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Self-force on a scalar particle in spherically symmetric spacetime
via mode-sum regularization: Radial trajectories
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Recently, we proposed a method for calculating the “radiation reaction” self-force exerted on a charged
particle moving in a strong field orbit in a black hole spacetime. In this approach, one first calculates the
contribution to the “tail” part of the self-force due to each multipole mode of the particle’s self-field. A certain
analytic procedure is then applied to regularize @himerwise divergemntsum over modes. This involves the
derivation of certain regularization parameters using local analysis dfr¢t@rded Green’s function. In the
present paper we present a detailed formulation of this mode-sum regularization scheme for a scalar charge on
a class of static spherically symmetric backgroufidsluding, e.g., the Schwarzschild, Reissner-Nordstro
and Schwarzschild—de Sitter spacetim&ge fully implement the regularization scheme for an arbitrary radial
trajectory (not necessarily geodesiby explicitly calculating all necessary regularization parameters in this
case.

PACS numbeps): 04.25—~g, 04.30.Db, 04.70.Bw

I. INTRODUCTION only to a few very simple casdsee below.
The standard technique for calculating the radiative evo-

The motion of a test pointlike maga “particle”) in orbit  lution of orbits around black holes is the one based on
outside a black hole is commonly studied to model, and gaiignergy-momentum balance considerati¢@$ In this ap-
understanding of, realistic astrophysical scenarios involvingroach one computes the flux to infinitgnd across the ho-
h|gh|y relativistic two-body Systems_particu|ar|y, the cap- !‘izon) of quantities associated W|th the CQnStantS of motion
ture of a small compact object by a supermassive black hol the lack of self-force effectpecifically, in the Schwarzs-
[1]. To describe the orbital evolution of such a particle on achild and Kerr backgrounds, the particle’s enetggnd azi-
strongly curved background, one must take into account noftthal angular momentur,), thus deducing the temporal
geodesic effects caused by the interaction of the particle witﬁate of change of these “constants.” Such balance calculq—
its own gravitational field. This problem of deducing teif- tions, though developed to a great extent, present two basic

force (or “radiation reaction” forcg exerted on the particle dr.awbacks: First, in the important Kerr case they r?re inap-
is often treated via perturbation theory: one assumes that tH:)hcabIe for (_:alculatlng the rate of change_:_of t_he third con-

S : i Stant of motion necessary for a full specification of the or-
particle is endowed with a chargemuch smaller than the

f the black holéhis ch h . bital evolution, i.e., the Carter constaRt as this quantity is
mass of the black holéthis charge may represent the parti- not additive. Second, these calculations do not account for

cle’s mass, electric pharge or—as in the toy model stuzdied i'ﬂwe non-dissipative, yet important, part of the self-foig].

the current paper—its scalar charged looks for théd(q°) For the above reasons, a method based on direct calcula-
correction to the equation of motion. The basic challengingjon of themomentaryiorce along the world line seems more
task involved in this calculation, already in flat space, is, ofadequate. In the context of electromagnetism in flat space,
course, correctly handling the divergence of the self-field akuch a method is familiar from the classic work by Difag,

the very location of the particle: namely, the introduction andconcerning the electromagnetic self-force on(cassical
justification of an appropriate regularization method. Wherelectron. Dirac avoided the singularity of the self-field at the
considering the case of curved spacetime, additional diffiparticle’s location by introducing the “radiative potential,”
culty arises due to theonlocal nature of the self-force ef- constructed by taking the difference between the retarded
fect: waves emitted by the particle at some moment maynd advanced electromagnetic potenti@gddich results in
backscatter off spacetime curvature and interact back witthe cancellation of the problematic singular pafthis pro-

the particle at later stages of its motion. The occurrence ofedure gave rise to what is now called thiegraham-Lorentz-
this so-called “tail” contribution to the self-force results in Dirac (ALD) self-force in flat spacésee Eq(10) below for

