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Self-force on a scalar particle in spherically symmetric spacetime
via mode-sum regularization: Radial trajectories

Leor Barack
Department of Physics, Technion–Israel Institute of Technology, Haifa, 32000, Israel

~Received 12 May 2000; published 26 September 2000!

Recently, we proposed a method for calculating the ‘‘radiation reaction’’ self-force exerted on a charged
particle moving in a strong field orbit in a black hole spacetime. In this approach, one first calculates the
contribution to the ‘‘tail’’ part of the self-force due to each multipole mode of the particle’s self-field. A certain
analytic procedure is then applied to regularize the~otherwise divergent! sum over modes. This involves the
derivation of certain regularization parameters using local analysis of the~retarded! Green’s function. In the
present paper we present a detailed formulation of this mode-sum regularization scheme for a scalar charge on
a class of static spherically symmetric backgrounds~including, e.g., the Schwarzschild, Reissner-Nordstro¨m,
and Schwarzschild–de Sitter spacetimes!. We fully implement the regularization scheme for an arbitrary radial
trajectory ~not necessarily geodesic! by explicitly calculating all necessary regularization parameters in this
case.

PACS number~s!: 04.25.2g, 04.30.Db, 04.70.Bw
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I. INTRODUCTION

The motion of a test pointlike mass~a ‘‘particle’’ ! in orbit
outside a black hole is commonly studied to model, and g
understanding of, realistic astrophysical scenarios involv
highly relativistic two-body systems—particularly, the ca
ture of a small compact object by a supermassive black h
@1#. To describe the orbital evolution of such a particle on
strongly curved background, one must take into account n
geodesic effects caused by the interaction of the particle w
its own gravitational field. This problem of deducing theself-
force ~or ‘‘radiation reaction’’ force! exerted on the particle
is often treated via perturbation theory: one assumes tha
particle is endowed with a chargeq much smaller than the
mass of the black hole~this charge may represent the par
cle’s mass, electric charge or—as in the toy model studie
the current paper—its scalar charge! and looks for theO(q2)
correction to the equation of motion. The basic challeng
task involved in this calculation, already in flat space, is,
course, correctly handling the divergence of the self-field
the very location of the particle: namely, the introduction a
justification of an appropriate regularization method. Wh
considering the case of curved spacetime, additional d
culty arises due to thenonlocal nature of the self-force ef
fect: waves emitted by the particle at some moment m
backscatter off spacetime curvature and interact back w
the particle at later stages of its motion. The occurrence
this so-called ‘‘tail’’ contribution to the self-force results i
that the calculation of the self-force at a given moment
quires, in principle, knowledge of the entire causal history
the particle. A number of methods~briefly surveyed below!
have been proposed over the years for calculating the
force in curved backgrounds. The interest in this problem
greatly risen lately by virtue of the recent developments
wards experimental gravitational wave detection and
consequent need for accurate predictions for the orbital e
lution of strongly gravitating two-body systems. Yet actu
calculations of the self-force have been restricted thus
0556-2821/2000/62~8!/084027~21!/$15.00 62 0840
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only to a few very simple cases~see below!.
The standard technique for calculating the radiative e

lution of orbits around black holes is the one based
energy-momentum balance considerations@2#. In this ap-
proach one computes the flux to infinity~and across the ho
rizon! of quantities associated with the constants of mot
in the lack of self-force effects~specifically, in the Schwarzs
child and Kerr backgrounds, the particle’s energyE and azi-
muthal angular momentumLz), thus deducing the tempora
rate of change of these ‘‘constants.’’ Such balance calcu
tions, though developed to a great extent, present two b
drawbacks: First, in the important Kerr case they are in
plicable for calculating the rate of change of the third co
stant of motion necessary for a full specification of the
bital evolution, i.e., the Carter constantQ, as this quantity is
not additive. Second, these calculations do not account
the non-dissipative, yet important, part of the self-force@3,4#.

For the above reasons, a method based on direct calc
tion of themomentaryforce along the world line seems mor
adequate. In the context of electromagnetism in flat spa
such a method is familiar from the classic work by Dirac@5#,
concerning the electromagnetic self-force on a~classical!
electron. Dirac avoided the singularity of the self-field at t
particle’s location by introducing the ‘‘radiative potential,
constructed by taking the difference between the retar
and advanced electromagnetic potentials~which results in
the cancellation of the problematic singular part!. This pro-
cedure gave rise to what is now called theAbraham-Lorentz-
Dirac ~ALD ! self-force in flat space@see Eq.~10! below for
the analogous scalar particle case#. The concept of ‘‘radiative
potential’’ was much later employed by Gal’tsov@6# for cal-
culating the temporal rate of change of the energy and
muthal angular momentum parameters for electrica
charged particles orbiting a Kerr black hole. Thou
Gal’tsov analysis yielded correct results, it seems conce
ally difficult, in general cases, to justify the use of such
non-causal approach. The problem becomes obvious w
considering curved spacetime, where the self-force exhi
nonlocal contributions: according to this approach, the fo
©2000 The American Physical Society27-1
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LEOR BARACK PHYSICAL REVIEW D 62 084027
acting on a particle at a given moment turns out to be
fected by the entirefuture evolution of the particle.

A formal method for calculating the momentary self-for
in curved spacetime, which employs the purely retard
Green’s function and is thus inherently causal, was de
oped long ago by DeWitt and Brehme@7# ~for the electro-
magnetic case!. Dewitt and Brehme first carried out a loc
analysis of the retarded Green’s function near the partic
world line, based on theHadamard expansion@8# ~which is,
basically, an expansion of the Green’s function in powers
the geodesic distance between the source and evalu
points!. Then, the particle’s equation of motion was deduc
by imposing local energy-momentum conservation on a t
world tube surrounding the particle’s world line. Followin
the same approach~though using a different renormalizatio
scheme!, Mino, Sasaki, and Tanaka@9# studied thegravita-
tional self-force by analyzing the local metric perturbatio
near a particle. They concluded that the regularized grav
tional self-force in vacuum is due solely to a nonlocal t
contribution. It remained unclear, though, how to practica
evaluate the formal expression derived for this tail~see, how-
ever, recent attempts to tackle this problem@10#!.

Recently, Quinn and Wald@11# developed a different, axi
omatic, approach to the regularization problem of the s
force in curved spacetimes. Their approach relies on a ‘‘co
parison axiom,’’ which allows the calculation of the se
force by comparing the given problem with a~properly
chosen! analogous problem in flat space~see @11# for de-
tails!. The implementation of this approach for both the ele
tromagnetic and the gravitational cases@11# yielded formal
results in agreement with those obtained by DeWitt a
Brehme ~as corrected by Hobbs@12#; the main result by
DeWitt and Brehme contained a trivial error! and by Mino
et al., with the advantage of involving much simpler calc
lations. More recently, the same approach was applied
Quinn@13# for a scalar particle@the main results of this work
also quoted in Ref.@14#, are summarized below; see Eq
~9!–~13!#. Again, however, despite the availability of
simple formal framework for obtaining equations of motio
for a test particle in curved spacetime, the practical imp
mentation of the formalism in actual calculations~particu-
larly, the evaluation of the nonlocal tail contribution! re-
mained a challenging task.

So far, the study of the self-force effect in concrete si
ations have been restricted to very few simple cases. De
and DeWitt @15# employed the above-mentioned formalis
by DeWitt and Brehme to study the self-force correction
the geodesic equation for an electrically charged part
freely falling in a static weak gravitational field, in the lim
of small velocity. They concluded that a repulsive force
}q2r 23 magnitude~wherer is the Schwarzschild radial co
ordinate! would be experienced by such a particle, in ad
tion to the usual attractive inverse-square force. Later, Sm
and Will @16# ~and, independently, Frolov and Zel’niko
@17#! were able to derive an exact analytic expression for
O(q2) self-force acting on an electrically charged partic
held static in the Schwarzschild exterior. They found a
pulsive self-force of exact magnitudeMq2r 23 @measured by
a momentarily static freely falling observer, and expresse
08402
f-

d
l-

’s

f
ion
d
n

a-
l

f-
-

-

d

y

-

-
itt

le

f

-
th

e

-

in

relativistic ~geometrized! units#. This result was later ex-
tended by Frolov and Zel’nikov@18# to scalar and electri-
cally charged particles held static outside a charg
Reissner-Nordstro¨m type, black hole. It was concluded tha
unlike in the electromagnetic case, no self-force is exp
enced by a static scalar particle. This last result has b
reproduced very recently by Wiseman@3# in a thorough
analysis of the self force acting on a static scalar particle
Schwarzschild spacetime.

The exact calculation in the static electric charge case
made possible owing to the existence of an exact anal
solution, discovered long ago by Copson@19# ~and later cor-
rected by Linet@20#!, for the electrostatic potential of a stat
charge in the Schwarzschild geometry.~The analogous
closed-form solution for a scalar particle was constructed
Wiseman in@3#.! In more general cases one cannot ben
from the existence of such exact solutions. The usual
proach for treating this problem, of obtaining solutions to t
field equation in black hole backgrounds, is through t
Fourier-multipole decomposition of the field. In the conte
of the radiation reaction problem this approach seems to
fer two obvious advantages: First, it allows, in the usu
manner, reduction of the field equation@originally a partial
differential equation~DE! in 113 dimensions# to an ordinary
DE, thus making it accessible to simple numerical treatme
Second, each individual mode of the field turns out to
continuous~and the corresponding self-force to be bounde!
even at the particle’s location. Having this in mind, Ori pr
viously proposed@21# that a practical calculation of the sel
force effect may be carried out by first evaluating the eff
of each Fourier-multipole mode of a particle’s self-retard
field on its radiative evolution~through the local self-force
experienced by the particle!, and then summing over al
modes.

In Ref. @21# the above sum-over-modes approach h
been successfully applied for the calculation of the adiaba
orbit-integrated, evolution rate of the three constants of m
tion in Kerr spacetime, including the Carter constant.1 How-
ever, it appears that a naive application of this method for
calculation of themomentaryself-force would not be useful
in general. The reason is that, although each mode yield
finite contribution to the self-force, the sum over all modes
found, in general, to diverge. This situation manifests its
already in the most simple case, that of a static scalar ch
in flat space: in this basic example, the contribution of ea
multipole mode to the radial component of the self-force
the same,2q2/(2r 0

2) ~wherer 0 is the distance of the particle
from the origin of coordinates, with respect to which th
spherical harmonic functions are defined!, with an obvious
divergence of the sum over modes. This, however, does
mean that one has to abandon the whole sum-over-mo
approach; one may still be able to benefit from its adv
tages, by introducing a suitable regularization procedure

1However, whereas the mode sum for the evolution rate of
energy and azimuthal angular momentum parameters was show
converge@21#, it is not clear yet whether the corresponding mo
sum for the Carter constant converges or not.
7-2
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SELF-FORCE ON A SCALAR PARTICLE IN . . . PHYSICAL REVIEW D62 084027
the calculation, properly designed to overcome the ab
kind of divergence.

In a previous paper@22# we introduced the basic elemen
of a method for the calculation of the self-force in curv
spacetime through regularization of the mode sum. T
implementation of the proposed calculation method fo
specific trajectory in a given spacetime consists of t
stages. First, one solves~numerically, in most cases! the ap-
propriate ordinary DE for each Fourier-harmonic mo
ł ,m,v of the retarded field, and evaluates the~finite! contri-
bution of each of these modes to the self-force.~Alterna-
tively, one may numerically solve the 111 partial DE in the
time domain, for each multipole model ,m.! Then, the sum
over all modes is made subject to a certain regulariza
procedure, which requires the knowledge of several regu
ization parameters. These parameters are derived ana
cally, for any given trajectory, through local perturbati
analysis of the~retarded! Green’s function. In Ref.@22# we
outlined this regularization method as applied to a sca
particle moving on a Schwarzschild background, and p
sented final results~i.e., the values of all necessary regula
ization parameters! for the case of radial motion. The targ
of the present paper is threefold:~i! providing a systematic
presentation of the regularization scheme~including a dis-
cussion of some mathematical subtleties left untreated
@22#!, ~ii ! providing full details of the calculations involve
in deriving the regularization parameters for radial trajec
ries, and~iii ! extending the analysis to a wider class of sta
spherically symmetric black hole spacetimes.

