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Traversable wormhole
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A class of static Lorentzian wormholes with arbitrarily wide throats is presented in which the source of the
weak energy condition violations required by the Einstein equations is the vacuum stress-energy tensor of the
neutrino, electromagnetic, or massless scalar field.
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[. INTRODUCTION filing the TW. The matter obeying this restriction is called
exotic [4]. Strong arguments suggest that the exotic matter
A wormhole is a “tunnel” connecting a part of the Uni- must violate the weak energy conditig¢/EC) [1] and most
verse with another part sufficiently remote, or even unconlikely (see the next section, thougie averaged null energy
nected(but for the tunnelwith the former one. A wormhole condition(ANEC) [5]. Therefore it is generally believed that
through which a signal can be transmitted is calledthe realistic classical matter cannot be exotic. A possible way
traversablé. Initially traversable wormholesTWs) were  OUt[1]is to invoke quantum effects to maintain a wormhole.
presented just as a funny tool for teaching general relativity? Particular, in semiclassical gravity the contribution of a
[1], but soon it became clear that they play a large role in a'guantum field to the right-hand side o_f the E'lnsteln equations
least two(allied) fields each of considerable interest. is commonly takensee Ref.[6] for discussion and refer-

Time machineslt is (or was before Ref[1]) popular —€nce$ to be TSE<‘I’|T$|‘I’>@”' where W) is the quantum
opinion that time machines are impossible. Intensive tenstate of the field and’i‘J2 is an operator depending on the
year discussion showed that at present this is just a matter dfackground metric. It is known thzi‘ti‘j2 violates the Weak
belief—decisive arguments were found neither for norenergy condition in some situations. Wormholes are a most
against time machines. If, however, TWs exist the idea ofuitable place for seeking such situations and so an elegant
chronology protection becomes almost untenable. idea appearefl’] to look for such a wormhole that its metric

“Faster-than-light” travel. As was shown in Ref.2] lo- g is just the solution of the Einstein equations wﬁjﬁ[g] as
cal causality does not prevent one from modifying the metrica source(a “self-maintained wormhole). A wormhole of
of one’s world so that to return from a trip sooner than athis type was found, inde€i®].” However, its throat turned
photon(in the unmodified worliwould have done it. Much out to be of the Planck scale, i.e., nontraversable. This result
as with time machines wormholes are nu¢cessaryfor ~ coupled with the arguments from Ref$,9] may give the
faster-than-light travel, but it seems to be much more feaimpression that conditiond) and(Il) are incompatible—the
sible if TWs exist. guantum effects can produce the exotic matter but only in

At present we do not know whether TWs exist in nature.microscopic amounts insufficient for supporting a macro-
On the one hand, it is not impossible that wormholes argcopic wormhole. In the present paper we argue that this is
most common things. In the absence(afstrictive enough  Nnot the case: we present such a class of static wormholes
observational boundsee Sec. VIl we may well speculate With arbitrarily large throats that all necessary violations of
that they are 1@or, say, 16) times as abundant as stars. Onthe WEC(and the ANEQ are produced by the vacuum fluc-
the other hand, the possibility of their existence has beeiuations of the neutrino, electromagnetic, or massless confor-
doubted on theoretical grounds. The point is that to be tramally coupled scalar fields.
versable a wormhole must satisfy at least the following re-
quirements(l) It must be sufficiently long-lived to be passed
by a causal curve(ll) it must bemacroscopic Wormholes
are often discussetbee Ref[3], for example with the ra- The “definition” of a wormhole given in the introduction
dius of the throat of order of the Plank length. Such a worm-s too vague for our purposes and now we have to make it
hole might be observablgn particular, owing to its gravita- somewhat more specifisurprisingly, there is no commonly
tional field), but it is not obviougand it is a long way from accepted rigorous definition of a wormhole yet
being obvious, since the analysis would inevitably involve The space around us is more or less flat. The easiest way
quantum gravity that any signal at all can be transmitted to reconcile this with the presumed existence of a wormhole
through such a tunnel. is to require that the gravitational field of the wormhole falls

Problems arise if we want a TW to be a solution of theoff with distance(no matter how fagtand that we just live
Einstein equations since the geometrical thus far conditiosufficiently far from it. It is convenient to incorporate this
() becomes then a restriction on the properties of the mattaequirement into the definition of a wormho[&0] and to