that the calculation of the self-force at a given moment rethe analogous scalar particle chsehe concept of “radiative
quires, in principle, knowledge of the entire causal history ofpotential” was much later employed by Gal'tsp®] for cal-

the particle. A number of methodbriefly surveyed beloyw  culating the temporal rate of change of the energy and azi-
have been proposed over the years for calculating the selfauthal angular momentum parameters for electrically
force in curved backgrounds. The interest in this problem hasharged particles orbiting a Kerr black hole. Though
greatly risen lately by virtue of the recent developments to-Gal'tsov analysis yielded correct results, it seems conceptu-
wards experimental gravitational wave detection and thelly difficult, in general cases, to justify the use of such a
consequent need for accurate predictions for the orbital evaion-causal approach. The problem becomes obvious when
lution of strongly gravitating two-body systems. Yet actual considering curved spacetime, where the self-force exhibits
calculations of the self-force have been restricted thus fanonlocal contributions: according to this approach, the force
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acting on a particle at a given moment turns out to be afrelativistic (geometrizedl units]. This result was later ex-
fected by the entirduture evolution of the particle. tended by Frolov and Zel'nikoy18] to scalar and electri-

A formal method for calculating the momentary self-force cally charged particles held static outside a charged,
in curved spacetime, which employs the purely retardedReissner-Nordstra type, black hole. It was concluded that,
Green's function and is thus inherently causal, was develtnlike in the electromagnetic case, no self-force is experi-
oped long ago by DeWitt and Brehnj&] (for the electro- enced by a static scalar particle. This last result has been
magnetic case Dewitt and Brehme first carried out a local feéproduced very recently by Wisemd8] in a thorough
analysis of the retarded Green’s function near the particle’@nalysis of the self force acting on a static scalar particle in
world line, based on theladamard expansiof8] (which is, ~Schwarzschild spacetime. ' .
basically, an expansion of the Green’s function in powers of 1he exact calculation in the static electric charge case was
the geodesic distance between the source and evaluatiéhde possible owing to the existence of an exact analytic
points. Then, the particle’s equation of motion was deducedo!ution, discovered long ago by Cops$] (and later cor-
by imposing local energy-momentum conservation on a thifected by Linef20]), for the electrostatic potential of a static
world tube surrounding the particle’s world line. Following ¢harge in the Schwarzschild geometriThe analogous
the same approadithough using a different renormalization ¢l0sed-form solution for a scalar particle was constructed by
schemg Mino, Sasaki, and Tanak®] studied thegravita- ~ Viseman in[3].) In more general cases one cannot benefit
tional self-force by analyzing the local metric perturbationsfom the existence of such exact solutions. The usual ap-
near a particle. They concluded that the regularized gravitaProach for treating this problem, of obtaining solutions to the
tional self-force in vacuum is due solely to a nonlocal tail field equation in black hole backgrounds, is through the
contribution. It remained unclear, though, how to practicallyFourier-multipole decomposition of the field. In the context
evaluate the formal expression derived for this tséle, how- ~ Of the radiation reaction problem this approach seems to of-
ever, recent attempts to tackle this problEto]). fer two obvious advantages: First, it allows, in the usual

Recently, Quinn and Wald 1] developed a different, axi- manner, reduction of the field equati@griginally a partial
omatic, approach to the regularization problem of the selfdifferential equationDE) in 1+3 dimension$to an ordinary
force in curved spacetimes. Their approach relies on a “comPE. thus making it accessible to simple numerical treatment.
parison axiom,” which allows the calculation of the self- S€cond, each individual mode of the field turns out to be
force by comparing the given problem with @roperly continuous(and the corresponding self-force to be bounded
chosen analogous problem in flat spa¢eee[11] for de-  €ven at the particle’s location. Having this in mind, Ori pre-
tails). The implementation of this approach for both the elec-Viously proposed21] that a practical calculation of the self-
tromagnetic and the gravitational cagdd] yielded formal force effect may be carried out by first evaluating the effect
results in agreement with those obtained by Dewitt andf €ach Fourier-multipole mode of a particle’s self-retarded
Brehme (as corrected by HobbEL2]; the main result by field on its radiative evolutiorithrough the local self-force
DeWitt and Brehme contained a trivial eraand by Mino ~ €xperienced by the partidleand then summing over all
et al, with the advantage of involving much simpler calcu- Modes.
lations. More recently, the same approach was applied b% In Ref. [21] the above sum-over-modes approach has
Quinn[13] for a scalar particlfthe main results of this work, ee_n_successfully appl_led for the calculation of the adiabatic,
also quoted in Ref[14], are summarized below; see Egs. orbit-integrated, evolution rate of the three constants of mo-
(99—(13)]. Again, however, despite the availability of a tion in Kerr spacetime, m_cludmg_the_ Carter ponsﬂahllow-
simple formal framework for obtaining equations of motion €Ver; it appears that a naive application of this method for the
for a test particle in curved spacetime, the practical imme_calculanon of themomentaryself-force would not be useful,