This paper~as well as Ref.@22#! is concerned with the
analyticpart of the regularization scheme; namely, it sets
mathematical foundation for the scheme, and demonstr
the calculation of the regularization parameters involved
its implementation~in the example of radial motion!. As ex-
plained above, full calculation of the self-force requires t
supplementary numerical determination of the vario
modes’ ‘‘bare’’ contributions to the self-force. This was r
cently done for various trajectories of a scalar particle o
side a Schwarzschild black hole: Burko first analyzed
case of a static particle@23# and the one of a particle in
circular motion@24# ~see also@25#!. More recently, Barack
and Burko applied the regularization scheme for study
radial trajectories in Schwarzschild spacetime@26#. These
numerical works confirm the applicability of the regulariz
tion scheme, and provide support for the values of the a
lytically deduced regularization parameters. Of course, t
also yield significant physical information. In the static sca
particle case, Burko recovered the familiar result, of a z
self-force. Calculations of the self-force on a scalar parti
in circular and radial trajectories were carried out for the fi
time ~see Refs.@23,24,26# for details!.

The current paper is organized as follows: In Sec. II
give some preliminary relations involving the self-field, th
Green’s function, and the self-force for a scalar particle.
Sec. III we decompose the Green’s function into its spher
harmonic components, and discuss the applicability of
expansion. In Sec. IV we decompose the~tail part of the!
self-force into its spherical harmonic contributions, discu
the need for regularization of the mode sum, and presen
08402
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regularization scheme. The implementation of this sche
involves local analysis of the Green’s function modes
large multipole numbers, which is carried out in Sec. V. T
particular case of radial motion is then considered in Se
VI and VII, where the regularization parameters for this ca
are explicitly calculated. In Sec. VIII we summarize, discu
possible extensions of the analysis, and briefly survey so
related work.

II. SELF-FORCE ON A SCALAR CHARGE:
PRELIMINARIES

We consider a class of static spherically symmetric~not
necessarily vacuum! black hole geometries, having a lin
element of the form2

ds252 f ~r !dt21 f 21~r !dr21r 2~du21sin2udw2!, ~1!

wheret, r, u, andw are the Schwarzschild coordinates, anf
is a function ofr only, positive outside the event horizon
Important members of this class include the Schwarzsc
solution, with f 5122M /r ; the Reissner-Nordstro¨m solu-
tion, with f 5122M /r 1Q/r 2; and the Schwarzschild–d
Sitter solution, with f 5122M /r 1Lr 2/3. Here,M stands
for the black hole’s mass,Q represents its net electric charg
andL is the cosmological constant.

We next consider a point-like particle of scalar chargeq,
with uqu!M , moving in a spacetime of the above type. L
xm5xp

m(t) represent the particle’s world line~not necessarily
a geodesic!, with t being its proper time. The scalar partic
exhibits a Klein-Gordon fieldF, satisfying

hF[F ;a
;a5

1

A2g
~A2ggabF ,a! ,b524pr~xm!, ~2!

whereh represents the covariant D’Alembertian operatorg
is the metric determinant, andr(xm) is the scalar charge
density, given by

r~xm!5qE
2`

` 1

A2g
d4~xm2xp

m~t!!dt. ~3!

The solution for the scalar field can be written as

F~xm!5E G~xm;x8m!r~x8m!A2gd4x8, ~4!

whereG(xm;x8m) is the retarded Green’s function, satisfyin

hG~xm;x8m!5
24p

A2g
d4~xm2x8m!, ~5!

and subject to the causality condition,G50 wheneverxm

lies outside the future light cone ofx8m. Combining Eqs.~3!
and ~4! we obtain, for the scalar field,

2Throughout this paper we use relativistic units~with G5c51)
and metric signature2111.
7-3
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LEOR BARACK PHYSICAL REVIEW D 62 084027
f~xm!5qE
2`

`

G@xm;xp
m~t!#dt. ~6!

The ‘‘scalar force’’ experienced by the particle due to
own field shall be taken, following@14#, to be

Fa5qF ;a5qF ,a , ~7!

evaluated at the particle’s location. We comment that
so-defined force is not perpendicular to the four-velocity
the particle,ua[dxp

a(t)/dt, resulting in that the mass pa
rameter of the particle is not conserved along the world li
Indeed, the force on a scalar particle can be calculated
erwise~as in @6#, e.g.!, such as to make the mass parame
conserved: Fa

'5q(F ,a1uaubF ,b). Although we shall
adopt here the simpler definition, Eq.~7!, the results of our
analysis could then easily be applied for the forceFa

' as
well. ~Given all vectorial components ofFa , one can easily
construct both the force component perpendicular to
world line and the component tangent to it.! With Eq. ~6! we
now have, for the self-force acting on the particle at a po
x0

m[xp
m(t50) along its world line,

Fa5q2E
2`

`

G,a@xm;xp
m~t!#dt, ~8!

where the gradient~taken with respect toxm) is to be evalu-
ated atxm5x0

m .
The ‘‘bare’’ self-force given in Eq.~8! needs to be regu

larized to avoid divergences associated with the behavio
the scalar field at the very location of the particle. For th
goal, Quinn @13,14# applied the ‘‘comparison axiom’’ ap
proach by Quinn and Wald@11# for the scalar particle case
The total self-force acting on the scalar particle was found
be composed of three parts:

Fa
(total)5Fa

(ALD) 1Fa
(Ricci)1Fa

(tail) . ~9!

The first term here is a local ALD-like term, reading

Fa
(ALD) 5

1

3
q2~ ȧa2a2ua!, ~10!

whereaa is the four-acceleration of the particle,a2[abab,
and an overdot represents covariant differentiation with
spect to the particle’s proper timet. The second term in Eq
~9! is related to the local Ricci curvature at the particle loc
tion. It is given by

Fa
(Ricci)5

1

6
q2~Rabub1uaRbgubug2Rua/2!, ~11!

whereRab is the Ricci tensor andR is the curvature scalar
The third term in the expression for the total self-force re
resents the non-local ‘‘tail’’ contribution. It may be ex
pressed as

Fa
(tail)[ lim

e→01

Fa
(e) , ~12!
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Fa
(e)[q2E

2`

2e

G,a@x0
m ;xp

m~t!#dt. ~13!

As we mentioned above, the occurrence of a tail term—
prominent feature of the self-force in curved spacetimes—
due to the Green’s function having its support alsoinsidethe
source’s future light cone. From the physical point of vie
this is associated with the fact that waves are scattered
spacetime curvature while propagating on a curved ba
ground.

The task of implementing the formal expression, Eq.~9!,
in practical calculations of the self-force is a challenging o
The difficulty stems, of course, from the need to evaluate
tail part, which requires knowledge of the Green’s functi
everywhere along the particle’s past worldline. Below w
therefore focus on the tail term contribution to the self-forc
presenting a practical method for its calculation.

III. MULTIPOLE DECOMPOSITION
OF THE GREEN’S FUNCTION

The regularization scheme to be introduced below
based on evaluating the contribution to the~tail part of the!
self-force due to each multipole mode of the~retarded!
Green’s function. To that end we first consider the multipo
decomposition of the Green’s function.

To begin, one may be tempted to decomposeG into its
multipole modesGl in the usual manner, asG5( l 50

` Gl

~where Gl represents the quantity resulting from summi
over azimuthal numbersm). Although this may look as stan
dard procedure, caution is necessary here: in general, su
decomposition turns out ill defined, as the sum overl is
found to diverge. This can be illustrated already in flat spa
In this case, the modesGl admit a closed-form expression
which, for evaluation pointxm lying inside the future light
cone of the source pointx8m, is given by

Gflat
l ~xm,x8m!5

~2l 11!Pl~cosx!Pl@12s/~rr 8!#

2rr 8
.

~14!

Here, Pl is the Legendre polynomial,s[ 1
2 @(t2t8)22(r

2r 8)2#, and

cosx[ cosu cosu81sinu sinu8 cos~w2w8!. ~15!

@Equation~14! can be verified by direct substitution, usin
Eqs. ~27!, ~28!, and ~30!, to be given below.# Consider, for
example, the casex50, with Pl(cosx)[1 for all l, corre-
sponding to both the source and evaluation points lying
the same radial direction. At largel values, the Legendre
polynomial Pl(s) admits the asymptotic form
} l 21/23oscillations with respect tol @the exact asymptotic
form is given in Appendix A below; see Eq.~A13!#. Thus, at
large l one findsGflat

l } l 1/23oscillations, implying that the
7-4
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SELF-FORCE ON A SCALAR PARTICLE IN . . . PHYSICAL REVIEW D62 084027
infinite sum over all modes fails to converge.3 Mathemati-
cally speaking, this failure of the naive multipole decomp
sition may be associated with the fact that the Green’s fu
tion of our problem exhibits a strong irregularity along t
intersection of the future light cone of the source with t
sphere of constantr and t. In Appendix A we discuss this
irregularity in more detail, referring to the analysis b
DeWitt and Brehme@7#. We then suggest a way to overcom
the difficulty caused by the presence of the irregularity, a
explain how a well-defined mode decomposition can still
accomplished. Although the detailed discussion of this is
is left to Appendix A, we outline here the basic argume
and present some definitions and notation needed in the
quel.

In Appendix A we construct a ‘‘modified’’ Green’s func
tion Gmod5G2dG, where the functiondG is chosen such
that Gmod has the following properties:~i! it is a continuous
function ofu andw across the sphere of constantr andt, and
~ii ! it yields the same self-force, through Eq.~13!, as the
original Green’s functionG ~this is guaranteed by taking th
function dG to have no support inside the future light co
of the source!. It is then argued that the modified Green
function admits an~absolutely! convergent multipole expan
sion, Gmod5( l(G

l2dGl). Next, we define the new opera

tion lim̃l→` ~‘‘tilde limit’’ ! of a series of numbersAl , as the
standard limit liml→` ~when existing and finite! of the series
Al2Bl

(1)2Bl
(2)
•••2Bl

(k) , where theBl
( j )’s are any finite

number of terms having the formBl
( j )5aj l

bjcos(ajl1bj),
with aj , bj , a j , andb j being somel-independent real num
bers, and with none of the numbersa j vanishing. Namely, if
there existk quantitiesBl

( j ) of the above form, such tha
subtracting them from the original seriesAl would yield a
well-defined finite limit asl→`, then we define

lim̃ l→`Al[ lim
l→`

FAl2(
j 51

k

Bl
( j )G . ~16!

We also define the ‘‘tilde sum’’ of a seriesAl by

(
l 50

`̃

Al[ lim̃ l̄ →`(
l 50

l̄

Al , ~17!

where ( l
l̄ is the standard summation operation. It can

easily verified~see Appendix A! that when the ‘‘tilde limit’’
~or the ‘‘tilde sum’’! of a series exists, then it isunique. In
particular, if a standard infinite sum( l

`Al converges, then
one may replace it with a ‘‘tilde sum’’ operation. Thus, w
may replace the convergent standard sumGmod5( l 50

` (Gl

2dGl) with a tilde summation. In Appendix A we show tha
( l 50

`̃ (dGl)50. Consequently, we conclude

3In the more general case, withxÞ0, there is also a} l 21/2

3oscillations factor coming at largel from Pl(cosx), yielding the
asymptotic formGflat

l }const3 oscillations. Hence, clearly, the sum
over modesGl diverges in the general case as well.
08402
-
c-

d
e
e
,
se-

e

Gmod5(
l 50

`̃

Gl . ~18!

We emphasize once more that the modified Green’s func
Gmod can serveinsteadof the original functionG for the
calculation of self-force, as both functions yield the sam
force. Equation~18! thus implies that the calculation of th
self-force can be carried out through analysis of the origi
Green’s function’s modesGl , by applying thetilde summa-
tion instead of the~ill-defined! standard summation.@A more
thorough discussion of the arguments leading to Eq.~18! will
be given in Appendix A.#

Let us now turn to study the form of the multipole mod
Gl in greater detail. These modes can be written more
plicitly as

Gl~xm,x8m!5 (
m52 l

l

Ylm~u,w!ĝlm~ t,r ;x8m!, ~19!

where Ylm(u,w) are the standard spherical harmon
functions on the sphere of constantr and t. Substituting
Eq. ~19! and the relation d(u2u8)d(w2w8)/sinu
5(lmYlm(u,w)Ylm* (u8,w8), ~where an asterisk denotes compl
conjugation! in Eq. ~5!, we obtain, from the orthogonality o
the spherical harmonics,

r 2f 21~r !ĝ,tt
lm2@r 2f ~r !ĝ,r

lm# ,r1 l ~ l 11!ĝlm

54pd~ t2t8!d~r 2r 8!Ylm* ~u8,w8!. ~20!