Il. GEOMETRY OF THE WORMHOLE

This definition is slightly less restrictive than that in REE]. 2Though the numerical method applied there is disputfje
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formulate it as follows: a wormhole is a spacetime contain-of the above mentioned cube must not grow with Even

ing two increasingly flat regiongnote that by a wormhole increasingly weak gravitational forces, when integrated over

the whole spacetime is meant now, not only the tunnel increasingly large regions, can give a nondecreasing result.
Remark 1 Wormhole-type objects such as those consid- (3) On the other hand, it is hard, if possible, to formulate

ered in Ref.[11] are not wormholes in this sense. Nor, a relevant point-wise criterion. Given a point it is easy to say

strictly speaking, are the spacetimes with tunnels connectinghether or not a space ikt there, but in the pseudorieman-

distant regions of a ““single” universe. nian case it is unclear what space can be called “nearly flat
Remark 2 In addition to being flat the real space is morein the point.” Examples are knowfiL3] whenall curvature

or less empty. So it seems reasonable to require that thecalars vanish in a poiR even though the spacetime is not

increasingly flat regions be also “increasingly empty.” The flat in it. Moreover, for any giver, £ two orthonormal bases

specific formulation as applied to our case will be given be-can be found in this point, such that all components of the

low [see item(iii ) in Sec. IV]. Riemann tensor are bounded byn one of them, while in
To see what is meant by “increasingly flat” consider the the other some of them are greater ttfan
Morris-Thorne(MT) wormhole[1] which has the metric The spacetiméM,g) considered in the present article is

R?x S? with the metric
gyr: ds=—e?*dt?+ (1—b(r)/r)"dr?

+12(d6?+sir? 6de?), g: ds’=0X ([ —d7?+dE?+K*(£)(d6?+sir? 6de?)],

()

where®, b/r and all their derivatives:0 atr— +c. When where Q,K are smooth positive even functions. When
r—+c this metric tends (component-wise to the pehaves appropriately @« the spacetimeM,g) is a

Minkowski metric, all curvature invariantand all gravita- \yormhole. To see this consider the following specific case:
tional forceqas measured by their action on a test particle in

a system resting with respect to the systém,@, ¢)] tend to K(E>E)=Ky, Q(&>E)=0QyeB )

zero. So, it seems that whatever experiment one performs in

a cubeQ,=(xo<x'<xp+ta, X' =t,r,r6,resing) the differ- (5 is a positive constantintroduce the coordinaterst

ence between the results of this experiment and that in the

case of®=b=0 (the flat spacewill tend to zero asrg r=Q0,B 1eBlél=B~1Q), t=Brr

grows (with a constant These properties justify the name

“increasingly flat” for the MT wormhole. As for the mean- in the neighborhoott|<T [T is an arbitrary constant smaller

ing of this term in the general case we note the following: thanr(Z)] of the surfacg r=t=0, r>r(E)]. In these new
(1) We discriminate “increasingly flat” from “asymptoti- coordinates the metriwithin the neighborhoodtakes the

cally flat” if the latter is taken to mean “asymptotically form

simple and empty'[12]. Among other things, asymptotical

flatness implies some restrictiotigpparently unjustified in ds’=—dt?+ 2t/rdtdr+[1— (t/r)?]dr?+ (BKr)?

the case at hananhowa spacetime becomes flat. Consider, . )

for example, the metric X (d¢?+sin? 6de?).

gr: dS’=[1+F(r)]—dt®+dr2+r?(d6?+sir? 6de?)]. It exhibits now all the nice propertigas the cub&), moves

to largerr, the metric inside i{written in appropriate coor-
If F:l/\/F at |arger,gF becomes there just a Variety of dinate$ Uniformly tends Component-Wise to the Minkowski
gur. SO, we wish to call this spacetime increasingly flat.metric, etc) that inspired us to call the MT metric increas-
However, it is not asymptotically fiatit is even not asymp- ingly flat. And since the metri€l) is static the same is true
totically simple since Q & C2(|\7) (see Ref[12] for nota- for a vicinity of any surface £=const) foliatingM. There-

tion). We could relax the requirements on smoothnes8 of fore, i Eq.l(zzl holdsdwr? conS|de_r the whole reglg’-ngzl as
so that to incorporate this case, but if we recognize that"cr€¢asingly alt and the Sp&.‘celt"m’G) aska worm oe.l g
spacetime as increasingly flat why should not we do so with, otation Below we use circles to mark quantities relate

. o — to the metricg= ~2g and hats to indicate components of
say, F=5|nr_/r_. But in this Iatfcer case eveft ¢ C'(M) and tensors in the normalized coordinate basis.
so the conditiorV Q| # 0 fails.