mentation of the formalism in actual calculatiofsarticu- 1N general. The reason is that, although each mode yields a
larly, the evaluation of the nonlocal tail contributjore- finite contribution to the self-force, the sum over all modes is

mained a challenging task. found, ir_1 general, to _diverge. This situation manifests itself
So far, the study of the self-force effect in concrete Situ_fﬂlready in the.mosft S|mple case, that of a stat_lc s_calar charge

ations have been restricted to very few simple cases. Dewitf flat space: in this basic example, the contribution of each

and DeWitt[15] employed the above-mentioned formalism multipole mode tc; the radial pomponent of the seIf-for_ce is

by DeWitt and Brehme to study the self-force correction tothe same;-q*/(2rg) (wherer, is the distance of the particle

the geodesic equation for an electrically charged particldrom the origin of coordinates, with respect to which the

freely falling in a static weak gravitational field, in the limit Spherical harmonic functions are definedith an obvious

of small velocity. They concluded that a repulsive force ofdivergence of the sum over modes. This, however, does not

«q?r 3 magnitude(wherer is the Schwarzschild radial co- Mean that one has to abandon the wholg sum—qver-modes

ordinate would be experienced by such a particle, in addi-@8PProach; one may still be able to benefit from its advan-

tion to the usual attractive inverse-square force. Later, SmitfAges, by introducing a suitable regularization procedure into

and Will [16] (and, independently, Frolov and Zel'nikov

[17]) were able to derive an exact analytic expression for the

O(g?) self-force acting on an electrically charged particle IHowever, whereas the mode sum for the evolution rate of the

held static in the Schwarzschild exterior. They found a reenergy and azimuthal angular momentum parameters was shown to

pulsive self-force of exact magnitudéq?r ~3 [measured by converge[21], it is not clear yet whether the corresponding mode

a momentarily static freely falling observer, and expressed isum for the Carter constant converges or not.

084027-2



SELF-FORCE ON A SCALAR PARTICLE IN . .. PHYSICAL REVIEW [B2 084027

the calculation, properly designed to overcome the aboveegularization scheme. The implementation of this scheme

kind of divergence. involves local analysis of the Green’s function modes for
In a previous papd22] we introduced the basic elements large multipole numbers, which is carried out in Sec. V. The

of a method for the calculation of the self-force in curved particular case of radial motion is then considered in Secs.

spacetime through regularization of the mode sum. Thé&/l and VI, where the regularization parameters for this case

implementation of the proposed calculation method for z&re explicitly calculated. In Sec. VIII we summarize, discuss

specific trajectory in a given spacetime consists of twoPossible extensions of the analysis, and briefly survey some

stages. First, one solvésumerically, in most casgshe ap-  related work.

