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Traversable wormhole
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The Central Astronomical Observatory at Pulkovo, St. Petersburg, 196140, Russia
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A class of static Lorentzian wormholes with arbitrarily wide throats is presented in which the source of the
weak energy condition violations required by the Einstein equations is the vacuum stress-energy tensor of the
neutrino, electromagnetic, or massless scalar field.

PACS number~s!: 04.20.Gz, 04.62.1v
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I. INTRODUCTION

A wormhole is a ‘‘tunnel’’ connecting a part of the Un
verse with another part sufficiently remote, or even unc
nected~but for the tunnel! with the former one. A wormhole
through which a signal can be transmitted is cal
traversable.1 Initially traversable wormholes~TWs! were
presented just as a funny tool for teaching general relati
@1#, but soon it became clear that they play a large role in
least two~allied! fields each of considerable interest.

Time machines. It is ~or was before Ref.@1#! popular
opinion that time machines are impossible. Intensive t
year discussion showed that at present this is just a matt
belief—decisive arguments were found neither for n
against time machines. If, however, TWs exist the idea
chronology protection becomes almost untenable.

‘‘Faster-than-light’’ travel. As was shown in Ref.@2# lo-
cal causality does not prevent one from modifying the me
of one’s world so that to return from a trip sooner than
photon~in the unmodified world! would have done it. Much
as with time machines wormholes are notnecessaryfor
faster-than-light travel, but it seems to be much more f
sible if TWs exist.

At present we do not know whether TWs exist in natu
On the one hand, it is not impossible that wormholes
most common things. In the absence of~restrictive enough!
observational bounds~see Sec. VII! we may well speculate
that they are 10~or, say, 106) times as abundant as stars. O
the other hand, the possibility of their existence has b
doubted on theoretical grounds. The point is that to be
versable a wormhole must satisfy at least the following
quirements:~I! It must be sufficiently long-lived to be passe
by a causal curve;~II ! it must bemacroscopic. Wormholes
are often discussed~see Ref.@3#, for example! with the ra-
dius of the throat of order of the Plank length. Such a wor
hole might be observable~in particular, owing to its gravita-
tional field!, but it is not obvious~and it is a long way from
being obvious, since the analysis would inevitably invol
quantum gravity! that any signal at all can be transmitte
through such a tunnel.

Problems arise if we want a TW to be a solution of t
Einstein equations since the geometrical thus far condi
~I! becomes then a restriction on the properties of the ma

1This definition is slightly less restrictive than that in Ref.@1#.
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filling the TW. The matter obeying this restriction is calle
exotic @4#. Strong arguments suggest that the exotic ma
must violate the weak energy condition~WEC! @1# and most
likely ~see the next section, though! the averaged null energ
condition~ANEC! @5#. Therefore it is generally believed tha
the realistic classical matter cannot be exotic. A possible w
out @1# is to invoke quantum effects to maintain a wormho
In particular, in semiclassical gravity the contribution of
quantum field to the right-hand side of the Einstein equati
is commonly taken~see Ref.@6# for discussion and refer
ences! to be Ti j

Q[^CuT̂i j
QuC& ren, where uC& is the quantum

state of the field andT̂i j
Q is an operator depending on th

background metric. It is known thatTi j
Q violates the Weak

energy condition in some situations. Wormholes are a m
suitable place for seeking such situations and so an ele
idea appeared@7# to look for such a wormhole that its metri
g is just the solution of the Einstein equations withTi j

Q@g# as
a source~a ‘‘self-maintained wormhole’’!. A wormhole of
this type was found, indeed@3#.2 However, its throat turned
out to be of the Planck scale, i.e., nontraversable. This re
coupled with the arguments from Refs.@6,9# may give the
impression that conditions~I! and~II ! are incompatible—the
quantum effects can produce the exotic matter but only
microscopic amounts insufficient for supporting a mac
scopic wormhole. In the present paper we argue that thi
not the case: we present such a class of static wormh
with arbitrarily large throats that all necessary violations
the WEC~and the ANEC! are produced by the vacuum fluc
tuations of the neutrino, electromagnetic, or massless con
mally coupled scalar fields.

II. GEOMETRY OF THE WORMHOLE

The ‘‘definition’’ of a wormhole given in the introduction
is too vague for our purposes and now we have to mak
somewhat more specific~surprisingly, there is no commonly
accepted rigorous definition of a wormhole yet!.

The space around us is more or less flat. The easiest
to reconcile this with the presumed existence of a wormh
is to require that the gravitational field of the wormhole fa
off with distance~no matter how fast! and that we just live
sufficiently far from it. It is convenient to incorporate th
requirement into the definition of a wormhole@10# and to

2Though the numerical method applied there is disputable@8#.
©2000 The American Physical Society28-1
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formulate it as follows: a wormhole is a spacetime conta
ing two increasingly flat regions~note that by a wormhole
the wholespacetime is meant now, not only the tunnel!.