Note that the proof in Ref5] of the topology censorship
theorem relies on asymptotical flatness of the spacetime Ill. RESTRICTIONS IMPOSED BY THE WEC
(specifically, on the structure of its conformal infinignd so As mentioned above the vacuum expectatidh of the

a wormhole is conceivable for which this theorem is inapp”'stress—energy tensor of a quantum field need not obey the

cable. WEC. However, for a given metri€® is not arbitrary(we

: (2) A crlitelrion for i.ncreasfink? fIatnes; must r:‘Ot (ijnvolve can vary only|¥)). So, the requirement thai® be the only
increasingly large portions of the spacetifeeg., the edge.  g,1ce of the WEC violations still imposéwhen coupled

with the Einstein equationsestrictions on the possible form
of Q). We claim that these restrictions do not prevent the
3In contrast, say, tgg with F=1/r. metric from being of the desired type. To prove this we
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express these restrictions in the form of inequalities and in Substituting Eq.(4) in Eq. (3) and expressing the geo-

the subsequent sections show that they have appropriate smetrical quantities in terms dR, andK yields’ (due to the

lutions even forQ) andK corresponding to a wormhole. spherical symmetry the inequalities fpr2 andj=3 coin-
Let us write down the Einstein equations separating outide)

the termT® in the total stress-energy tensor and neglecting

the interaction between our field and the other matter: 1 ., )
— QXK 2-2u— w?— 32— 4xw—2v)
1 8
G =T9+TC¢
87TGIJ T|J+TIJ ’ _2'}/[#”"‘#,(4%_&))]_1—0_Llan_Pl>0,

®
As we do not require the wormhole to be self-maintairid, L
need not be zero. It should however satisfy the W(Ee- a2 2 o W riea 2
scribing thus the conventional classic matt&o, in an or- 47TQ (o= p—v=af)=29p"+ p' (24— 4w) + 24°]
thonormal basis diagonalizinﬁi‘j: the following inequalities

must hold: —(To+T)+L2InQ+P,>0,
(6)
L Goo- T30, oot T
8, 200~ Tao ag(Goo+ij)_(Too+Tjj)>0, 1

8WQZ(K_2—V—sz—wa)—Zyx,u,’—(To-i-Tz)

j=1,23. (3)

) o +L3InQ—P3>0,

Now let us specify the quantum stgt), which is nec- (7)

essary for findingT®. Let |¥) be a vacuum state in the
(unphysical spacetime 1,§). It does not matter exactly
what vacuum we choose, we only require thatagreement
with the symmetries of NI,§)] T%=diag(l’0,T1,T2,T2)
whereT; are some bounded functiofi$et us choosé¥) to  Li=L;(K~2,2,v"), andP;=P;(K 2 u,»,»,v") are some
be the statdin the physical spacetiméM,qg)] conformally  polynomials of their arguments/{!) are the derivatives of:

where

»=K'IK, 0=Q'/Q, v=x', p=o’,

related tof ). Then the following relation holdgl4] for the | =0,1,9. Each term of these polynomials is a product of a
neutrino, electromagneti¢in dimensional regularization ~ constant(a, 3, or y) and a facto(such asuK™<,»", etc) of
and mass'ess Sca|aronforma”y Coup|e§jﬁe|ds: dlmenSI0n§74. Itis |mp0rtant in what follows thaLz and

P, do not contain the terms proportional ko * and tou?,

respectively.
T%=Q*4°T%—8a (C%pjIn Q)2+ %Rabca]b} InQ b Y
IV. MATHEMATIZATION
ab~ - - - —4/ pdabs ~ - Cran
+ALIART Calp — 2Hij) — O (ARTC i)~ 2HI) ] Now we are in position to formulate mathematically the

. physical problem in discussion. Namely, we shall consider

5 YW= 745, (4)  the existence of traversable wormholes possible so far as we
prove the existence of the functiofy £),K(§) such that the
following is true.

(i) They are smooth, even, positive, and asymptotically
K ~const,Q)~AdB4 [so that the metri¢1) describes a worm-

1 1 hole].

ERQRS—ZRZ)QH, (iil) The quantity minQK), which is the radius of the
wormhole’s throat, is large and thus the wormhole is macro-
scopic (what should be regarded as “large” is a matter of
taste; we shall demonstrate that it can be madstrarily

ERZ—ZR.a"")gi~ , large. o

2 ' ! (iii) The funcﬂonsT;Jf defined by Eq.(4) tend to zero

o ] when é—co, This condition is to rule out the situatigoon-
and «, B, and y are constants characterizing the field. We .gjyaple due to the WEC violationvhen neithef @, nor TC

shall restrict them only by requiring that>0, which holds  ta)| off, they only compensate each other better and better.
for all the fields listed above.

where

2

lij=2R;;—2RR; +

SWe omit the relevant straightforward calculations, since they are
“They are related by the conformal anomaly, but we shall not us&ery tiresomethe work can be considerably lightened by the use of
this fact. the software packag@RTENSORII[15]).
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()

!