propriate ordinary DE for each Fourier-harmonic mode

I, m,w of the retarded field, and evaluates ffiaite) contri- Il. SELF-FORCE ON A SCALAR CHARGE:

bution of each of these modes to the self-forgalterna- PRELIMINARIES

tively, one may numerically solve thet1l partial DE in the

time domalin, for_ each multlpple modem.) Then, the sum necessarily vacuumblack hole geometries, having a line

over all modes is made subject to a certain regularlzatlorélemem of the form

procedure, which requires the knowledge of several regular-

ization parameters. These parameters are derived analyti- ds?=—f(r)dt?+f 1(r)dr?+r3(d6?+sirf6de?), (1)

cally, for any given trajectory, through local perturbative

analysis of theretarded Green’s function. In Refl22] we  wheret, r, 6, and¢ are the Schwarzschild coordinates, d@nd

outlined this regularization method as applied to a scalais a function ofr only, positive outside the event horizon.

particle moving on a Schwarzschild background, and pretmportant members of this class include the Schwarzschild

sented final resulté.e., the values of all necessary regular- solution, with f=1—2M/r; the Reissner-Nordstno solu-

ization parametejsor the case of radial motion. The target tion, with f=1—2M/r+Q/r?; and the Schwarzschild—de

of the present paper is threefold) providing a systematic ~ Sitter solution, withf=1—2M/r+ Ar?/3. Here,M stands

presentation of the regularization schefimecluding a dis-  for the black hole’s mas®) represents its net electric charge,

cussion of some mathematical subtleties left untreated imnd A is the cosmological constant.

[22]), (ii) providing full details of the calculations involved We next consider a point-like particle of scalar chagge

in deriving the regularization parameters for radial trajecto-with |q|<M, moving in a spacetime of the above type. Let

ries, and(iii) extending the analysis to a wider class of staticx*=x{/(7) represent the particle’s world lifeot necessarily

spherically symmetric black hole spacetimes. a geodesig with  being its proper time. The scalar particle
This paper(as well as Ref[22]) is concerned with the exhibits a Klein-Gordon fieldp, satisfying

analytic part of the regularization scheme; namely, it sets the

mathematical foundation for the scheme, and demonstrates , 1

the calculation of the regularization parameters involved in Dq’Eq’;a’a:f(J—_QQQB@,a),ﬁ: —4mp(x*), (2)

its implementatior(in the example of radial motionAs ex- 9

plained above, full calculation of the self-force requires thenarer represents the covariant D’Alembertian operatpr

supplementary numerical determination of the variou§g the metric determinant, ang(x“) is the scalar charge
modes’ “bare” contributions to the self-force. This was re- density, given by

cently done for various trajectories of a scalar particle out-

side a Schwarzschild black hole: Burko first analyzed the s 1

case of a static particlg23] and the one of a particle in p(x“)=qf —54(X"—Xg(7'))d7'. 3)
circular motion[24] (see alsd25]). More recently, Barack ‘”’\/__9

and Burko applied the regularization scheme for studyin
radial trajectories in Schwarzschild spacetif@b]. These
numerical works confirm the applicability of the regulariza-

tion scheme, and provide support for the values of the ana- (I)(x“)=J G(x*;x"#)p(x'*)y/—gd*x’, (4)
lytically deduced regularization parameters. Of course, they

also yield significant physical information. In the static ScalarwhereG(x“;x’”) is the retarded Green’s function, satisfying
particle case, Burko recovered the familiar result, of a zero

self-force. Calculations of the self-force on a scalar particle — A

in circular and radial trajectories were carried out for the first OG(xH#;x"#) = —= §H(xH—Xx"H), (5)
time (see Refs[23,24,2§ for details. \/—_9

The current paper is organized as follows: In Sec. Il we d subi h i ditiocB=0 wh u
give some preliminary relations involving the self-field, the and subject to the causality conditioB,=0 wheneverx

Green’s function, and the self-force for a scalar particle. Inli€S outside the future light cone af . Combining Eqs(3)

Sec. Il we decompose the Green'’s function into its sphericand (4) we obtain, for the scalar field,

harmonic components, and discuss the applicability of this

expansion. In Sec. IV we decompose ftiail part of the

self-force into its spherical harmonic contributions, discuss 2Throughout this paper we use relativistic unjigith G=c=1)
the need for regularization of the mode sum, and present thend metric signature- + + +.