Remark 1. Wormhole-type objects such as those cons
ered in Ref. @11# are not wormholes in this sense. No
strictly speaking, are the spacetimes with tunnels connec
distant regions of a ‘‘single’’ universe.

Remark 2. In addition to being flat the real space is mo
or less empty. So it seems reasonable to require that
increasingly flat regions be also ‘‘increasingly empty.’’ Th
specific formulation as applied to our case will be given b
low @see item~iii ! in Sec. IV#.

To see what is meant by ‘‘increasingly flat’’ consider th
Morris-Thorne~MT! wormhole@1# which has the metric

gMT : ds252e2F~r !dt21„12b~r !/r …21dr2

1r 2~du21sin2 udw2!,

whereF, b/r and all their derivatives→0 at r→6`. When
r→6` this metric tends ~component-wise! to the
Minkowski metric, all curvature invariantsand all gravita-
tional forces@as measured by their action on a test particle
a system resting with respect to the system (t,r ,u,w)# tend to
zero. So, it seems that whatever experiment one perform
a cubeQa[(x0

i ,xi,x0
i 1a, xi5t,r ,ru,rw sinu) the differ-

ence between the results of this experiment and that in
case ofF5b50 ~the flat space! will tend to zero asr 0
grows ~with a constant!. These properties justify the nam
‘‘increasingly flat’’ for the MT wormhole. As for the mean
ing of this term in the general case we note the following

~1! We discriminate ‘‘increasingly flat’’ from ‘‘asymptoti-
cally flat’’ if the latter is taken to mean ‘‘asymptoticall
simple and empty’’@12#. Among other things, asymptotica
flatness implies some restrictions~apparently unjustified in
the case at hand! on howa spacetime becomes flat. Consid
for example, the metric

gF : ds25@11F~r !#2@2dt21dr21r 2~du21sin2 udw2!#.

If F51/Ar at large r ,gF becomes there just a variety o
gMT . So, we wish to call this spacetime increasingly fl
However, it is not asymptotically flat3 ~it is even not asymp-
totically simple! since V¹C2(M̄ ) ~see Ref.@12# for nota-
tion!. We could relax the requirements on smoothness oV
so that to incorporate this case, but if we recognize t
spacetime as increasingly flat why should not we do so w
say,F5sinr/r. But in this latter case evenV¹C1(M̄ ) and
so the condition¹Vu]MÞ0 fails.

Note that the proof in Ref.@5# of the topology censorship
theorem relies on asymptotical flatness of the spacet
~specifically, on the structure of its conformal infinity! and so
a wormhole is conceivable for which this theorem is inapp
cable.

~2! A criterion for increasing flatness must not involv
increasingly large portions of the spacetime~e.g., the edgea

3In contrast, say, togF with F51/r .
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of the above mentioned cube must not grow withr!. Even
increasingly weak gravitational forces, when integrated o
increasingly large regions, can give a nondecreasing res

~3! On the other hand, it is hard, if possible, to formula
a relevant point-wise criterion. Given a point it is easy to s
whether or not a space isflat there, but in the pseudorieman
nian case it is unclear what space can be called ‘‘nearly
in the point.’’ Examples are known@13# whenall curvature
scalars vanish in a pointP even though the spacetime is n
flat in it. Moreover, for any given«, E two orthonormal bases
can be found in this point, such that all components of
Riemann tensor are bounded bye in one of them, while in
the other some of them are greater thanE.

The spacetime~M,g! considered in the present article
R23S2 with the metric

g: ds25V2~j!@2dt21dj21K2~j!~du21sin2 udw2!#,

~1!

where V,K are smooth positive even functions. WhenV
behaves appropriately atj→` the spacetime~M,g! is a
wormhole. To see this consider the following specific cas

K~j.J!5K0 , V~j.J!5V0eBj ~2!

~J is a positive constant!. Introduce the coordinatesr,t

r[V0B21eBuju5B21V, t[Btr

in the neighborhoodutu,T @T is an arbitrary constant smalle
thanr (J)# of the surface@t5t50, r .r (J)#. In these new
coordinates the metric~within the neighborhood! takes the
form

ds252dt212t/rdtdr1@12~ t/r !2#dr21~BKr !2

3~du21sin2 udw2!.

It exhibits now all the nice properties~as the cubeQa moves
to largerr, the metric inside it~written in appropriate coor-
dinates! uniformly tends component-wise to the Minkows
metric, etc.! that inspired us to call the MT metric increa
ingly flat. And since the metric~1! is static the same is true
for a vicinity of any surface (t5const) foliatingM. There-
fore, if Eq. ~2! holds we consider the whole regionj.J as
increasingly flat and the spacetime~M,g! as a wormhole.

Notation. Below we use circles to mark quantities relat
to the metricg̊[V22g and hats to indicate components
tensors in the normalized coordinate basis.