In terms of them-independent variableg̃l(t,r ;t8,r 8), defined
through

ĝlm52pg̃lYlm* ~u8,w8!/~rr 8!, ~21!

Eq. ~20! becomes

g̃,tt
l 2g̃,r

*
r
*

l 14Vl~r !g̃l52 f ~r !d~ t2t8!d~r 2r 8!, ~22!

where the radial coordinater * (r ) admitsdr* /dr5 f 21(r ),
and the effective potentialVl(r ) is given by

Vl~r !5
1

4
f ~r !S l ~ l 11!

r 2
1

f 8~r !

r D ~23!

~with a prime denotingd/dr).
To account for the causality condition, it is convenient

introduce the~Eddington-Finkelstein-like! null coordinates

v[t1r * and u[t2r * . ~24!

The relation d(t2t8)d(r 2r 8)52 f 21(r 8)d(v2v8)d(u
2u8) can then be used to write Eq.~22! in the simple form

g̃,vu
l 1Vl~r !g̃l5d~v2v8!d~u2u8!. ~25!

We now impose causality by writing

g̃l5gl~v,u;v8,u8!Q~v2v8!Q~u2u8!, ~26!
7-5
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LEOR BARACK PHYSICAL REVIEW D 62 084027
whereQ is the standard step function. The ‘‘reduced Gree
function’’ gl(v,u;v8,u8) obeys the homogeneous equatio

g,vu
l 1Vl~r !gl50 ~27!

for all u.u8 andv.v8. Substituting Eq.~26! into Eq. ~25!
and examining the behavior along the null raysv5v8 and
u5u8, one finds thatgl must admit

gl~v5v8!5gl~u5u8!51. ~28!

For any fixed source pointv8,u8, the homogeneous equatio
~27!, supplemented by the initial conditions~28!, constitutes
a characteristic initial-value problem for the functiongl any-
where atu.u8 andv.v8.

Finally, to expressGl in terms of the reduced Green
function gl , we substitute Eq.~21! @with Eq. ~26!# into Eq.
~19!. In the resulting expression we can explicitly sum ov
m by making use of the relation@28#

(
m52 l

l

Ylm~u,w!Ylm* ~u8,w8!5~4p!21~2l 11!Pl~cosx!,

~29!

where cosx is the quantity given in Eq.~15!. We then find,
for the l mode of the Green’s function,

Gl5LPl~cosx!
gl~v,u;v8,u8!

rr 8
Q~v2v8!Q~u2u8!,

~30!

where we have set

L[ l 11/2. ~31!

IV. MODE SUM REGULARIZATION SCHEME

A. Need for a mode sum regularization

Following the discussion of the preceding section,
now replaceG in Eq. ~13! by Gmod, and then substitute fo
Gmod from Eq. ~18!. We find4

Fa
(e)5(

l 50

`̃

Fa
l (e) , ~32!

where Fa
l (e) represents the contribution toFa

(e) associated
with the l-mode Green’s function:

Fa
l (e)5q2E

2`

2e

G,a
l @x0

m ;xp
m~t!#dt. ~33!

4It is assumed here that both the differentiation and the integra
involved in constructingFa

(e) out of G can be performed term by
term with respect to the tilde summation. This assumption sho
be verified by more closely inspecting the convergence prope
of the tilde sum overGl in Eq. ~18!, which, however, would be
beyond the scope of the current paper.
08402
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For practical reasons which become clear below, let
now write

Fa
l (e)5Fa

l 2dFa
l (e) , ~34!

in which5

Fa
l 5q2E

2`

`

G,a
l @x0

m ;xp
m~t!#dt,

dFa
l (e)5q2E

2e

`

G,a
l @x0

m ;xp
m~t!#dt. ~35!

Here,Fa
l is the l mode ofFa5qF ,a—the quantity given in

Eq. ~8!, which is sourced by the entire world line. This qua
tity can be obtained from thel mode of the self-field, which,
in turn, can be calculated essentially with no difficulty~using
numerical methods, in most cases@23,24,26#!. The other
quantity appearing in Eq.~34!, dFa

l (e) , is local in nature, and
thus may be treated, in principle, by means of local analy
methods~as we, indeed, demonstrate in this paper!.

In terms ofFa
l anddFa

l (e) , the tail part of the self-force is
calculated through

Fa
(tail)5 lim

e→01
(
l 50

`̃

~Fa
l 2dFa

l (e)!. ~36!

To carry out this calculation, one may be tempted to fi
calculate the sum overFa

l ~which ise independent!, and then

evaluate the local contribution lime→01(̃ ldFa
l (e) . However,

here one comes across a problem: Although each of
modesFa

l yields a finite contribution at the particle’s loca
tion, in generalthe sum over all modes Fa

l diverges. As we
mentioned in the Introduction, this can be demonstrated e
in the simple case of a static scalar charge in flat space
overcome this type of divergence, the introduction of a c
tain regularization procedure for the mode sum is requir
Such a procedure is described~and later implemented! in
what follows.

B. Regularization scheme

To regularize the modes sum, one seeks a~simple as pos-
sible! e-independent functionha

l , such that the series
( l(Fa

l 2ha
l ) would converge. Once such a function is foun

Eq. ~36! can be written as

Fa
(tail)5(

l 50

`

~Fa
l 2ha

l !2Da , ~37!

where

n

ld
es

5Strictly speaking, the two quantitiesFa
l and dFa

l (e) are not well
defined without specifying the direction through which the gradi
of Gl is calculated. This issue is discussed in length later in t
section.
7-6
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FIG. 1. Discontinuity ofFr
l and dFr

l (e) . These quantities are calculated from Eq.~35! by integrating overt the Green’s function’sr
derivative at the particle’s location,r 5r 0. If this r derivative is calculated from the limitr→r 0

1 ~right figure!, then the term in Eq.~39!
involving d(u2up) will contribute to thet integration, whereas thed(v2vp) term will have no contribution. The situation is reversed if t
r derivative is calculated from the limitr→r 0

2 ~left figure!: then, a contribution will come only from thed(v2vp) term. Since these two
contributions are different, one finds that each of the quantitiesFr

l anddFr
l (e) has two different one-sided values~both of which are finite in

magnitude!.
m

e
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e

r-
n
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the

,

Da[ lim
e→01

(
l 50

`̃

~dFa
l (e)2ha

l !. ~38!

In principle, a regularization functionha
l can be con-

structed by investigating the asymptotic behavior ofFa
l as

l→`. It is also possible, however, to deriveha
l from the

large-l asymptotic behavior ofdFa
l (e) : the latter andFa

l must
have the same singular behavior at the tilde limitl→` ~for
fixed e), as their difference yields a convergent tilde su
over l. Obviously, in order to determineha

l ~and Da) from
dFa

l (e) , one merely needs the asymptotic behavior ofdFa
l (e)

in the immediate neighborhood ofe50. This allows one to
deriveha

l ~andDa) using local analytic methods, as shall b
demonstrated in the next section.

First, however, it would be necessary to comment h
about a certain indefiniteness involved in the above defi
tions of the quantitiesFa

l anddFa
l (e) .

C. Discontinuity of F a
l and dF a

l „e…

Whereas the quantityFa
l (e) of Eq. ~33! is well defined, the

values of the two quantitiesFa
l and dFa

l (e) depend on how
exactly one evaluates the gradientG,a

l at the particle’s loca-
tion. To make this point clear, consider first ther compo-
nentsFr

l and dFr
l (e) . These are calculated according to E

~35! from the r derivative ofGl , reading

G,r
l 5

LPl~cosx!

rr 8
$@g,r

l 2gl /r #Q~v2v8!Q~u2u8!

1 f 21gl@d~v2v8!Q~u2u8!2Q~v2v8!d~u2u8!#%.

~39!

To calculateFr
l anddFr

l (e) one needs to evaluate this deriv
tive at the self-force’s evaluation point,xm5x0

m , with a
source pointx8m5xp

m(t). Now, if the derivative atx0
m is

calculated fromr 0
1

„namely, by taking the limitr→r 0
1 of
08402
e
i-

.

@Gl(r )2Gl(r 0)#/(r 2r 0)…, then thed(u2u8) term in Eq.
~39! will have a nonvanishing contribution toFr

l and to
dFr

l (e) @through the integrals in Eq.~35!#, whereas thed(v
2v8) term will have no contribution—see Fig. 1. On th
other hand, if the derivative is taken fromr 2, it will be the
d(v2v8) term to contribute, and thed(u2u8) term to have
no contribution. One can easily verify~as we explicitly do in
the following section! that these two differentd terms yield
different contributions to the integrals in Eq.~35!. Thus, al-
though each of the quantitiesFr

l anddFr
l (e) has well-defined

values when calculated from either the limitr→r 0
2 or the

limit r→r 0
1 , these two one-sided values do not coincid.

@Note that the quantityFr
l (e) defined in Eq.~33! does not

exhibit this kind of discontinuity, as for any finitee neither
of the twod terms contribute to this quantity.#

One can similarly show that thet componentsFt
l and

dFt
l (e) also exhibit this kind of discontinuity through the pa

ticle’s location ~see the explicit calculation carried out i
Sec. V below!. On the other hand, theu andw components
are obviously continuous through the particle’s location,
Gl depends on the angular coordinates only through
regular functionPl(cosx).

For the sake of definiteness, we shall denote byFr
l 1 and

dFr
l (e)1 the one-sided values arising from ther→r 0

1 limit,
and by Fr

l 2 and dFr
l (e)2 the ones arising from ther→r 0

2

limit. In addition, the symbolsFt
l 6 anddFt

l (e)6 will stand for
the values derived from the limitt→t0

7 if dr/dt.0 at the
force’s evaluation point or from the limitt→t0

6 if dr/dt
,0 there.~In casedr/dr50 at the force’s evaluation point
the two one-sided values of thet component turn out to
coincide, as we obtain below.! With this notation we find, for
a5r or t,

dFa
l (e)65q2E

2e

01

G,a
l 6@x0

m ;xp
m~t!#dt ~40!

~and similarly forFa
l 6), where
7-7
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G,r
l 6~xm;x8m![

LPl~cosx!

rr 8
@g,r

l 2gl /r 7 f 21gld~w62w68 !#

~41!

and

G,t
l 6~xm;x8m![

LPl~cosx!

rr 8
@g,t

l 1gld~w62w68 !#. ~42!

Here, we have introduced the notation

w1[u and w2[v, ~43!

and, likewise,w18 [u8 andw28 [v8.

V. LOCAL ANALYSIS OF Gl FOR LARGE l

The execution of the regularization procedure introduc
above involves the construction of the quantitiesha

l andDa
l .

As we pointed out earlier, this can be done by analyz
dFa

l (e) or, more accurately, the quantitiesdFa
l (e)6 given in

Eq. ~40!. For that goal, we must have sufficient informatio
about the Green’s function’sl modeGl , for large values ofl,
at the immediate vicinity of the self-force evaluation poin
In this section we use local analysis to obtain analytic
proximation forGl , up to the accuracy needed for the de
vation of ha

l andDa
l .

A. Perturbation analysis

In Sec. III above we have reduced the problem of cal
lating Gl to that of solving a~111!-dimensional homoge
neous partial DE for the functiongl , Eq. ~27!, with the char-
acteristic initial data specified in Eq.~28!. Given the function
gl , the ‘‘four-dimensional’’ Green’s functionl mode,Gl , is
then constructed from Eq.~30!.

To explore the behavior of the functiongl for small
spacetime intervals and largel, we apply the following per-
turbation analysis. Let us separate the effective poten
given in Eq.~23! into two pieces, in the form

Vl~r !5L2V0~r !1V1~r !, ~44!

where

V0~r !5
f ~r !

4r 2
and V1~r !5

f ~r !

16r 2
@4r f 8~r !21#. ~45!

Let us next expandVl(r ) in a Taylor series in the sma
deviationr 2r 0 about the particle’s locationr 5r 0. It is con-
venient to take the small expansion parameter to ber *
2r * 0, yielding

Vl~r !5Vl~r 0!1V̄l~r 0!~r * 2r * 0!