— 3.2
y(n)zhn EqM .

Here and subsequently we use an index in parentiesés
mark functions and an index without parentheses to mark
constants, as a rule we shall writg for z(,y(£,,) (from here

on by z we mean “any of the dimensionless functions
above,” that is z=w, k, y, etc). Note that E,(&)
:[Q/Q(fn)]z and m(n)(g)::u/l:un| and thus

A& [\
o &\ /¢, \b}‘\} e B

FIG. 1. &, is the abscissa of theth point of inflection ofw(¢).
At a point&, neargno,w(g) corresponding tg (shown by the thick

] ) . mnEm(n)(gn)zilr
line) deviates from that corresponding¥o(see Sec. Vil

En= E(n)(&n) =1

Remark 4 All these indexed functions change just by a
Such a spacetime could hardly describe a wormhole at leastgonstant factor when the index changes. Such a great number
wormhole of the noncosmological sizeee remark 2 of like functions will, however, be convenient later, when we

(iv) The inequalitieg5)—(7) hold. consider each segmeng(,&,,,) separately. On each such

The remainder of the paper is just the solution of thisinterval we shall use only the functions with the correspond-
mathematicalproblem. It is more or less easy to find & ing indexes—2(, andz(,. 1.
with the desired properties near the thréat fact, just a In new notation inequality(6) can be rewritten as
sinusoid will do forw(&) herd or at largelé (the asymptotic  follows:®
regions. The hard part is to find) satisfying the above
conditions over the whole range éfincluding the interme-
diate region, where the wormhole “flares oufSee Ref[1]).

In the next section we consider a particular solution of Eqg.
(6) on the segment-1,1). Later, in Sec. VI we shall deform
such a solution at largé so that to satisfy all the require-
ments formulated above. To make this deformation possible
it is crucial that some fadisee Eq.42)] takes place in the The polynomialsP,,L, do not contain the terms generated
intermediate regiort~1. So, we prove(this takes up the by the underlined arguments.
bulk of the next sectionthat K can be chosen so that Eq.  Consider the following equation:

(42) holds indeed.

Remark 3 The inequalities5)—(7) contain a few dozen  — €ohg 'Y(o,— EM+ o[ E(W?—\) +y(q)(4w— 2k) — 2m?]
terms each. To handle such formidable expressions we shall, 3 2
first, combine the initial value$)(0),Q2"(0) into somee, —€ Xxo=0 (93
and regarck, as small parametéthat is to prove anything it
will suffice to prove it for sufficiently small,). Second,
instead of examinind)(¢) we shall mostly considey(m), (9b)
where (up to some constant factgry is In” Q) and m is . ) .

In" Q. These two means lighten the analysis considerablyVheréxo is a nonzero constant. Though written in termg of

though at the cost of possibility of finding an explicit expres- £9- (9) is in fact an ordinary differential equation d(¢)
sion for the thus found)(&). (with initial conditions chosen so th& is a smooth even

function). A solutiony of Eq. (9a) together withh, ¢, deter-
mines[when the initial data are fixed by Eb)] ) via the
equation

— €ohg 'Y (o)~ EM+ €o[ E(0?—\) +Y(0)(4w—2k) — 2m?]
—eaho IT1—To+ Lo(K™2,5%,0)InQ

+Py(K™2,e5'm,how, %,v1)]>0. (8)

Q(0)=9,, Q'(0)=0"(0)=0, Q"(0)=Qoue*0,

V. THE TUNNEL OF THE WORMHOLE

Before proceeding to examination of the solution of Eq.
(6) mentioned above let us introduce some new functions,
more convenient in handling inequaliti€®)—(7) than (), ,

(InQ)"=h3"?y. (10

etc. Denote by, thenth zero ofu’ (see Fig. 1L For eachn
such thatu,=uw(&,) #0 (for example, this will hold fom
=0) let

h = \/8777|Mn| c =87T7’|Mn|
Q) T 0%&)

and define the following set of dimensionless functions:
W(n):h;lw’ A(ﬂ)EhEZ(V_i_ xz)y k(n)Eh;:l%y

Mm=hn2€ntt,  Em=(87y) *h,2€50?,

The left hand side of Eq9a) differs from that of Eq(8)
only by that the term in the lower line is replaced with the
term e3%x2. So, it is clear that ify(¢,e,) satisfies Eq(9a)
and the corresponding,w are uniformly boundedwe shall
see that this is the caseéheny(¢,ep) with sufficiently small

€y, (or, more precisely, with

5We omitted indexe$0) in many terms of this inequality, as will
often do below. To avoid confusion note that all indexed terms in
any expression have the same indesith or without parenthesgs
unless otherwise is explicitly indicated.

