument shows that the least upper boun
the ratioSL /AB for currents satisfying our assumptions is
the form a2F(a1a2

22) for some functionF. As a result, at
fixed a1a2

22 the least upper bound depends continuously
a2. This guarantees that there exist some values ofa1 and
a2, of order unity, such the entropy bound~1.5! is both sat-
isfied and can be saturated by entropy currents satisfying
inequalities~1.10! and~1.11!. A similar statement is true for
the bound~1.8! and the hypothesis~1.9!.

In our analysis above, we have taken the dimension
spacetime to be 4. However, in ann-dimensional spacetime
with n.2, the Raychaudhuri equation continues to take
form ~2.13!, except that the coefficient ofu2 on the right side
is now 1/(n22). Consequently, if we defineG5A 1/(n22) in
the n-dimensional case, an equation of the form~2.19! will
continue to hold with the factor of 2 on the right side r
placed by (n22). The remainder of our analysis can then
carried out in direct parallel with the 4-dimensional cas
Thus, with suitable adjustments to the numerical factors
pearing in Eqs.~1.9!, ~1.10!, and ~1.11!, all of our results
continue to hold for all spacetime dimensions greater tha
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APPENDIX: FORMULA FOR INTEGRAL
OVER NULL HYPERSURFACE

In this Appendix we derive the formula~2.7! for the inte-
gral

SL5E
L
saeabcd ~A1!
5-9
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of the entropy current over the null hypersurfaceL @cf. Eq.
~2.5! above#, using the coordinate system (l,xG)
5(l,x1,x2) defined in Sec. II.

We start by discussing the relation between tensors on
spacetimeM and tensors on the null surfaceL. We introduce
the notation that capital roman indicesA,B,C, . . . denote
tensors onL, in the sense of the abstract index convention
Ref. @17#. For any 1-formwa defined onL, we will denote
the pullback ofwa to L as

wA5PA
awa ; ~A2!

this defines the operatorPA
a . Sinceka is normal toL, the

pullback of ka vanishes, soPA
aka50. Using the null tetrad

introduced at the beginning of Sec. II, we can define a si
lar mapping between vectors onM and vectors onL. At any
point P in L, the projection operation

va→~db
a1 l akb!vb ~A3!

maps the 4-dimensional tangent spaceTP(M ) into the
3-dimensional tangent spaceTP(L). Thus one can write the
mapping~A3! asva→vA5Qa

Ava, which defines the operato
Qa

A . Note that the vectorl a is annihilated by the projection
operation~A3!, while ka and vectors perpendicular toka and
l a are unchanged. We definekA5Qa

Aka5(d/dl)A, which is
the tangent vector inL the generators ofL.

Consider now the integrand in the integral~A1!. It is pro-
portional to

sa k[al becf d] , ~A4!

where ea and f a are spacelike vector fields such th
$ka,l a,ea, f a% is an orthonormal basis. When we pullback t
3-form ~A4! to L, all the terms where the index onka is free
and not contracted withsa will be annihilated. Hence withou
loss of generality we can replacesa with 2(sbkb) l a. Thus
we obtain from Eqs.~A1! and ~2.6! that

SL5E
L
s êabc , ~A5!

wheres52saka and where the 3-formêabc is defined in Eq.
~2.6! above.

As a tool for evaluating the integral~A5!, we define an
induced connectionDA on L by

DAvB5PA
c Qd

B ¹cv
d ~A6!

wherevd is any vector field onM with vA5Qb
Avb. One can

check that this formula defines a derivative operator onL.
Next we note that the pullbackêABC of the 3-form~2.6! is
parallel transported along each null generator ofL with re-
spect to the connection~A6!:

kADA êBCD50. ~A7!

This follows from the fact thatka, l a andeabcd are parallel
transported along each generator with respect to
08403
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4-dimensional connection.10 Next, consider the Lie deriva
tive LkW ê of êABC with respect tokA. Since the result is a
3-form we must have

~LkW ê !ABC5h êABC , ~A8!

for some scalar fieldh. We can define a upper index volum
form êABC by the requirement that

êABCêABC53!. ~A9!

@A definition is terms of raising indices is inapplicable he
since there is no natural non-degenerate metric onL.# Now
contracting both sides of Eq.~A8! with êABC and using Eq.
~A7! yields

h5DAkA5¹aka, ~A10!

which is just the usual expansionu.
Next, we define a 3-formẽABC on L by demanding that it

coincide with êABC on the 2-surfaceB, and that it be Lie
transported along the generators ofL. If we write êABC

5zẽABC , wherez is a scalar field onL, it follows from Eq.
~A8! with h5u that

LkWz5uz. ~A11!

Solving this equation using the definition~2.3! of the area-
decrease factor yieldsz5A. Thus we see that the geometr
cal meaning of the factorA is that it is the ratio between th
Lie-transported 3-volume formẽABC and the parallel trans
ported 3-volume formêABC , where in both cases one star
from the 2-surfaceB.

Consider now the specific coordinate system (l,xG)
5(l,x1,x2). In this coordinate system the fact thatẽABC is
Lie transported along the generators translates into

]

]l
ẽlx1x2~l,x!50, ~A12!

so that

ẽlx1x2~l,x!5 ẽlx1x2~0,x!5AdethGL~x!, ~A13!

whereẽlx1x2(l,x) denotes one of the coordinate compone
of the tensor ẽABC in the coordinate system (l,xG), x
[(x1,x2) as before, andhGL is the induced 2-metric onB. It
follows that

êlx1x2~l,x!5A~l,x! AdethGL~x!. ~A14!

Combining this with the formula~A5! for the entropy flux
finally yields the formula~2.7!.

10Note however that unlike the situation in the four dimension

setting, in generalDAêBCDÞ0; i.e., êABC is not covariantly con-
stant with respect toDA .
5-10
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