1
1

2
V̄̄l~r 0!~r * 2r * 0!21•••, ~46!

where an overbar denotesd/dr* . Let us also define
08402
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D r[2V00
1/2L~r * 2r * 0!, ~47!

whereV00[V0(r 0). We shall refer to a variable of this kind
having the formL3(small spacetime deviation), as a ‘‘neu
tral’’ variable. Such ‘‘neutral’’ variables shall play an impor
tant role in our analysis, allowing one to properly take in
account the delicate interplay between largel and small
spacetime deviations. Expressingr * 2r * 0 in terms ofD r /L,
substituting in the above Taylor expansion, and collect
terms of the same powers inL ~with fixed D r), Eq.~46! takes
the form

Vl~r !5V00@L21L~ f 1D r !1~ f 21 f 3D r
2!#1O~1/L !,

~48!

where f 1 , f 2, and f 3 are coefficients given by

f 1[
1

2
V00

23/2V̄05 f 21/2~r f 822 f !, ~49!

f 2[V00
21V15r f 821/4, ~50!

f 3[
1

8
V00

22V̄̄05
r 2

2
@~ f 8!2/ f 1 f 9#13~ f 2r f 8!. ~51!

~Here, all quantities are evaluated atr 5r 0.!
Defining now the dimensionless ‘‘neutral’’ coordinates

y5V00
1/2L~v2v8! and x5V00

1/2L~u2u8!, ~52!

Equation~27! becomes

g,yx
l 1F11

f 1D r

L
1

f 21 f 3D r
2

L2
1O~1/L3!Ggl50. ~53!

We next expandgl in the form

gl5 (
k50

`

L2kgk~D r ,D r 8 ,z!, ~54!

where the expansion coefficientsgk are considered as bein
dependent on only the ‘‘neutral’’ variablesD r ,

D r 8[2V00
1/2L~r

*
8 2r * 0!, ~55!

and

z[2Axy5~L/r 0!s. ~56!

Here, s is the geodesic distance, to leading order inr 2r 8,
between the Green’s function evaluation and source po
~when these two points have the sameu andw values!:

s5@ f ~r 0!~v2v8!~u2u8!#1/2. ~57!

Substituting now the expansion~54! into Eq. ~53! and com-
paring powers ofL, we obtain a hierarchy of equations fo
the various functionsgk , having the form

gk,yx1gk5Sk . ~58!
7-8
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Here, the sourceSk is determined for eachk.0 by the func-
tions gk8,k precedinggk in the hierarchy. In the analysi
below we shall only need the terms withk50, 1, and 2. For
these values ofk, the source terms are given by

S050, ~59a!

S152 f 1D rg0 , ~59b!

S252 f 1D rg12~ f 21 f 3D r
2!g0 . ~59c!

Finally, to complete the formulation of a characteris
initial data problem for each of the functionsgk , we supple-
ment Eq.~58! with the initial conditions

gk~v5v8!5gk~u5u8!5dk0 , ~60!

which conform with the original initial conditions forgl , Eq.
~28!.

B. Analytic solutions for kÄ0, 1, and 2

The solution to Eq.~58! for k50, subject to the initial
conditions, Eq.~60!, is given by

g05J0~z!, ~61!

whereJn are the Bessel functions of the first kind, of ordern.
To solve forg1, we first express the sourceS1 explicitly

as a function ofy2x andz, using Eq.~61! and the relation
D r5y2x1D r 8 . We find

S152 f 1J0~z!~y2x!2 f 1D r 8J0~z!. ~62!

Then, with the help of Table I, we find the solution fork
51 @satisfying Eq.~60!# to read

g152
1

4
f 1zJ1~z!~D r1D r 8!. ~63!

We now use the above solutions forg0 andg1 to express
S2 as

TABLE I. Specific solutions to the inhomogeneous partial D
g,yx1g5S for various source functions of the formS(z;x2y),
wherez52Axy. These solutions can be verified by substitution.
this table,Jn are the Bessel functions of the first kind, of ordern.

S(z;x2y) Solution tog,yx1g5S(z;x2y)

J0(z) zJ1(z)/2
(y2x)J0(z) (y2x)zJ1(z)/4
(y2x)2J0(z) @z2J2(z)12(y2x)2zJ1(z)#/12
zJ1(z) z2J2(z)/4
(y2x)zJ1(z) (y2x)z2J2(z)/6
(y2x)2zJ1(z) @z3J3(z)13(y2x)2z2J2(z)#/24
08402
S25
1

4
f 1

2zJ1~z!@~y2x!213D r 8~y2x!12D r 8
2

#

2 f 3J0~z!@~y2x!212D r 8~y2x!1D r 8
2

#2 f 2J0~z!.

~64!

With the help of Table I, we then construct the followin
solution forg2, satisfying Eq.~60!:

g252
1

6
zJ1~z!@ f 3~D r

21D rD r 81D r 8
2

!13 f 2#

1
1

96
z2J2~z!@3 f 1

2~D r1D r 8!
228 f 3#1

1

96
f 1

2z3J3~z!.

~65!

C. G,a
lÁ expanded in powers of 1ÕL

We are now in position to write the three leading-ord
terms in the 1/L expansion of the gradientG,a

l 6@x0
m ;xp

m#. To
that end we shall need, in view of Eqs.~41! and ~42!, to
evaluate the functionsgk derived above, along with thei
gradientsgk,a , for xm5x0

m andx8m5xp
m . For the calculation

of gk,a it is convenient to use the auxiliary relations

d@znJn~z!#/dz5znJn21~z! ~66!

@for n50 recallJ21(z)52J1(z)#, along with

dz/dr52 f 0L~y2x!/z and dz/dt5 f f 0L~y1x!/z,
~67!

where

f 0[@r 0f 1/2~r 0!#21. ~68!

With the help of these relations we derive from Eqs.~61!,
~63!, and ~65! expressions forgk,r and gk,t ~where k
50,1,2). We then setxm5x0

m andx8m5xp
m in these expres-

sions and also in the expressions for the functionsgk them-
selves~noticing the vanishing ofD r). All resulting expres-
sions are then substituted in the formulas forG,r

l 6 andG,t
l 6 ,

Eqs. ~41! and ~42!. In these equations we also make t
substitution d(w62w68 )52LV00

1/2d(ŵ6), where ŵ6 are
‘‘neutral’’ variables defined by

ŵ1[2x and ŵ2[2y. ~69!

Finally, collecting common powers ofL we obtain, fora
5r or t, an expression of the form

G,a
l 6@x0

m ;xp
m#5

Pl~cosx!

rr 8
~Ĥa

(0)6L21Ĥa
(1)L1Ĥa

(2)1••• !,

~70!
7-9
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where the various coefficientsĤa are functions of only the
‘‘neutral’’ spacetime-interval variables6 D r 8 , z, ŵ6 , and

D t[2V00
1/2L~ t02tp!. ~71!

These coefficient functions are given by

Ĥr
(0)65 f 0@2D r 8J1~z!/z7J0~z!d~ŵ6!#, ~72a!

Ĥr
(1)52

1

4
f 0f 1@zJ1~z!1D r 8

2 J0~z!#2J0~z!/r 0 , ~72b!

Ĥr
(2)5

1

96
f 0D r 8@7 f 1

2z2J2~z!13zJ1~z!~ f 1
2D r 8

2
28 f 3!

216J0~z!~ f 3D r 8
2

13 f 2!#1
1

4
f 1D r 8zJ1~z!/r 0 ,

~72c!

and

Ĥt
(0)65 f f 0@2D tJ1~z!/z1J0~z!d~ŵ6!#, ~73a!

Ĥt
(1)52

1

4
f f 0f 1D r 8D tJ0~z!, ~73b!

Ĥt
(2)5

1

96
f f 0D t@ f 1

2z2J2~z!1zJ1~z!~3 f 1
2D r 8

2
28 f 3!

216J0~z!~ f 3D r 8
2

13 f 2!# ~73c!

~where the functionf is to be evaluated atr 5r 0!. In the
above expressions forĤr

(1),(2) and Ĥt
(1),(2) we have omitted

terms of the form}zkJn(z)d(ŵ6), with k being a positive
integer, as such terms would yield vanishing contributions
dFa

l (e)6 when integrated overt in Eq. ~40!.
The quantitiesdFa

l (e)6 can now be constructed, in prin
ciple, for any given world line, by inserting Eq.~70! into Eq.
~40! and carrying out the integration overt. In practice, to
integrate overt, one should proceed as follows: Recallin
thatt is a small quantity~we haveutu<e), one first expands
in powers oft all t-dependent quantities in the integrand
Eq. ~40!. ~At that point, the details of the specific trajecto
under consideration enter the calculation in an explicit m
ner; specifically, the power expansion coefficients turn ou
depend on the values ofua, u̇a, andüa at the force’s evalu-
ation point.! Then, since we are interested in extracting t
largel ~largeL) behavior ofdFa

l (e)6 , we introduce the ‘‘neu-
tral’’ dimensionless proper time variable, defined by

l[2~L/r 0!t, ~74!

6We hereafter use the symbolsD r 8 , z, and ŵ6 to represent the
values of these variables forxm5x0

m andx8m5xp
m .
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and replacet by 2r 0(l/L). The integrand then takes th
form of a power series in 1/L, with l-dependent coefficients
Transforming finally from integration overt to integration
overl, one obtains an expression fordFa

l (e)6 in the form of
a power series in 1/L, as desired. In the rest of this paper w
carry out the above calculation in full detail~and deriveha

l

andDa) for the case of a purely radial trajectory.

VI. FORM OF THE REGULARIZATION FUNCTION hl :
THE CASE OF RADIAL MOTION

When considering radial trajectories~namely, ones along
which du5dw50) one hasPl(cosx)[1. Consequently, the
Green’s function given in Eq.~30! becomesu,w indepen-
dent, resulting in the vanishing of both angular compone
of the self-force~as should be expected, of course, by virt
of the background being spherically symmetric!. In the fol-
lowing we discuss ther and t components of the self-force

To carry out the integration in Eq.~40! we first expand
eacht-dependent quantity in the integrand in powers of 1L,
with l held fixed. Thet-dependent quantities to be expand
are D r 8 , D t , 1/r 8, z, and the various Bessel functions a
pearing in Eqs.~72! and ~73!.

By expandingD r 8 in a Taylor series int aboutr 5r 0, and
transforming to the variablel, we obtain the expansion

D r 85Ḋ r 8t1
1

2
D̈ r 8t

21
1

6
D̂ r 8t

31•••

5 f 1/2F2 ṙ * l1
1

2
r̈ * l2~r 0 /L !2

1

6
r̂ * l3~r 0 /L !2G

1O~1/L !3, ~75!

where

ṙ * 5 f 21ṙ ,

r̈ * 5 f 22~ f r̈ 2 f 8 ṙ 2!,

r̂ * 5 f 23@~2 f 822 f 9 f ! ṙ 323 f 8 f ṙ r̈ 1 f 2 r̂ #, ~76!

and where all quantities~exceptl) are evaluated atr 5r 0
(t50). In a similar manner we obtain, forD t ,

D t5 f 1/2F ṫl2
1

2
ẗl2~r 0 /L !1

1

6
t̂ l3~r 0 /L !2G1O~1/L !3,

~77!

and for 1/r 8,

1

r 8
5

1

r 0
F11 ṙ ~l/L !1

1

2
~2ṙ 22r 0r̈ !~l/L !2G1O~1/L !3.

~78!

Next, recallingz5(L/r 0)s, we obtain

z52 ṡl1
1

2
s̈l2~r 0 /L !2

1

6
ŝl3~r 0 /L !21O~1/L !3.

~79!
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To calculate thet derivatives ofs ~which are understood
here to be evaluated att50), we make use of the norma
ization relationv̇u̇51/f and of the relations derived from
by successively differentiating its both sides with resp

to t: v̈u̇1 v̇ü5(1/f )8 ṙ and v̂ u̇12v̈ü1 v̇ û5(1/f )9 ṙ 2

1(1/f )8 r̈ . Using these relations we find

ṡ~t50!521, ~80!

s̈~t50!5
1

2
~ f 8/ f ! ṙ , ~81!

ŝ~t50!5
1

16f 2
@~8 f 9 f 213f 82! ṙ 218 f 8 f r̈ #1

1

4
f v̈ü

~82!

~note that whereast is non-positive throughout the integra
tion domain,z ands are, by definition, non-negative!.