At least untilQ # 0, which holds everywhere below.
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e’hy*  sufficiently small, O%(¢,

o ’ +E,nhﬁe;2=§=-E*n+1hﬁ+1en‘fl, (149
sincehgy will also be treated as a small parametsatisfies Y
Eqg. (8) as well, which means thd® satisfies Eq(6). This W, Ny = (€)= "Wyps 1M1, (14b)
fact will enable us to take a solution of E(P) to be the
desired conformal factor dgte (0,1). Our method of extend- Tynhier 2= 1 (£,)="Yans 1, €02,
ing the latter to large¥ leans(as was already mentioned (140

upon some propertisee Eq(42) below] of solutions of Eq.
(9) and it is essentially the proof of this property that consti-Now given initial data fom=0, from Eq.(14) we can find
tutes the remainder of the section. them for all othem.

First let us change to new coordinates. We want to con- It is easy to solve Eq(13) for e=0:
sider all functionsz,y as functions ofm(, . Of course this 5
cannot be done globallysince dm, /d¢ vanishes in each y=9y1-m*, where 9=sgny (15)
&), and so we shall do it only for the two intervals
(én-1,6n) and ¢, ,&n41) surroundingé,, . Thus for eactz
we define two new functions: moom

w=w,+ 9 f

_Z(n)(m)EZ(n)[f(m(n))] at £e(én-1.,én), mn\/l—m2

TZi(M=z[&(mp)]  at Ee(&y,énsr)- In what follows, however, we shall be interested in behavior
of w at £&~1, where corrections due to nonzefthough
These two definitions look similar, but recall th{tm,)) in - smal) e may not be small. To find these corrections we shall
the upper line is not the same as in the lower. employ a perturbational scheme.
Remark 5 We write “z,(m) instead of "z, (M), Let us introduce the function
because we regant, with differentn as functions map-
ping £ into the samdarget space. This, in particular, allows

[i.e.,y(m) is just a semicirclgand

dm=w,—9Jy1-m?. (16

2

us to draw pictures similar to Fig. 2 and to write formulas f(m)= 1—m2_l' (17)
such as Eq(27).
It is easy to write dowrE andw as functions ofn (we ~ Now Eq.(13) can be rewritten as

omit the superscripts and ~ when all terms in an expres- ) 4
sion have the same superscripts and it does not matter _ _ m .
which): f=Tlfl=1"r2 ») A[f]dm. (18

m W ,dm m mdm , '
E(n)(m)=exp{ ZeJ ;n) } W(n)(m)ZWnﬂLJ e Here the operatorA; are defined by

S ™ Al ¢]=—m(E[$]-1),

— (w2 2
wherew,=w,(£&,). Similarly, for each¢ e (£,_1,&n+1) A ¢1=e(WTSIE[P]- N S]E[H]—2m"),
(™ dm Ag[p]=€0V(p+1)(1—m*)(4w[ ] - 2k[ $]),
&(m)= &+ ehy, OOk (12)
m,Y A4[ ¢]E _ 63/2)(2,

Since oshfly’zyy,m Eq. (99 can be equivalently rewritten gnqg
as the following set of equations in,)(m):

2 21 32,2 _ m wlé]
=YY m— Em+ e E(Ww"—\) +y(4w—2k) —2m“]— ey E[ o]=exp 29 T )dm . (19
my\/( P+ —-—m
=0, Vn, (13
where for brevity we writey for ygn)(m),e for €,, etc., and w[pl=w,+ f}fm m —=dm. (20
where x,= xo(en/€0)¥4(h,/hg) "% To make the system myV(+1)(1-m")
(13) complete and equivalent to Eq9) we must fix the
initial data forn=0 so that Eq.9b) would hold, and for L€t %a be the space
eachn+0 so that to make the resultifg smooth. We shall % -
do it as follows. Consider a poin, € (¢,,&,.1) such that {¢eClaml, [#]<1/2,  where
m,(&,)=my,1(£,)=0. Q and its derivatives ir¢, can be loll= sup|¢|, ae(—m,,m,). (21)

written in terms of quantities'z,,="z,(0) as well as in
terms of ~z,,11="24,:1)(0). Thus the requirement th&l
should be smooth can be presented in the form of the followt can be shown thaf3, is a complete metric spadevith
ing relations: respect to the metric induced by the ndfih) and whene is

[a,my]
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sufficiently small T is a contraction operator i3, with
T(B,)CB,. So, whene—0, f uniformly tends toT[ 0] and y-
(ny—1)
thus (]
2
fz Z B,dm+o(e), (22) 1 m
1-m mi=1
whereB; are the lineafin €) parts ofA;:
o Yiny) ¥
B;=2€l m*—|m|—dw, marcsmn—§|m| : (ny—1)