III. RESTRICTIONS IMPOSED BY THE WEC

As mentioned above the vacuum expectationTQ of the
stress-energy tensor of a quantum field need not obey
WEC. However, for a given metricTQ is not arbitrary~we
can vary onlyuC&!. So, the requirement thatTQ be the only
source of the WEC violations still imposes~when coupled
with the Einstein equations! restrictions on the possible form
of V. We claim that these restrictions do not prevent t
metric from being of the desired type. To prove this w
8-2



e

ou
in

e

e

-

f a

e
der

we

lly

ro-
of

ter.

us
are
of

TRAVERSABLE WORMHOLE PHYSICAL REVIEW D62 084028
express these restrictions in the form of inequalities and
the subsequent sections show that they have appropriat
lutions even forV andK corresponding to a wormhole.

Let us write down the Einstein equations separating
the termTQ in the total stress-energy tensor and neglect
the interaction between our field and the other matter:

1

8p
Gi j 5Ti j

Q1Ti j
C .

As we do not require the wormhole to be self-maintained,TC

need not be zero. It should however satisfy the WEC~de-
scribing thus the conventional classic matter!. So, in an or-
thonormal basis diagonalizingTi j

C the following inequalities
must hold:

1

8p
G002T00

Q .0,
1

8p
~G001Gj j !2~T00

Q 1Tj j
Q!.0,

j 51,2,3. ~3!

Now let us specify the quantum stateuC&, which is nec-

essary for findingTQ. Let uC̊& be a vacuum state in th
~unphysical! spacetime (M ,g̊). It does not matter exactly
what vacuum we choose, we only require that@in agreement
with the symmetries of (M ,g̊)# T̊

ı̂ ĵ

Q
5diag(T0,T1,T2,T2)

whereTi are some bounded functions.4 Let us chooseuC& to
be the state@in the physical spacetime~M,g!# conformally

related touC̊&. Then the following relation holds@14# for the
neutrino, electromagnetic~in dimensional regularization!,
and massless scalar~conformally coupled! fields:

T
ı̂ ĵ

Q
5V24T̊

ı̂ ĵ

Q
28aF ~Ca

ı̂b ĵ ln V! ;a
b 1

1

2
RabCaı̂b ĵ ln VG

1b@~4RabCaı̂b ĵ22Hı̂ ĵ !2V24~4R̊abC̊a ı̂b ĵ22H̊ ı̂ ĵ !#

2
1

6
g@ I ı̂ ĵ2V24I̊ ı̂ ĵ #, ~4!

where

Hi j [2Ri
aRa j1

2

3
RRi j 1S 1

2
Ra

bRb
a2

1

4
R2Dgi j ,

I i j [2R; i j 22RRi j 1S 1

2
R222R;a

aDgi j ,

and a, b, and g are constants characterizing the field. W
shall restrict them only by requiring thatg.0, which holds
for all the fields listed above.

4They are related by the conformal anomaly, but we shall not
this fact.
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Substituting Eq.~4! in Eq. ~3! and expressing the geo
metrical quantities in terms ofV, andK yields5 ~due to the
spherical symmetry the inequalities forĵ 52 and ĵ 53 coin-
cide!

1

8p
V2~K2222m2v223Æ224Æv22n!

22g@m91m8~4Æ2v!#2T02L1 ln V2P1.0,
~5!

1

4p
V2~v22m2n2Æ2!22g@m91m8~2Æ24v!12m2#

2~T01T1!1L2 ln V1P2.0,
~6!

1

8p
V2~K222n22Æ222Æv!22gÆm82~T01T2!

1L3 ln V2P3.0,
~7!

where

Æ[K8/K, v[V8/V, n[Æ8, m[v8,

Li5Li(K
22,Æ,n ( l )), andPi5Pi(K

22,m,v,Æ,n ( l )) are some
polynomials of their arguments (n ( l ) are the derivatives ofn:
l 50,1,2!. Each term of these polynomials is a product o
constant~a, b, or g! and a factor~such asmK22,n9, etc.! of
dimensionj24. It is important in what follows thatL2 and
P2 do not contain the terms proportional toK24 and tom2,
respectively.

IV. MATHEMATIZATION

Now we are in position to formulate mathematically th
physical problem in discussion. Namely, we shall consi
the existence of traversable wormholes possible so far as
prove the existence of the functionsV(j),K(j) such that the
following is true.

~i! They are smooth, even, positive, and asymptotica
K;const,V;AeuBju @so that the metric~1! describes a worm-
hole#.

~ii ! The quantity min(VK), which is the radius of the
wormhole’s throat, is large and thus the wormhole is mac
scopic ~what should be regarded as ‘‘large’’ is a matter
taste; we shall demonstrate that it can be madearbitrarily
large!.

~iii ! The functionsT
ı̂ ĵ

Q
defined by Eq.~4! tend to zero

whenj→`. This condition is to rule out the situation~con-
ceivable due to the WEC violation! when neitherTQ, norTC

fall off, they only compensate each other better and bet

e

5We omit the relevant straightforward calculations, since they
very tiresome~the work can be considerably lightened by the use
the software packageGRTENSORII @15#!.
8-3
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S. KRASNIKOV PHYSICAL REVIEW D 62 084028
Such a spacetime could hardly describe a wormhole at lea
wormhole of the noncosmological size~see remark 2!.