Finally, we need to similarly expand the various Bes
functions appearing in the integrand of Eq.~40!. Using Eqs.
~79! and ~80! we find, for anyn>0,

Jn~z!5Jn~l!1
1

2
~r 0 /L !s̈l2Jn8~l!

1~r 0 /L !2S 1

8
s̈2l4Jn9~l!2

1

6
ŝl3Jn8~l! D1O~1/L3!,

~83!

where a prime denotesd/dl. Using this general form to-
gether with Eq.~66!, we obtain the following expansions
needed for our analysis:
08402
t

l

J0~z!5J0~l!2
1

2
~r 0 /L !s̈l2J1~l!1O~1/L2!, ~84!

J1~z!5J1~l!1
1

2
~r 0 /L !s̈@l2J0~l!2lJ1~l!#

1~r 0 /L !2F1

8
s̈2@l3J2~l!2l4J1~l!#

2
1

6
ŝ@l3J0~l!2l2J1~l!#G1O~1/L3!. ~85!

We now substitute the above expansions forD r 8 , D t , z,
and the Bessel functions in Eqs.~72!,~73!. We also substitute
for the delta functions in Eqs.~72a! and ~73a!:

d~ŵ6!5
d~l!

udŵ6 /dlu
5

d~l!

f 1/2ẇ6

5 f 1/2ẇ7d~l!, ~86!

where the last equality is due to the normalization of t
four-velocity. We thereby obtain expressions for the vario
functionsĤa

(n50,1,2), each expanded in powers of 1/L up to
orderO(Ln22) ~with l-dependent coefficients!. Substitution
of these expressions@and of the expansion for 1/r 8, Eq. ~78!#
into Eq. ~70! finally yields the desired expression for th
Green’s function’s gradient, as a power series in 1/L ~with l
held fixed!. We find ~for a5r ,t)

G,a
l 65Ha

(0)6L21Ha
(1)L1Ha

(2)1O~1/L !, ~87!

where the various coefficientsHa
(n) are functions ofl along

the world line, given by
Hr
(0)65

1

r 0
3 @ ṙ * J1~l!7ẇ7J0~l!d~l!#, ~88!

Hr
(1)52

1

4r 0
3 @lJ1~l!~ f 1 / f 1/224ṙ ṙ * 14r 0s̈ṙ * 12r 0r̈ * !1l2J0~l!~ f 1/2f 1ṙ

*
2 22r 0s̈ṙ * !14J0~l!#, ~89!

Hr
(2)52

1

96r 0
3 @48lJ0~l!~2ṙ 2 f 2ṙ * !14l3J0~l!~3 f 1r 0s̈/ f 1/216r 0

2s̈2ṙ * 14r 0
2 ŝṙ * 24 f f 3ṙ

*
3

16r 0
2s̈r̈ * 26 f 1/2f 1r 0ṙ * r̈ * 212ṙ r 0s̈ṙ * 16 f 1/2f 1ṙ ṙ

*
2 !18l2J1~l!~3 f 1ṙ / f 1/226r 0s̈23 f 3ṙ * 212ṙ 2ṙ *

16r 0r̈ ṙ * 112r 0ṙ s̈ṙ * 26r 0
2s̈2ṙ * 24r 0

2 ŝṙ * 16r 0ṙ r̈ * 26r 0
2s̈r̈ * 22r 0

2 r̂ * 13 f 1/2f 1ṙ * !

13l4J1~l!~4r 0
2s̈2ṙ * 1 f f 1

2ṙ
*
3 24 f 1/2f 1r 0s̈ṙ

*
2 !1l3J2~l!~7 f 1

2ṙ * 212r 0
2s̈2ṙ * !#, ~90!

and

Ht
(0)65

f

r 0
3 @J0~l!ẇ7d~l!2J1~l! ṫ #, ~91!
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Ht
(1)5

f

4r 0
3 $lJ1~l!@24ṙ ṫ12r 0~2s̈ṫ1 ẗ !#1l2J0~l!~22r 0s̈ṫ1 f 1/2f 1ṙ * ṫ !%, ~92!

Ht
(2)52

f

96r 0
3 $48lJ0~l! f 2 ṫ24l3J0~l!@r 0

2~6s̈2 ṫ14 ŝ ṫ16s̈ẗ !23r 0~4ṙ s̈ṫ1 f 1/2f 1 ẗ ṙ * 1 f 1/2f 1 ṫ r̈ * !

16 f 1/2f 1ṙ ṫ ṙ * 24 f f 3 ṫ ṙ
*
2 #18l2J1~l!~ f 3 ṫ112ṙ 2 ṫ26r 0r̈ ṫ212r 0ṙ s̈ṫ16r 0

2s̈2 ṫ14r 0
2 ŝ ṫ26r 0ṙ ẗ

16r 0
2s̈ẗ12r 0

2 t̂ !13l4J1~l!~24r 0
2s̈2 ṫ14 f 1/2f 1r 0s̈ṫ ṙ * 2 f f 1

2 ṫ ṙ
*
2 !1l3J2~l!~2 f 1

2 ṫ112r 0
2s̈2 ṫ !%. ~93!
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Changing the integration variable in Eq.~40! from t to l,
we now have

dFa
l (e)65q2r 0E

0

Le/r 0
@LHa

(0)61Ha
(1)1Ha

(2)/L1O~L22!#dl.

~94!

The desired regularization functionha
l is to be constructed

such as to extract the largel singular behavior ofdFa
l (e)6

~while maintaining the simplest form possible!. By virtue of
Eq. ~94! we take this function to be

ha
l 65LAa

61Ba1Ca /L, ~95!

where

Aa
6[ lim̃ l→`~L21dFa

l (e)6!5q2r 0E
0

`̃
Ha

(0)6~l!dl,

~96a!

Ba[ lim̃ l→`~dFa
l (e)62LAa

6!5q2r 0E
0

`̃
Ha

(1)~l!dl,

~96b!

Ca[ lim̃ l→`L~dFa
l (e)62LAa

62Ba!5q2r 0E
0

`̃
Ha

(2)~l!dl,

~96c!

with *`̃()dl standing for lim̃x→`*x()dl.7 That the second
equality in each of Eqs.~96b! and~96c! is valid, and that the
above choice of functionha

l 6 indeed satisfies the requireme

that the tilde sum( l 50
`̃ (dFa

l (e)62ha
l 6) would converge will

be shown in the next section, where we explicitly calcul
the parametersAa , Ba , andCa . The reason for using the
tilde limit instead of the standard limit in the definitions

7Here we extend the definition of the tilde limit, given in Appe
dix A, from discrete functions with indexl to continuous functions
of l. In an analogous manner, the tilde limit of a functionf (l) as
l→` would be defined through the subtraction of a finite sum
functions of the formB( j )(l)5ajl

bjcos(ajl1bj) ~with a jÞ0 for
all j ). It is simple to verify that the tilde limit of a function, whe
existing, is single valued.
08402
e

these parameters will also become clear then. As to the
rameterDa , substituting now Eqs.~94! and ~95! into Eq.
~38!, one obtains8

Da52q2r 0 lim
e→0

(
l 50

`̃ E
Le/r 0

`̃
@LHa

(0)61Ha
(1)1Ha

(2)/L#dl.

~97!

In conclusion, we find the tail part of the self-force to b
given by

Fa
(tail)5(

l 50

`

~Fa
l 62Aa

6L2Ba2Ca /L !2Da , ~98!

where, from the above construction ofha
l , it follows that the

sum overl converges at least as;1/l . The implementation
of our regularization scheme thus amounts to analytica
determining the regularization parametersAa

6 , Ba , Ca , and
Da , using Eqs.~96! and~97!. For the calculation of the tai
term, one may use eitherFa

l 1 ~with Aa
1) or Fa

l 2 ~with Aa
2).

Of course, one may also use any combination of these
one-sided quantities~e.g., their average!. It should be empha-
sized here that thefinal result of the calculation, namely th
tail termFa

(tail) ~having a well defined value at the evaluatio
point!, should be the same regardless of whether it is deri
from one of the one-sided limits or from the other, or, sa
from their average.

We finally point out that, although Eq.~98! has been de-
veloped here for radial motion, an expression of this form
also valid for any other trajectory@29#. The details of the
specific trajectory under consideration would only affect t
values of the various regularization parameters.

f

8We assume here that the contribution associated with
O(L22) term in Eq.~94! vanishes upon taking the limite→0, as
this contribution is of orderO(e) ~this becomes clear from the
calculation ofDa in the next section!. However, a problem may
occur if this term fails to yield a finite contribution when integrate
over l. Here we do not further investigate the behavior of t
O(L22) term, and just assume that the above potential problem
not realized.
7-12



als, the

SELF-FORCE ON A SCALAR PARTICLE IN . . . PHYSICAL REVIEW D62 084027
VII. DERIVATION OF THE REGULARIZATION PARAMETERS FOR RADIAL MOTION

To carry out the calculation of the regularization parameters in this section, we shall need the following integr
derivation of which will be described in Appendix B. Fork,nPN we have

E
0

`̃
lkJn~l!dl5H ~n1k21!!!/ ~n2k21!!!, 0<k<n,

~21!(k2n)/2~k1n21!!! ~k2n21!!!, evenk2n.0,

0, oddk2n.0

~99!
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@in applying this formula fork5n, recall (21)!! 51#. If the
differencek2n is a positive odd integer, then we also ha

E
0

`̃
lkJn~l!lnl dl

5~21!(k2n11)/2~k1n21!!! ~k2n21!!!.

~100!

A. Derivation of Aa
Á

Substituting Eqs.~88! and ~91! into Eq. ~96a! and carry-
ing out the tilde integration@with the help of Eq.~99!# we
find, recallingJ0(0)51 andJ0(`)50,

Ar
65

q2

r 0
2 ~ ṙ * 7ẇ7!57

q2

r 0
2
ṫ ,

At
65 f

q2

r 0
2 ~2 ṫ1ẇ7!56

q2

r 0
2
ṙ . ~101!

Note that the two one-sided values ofAa are, in general, no
the same. Consequently, as argued above, the functionha

l

~and alsodFa
l (e)) exhibits two different one-sided values. W

note that theaveragedvalue of the parameterAa , to be
denoted byĀa , is found to vanish:

Āa[
1

2
~Aa

11Aa
2!50. ~102!

This vanishing ofĀa seems to occur for all trajectories of
scalar particle, not only the radial ones considered here@29#.

B. Derivation of Ba

By the definition ofBa in Eq. ~96b! we have, after sub-
stituting for Aa

6 from Eq. ~96a!,

Ba52q2r 0lim̃ l→`FLE
Le/r 0

`̃
Ha

(0)6~l!dlG
1q2r 0E

0

`̃
Ha

(1)~l!dl. ~103!

The first term here cancels out upon taking the tilde liml
→`: At large l ~and fixede), each of the componentsHa

(0)6
08402
behaves as} l 21/2 times oscillations with respect tol @these
components are linear combinations of Bessel functions,
asymptotic form of which is described in Eq.~B6!#. To lead-
ing order in 1/l , this is also the form of the integral ove
Ha

(0)6 in Eq. ~103! ~which is carried out over asymptoticall
large values ofl). Hence, the expression in the squar
brackets is found to diverge as} l 1/2 times oscillations. When
taking the tilde limit, this divergent piece is removed, wi
the remaining part dying off at largel as } l 21/2 ~times os-
cillations!. Therefore, no contribution arises from the fir
term in Eq. ~103!, and the second equality of Eq.~96b! is
shown to be valid.

To calculate the parameterBa , we now substitute for
Ha

(1) from Eqs.~89! and ~92! ~for the r and t components,
respectively!. The calculation involves tilde integrating ove
terms of the form}lJ1(l), }l2J0(l), and}J0(l). Read-
ing the values of the integrals from Eq.~99!, and substituting
for f 1 , ṙ * , r̈ * , and s̈ @using Eqs.~49!, ~76!, and~81!#, we
obtain

Br52
q2

2r 0
2

f 21~ f 1r 0f 8/22 ṙ 21r 0r̈ ! ~104!

and

Bt5
q2

2r 0
2 @ f r 0 ẗ1 ṫ ṙ ~r 0f 82 f !#. ~105!

Recallingar5 r̈ 1 f 8/2 andat5 ẗ1 f 8 ṙ * ṫ in the case of radial
motion considered here, we may express this result in a m
compact form as

Ba52
q2

2r 0
2 ~da

r 1r 0aa2 ṙ ua!. ~106!