’ ’ FIG. 2. The arrows are directed in the sense of increasiife
By=e(Ww0]—\,—2m9), dashed line depictsy, ) (see Sec. Vi
By=ed\/1—m2(4w[0]— 2k,,) \Ilzvge(rze; means "“is equal up to terms of ordefe).” From

[as usuah =\ (&), Kn=K(n)(&n)]. Thus[see Eq(17)] -~
Sf,~—2 f Z B;dm
f m, 1=
y=9J1-m’+ iﬁ\/l—mZJro(e). (23 3
o
=—2em,|6+ Zk—ﬁ(Twn—wk) —2wﬁ}. (28)

It can be provefithat whene, is smalle,_ ; is also small.
More specifically[see Eq.(31) below] €, 1=¢en+O(€2). Finally, by Eqgs.(20) and (23)
This means that by choosing smajl one can make,, small

and Eqgs.(23),(22) valid for all n at oncé (and so we shall . 9o fmdm
W, ~W,— 9 >

sometimes speak of just “smadl’ ). mo\/1—m2
An important consequence of E@.5) is that
0
My 1= =My, (24) ~Wy— 9= 5.+ 9 w_mi Bidm (29
Also and hence
€ni1=En—meh™tom +o(e) (25) oo L o ﬁjmml 1 S Bdm @30
~ - = of,— dm.
* n * > i
and hence 2 My y1=mTi=t
It follows from Eg. (14) that
9=-—m, for £e(én.éns). (26)
oh de OE,
Equations(23), (24), and (26) show that as long as, re- 22+ E. ~0, (31a
mains small a point moving with increasiggotates clock-
wise in an approximately circle path on the plaiyem) as éh  dw,
depicted in Fig. 2. T (31b
Our next concern is the behavior of the quantity when )
n increases. Let us introduce the symhbdlfor quantities sh  de oy,
both with and without superscripts 327 y ~0, (319
Vz 6z=z, ,—Pz,. whence, in particular,
sh  6SE, N 1
SE, can be found from Eqg16),(19) oh OB, ﬁméE*— st (32
h E, Y 2
M1 W[O]
6E*~—266f >dm= —2em,(2— 9 mw,), and
my 1-m 1
(27) o\/v*~—(wn—a)< SE, — 55n>. (33)
Thus[see Eqgs(27) and(28)]
8By first taking a in Eq. (21) to be close to—m, and second
noting that on ¢m,,a) by Eq.(13) |y?'|>1+0(e). 5_h~ 2
%At least as far as we deal with<N=0(¢, ). h€Mn 2rantd 2 W”+ K| = 2wy . (34)
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Also combining Eq.(30) with Eq. (33) and taking the inte-
grals we get

OW,~2emy(2— dmw,)(W,— ) —W,em,| 6+ 2\
37 5 3w
-0 TWn—Trk —2w | —em, 9| — 7+4+7‘r)\

+29( 7w, — 2K) + wwﬁ}. (35)

Let us introduce the symbal to describe how a quantity
changes in one “period’(see Fig. L

Vz Az=z,,,—7z,.

Clearly[see Eqgs(24) and(26)] Az= —2X (the coefficient at
m,9 in 6z). So, by Eqs(34) and (35 we have

Ah/h=~ — em(w,+2K),
Awp~ — em(3+ 2\ — 2w k— 3w?),

and by Eq.(25)

Aé~em-2h~ 1,
which gives
2Ah/hy~ —hy(Wp+ 2kg)AE, (363
2AWp~ —h,(3+ 2\, — 2W, Kk, — 3W2) A . (36b)

Define smooth functionbg(£),wg(€) to be the solutions
of the system

2h.=— (wsh2+ 2xhy), (379

2w, = —hy(3+ 2\ g— 2Weks— 3w?2), (37b
hs(0)=ho, ws(0)=0,

where ke=h_ 1%, \=h_?(v+4?), and £€[0,1]. As we

shall seehg# 0 on this interval and so fos tending to zero,

h,, uniformly tend tohy(¢,) (and the same fow,, andwy).