~iv! The inequalities~5!–~7! hold.
The remainder of the paper is just the solution of t

mathematicalproblem. It is more or less easy to find anV
with the desired properties near the throat@in fact, just a
sinusoid will do forv(j) here# or at largeuju ~the asymptotic
regions!. The hard part is to findV satisfying the above
conditions over the whole range ofj including the interme-
diate region, where the wormhole ‘‘flares out’’~see Ref.@1#!.

In the next section we consider a particular solution of E
~6! on the segment~21,1!. Later, in Sec. VI we shall deform
such a solution at largej so that to satisfy all the require
ments formulated above. To make this deformation poss
it is crucial that some fact@see Eq.~42!# takes place in the
intermediate regionj;1. So, we prove~this takes up the
bulk of the next section! that K can be chosen so that Eq
~42! holds indeed.

Remark 3. The inequalities~5!–~7! contain a few dozen
terms each. To handle such formidable expressions we s
first, combine the initial valuesV(0),V9(0) into somee0
and regarde0 as small parameter~that is to prove anything it
will suffice to prove it for sufficiently smalle0). Second,
instead of examiningV(j) we shall mostly considery(m),
where ~up to some constant factors! y is ln- V and m is
ln9 V. These two means lighten the analysis considera
though at the cost of possibility of finding an explicit expre
sion for the thus foundV(j).

V. THE TUNNEL OF THE WORMHOLE

Before proceeding to examination of the solution of E
~6! mentioned above let us introduce some new functio
more convenient in handling inequalities~5!–~7! thanV, Æ,
etc. Denote byjn thenth zero ofm8 ~see Fig. 1!. For eachn
such thatmn[m(jn)Þ0 ~for example, this will hold forn
50) let

hn[
A8pgumnu

V~jn!
, en[

8pgumnu
V2~jn!

and define the following set of dimensionless functions:

w~n!5hn
21v, l~n![hn

22~n1Æ2!, k~n![hn
21Æ,

m~n![hn
22enm, E~n![~8pg!21hn

22en
2V2,

FIG. 1. jn is the abscissa of thenth point of inflection ofv(j).
At a pointj* nearjn0

,v(j) corresponding toy ~shown by the thick
line! deviates from that corresponding toỹ ~see Sec. VI!.
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y~n![hn
23en

2m8.

Here and subsequently we use an index in parentheses~n! to
mark functions and an index without parentheses to m
constants, as a rule we shall writezn for z(n)(jn) ~from here
on by z we mean ‘‘any of the dimensionless function
above,’’ that is z5w, k, y, etc.!. Note that E(n)(j)
5@V/V(jn)#2 andm(n)(j)5m/umnu and thus

mn[m~n!~jn!561, En[E~n!~jn!51.

Remark 4. All these indexed functions change just by
constant factor when the index changes. Such a great num
of like functions will, however, be convenient later, when w
consider each segment (jn ,jn11) separately. On each suc
interval we shall use only the functions with the correspon
ing indexes—z(n) andz(n11) .

In new notation inequality~6! can be rewritten as
follows:6

2e0h0
21y~0!8 2Em1e0@E~v22l!1y~0!~4w22k!22m2#

2e0
3h0

24@T12T01L2~K22,Æ,n~ l !!ln V

1P2~K22,e0
21m,h0w,Æ,n~ l !!#.0. ~8!

The polynomialsP2 ,L2 do not contain the terms generate
by the underlined arguments.

Consider the following equation:

2e0h0
21y~0!8 2Em1e0@E~w22l!1y~0!~4w22k!22m2#

2e0
3/2x0

250 ~9a!

V~0!5V0 , V8~0!5V-~0!50, V9~0!5V0m0Þ0,

~9b!

wherex0 is a nonzero constant. Though written in terms oy
Eq. ~9! is in fact an ordinary differential equation onV(j)
~with initial conditions chosen so thatV is a smooth7 even
function!. A solutiony of Eq. ~9a! together withh, e, deter-
mines@when the initial data are fixed by Eq.~9b!# V via the
equation

~ ln V!-5h3e22y. ~10!

The left hand side of Eq.~9a! differs from that of Eq.~8!
only by that the term in the lower line is replaced with th
term e0

3/2x0
2. So, it is clear that ify(j,e0) satisfies Eq.~9a!

and the correspondingm,w are uniformly bounded~we shall
see that this is the case!, theny(j,e0) with sufficiently small
e0 , ~or, more precisely, with

6We omitted indexes~0! in many terms of this inequality, as wil
often do below. To avoid confusion note that all indexed terms
any expression have the same index~with or without parentheses!
unless otherwise is explicitly indicated.