C. Derivation of Ca

By its definition in Eq.~96c!, we have for the paramete
Ca , after substituting forAa andBa ,

Ca52q2r 0 lim̃ l→`F E
Le/r 0

`̃
@LHa

(0)~l!1Ha
(1)~l!#dlG

1q2r 0E
0

`̃
Ha

(2)~l!dl. ~107!
7-13
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Again, there is a residual part left from the calculation ofAa
and Ba , which involves integration over asymptotical
large values ofl. This part can again be shown to vanish
the tilde limit l→` is taken, resulting in that only the secon
integral in Eq.~107! survives.

To calculateCa , we thus use the second equality of E
~96c!, in which we substitute forHa

(2) from Eqs. ~90! and
~93! ~for the r andt components, respectively!. One then has
to evaluates the tilde integral of a sum of various terms of
form }lkJn(l), all of which havek.n and oddk2n. Ac-
cording to Eq.~99!, all such integrals vanish. Thus, we find

Ca50. ~108!

The vanishing of the parameterCa seems to be a universa
feature of our scheme, regardless of the specific trajec
under consideration@29#. As we also find below, this vanish
ing constitutes a necessary condition for the self-consiste
of the whole regularization scheme.

D. Derivation of Da

To calculate the parameterDa we write Eq.~97! in the
form

Da5Da
(0)1Da

(1)1Da
(2) , ~109!

where

Da
(n)[2q2r 0 lim

e→0
(
l 50

`̃ E
Le/r 0

`̃
L12nHa

(n)6~l!dl. ~110!

In calculating the above three pieces ofDa , we shall trans-
form from summation overl to integration over a continuou
variable. For this transformation we will make use of t
relation

(
l 50

`

~e/r 0!K~Le/r 0!5E
0

`FK~x!2
1

24
~e/r 0!2K9~x!Gdx

1O~e3!, ~111!

whereK(x) is any~sufficiently regular! integrable real func-
tion, andx is an integration variable. Here, theO(e0) term
on the right-hand side~RHS! is the standard~‘‘Riemann
type’’! integral, which is obtained, by definition, when th
e→0 limit of the left-hand side is taken. We also indicat
here theO(e2) correction to the integral, which we sha
have to take into account in the calculation below~it is
straightforward to verify the form of this correction ter
using standard calculus!. Obviously, Eq.~111! also holds for
the tilde sum( l 50

`̃ , where on the RHS we use the tilde int

gral *0
`̃ .

Beginning with the calculation ofDa
(0) , we write Eq.

~110! for n50 as
08402
s

.
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Da
(0)52q2r 0 lim

e→0
F ~r 0 /e!2(

l 50

`̃

~e/r 0!

3S ~Le/r 0!E
Le/r 0

`̃
Ha

(0)6~l!dl D G . ~112!

Comparing the form of the sum in this expression to t
left-hand side of Eq.~111!, we find

Da
(0)52q2r 0 lim

e→0
F ~r 0 /e!2E

0

`

dxS Ka
(0)~x!

2
1

24
~e/r 0!2@Ka

(0)~x!#9D G , ~113!

where

Ka
(0)~x![xE

x

`̃
Ha

(0)6~l!dl. ~114!

Note here how the contribution toDa
(0) due to theO(e3)

term appearing in Eq.~111! vanishes upon taking the limi
e→0. We recall that each of the two componentsHr

(0)6 and
Ht

(0)6 , given explicitly in Eqs.~88! and ~91!, contains two
terms: one proportional tod(l) and the other toJ1(l). The
}d(l) term has no contribution toKa

(0) , resulting in that
both two one-sided valuesHa

(0)1 and Ha
(0)2 yield the same

function Ka
(0) ~for that reason, no6 sign has been assigne

to this quantity!. There is an apparent danger of divergen
coming from theO(e22) term in Eq.~113!. Such a diver-
gence is avoided, however, as we have

E
0

`̃
Ka

(0)~x!dx5
ua

r 0
3 E

0

`̃
dx xE

x

`̃
J1~l!dl

5
ua

2r 0
3 E0

`̃
x2J1~x!dx50, ~115!

where in the second equality we integrated by parts w
respect tox, and where the vanishing of the last integral
implied by Eq. ~99!. Thus, theO(e22) term in Eq. ~113!
vanishes, and thee→0 limit in this equation turns out wel
defined. The remainingO(e0) contribution reads

Da
(0)5

q2r 0

24 E
0

`̃
@Ka

(0)~x!#9dx

52
q2r 0

24 E
0

`̃
$Ha

(0)6~x!1@xHa
(0)6~x!#8%dx

52
q2r 0

24 E
0

`̃
Ha

(0)6~x!dx, ~116!

as the surface term vanishes. Substituting forHa
(0)6(x) and

integrating using Eq.~99!, we finally obtain
7-14
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Da
(0)52

q2ua

24r 0
2 E

0

`̃
J1~l!dl52

q2ua

24r 0
2

. ~117!

We next turn to calculateDa
(1) . Writing Eq. ~110! for n

51 in the form

Da
(1)52q2r 0 lim

e→0
F ~r 0 /e!(

l 50

`̃

~e/r 0!E
Le/r 0

`̃
Ha

(1)~l!dlG
~118!

and applying the summation formula~111!, we obtain

Da
(1)52q2r 0 lim

e→0
F ~r 0 /e!E

0

`̃
dxE

x

`̃
Ha

(1)~l!dlG ,
~119!

with all O(e2) terms appearing in Eq.~111! vanishing in the
limit e→0. By integrating the last expression by parts w
respect tox ~noticing the vanishing of the surface term! one
finds

Da
(1)52q2r 0 lim

e→0
F ~r 0 /e!E

0

`̃
xHa

(1)~x!dxG . ~120!

Here, the integrand contains only terms of the fo
}xkJn(x), with k2n being positive odd integers@see Eqs.
~89! and ~92!#. Hence, by virtue of Eq.~99!, the integral
vanishes, yielding

Da
(1)50. ~121!

Finally, from Eq.~110! with n52 we obtain

Da
(2)52q2r 0 lim

e→0
F(

l 50

`̃

~e/r 0!~Le/r 0!21E
Le/r 0

`̃
Ha

(2)~l!dlG
52q2r 0E

0

`̃
~dx/x!E

x

`̃
Ha

(2)~l!dl, ~122!

which, after integrating by parts, becomes

Da
(2)52q2r 0F E

0

`̃
ln xHa

(2)~x!dx

2 lim
x→0

S ln xE
x

`̃
Ha

(2)~l!dl D G . ~123!

We notice here that the second integral on the RHS is
Ca1O(x) @up to a multiplicative constant; see Eq.~96c!#.
The above-deduced vanishing of the parameterCa guaran-
tees the definiteness of thex→0 limit in Eq. ~123!, and
makes the second term on its RHS vanish. Note the way
vanishing of the parameterCa appears as a necessary se
consistency condition in our scheme: had we gotCaÞ0, the
parameterDa would have been indefinite, and the who
regularization scheme would have been rendered mean
less.

As thex→0 limit in Eq. ~123! vanishes, we are left with
08402
st

he
-

g-

Da
(2)52q2r 0E

0

`̃
ln xHa

(2)~x!dx. ~124!

With the explicit form ofHa
(2) , given in Eqs.~90! and ~93!,

the integrand in the last expression is found to consist
various terms of the form}xk ln xJn(x), with k2n being

positive odd integers. The integrals*0
`̃ of such terms can be

read from the formula~100!, which we derive in Appendix
B. Using this formula we obtain expressions forDr

(2) and

Dt
(2) , which, after substituting forṙ * , r̈ * , r̂ * , s̈, ŝ, f 1 , f 2,

and f 3, read

Dr
(2)5

1

3
q2~ f 21 r̂ 1 ṙ v̈ü!1

q2ṙ

24f 2r 0
2 @ f ~4 f 23!

18r 0f 8~ f 2r 0r̈ !12r 0
2~3 f f 92 f 82!#, ~125!

and

Dt
(2)52

1

3
q2~ f r̂ 1 f 2 ṫ v̈ü!2

1

2
q2f 8 ṙ ẗ

1
q2 ṫ

24r 0
2 @3 f 24 f 214 f 21~ f 8!2r 0

2ṙ 228 f 9r 0
2ṙ 2

24 f 8r 0
2r̈ 22 f f 9r 0

228 f f 8r 0#. ~126!

We are now in position to write an expression for t
‘‘overall’’ parameterDa . We haveDa5Da

(0)1Da
(2) , yield-

ing

Dr5
1

3
q2~ f 21 r̂ 1 ṙ v̈ü!1

q2ṙ

12f 2r 0
2 @2 f ~ f 21!

14r 0f 8~ f 2r 0r̈ !1r 0
2~3 f f 92 f 82!#, ~127!

and

Dt52
1

3
q2~ f r̂ 1 f 2 ṫ v̈ü!2

1

2
q2f 8 ṙ ẗ1

q2 ṫ

12r 0
2 @2 f ~12 f !

12 f 21~ f 8!2r 0
2ṙ 224 f 9r 0

2ṙ 222 f 8r 0
2r̈

2 f f 9r 0
224 f f 8r 0#. ~128!

In the case of radial motion, the four-acceleration’s co
ponents admit the explicit formar5 r̈ 1 1

2 f 8 and at5 ẗ

1 f 8 ṙ * ṫ . Recalling also that in the spacetime class cons
ered here the Ricci scalar readsR52@ f 914 f 8/r 12( f
21)/r 2#, one can show that the above two expressions
Dr andDt can be put into the simple vectorial form

Da5
1

3
q2~ ȧa2a2ua!2

1

12
q2Rua . ~129!

Comparing now this result with Eqs.~10! and ~11!, and re-
calling that in the case considered here~that of radial motion
on static spherically symmetric background! the first two
7-15
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terms in the expression forFa
(Ricci) @Eq. ~11!# cancel out, we

arrive at the remarkable conclusion thatDa is exactly the
‘‘standard’’ local part of the self-force:

Da5Fa
(ALD) 1Fa

(Ricci) . ~130!

VIII. SUMMARY AND CONCLUDING REMARKS

The total self-force acting on the radially moving sca
particle is obtained by substitutingFa

(tail) from Eq.~98! in Eq.
~9!. By virtue of Eq.~130!, the contribution ofDa to the tail
term is then found to exactlycancel outthe local term in the
expression for the total self-force. This, in addition to t
vanishing of the parameterCa , leads to the simple result

Fa
(total)5(

l 50

`

~Fa
l 62Aa

6L2Ba! ~131!

~where, we recall,L5 l 11/2!. An even simpler form is ob-
tained when calculatingFa

(total) using theaveragedvalue of
the modesFa

l , obtained by averaging over their two on
sided values. Then, by virtue of Eq.~102!, we find

Fa
(total)5(

l 50

`

~ F̄a
l 2Ba!, ~132!

where F̄a
l [ 1

2 (Fa
l 11Fa

l 2). Recall that the parameterBa ,
given in Eq.~106!, is just the asymptotic value of the ave
agedl modeF̄a

l at the limit l→`; namely, the total self force
is obtained by simply subtracting from each~two one-sided
averaged! mode its largel asymptotic value, and then sum
ming over all modes.9

To summarize, in this paper we have developed a met
for calculating the self force on a scalar particle in curv
spacetime, through regularization of the multipole mo
sum. The basic difficulty in applying the mode decompo
tion approach—the apparent divergence of the sum o
modes—has been taken care of by the introduction of
appropriate regularization scheme, providing a practical p
scription for calculating the self-force. It should be emph
sized that the proposed method does not involve any we
field or slow-motion approximations, and thus allow
effective calculations of the self-force even for strong fie
orbits.