The systen{37) can be simplified by rewriting in terms of
functionsk=Khg, os=wghg:

(383

(38b

2k’ =— wgk,
20 =202— 3K 2k%+2,
k(0)=koe K(0)hy, 4(0)=0,

So far we have not specifi in any way. Let us now fix it.
We choseK to be a smooth even function with

Kocosé at £€<1, 39
K= Ko até&>2 (39
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(Kq is a positive constajt Then foré<1, hy—0 the solu-
tions of Eq.(38) are

ws=tané+o(1), «k=koc0s?¢+0(ky), (40

that is,
ws=hg {[sinécos?¢+0(1)], hg=hgcos ¥2¢+0(hy).
(41)

Thus, whenhy and € are sufficiently smalivg(1) becomes
greater than 1 and so does for (at least a few consecutive
values ofn. It follows then[see Eq(16)] that suchn, exists
that

§n0=1+0(6), mnO:_l, +W(n0)>0. (42)

VI. CONSTRUCTION OF THE WORMHOLE

Lety be a function of the kind considered in the previous
subsectiorthat is a solution of Eq(9) with hy and €5 so
small that both Eqg6) and(42) are satisfietland lety be the
function defined by

YO=V(E) até<é&n, " Ying(M=L(m) Vi, (m).
(43)

Here ¢ is a smooth function subjecting to the following re-
quirements:

{ is convex, ((0)=0, {¢(m<m,)=1,

(443

andm, (i.e., the point at whicly begins to deviate frory,
see Fig. 2 satisfies

1
|m*|<§W*y* (44b)
[for anyzwe denote” z(no)(m*) briefly by z, and alle, h, v,
etc., in this section are, in faotno, hno, V(ng) » etc).

We claim that the metri¢l) with (¢ defined[see Eq.
(10)] by y,€q,hy describes a desired wormhole. To prove
this we must show(see Sec. IY that suchQ(¢) (A) has
appropriate[see conditiondi),(iii)] asymptotic behavior at
¢—, (B) satisfies the systelid)—(7), and(C) provides the
large throat to the wormhole.

A. Large &

We know from Eq.(42) thatw, >0. On the other hand,
due to Eq.(44) for anyme[m, ,0]

[w(m) —w, | < max |,/ =( min [y/m])~2

(m, ,m) (m, ,m)
1
1
<(y, min |[¢/m|)"t= Yx <-W, .
(m, ,m) m,, 2
(49

So,
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w is positive and bounded ¢m,,0]. (46)

By Eg.(12) ¢é—o whenm—0 (recall thaty is smooth in (.
Also

m [w,+O(m)]dm
E= ex% Zé-f %] =CEEZhW°°§eO(m>,
-1 y
(47)

wherecg, w,,=w(0), andc,, (in the next formulaare some

PHYSICAL REVIEW D 62 084028

Further, for sufficiently smallm| (say, m,,, <m=0)
both\=0 andk=0. Therefore, iim,., is chosen appropri-
ately, the term in the inner brackets in E49) is positive on
(M, ,0) (sinceE is positive and botly andm tend to zero
while w [by Eg. (46)] and E do no). Hence for anye<g’
Eq. (49 holds on fn,,, ,0), too.

Finally, forme (m,, ,m,,, ).

YIYYml =V m¢—(#+1)Y ny<0 and Y[E]>O.
(50

positive constants. Thus the resulting metric differs from that

considered in Sec. Il, only by the conformal facest(™.
But it is easy to see from Eq12) that

m=—c,e'mO¢ "N 1+0(m)]. (48)
E is proportional tor? and hence comparing E¢47) with
Eq. (48) we see that, at large

_ 1 -1
m~ —cg leprym @ W,

So[recall thaty ,(0)<0], whene is small enough, the fac-
tor differs from 1 by a function fallingat least exponen-
tially with r and hence Eql) still describes a wormhole.
From Eqs.(16) and(41) it is evident thatw(¢) is bounded
(say,|w|<2 whenhg is smal) on (0£, ), and from Eq(45)
it is clear that the same is true for &ll The derivativesu,
u', u" of w obviously are also bounded. It folloito verify
note that the left hand sides of E@5)—(7) are the left hand
sides of Eq.(3) multiplied by Q#] that the components of
both T¢ and TQ fall off at infinity (at least as) 2 and
O *InQ, correspondingly Thus condition(iii) of Sec. IV
is fulfilled.

B. The WEC

At 0=¢<¢, the functiony satisfies Eq(8) [since being
equal toy on this segment it satisfies EGL3)]. So, it only
remains to check thaﬁy(no)(m>m*) satisfies it too, for

which it would suffice[see Eq.(13)] to prove that the in-
equality

Y[YY m+ Em—e[E(W?—\) +y(4w—2k) —2m?]]<O0,
(49

holds, where we have introduced a new symigoffor any
expressior(y) we denote by [ Q] the difference

Y[Q]=Q(y)—Q(Y).
It is easy to show that as—m, +0
Y[y]=({=Dy,
YLYY,ml~Yilm:
Y[w]LY[ELY[A],Y[k]=0(1-2).
These assessments are uniformebyrhus on some segment

m, <m=m,, the inequality(49) holds whene is suffi-
ciently small(when e is smaller than some).