7At least untilVÞ0, which holds everywhere below.
8-4
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TRAVERSABLE WORMHOLE PHYSICAL REVIEW D62 084028
e0
3/2h0

24 sufficiently small,

sinceh0 will also be treated as a small parameter! satisfies
Eq. ~8! as well, which means thatV satisfies Eq.~6!. This
fact will enable us to take a solution of Eq.~9! to be the
desired conformal factor atjP(0,1). Our method of extend
ing the latter to largerj leans~as was already mentioned!
upon some property@see Eq.~42! below# of solutions of Eq.
~9! and it is essentially the proof of this property that cons
tutes the remainder of the section.

First let us change to new coordinates. We want to c
sider all functionsz(n) as functions ofm(n) . Of course this
cannot be done globally~since dm(n) /dj vanishes in each
jk), and so we shall do it only for the two interva
(jn21 ,jn) and (jn ,jn11) surroundingjn . Thus for eachz(n)
we define two new functions:

2z~n!~m![z~n!@j~m~n!!# at jP~jn21 ,jn!,

1z~n!~m![z~n!@j~m~n!!# at jP~jn ,jn11!.

These two definitions look similar, but recall thatj(m(n)) in
the upper line is not the same as in the lower.

Remark 5. We write 1z(n)(m) instead of 1z(n)(m(n)),
because we regardm(n) with different n as functions map-
ping j into the sametarget space. This, in particular, allow
us to draw pictures similar to Fig. 2 and to write formul
such as Eq.~27!.

It is easy to write downE and w as functions ofm ~we
omit the superscripts1 and 2 when all terms in an expres
sion have the same superscripts and it does not m
which!:

E~n!~m!5expH 2eE
mn

m w~n!dm

y~n!
J , w~n!~m!5wn1E

mn

m mdm

y~n!
,

~11!

wherewn[w(n)(jn). Similarly, for eachjP(jn21 ,jn11)

j~m!5jn1enhn
21E

mn

m dm

y~n!
. ~12!

Sinceeh21y85yy,m Eq. ~9a! can be equivalently rewritten
as the following set of equations iny(n)(m):

2yy,m2Em1e@E~w22l!1y~4w22k!22m2#2e3/2x2

50, ;n, ~13!

where for brevity we writey for y(n)(m),e for en , etc., and
where xn[x0(en /e0)3/2(hn /h0)24. To make the system
~13! complete and equivalent to Eq.~9! we must fix the
initial data for n50 so that Eq.~9b! would hold, and for
eachnÞ0 so that to make the resultingV smooth. We shall
do it as follows. Consider a pointj!P(jn ,jn11) such that
mn(j!)5mn11(j!)50. V and its derivatives inj! can be
written in terms of quantities1z!n[1z(n)(0) as well as in
terms of 2z!n11[2z(n11)(0). Thus the requirement thatV
should be smooth can be presented in the form of the foll
ing relations:
08402
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-
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1E!nhn
2en

225
V2~j!!

8pg
52E!n11hn11

2 en11
22 , ~14a!

1w!nhn5v~j!!52w!n11hn11 , ~14b!

1y!nhn
3en

225m8~j!!52y!n11hn11
3 en11

22 .
~14c!

Now given initial data forn50, from Eq.~14! we can find
them for all othern.

It is easy to solve Eq.~13! for e50:

y5qA12m2, where q[sgny ~15!

@i.e., y(m) is just a semicircle# and

w5wn1qE
mn

m m

A12m2
dm5wn2qA12m2. ~16!

In what follows, however, we shall be interested in behav
of w at j;1, where corrections due to nonzero~though
small! e may not be small. To find these corrections we sh
employ a perturbational scheme.

Let us introduce the function

f ~m![
y2

12m221. ~17!

Now Eq. ~13! can be rewritten as

f 5T@ f #[
2

12m2 E
mn

m

(
i 51

4

Ai@ f #dm. ~18!

Here the operatorsAi are defined by

A1@f#[2m~E@f#21!,

A2@f#[e~w2@f#E@f#2l@f#E@f#22m2!,

A3@f#[eqA~f11!~12m2!~4w@f#22k@f#!,

A4@f#[2e3/2x2,

and

E@f#[expH 2eqE
mn

m w@f#

A~f11!~12m2!
dmJ , ~19!

w@f#[wn1qE
mn

m m

A~f11!~12m2!
dm. ~20!

Let Ba be the space

$fPC`@a,mn#, ifi<1/2%, where

ifi5 sup
@a,mn#

ufu, aP~2mn ,mn!. ~21!

It can be shown thatBa is a complete metric space~with
respect to the metric induced by the normi i ! and whene is
8-5
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sufficiently small T is a contraction operator inBa with
T(Ba),Ba . So, whene→0, f uniformly tends toT@0# and
thus

f 5
2

12m2 E
mn

m

(
i 51

3

Bidm1o~e!, ~22!

whereBi are the linear~in e! parts ofAi :

B152eFm22umu2qwnS m arcsinm2
p

2
umu D G ,

B25e~w2@0#2ln22m2!,

B35eqA12m2~4w@0#22kn!