The basic expression for the tail part of the self force
given in Eq. ~98!. This expression was developed here
radial motion; however, the same general form applies
any trajectory@29#, with the details of the orbit encoded on
in the values of the regularization parameters~as well as, of
course, in the form of the ‘‘bare’’ modesFa

l 6). To apply this
general expression for a given trajectory requires knowle

9The simplicity of our main result, Eq.~132!, may lead one to
wonder whether there could be simple arguments leading direct
this result. Such arguments might perhaps rely on general prope
of the Hadamard expansion. This should make an interesting
ject for further investigation.
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of ~i! the modesFa
l , to be derived by supplementary~basi-

cally straightforward! numerical analysis, as done in Ref
@23,24,26# and ~ii ! four regularization parameters for eac
spacetime component of the force. In this paper we h
worked out the entire calculation of the regularization p
rameters for the case of radial motion. For any other traj
tory, the derivation of these parameters can be carried
along the same lines, based on the explicit form of
Green’s function’sl mode given in Eq.~30!, with Eqs.~61!,
~63!, and ~65!. To that end, one first obtains an expressi
for the gradient of the Green’s function’sl mode, as in Eq.
~70! @supplemented with Eqs.~72! and ~73!#. One next ex-
pands this gradient in powers of proper timet along the
world line about the force’s evaluation point, and r
expresses the resulting expansion as an expansion in po
of 1/L, by holdingtL fixed—as in Eq.~87! @supplemented
with Eqs. ~88!–~93!#. One finally uses the values of th
above expansion coefficients@denoted in this paper by
Ha

(n)(tL)# to construct the regularization parameters throu
Eqs.~96! and ~97!.

For a scalar particle moving radially in a spacetime of t
class considered in this paper, we found the total self-forc
be given by Eq.~132!. This constitutes our main result fo
the radial motion case, together with the explicit values
the regularization parameters given in Eqs.~102!, ~106!,
~108!, and ~129!. We have found that, in the radial motio
case, the parametersĀa and Ca both vanish@the one-sided
values ofAa do not vanish; they are given in Eq.~101!#, and
the parameterDa is just the standard local part of the se
force. The vanishing ofCa , shown here explicitly, appeare
as a necessary condition for the definiteness of the wh
scheme~hadCaÞ0, the parameterDa would have diverge;
see the discussion in Sec. VII!. This point serves to demon
strate the self-consistency of the regularization scheme.

A question arises, whether the above results~the vanish-
ing of Āa and Ca and the special value ofDa) represent
generic features of the regularization scheme or rather
special to radial trajectories. Preliminary investigation@29#

suggests that, indeed,Āa andCa vanish for all trajectories, a
least in the Schwarzschild case. As to the parameterDa , this
was shown so far to obey Eq.~130! at least in one more
important example, that of a circular orbit around
Schwarzschild black hole@29,22#. It might be conjectured
~and be subject to further investigation! that Eq.~130! holds
for any trajectory in any static spherically symmetric bac
ground. In that case, the simple equation~132! for the total
self-force would be valid for all such trajectories.

Under the above conjecture, we find that regularization
the total self-force requires knowledge of just one parame
Ba , representing the asymptotic value of the modesF̄a

l as
l→`. The value ofBa for any specific radial trajectory on
any given spherically symmetric spacetime can be read f
Eq. ~106! ~valid regardless of the above conjecture!. For ex-
ample, in the special case of astatic particle we find
Bt

(static)50 and

Br
(static)52

q2

2r 0
2 S 11

r 0f 8

2 f D . ~133!

to
ies
b-
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For radialgeodesicmotion we find

Bt
(geodesic)52

q2

2r 0
2

ṙ E, Br
(geodesic)52

q2

2r 0
2 ~22E2/ f !,

~134!

whereE[2ut is the energy parameter~which is a constant
of motion in the absence of self force effect!. For the value
of Br in the case of uniformcircular motion in Schwarzs-
child spacetime~the derivation of which will be presente
elsewhere@29#! we refer the reader to Eq.~34! of Ref. @22#.

The applicability of the regularization prescription d
scribed here was demonstrated recently in actual calculat
of the self-force for various scenarios. Burko first studied
cases of static@23# and circular@24# orbits in the Schwarzs
child spacetime. For these stationary scenarios, the m
Fa

l were obtained by summing over the Fourier-multipo
modesFa

lmv , first derived by solving the appropriate ord
nary field equations in the frequency domain. Later, Bar
and Burko @26# analyzed the case of radial motion
Schwarzschild spacetime. In this case, which is no lon
stationary, numerical evolution of the appropriate partial D
in the time domain was applied to directly infer the mod
Fa

l . In each of these studies, the overall force acting on
scalar particle was finally deduced by summing over
modes, using the above regularization scheme. In each o
cases analyzed, the vanishing ofCa was demonstrated, an
the analytically derived expressions forAa andBa were veri-
fied. Aside from demonstrating the applicability of the reg
larization scheme and providing verification for the values
the regularization parameters, the above studies yielded v
able physical results, as mentioned in the Introduction.

Of course, the analysis of the scalar self-force mer
serves as a toy model for more realistic cases. Generaliza
of the regularization scheme to theelectromagneticself-
force seems possible, based on the existing formalism@7,11#.
Such a generalization is necessary, for example, for resol
the interesting question re-raised recently by Hubeny@30#,
whether a nearly extreme electrically charged black h
might be overcharged~and its event horizon by destroyed!
by throwing in a charged particle: as pointed out by Hube
knowledge of the exact radiation reaction effect is crucial
obtaining a definite answer. More difficult to accompli
would be the important generalization of the scheme to
gravitational self-force acting on a mass particle.

Finally, it should be mentioned that a closely related a
proach was recently applied by Lousto@31# for studying the
gravitational self-force on a mass particle in Schwarzsch
spacetime. This approach is also based on the multipole
pansion, yet it employs a different regularization method
the mode sum~it is argued that the correct self-force can
deduced by applying the zeta-function regularization te
nique!. For the geodesic motion case studied by Lousto,
approach leads to an expression analogous to Eq.~132!.

ACKNOWLEDGMENTS

I wish to thank Amos Ori for suggesting the basic idea
the regularization scheme and for his assistance in deve
08402
ns
e

es

k

r

s
e
ll
he

-
f
lu-

y
on

g

e

,
r

e

-

d
x-
r

-
is

r
p-

ing it. I would also like to thank Lior Burko for discussion
and for reading the manuscript.

APPENDIX A: MULTIPOLE EXPANSION OF THE
GREEN’S FUNCTION USING ‘‘TILDE SUMMATION’’

DeWitt and Brehme wrote a general expression for
scalar Green’s function in curved spacetime@see Eq.~2.21!
of Ref. @7##, of the form

G~xm;x8m!5a~xm;x8m!d~s!1b~xm;x8m!Q~s!. ~A1!

Here,s is plus or minus half the squared geodesic dista
between the source pointxm and the evaluation pointx8m,
according to whether the geodesic connecting the po
~along which the invariant distance is measured! is time like
(s.0) or else (s<0); a is a certain function having a well
defined value ats50; and b is a function which may be
written as a Taylor expansion ins abouts50. @This expan-
sion was shown by Hadamard~see pp. 96–98 in Ref.@8#! to
converge uniformly at least inside the region wheres is
single valued.# While the first term in Eq.~A1! is associated
with the familiar delta function exhibited already in fla
spacetime, the second term represents a curvature-ind
tail, which ‘‘fills’’ the light cone ~defined bys50). Note
that the Green’s function is strongly irregular along the lig
cone of the source pointx8m.

Now, the question to consider is whether the abo
Green’s function may be expanded in terms of the stand
spherical harmonic functionsYlm(u,w) on a sphere of con-
stantr ,t. The standard theorem~see, e.g., Ref.@32#, p. 513!
states that asufficientcondition for ~absolute and uniform!
convergence of the spherical harmonic expansion is the
panded function beingC2 on the sphere. This condition i
not satisfied here, as the Green’s function diverges along
curve generated by the intersection of the future light cone
x8m and the sphere of constantr ,t. Therefore, it is not guar-
anteed, in advance, that such an expansion could be na
applied. Indeed, already in flat spacetime the attempt to
ply the multipole expansion to the Green’s function turns o
to yield a divergent sum—see Eq.~14! and the discussion
proceeding it in Sec. III.

Let us introduce the ‘‘modified’’ Green’s function~which
is not a‘‘Green’s function’’ for the scalar field anymore!,
defined by

Gmod5G2dG, ~A2!

where

dG[a0d~s!2b0Q~2s!, ~A3!

with a0[a(s50) andb0[b(s50). The functionGmod has
two essential features:~i! its support inside the light cone i
identical to that of the Green’s functionG ~as dG has no
support there!, and~ii ! it is continuous throughout any sphe
of constantr ,t. The first feature implies that we can useGmod
instead ofG in calculating the self-force: We may re-writ
Eq. ~13! as
7-17
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Fa
(e)[q2E

2`

2e

$Gmod@x0
m ;xp

m~t!#% ,adt, ~A4!

as thedG term in Gmod contributes nothing to the integra
along the particle’s world line.

The second of the above features ofGmod, its continuity,
may imply that the multipole expansion could now be a
plied to it. Strictly speaking,Gmod does not satisfy the abov
sufficient condition for absolute and uniform convergence
the mode sum~i.e., beingC2 on the sphere!; yet, we shall
assumehere thatGmod, being continuous, is already regul
enough to admit a convergent mode sum. The results of
analysis turn out to be consistent with this assumption, as
mode sum ofG considered~based on the functionGmod
through the use of ‘‘tilde summation’’—see below! is found
to be ~absolutely! convergent. The validity of this assump
tion can also be demonstrated in the flat space case: the}b0
tail term vanishes in this case, and by expanding thed(s)
term in Eq.~A3! in spherical harmonics one can easily ver
that thel mode ofdG is exactly thel mode ofG, given in
Eq. ~14!. The l mode ofGmod then vanishes, and the mod
sum converges. Although trivial, this flat-space example m
serve to demonstrate how the subtraction ofdG from G al-
ready removes the divergent piece from thel mode, making
the mode sum converge.10 We thus expandGmod as

Gmod5(
l 50

`

Gmod
l 5(

l 50

`

~Gl2dGl !, ~A5!

whereGmod
l and dGl are the spherical harmonic modes

Gmod and dG, respectively~obtained by summing over a
azimuthal numbersm).

To proceed, let us now define the new operation lim˜
l→`

~‘‘tilde limit’’ ! as follows: Consider a series of numbersAl

~with l 50,1, . . . ,̀ ). Let Bl
( j ) be any expression of the form

Bl
( j )5aj l

bjcos~a j l 1b j !, ~A6!

whereaj , bj , a j , andb j are somel-independent real num
bers, witha jÞ0 for all j. If there exists a finite numberk of
expressionsBl

( j ) of this form ~with j 51,2, . . . ,k), such that
subtracting their sum from the original seriesAl would yield
a well-defined finite limit asl→`, then we define the ‘‘tilde

limit’’ lim̃ l→`Al as in Eq.~16!.
One may easily be convinced that the tilde limit is sing

valued~when existing!. For suppose that for a given seriesAl

there were two different sets of quantitiesBl
( j ) , one~denoted

by B̄l
( j̄ )) yielding lim̃l→`Al5 c̄ and the other~denoted by

B̂l
( ĵ )) yielding lim̃l→`Al5 ĉÞ c̄. Then, for the difference be

10One may similarly construct a more sophisticated functiondG,
designed to yield aC2 modified functionGmod @by canceling also
the O(s) and O(s2) terms in the Taylor expansion ofb# being
sufficiently regular toassureuniform and absolute convergence
the multipole expansion, by the standard mathematical theo
Such an improved construction will not be examined here.
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tween the two limits one would have found liml→`@( ĵ B̂l
( ĵ )

2( j̄ B̄l
( j̄ )#5 ĉ2 c̄Þ0. This, however, is impossible, as th

~standard! limit l→` of any quantity of the typeBl
( j ) is

either diverging or zero, and so is the limit of any finite su
of such quantities. Hence, we must haveĉ5 c̄, and the tilde
limit is single valued. In particular, we find that if there e
ists a finite standard limit liml→`Al , then liml→`Al

5 lim̃ l→`Al .
We can now also define the ‘‘tilde sum’’ of a seriesAl , as

in Eq. ~17!. Again, if the ‘‘tilde sum’’ of a series exists, then
it is unique. Also, if the standard sum( l→`Al converges,
then we may replace it with a ‘‘tilde sum’’ operation. I
particular, we may replace the convergent standard sum
Eq. ~A5! with a tilde summation:

Gmod5(
l 50

`̃

~Gl2dGl !. ~A7!

Below we show that

(
l 50

`̃

dGl50 ~A8!

~for any evaluation pointx0
m lying inside the future light cone

of the source pointxp
m). As a consequence, the tilde sum

Gl is found to be finite and equal toGmod—as indicated in
Eq. ~18! of Sec. III.