So (again, where is small enough

Mme (Mg My )y Y[YYn+HEm]<c<O0, where

c#c(e).

Summarizing, wherg, is sufficiently small inequality(49)
holds for anym, and hencégsee Eq(13)] y satisfies Eq(8).

We have proved thd satisfies Eq(6). Now let us verify
that by choosing appropriat€,, hy and €, (the two latter
still being “sufficiently small”) the remaining inequalities
(5),(7) can be satisfied as well. Indeed,

1
LHS(5) ~ LHS(6) = g~ 0°[K 3w~ 4xw— 2] T,

—L4(K™2,5,v")INQ—2yyh3e?
X(2x+3w)

—P4K 2,h%e m,w,2%v"). (51)

As noted aboven(¢) is bounded. So, let us chookg so that

Ko 2> | v, 02 (52

[we increase& leaving x fixed, so Eq(52) also means that
K~2>57,|v|]. This enables us to neglect all terms in the
brackets in Eq(51) but the first. What thus remains of the
first term[ (1/87) Q%K ~2] grows ase 2 and hence we can
neglect the two next terms.

The two last terms of Eq(51) containe 2 but only in
combination with the factan®. So, for small enough, they
also can be neglected. Thus

LHS(5)—LHS(6)>0.
In the same manner it can be proved that

LHS(7)>0.

C. The width of the throat

Three specifiable parameters were used in constructing
the wormhole—eg, hy, andK,. All we required of them so
far is that

ho.€0.€5%hy*  be sufficiently small.
(53

Clearly these conditions can be easily satisfied at once by
choosingK appropriately small to satisfy the first one, put-
ting, say,

K61> %,| V|1/2,
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Eozhg Some bounds on possible abundance of the wormholes has
already been obtained in RdflL7] by analyzing from that
and finally choosingh, appropriately small to satisfy the angle the microlensing experimental data. These bounds,
remaining. Obviously for anyR, without spoiling this pro- however, are highly model-dependent as is pointed out in

cedure we can add the requirement Ref.[16]. In particular, the gravitational field of a wormhole
. is assumed to be that of a clump of exotic matter with a
KoQo= V8myKohg “>Ry stellar-scale negative masthat is just the Schwarzschild

metric withM ~—M ). This does not hold, for example, for
the wormhole considered in this paper.

Yet another observablén principle) effect is brought
VIl. CONCLUSION about by the fact that due to certain mechanigsee Ref.

9], Sec. 18, for details and referentestypical wormhole
this time we mean a tunnel connecting distant regions of
“the same” universeg is inclined to evolve towards forma-
éion of a time machine. Whether the time machine will actu-
ally appear, or notwhich is an open questigrsuch evolu-
tion inevitably gives rise to some ‘“dangerous null
geodesics.” These geodesics are the worldlines of the pho-
tons that pass through the wormhole infinitely many times
(within a finite period of timgbefore the wormhole converts
into a time machine. A real photofit can be, say, a relic
photon that happened to fly into the wormhoteill sooner
or later come off the dangerous trajectory and miss the inlet
mouth of the wormhole, but by this moment its energy will
-~ _ : increase(each time the photon passes through the tunnel it
Weak energy conditionas a mathematical problefiexis-  gyneriences some blueshiftl8]. The closer its trajectory
tence of() andK satisfying the set of condition®)—(iv)]. In 55 15 a dangerous null geodesic the greater is the increase
Secs. V and VI we analyzed this problem and proved that thg, jis energy. Thus a wormhole at some stage of its evolution

desired solutions exist. Thus we conclude tf@tthe mo- 51 generate a well-collimated beam of high-energy photons.
men} there are no theoretical grounds to believe that statigs ,,ch a beam fall on the Earth we shall observe a flash
macroscopic wormholes are impossible. (y-ray burst?.

Regarding experimental tests, the situation is not hope-
less. Existence of macroscopic wormho(bsrn, say, in the
big bang eracan lead to observable effects. One such effect

thus making the radius of the throat, arbitrarily large.

In this paper we have considered the class of traversab
wormholes constituted by the space-tinfgéswith () andK
subject to conditior(i) of Sec. IV. In the total stress-energy
tensor of the matter filling a wormhole we separated out th
contribution of the conformalneutrino, electromagnetic, or
massless scalaguantum fieldT® so that the Einstein equa-
tions took the formT¢=1/(87)G—TC. That enabled us to
expressTC=T,— TC in terms of Q and K (T9 can be
expressed so due to Page’s formidae Eq.4)] and to the
fact that for macroscopic wormholékrge () the nongeo-
metric termQ ~*T< can be neglectgdThus we were able to
reformulate(in Sec. IV) the physical problem under study
(existence of traversable wormholes willf obeying the
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