@as usualln[l (n)(jn), kn[k(n)(jn)#. Thus@see Eq.~17!#

y5qA12m21
f

2
qA12m21o~e!. ~23!

It can be proven8 that whenen is smallen11 is also small.
More specifically@see Eq.~31! below# en115en1O(en

2).
This means that by choosing smalle0 one can makeen small
and Eqs.~23!,~22! valid for all n at once9 ~and so we shall
sometimes speak of just ‘‘smalle’’ !.

An important consequence of Eq.~15! is that

mn1152mn . ~24!

Also

jn115jn2peh21qmn1o~e! ~25!

and hence

q52mn for jP~jn ,jn11!. ~26!

Equations~23!, ~24!, and ~26! show that as long asen re-
mains small a point moving with increasingj rotates clock-
wise in an approximately circle path on the plane~y,m! as
depicted in Fig. 2.

Our next concern is the behavior of the quantitywn when
n increases. Let us introduce the symbold ~for quantities
both with and without superscripts!:

;z dz[~2 !zn112 ~1 !zn .

dE! can be found from Eqs.~16!,~19!

dE!'22eqE
mn

mn11 w@0#

A12m2
dm522emn~22qpwn!,

~27!

8By first taking a in Eq. ~21! to be close to2mn and second

noting that on (2mn ,a) by Eq. ~13! uy28u.11O(e).
9At least as far as we deal withn,N5O(e0

21).
08402
where' means ‘‘is equal up to terms of ordero(e). ’’ From
Eq. ~22!

d f !'22E
mn

mn11

(
i 51

Bidm

522emnF612l2qS 3p

2
wn2pkD22wn

2G . ~28!

Finally, by Eqs.~20! and ~23!

w!'wn2q2
q

2 E
mn

0 f mdm

A12m2

'wn2q2
q

2
f !1qE

mn

0 1

A12m2 (
i 51

Bidm ~29!

and hence

dw!'dwn2
q

2
d f !2qE

mn

mn11 1

A12m2 (
i 51

Bidm. ~30!

It follows from Eq. ~14! that

2
dh

h
22

de

e
1

dE!

E!
'0, ~31a!

dh

h
1

dw!

w!
'0, ~31b!

3
dh

h
22

de

e
1

dy!

y!
'0, ~31c!

whence, in particular,

dh

h
'

dE!

E!
2

dy!

y!
'dE!2

1

2
d f ! ~32!

and

dw!'2~wn2q!S dE!2
1

2
d f !D . ~33!

Thus @see Eqs.~27! and ~28!#

dh

h
'emnF212l1qS p

2
wn1pkD22wn

2G . ~34!

FIG. 2. The arrows are directed in the sense of increasingj. The
dashed line depicts1y(n0) ~see Sec. VI!.
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Also combining Eq.~30! with Eq. ~33! and taking the inte-
grals we get

dwn'2emn~22qpwn!~wn2q!2wnemnF612l

2qS 3p

2
wn2pkD22wn

2G2emnqF2S 3p

2
141pl D

12q~pwn22k!1pwn
2G . ~35!

Let us introduce the symbolD to describe how a quantity
changes in one ‘‘period’’~see Fig. 1!:

;z Dz[zn122zn .

Clearly @see Eqs.~24! and~26!# Dz5223~the coefficient at
mnq in dz). So, by Eqs.~34! and ~35! we have

Dh/h'2ep~wn12k!,

Dwn'2ep~312l22wnk23wn
2!,

and by Eq.~25!

Dj'ep•2h21,

which gives

2Dh/hn'2hn~wn12kn!Dj, ~36a!

2Dwn'2hn~312ln22wnkn23wn
2!Dj. ~36b!

Define smooth functionshs(j),ws(j) to be the solutions
of the system

2hs852~wshs
212Æhs!, ~37a!

2ws852hs~312ls22wsks23ws
2!, ~37b!

hs~0!5h0 , ws~0!50,

where ks[hs
21Æ, ls[hs

22(n1Æ2), and jP@0,1#. As we
shall seehsÞ0 on this interval and so fore tending to zero,
hn uniformly tend tohs(jn) ~and the same forwn andws).

The system~37! can be simplified by rewriting in terms o
functionsk5Khs , vs[wshs :

2k852vsk, ~38a!

2vs852vs
223K22k212, ~38b!

k~0!5k0PK~0!h0 , vs~0!50,

So far we have not specifyK in any way. Let us now fix it.
We choseK to be a smooth even function with

K5H K0 cosj at j,1,

K0 at j.2
~39!
08402
(K0 is a positive constant!. Then forj,1, h0→0 the solu-
tions of Eq.~38! are

vs5tanj1o~1!, k5k0 cos1/2j1o~k0!, ~40!

that is,

ws5h0
21@sinj cos1/2j1o~1!#, hs5h0 cos21/2j1o~h0!.

~41!