Combining Eqs.~A4! and~18! we conclude that the self
force can be calculated by analyzing the modesGl of the
original Green’s function, provided that in order to sum ov
all modes one applies thetilde summation instead of the
standard summation. The validity of this statement crucia
depends on the vanishing of the tilde sum overdGl @Eq.
~A8!#, which we now prove.

Proof of Eq. „A8…

To calculate thel modes ofdG, it is convenient to use a
spherical coordinate system in which the source pointxp

m lies
on the polar axis~i.e., up50). In this coordinate system
contributions todG would come only from them50 modes:

dGl5 (
m52 l

l

Ylm~u,w!

3E
0

2p

dw8E
21

1

d~cosu8!dG~s8!Ylm* ~u8,w8!

5LE
21

1

d~cosu8!@a0d~s8!2b0Q~2s8!#

3Pl~cosu!Pl~cosu8!, ~A9!

where the integration is carried out over a sphere spanne
u8,w8 ~containing the evaluation pointxm), L[( l 11/2), and
s8 is half the squared geodesic distance between the so
point and the integration pointu8,w8. Now, the future light
cone of the source point~along whichs850) intersects the

m.
7-18
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integration sphere along a circleu85const[u0. The d(s8)
term in Eq.~A9! contributes to the integration only along th
circle, while theQ(2s) term contributes only across th
part of the sphere outside it. We thus find

dGl5LPl~cosu!F â0Pl~cosu0!2b0

3E
21

cosu0
Pl~cosu8!d~cosu8!G

[dG(d)
l 1dG(Q)

l , ~A10!

whereâ0[a0 /uds8/d(cosu8)uu85u0
is a constant, and wher

the symbolsdGd
l anddGQ

l represent the two terms propo

tional to â0 andb0, respectively.
To calculate the tilde sum overdGl we make use of the

finite-sum identity@referred to as ‘‘Christoffel’s first summa
tion formula’’—see, e.g., Eq. 3.8~20! of Ref. @33##

~x2y! (
l 850

l

LPl 8~x!Pl 8~y!5
1

2
~ l 11!@Pl 11~x!Pl~y!

2Pl 11~y!Pl~x!#, ~A11!

valid for uxu<1 and uyu<1. Applying this formula to Eq.
~A10!, we obtain

(
l 50

`̃

dGl5 lim̃ l→` (
l 850

l

~dG(d)
l 8 1dG(Q)

l 8 !

5
1

2
â0lim̃ l→`F ~ l 11!

3
Pl 11~x!Pl~x0!2Pl 11~x0!Pl~x!

x2x0
G

2
1

2
b0lim̃ l→`F ~ l 11!

3E
21

x0 Pl 11~x!Pl~x8!2Pl 11~x8!Pl~x!

x2x8
dx8G ,

~A12!

wherex and x0 stand for cosu and cosu0. ~Recall that for
any evaluation pointxm lying inside the future light cone o
the source pointxp

m , we have cosu.cosu0>cosu8; hence,
the denominators appearing in the last expression are str
positive.!

Let us consider first the tilde sum ofdG(d)
l . For values of

u satisfyinge<u<p2e ~wheree.0) we have the large-l
asymptotic form

Pl~cosu!}A2~ lp sinu!21/2cos~Lu1p/4!1O~ l 23/2!
~A13!

@see, e.g., Eq. 3.9~2! of Ref. @33##. Using this asymptotic

form with Eq. ~A12!, we may easily write( l 850
l dG(d)

l 8 as a
08402
tly

sum of a few terms of the formaj cos(ajl1bj)1O(l21) ~in
the case 0,u,p) or of the form aj l

1/2cos(ajl1bj)
1O(l21/2) ~in the caseu50 or p), whereaj , a jÞ0, andb j
are certain functions ofu and u0 ~independent ofl ). Such
terms all vanish at the tilde limitl→`. Thus, we clearly
have

(
l 50

`̃

dG(d)
l 50. ~A14!

We next turn to calculate the tilde sum ofdG(Q)
l . Inte-

grating by parts in Eq.~A12!, and using

E Pl~x!dx5
Pl 11~x!2Pl 21~x!

2l 11
~A15!

~see Eq. 7.111 of Ref.@27#, together with Eq. 8.733-4
therein!, we obtain

(
l 850

l

dG(Q)
l 8 52

1

2
b0~ l 11!

3H Pl 11~x!

2l 11 F Pl 11~x8!2Pl 21~x8!

x2x8
U

21

x0

2E
21

x0 Pl 11~x8!2Pl 21~x8!

~x2x8!2
dx8G

2
Pl~x!

2l 13 F Pl 12~x8!2Pl~x8!

x2x8
U

21

x0

2E
21

x0 Pl 12~x8!2Pl~x8!

~x2x8!2
dx8G J . ~A16!

The surface terms here vanish at the lower boundary
Pl 11(21)5Pl 21(21) and Pl 12(21)5Pl(21) @recalling
Pl(21)5(21)l#. The contribution from the upper boundar
dies off at largel @by virtue of Eq.~A13!# as } l 21 ~times
oscillations! for uÞ0, or as} l 21/2 ~times oscillations! for
u50. In both cases, this contribution thus vanishes at
standard limitl→` and hence also at the tilde limit. Con
sider next the integral terms: The difference between t
Legendre functions appearing in these terms may be glob
bounded~in absolute value! as

uPl 11~cosu!2Pl 21~cosu!u<C0@p~ l 21!#21/2,
~A17!

whereC0 is a number independent ofl andu ~see Eq. 8.838
of Ref. @27#!. For anyu andu0, the integrals of Eq.~A16! are
thus each bounded~in absolute value! by C1(u,u0)3 l 21/2,
and we find

U (
l 850

l

dG(Q)
l 8 U<C2~u,u0!l 21/2@ uPl 11~cosu!u1uPl~cosu!u#

→0 ~A18!
7-19
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as l→` ~the above coefficientsC1 and C2 are l indepen-
dent!. Thus, the standard infinite sum overdG(Q)

l vanishes
and hence also the tilde sum:

(
l 50

`̃

dG(Q)
l 50. ~A19!

With Eqs.~A14! and ~A19!, Eq. ~A8! is verified.

APPENDIX B: DERIVATION OF INTEGRALS

In this appendix we obtain the tilde integrals given in Eq
~99! and ~100!, which are needed in the calculation of th
regularization parameters. We start with Eq.~99!. Let I n

k(l)
denote the primitive function oflkJn(l), wherel is a real
variable,Jn is the Bessel function of the first kind, of ordern,
andk,nPN:

I n
k~l![E lkJn~l!dl. ~B1!

Let also Ĩ n
k stand for the definite integral

Ĩ n
k[ lim̃l→`E

0

l

~l8!kJn~l8!dl8[E
0

`̃
lkJn~l!dl.

~B2!

Consider first the casek50. The standard integra
*0

`Jn(l)dl51 is well defined and finite. Thus, in this cas
the tilde integration in Eq.~B2! may be replaced with a stan
dard integration, yielding

Ĩ n
k5051, ;n>0. ~B3!

Consider next the casek.0. Writing in Eq. ~B1! lkJn(l)
5lk2n21@ln11Jn(l)#5lk2n21@ln11Jn11(l)#8 @where
use is made of Eq.~66! and a prime denotesd/dl#, and
integrating by parts, we arrive at the recursive formula

I n
k~l!5lkJn11~l!2~k2n21!I n11

k21~l!. ~B4!

If 0 ,k<n, then byk successive applications of this recu
sive formula we obtain

I n
k~l!5 (

j 50

k21 F ~n2k2112 j !!!

~n2k21!!!
lk2 j Jn111 j~l!G

1
~n1k21!!!

~n2k21!!!
I n1k

0 ~l!. ~B5!

Now, the Bessel functionsJn(l) admit the asymptotic form

Jn~l→`!;~2/pl!1/2cos~l2np/22p/4! ~B6!

~see, e.g., Eq. 8.451-1 in@27#!. Therefore, each of thek terms
in the sum overj in Eq. ~B5! diverges at largel as some
positive~half-integer! power ofl times oscillations with re-
spect tol. Clearly, all such terms are eliminated when t
tilde limit l→` is taken. Also, all of these terms vanish
l50. We are thus left with
08402
.

Ĩ n
k5

~n1k21!!!

~n2k21!!!
Ĩ n1k

0 5
~n1k21!!!

~n2k21!!!
, for 0,k<n,

~B7!

where the last equality is due to Eq.~B3!.
If k.n and the differencek2n is even, then byp[(k

2n)/2 applications of the recursive formula~B4! we obtain

I n
k~l!5 (

j 50

p21

~21! j
~k2n21!!!

~k2n2122 j !!!
lk2 j Jn111 j~l!

1~21!p~k2n21!!! I (k1n)/2
(k1n)/2~l!. ~B8!

Again, all terms in the sum overj vanish at the tilde limit
l→` and atl50, leading to

Ĩ n
k5~21!p~k2n21!!! I (k1n)/2

(k1n)/2~l!

5~21!(k2n)/2~k2n21!!! ~k1n21!!!,

for evenk2n.0, ~B9!

where the last equality is due to Eq.~B7!.
The situation is different in casek.n and the difference

k2n is odd. Then, following q5(k2n21)/2 applications
of the recursive formula~B4! one obtains

I n
k~l!5 (

j 50

q21

~21! j
~k2n21!!!

~k2n2122 j !!!
lk2 j Jn111 j~l!

1~21!q~k2n21!!! I (k1n21)/2
(k1n11)/2

5(
j 50

q

~21! j
~k2n21!!!

~k2n2122 j !!!
lk2 j Jn111 j~l!,

~B10!

with no residual integral@notice that when Eq.~B4! is ap-
plied with the upper index ofI n

k greater by 1 than its lowe
index, then the second term on the RHS of this recurs
formula vanishes#. This leads, when applying the tilde limit
to

Ĩ n
k50, for oddk2n.0. ~B11!

The above results, Eqs.~B3!, ~B7!, ~B9!, and ~B11!, are
summarized by Eq.~99! in Sec. VII.

We further need now to calculate the integral given in E
~100!. Integrating by parts, we express the primitive functi
of the integrand,lkJn(l)lnl, for oddk2n.0, as

I n
k(log)[E lkJn~l!ln ldl5I n

k~l!ln l2E @ I n
k~l!/l#dl.

~B12!

By virtue of Eq.~B10!, the surface term on the RHS here
dominated at smalll by }l (k1n11)/2J(k1n11)/2(l)ln l
}lk1n11 ln l, and therefore it vanishes at the limitl→0.
However, this surface term diverges at the tilde limitl→`
~aslk21/2 ln l times oscillations with respect tol). This can
be avoided by slightly modifying the definition of a func
7-20
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tion’s tilde limit, by allowing the quantitiesBl
( j ) in Eq. ~A6!

to also admit the formBl
( j )5aj l

bj ln l cos(ajl1bj) ~with a j

Þ0 for all j ). It can be shown that all features and resu
discussed in Appendix A concerning the tilde limit rema
valid also under this wider definition. With the revised de
nition of the tilde limit, the surface term in Eq.~B12! van-
ishes at the tilde limitl→` as well as forl→0. Denoting

Ĩ n
k(log)[ lim̃l→`I n

k(log) , we then have

Ĩ n
k(log)52E

0

`̃
@ I n

k~l!/l#dl

52 (
j 50

(k2n21)/2

~21! j
~k2n21!!!

~k2n2122 j !!!
Ĩ n111 j

k2 j 21 ,

~B13!
J.

i-

l

d

08402
s

where we have substituted forI n
k(l) from Eq. ~B10!. Pro-

vided thatk2n is an odd number, the difference between t
upper and lower indices ofĨ n111 j

k2 j 21 is also an odd number
k2n2222 j . Therefore, by virtue of Eq.~B11!, we have
Ĩ n111 j

k2 j 2150 for any j satisfying k2 j 21.n111 j , i.e., j
,(k2n22)/2. We find that of all the terms summed up
Eq. ~B13!, the only nonvanishing one is the one withj 5(k
2n21)/2. Hence,

Ĩ n
k(log)52~21!(k2n21)/2~k2n21!!! Ĩ (k1n11)/2

(k1n21)/2

5~21!(k2n11)/2~k2n21!!! ~k1n21!!!,

~B14!

where, in the last equality, the value ofĨ (k1n11)/2
(k1n21)/2 has been

inferred from Eq.~B7!. This proves Eq.~100!.
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