Thus, whenh0 and e are sufficiently smallws(1) becomes
greater than 1 and so doeswn for ~at least! a few consecutive
values ofn. It follows then@see Eq.~16!# that suchn0 exists
that

jn0
511O~e!, mn0

521, 1w~n0!.0. ~42!

VI. CONSTRUCTION OF THE WORMHOLE

Let ỹ be a function of the kind considered in the previo
subsection@that is a solution of Eq.~9! with h0 and e0 so
small that both Eqs.~6! and~42! are satisfied# and lety be the
function defined by

y~j![ ỹ~j! at j<jn0
, 1y~n0!~m![z~m!1ỹ~n0!~m!.

~43!

Here z is a smooth function subjecting to the following re
quirements:

z is convex, z~0!50, z~m,m* !51, ~44a!

andm* ~i.e., the point at whichy begins to deviate fromỹ,
see Fig. 2! satisfies

um* u,
1

2
w* y* ~44b!

@for anyz we denote1z(n0)(m* ) briefly by z* and alle, h, n,

etc., in this section are, in fact,en0
, hn0

, n (n0) , etc.#.
We claim that the metric~1! with V~j! defined@see Eq.

~10!# by y,e0 ,h0 describes a desired wormhole. To pro
this we must show~see Sec. IV! that suchV~j! ~A! has
appropriate@see conditions~i!,~iii !# asymptotic behavior a
j→`, ~B! satisfies the system~5!–~7!, and~C! provides the
large throat to the wormhole.

A. Large j

We know from Eq.~42! that w* .0. On the other hand
due to Eq.~44! for any mP@m* ,0#

uw~m!2w* u, max
~m

*
,m!

uw,mu5~ min
~m

*
,m!

uy/mu!21

,~y* min
~m

*
,m!

uz/mu!215U y*
m*

U21

,
1

2
w* .

~45!

So,
8-7
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w is positive and bounded on@m* ,0#. ~46!

By Eq. ~12! j→` whenm→0 ~recall thaty is smooth in 0!.
Also

E5expH 2eE
21

m @w`1O~m!#dm

y J 5cEe2hw`jeO~m!,

~47!

wherecE , w`[w(0), andcm ~in the next formula! are some
positive constants. Thus the resulting metric differs from t
considered in Sec. II, only by the conformal factoreO(m).
But it is easy to see from Eq.~12! that

m52cmey,m~0!e21hj@11O~m!#. ~48!

E is proportional tor 2 and hence comparing Eq.~47! with
Eq. ~48! we see that, at larger,

m;2cE
21cmr y,m~0!e21w`

21
.

So @recall thaty,m(0),0#, whene is small enough, the fac
tor differs from 1 by a function falling~at least! exponen-
tially with r and hence Eq.~1! still describes a wormhole.

From Eqs.~16! and~41! it is evident thatv~j! is bounded
~say,uvu,2 whenh0 is small! on (0,jn0

), and from Eq.~45!

it is clear that the same is true for allj. The derivativesm,
m8, m9 of v obviously are also bounded. It follows@to verify
note that the left hand sides of Eqs.~5!–~7! are the left hand
sides of Eq.~3! multiplied by V4# that the components o
both TC and TQ fall off at infinity ~at least asV22 and
V24 ln V, correspondingly!. Thus condition~iii ! of Sec. IV
is fulfilled.

B. The WEC

At 0<j<j* the functiony satisfies Eq.~8! @since being
equal toỹ on this segment it satisfies Eq.~13!#. So, it only
remains to check that1y(n0)(m.m* ) satisfies it too, for
which it would suffice@see Eq.~13!# to prove that the in-
equality

Y@yy,m1Em2e@E~w22l!1y~4w22k!22m2##<0,
~49!

holds, where we have introduced a new symbolY: for any
expressionQ(y) we denote byY@Q# the difference

Y@Q#[Q~y!2Q~ ỹ!.

It is easy to show that asm→m* 10

Y@y#5~z21!y,

Y@yy,m#;y
*
2 z ,m ,

Y@w#,Y@E#,Y@l#,Y@k#5o~12z!.

These assessments are uniform bye. Thus on some segmen
m* <m<m** the inequality ~49! holds whene is suffi-
ciently small~whene is smaller than some«!.
08402
t

Further, for sufficiently smallumu ~say, m*** ,m<0)
bothl50 andk50. Therefore, ifm*** is chosen appropri-
ately, the term in the inner brackets in Eq.~49! is positive on
(m*** ,0) „sinceE is positive and bothy andm tend to zero
while w @by Eq. ~46!# and E do not…. Hence for anye,«8
Eq. ~49! holds on (m*** ,0), too.

Finally, for mP(m** ,m*** ).

Y@yy,m#5 ỹ2z ,mz2~z211!ỹ,mỹ,0 and Y@E#.0.
~50!

So ~again, whene is small enough!

mP~m** ,m*** !, Y@yy,m1Em#,c,0, where

cÞc~e!.

Summarizing, whene0 is sufficiently small inequality~49!
holds for anym, and hence@see Eq.~13!# y satisfies Eq.~8!.

We have proved thatV satisfies Eq.~6!. Now let us verify
that by choosing appropriateK0 , h0 and e0 ~the two latter
still being ‘‘sufficiently small’’! the remaining inequalities
~5!,~7! can be satisfied as well. Indeed,

LHS~5!2LHS~6!5
1

8p
V2@K2223v224Æv2Æ2#2T1

2L4~K22,Æ,n~ l !!ln V22gyh3e22

3~2Æ13v!

2P4~K22,h2e21m,v,Æ,n~ l !!. ~51!

As noted abovev~j! is bounded. So, let us chooseK0 so that

K0
22@Æ2,unu,v2 ~52!

@we increaseK0 leavingÆ fixed, so Eq.~52! also means tha
K22@Æ2,unu#. This enables us to neglect all terms in th
brackets in Eq.~51! but the first. What thus remains of th
first term @(1/8p)V2K22# grows ase22 and hence we can
neglect the two next terms.

The two last terms of Eq.~51! containe22 but only in
combination with the factorh3. So, for small enoughh0 they
also can be neglected. Thus

LHS~5!2LHS~6!.0.

In the same manner it can be proved that

LHS~7!.0.

C. The width of the throat

Three specifiable parameters were used in construc
the wormhole—e0 , h0 , andK0 . All we required of them so
far is that

K0
21@Æ,unu1/2, h0 ,e0 ,e0

3/2h0
24 be sufficiently small.

~53!

Clearly these conditions can be easily satisfied at once
choosingK0 appropriately small to satisfy the first one, pu
ting, say,
8-8
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e05h0
3

and finally choosingh0 appropriately small to satisfy th
remaining. Obviously for anyR0 without spoiling this pro-
cedure we can add the requirement

K0V05A8pgK0h0
22.R0

thus making the radius of the throat, arbitrarily large.

VII. CONCLUSION

In this paper we have considered the class of travers
wormholes constituted by the space-times~1! with V andK
subject to condition~i! of Sec. IV. In the total stress-energ
tensor of the matter filling a wormhole we separated out
contribution of the conformal~neutrino, electromagnetic, o
massless scalar! quantum fieldTQ so that the Einstein equa
tions took the formTC51/(8p)G2TQ. That enabled us to
expressTC[Ttotal2TQ in terms of V and K „TQ can be
expressed so due to Page’s formula@see Eq.~4!# and to the
fact that for macroscopic wormholes~large V! the nongeo-
metric termV24T̊Q can be neglected…. Thus we were able to
reformulate~in Sec. IV! the physical problem under stud
~existence of traversable wormholes withTC obeying the
Weak energy condition! as a mathematical problem@exis-
tence ofV andK satisfying the set of conditions~i!–~iv!#. In
Secs. V and VI we analyzed this problem and proved that
desired solutions exist. Thus we conclude that~at the mo-
ment! there are no theoretical grounds to believe that st
macroscopic wormholes are impossible.

Regarding experimental tests, the situation is not ho
less. Existence of macroscopic wormholes~born, say, in the
big bang era! can lead to observable effects. One such eff
is gravitational microlensing of background bright sourc
~say, quasars!. Wormhole microlensing can differ conside
ably from microlensing related to ordinary compact obje
~stars! due to the difference in their gravitational fields@16#.
et

’
iv
ta

tei

tt.
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Some bounds on possible abundance of the wormholes
already been obtained in Ref.@17# by analyzing from that
angle the microlensing experimental data. These bou
however, are highly model-dependent as is pointed ou
Ref. @16#. In particular, the gravitational field of a wormhol
is assumed to be that of a clump of exotic matter with
stellar-scale negative mass~that is just the Schwarzschild
metric withM;2M (). This does not hold, for example, fo
the wormhole considered in this paper.

Yet another observable~in principle! effect is brought
about by the fact that due to certain mechanisms~see Ref.
@19#, Sec. 18, for details and references! a typical wormhole
~this time we mean a tunnel connecting distant regions
‘‘the same’’ universe! is inclined to evolve towards forma
tion of a time machine. Whether the time machine will ac
ally appear, or not~which is an open question! such evolu-
tion inevitably gives rise to some ‘‘dangerous nu
geodesics.’’ These geodesics are the worldlines of the p
tons that pass through the wormhole infinitely many tim
~within a finite period of time! before the wormhole convert
into a time machine. A real photon~it can be, say, a relic
photon that happened to fly into the wormhole! will sooner
or later come off the dangerous trajectory and miss the i
mouth of the wormhole, but by this moment its energy w
increase~each time the photon passes through the tunne
experiences some blueshift! @18#. The closer its trajectory
was to a dangerous null geodesic the greater is the incr
in its energy. Thus a wormhole at some stage of its evolut
can generate a well-collimated beam of high-energy photo
If such a beam fall on the Earth we shall observe a fla
~g-ray burst?!.
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