We consider a class of static spherically symmetriot

gThe solution for the scalar field can be written as
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where

px)=a [ aixxg(m o ©

D=2 | °© et
The “scalar force” experienced by the particle due to its Fa'=d f_ocG'“[Xo Xp(7)]d7. (13

own field shall be taken, followin@l4], to be

As we mentioned above, the occurrence of a tail term—a
prominent feature of the self-force in curved spacetimes—is
Sue to the Green's function having its support dlssidethe
so-defined force is not perpendicular to the four-velocity of>ources futu_re light cone. From the physical point of view,
this is associated with the fact that waves are scattered off

the particle,u”=dx,(7)/dr, resulting in that the mass pa- spacetime curvature while propagating on a curved back-
rameter of the particle is not conserved along the world line; Fr)ound propagating

Indeed, the force on a scalar particle can be calculated ott? The task of implementing the formal expression, E),

erwise(as in[6], e.g), such as to make the mass parameterin ractical calculations of the self-force is a challenging one
conserved: Fj=q(d>,a+ UaUB®,p)- Although we shall P ging )

doot here the simpler definiti EQ). th its of The difficulty stems, of course, from the need to evaluate the
adopt here the simpler getinition, (7) € Tesulls oTour ) part, which requires knowledge of the Green’s function
analysis could then easily be applied for the fofeg as

> : ; everywhere along the particle’s past worldline. Below we
well. (Given all vectorial components &, one can easily herefore focus on the tail term contribution to the self-force,
construct both the force component perpend|cular to th%resenting a practical method for its calculation.
world line and the component tangent to With Eq. (6) we

now have, for the self-force acting on the particle at a point
x4=x(r=0) along its world line, IIl. MULTIPOLE DECOMPOSITION

OF THE GREEN’S FUNCTION

F,=q®.,=q® ,, (7)

evaluated at the particle’s location. We comment that th

Fa:quw G [x#x4(7)]d, (8) The regularization scheme to be introduced below is
- based on evaluating the contribution to titail part of the
. . ) self-force due to each multipole mode of theetardedl
where the gradienftaken with respect t&*) is to be evalu-  Green’s function. To that end we first consider the multipole
ated atx*=xg . decomposition of the Green'’s function.
The “bare” self-force given in Eq(8) needs to be regu-  To begin, one may be tempted to decomp@Gsénto its
larized to avoid divergences associated with the behavior Q’hultipole modesG' in the usual manner, a@=2|°°:06'
the scala_r field at the very location of th_e partic_le. For thathere G' represents the quantity resulting from summing
goal, Quinn[13,14 applied the “comparison axiom” ap- gver azimuthal numbens). Although this may look as stan-
proach by Quinn and WalflL1] for the scalar particle case. gard procedure, caution is necessary here: in general, such a
The total self-force acting on the scalar particle was found tyecomposition turns out ill defined, as the sum oles
be composed of three parts: found to diverge. This can be illustrated already in flat space.
F(total) _ £ (ALD) | £ (Rice) . =(tai) 9 In this case, the mod@'_ admit a closed-form expression,
a a a a which, for evaluation poink* lying inside the future light

i
The first term here is a local ALD-like term, reading cone of the source point’®, is given by

(21+21)P,(cosy)P|[1—a/(rr")]
2rr’ '

1.
FP =2 g?(a,—a’u,), (10 Gial X X #) =

14
wherea“ is the four-acceleration of the particla?EaBaﬁ, 19

and an overdot represents covariant differentiation with re
spect to the particle’s proper time The second term in Eq.
(9) is related to the local Ricci curvature at the particle loca-
tion. It is given by

Here, P, is the Legendre polynomialy=3[(t—t")2—(r
—r’)?], and

cosy= cosf cosh’' +sindsinf’ cogo—¢'). (15

Ricci) _
F 'CC')—ng(Ra/BUBJFuaRByuﬁuy_Rua/z)v (1) [Equation(14) can be verified by direct substitution, using
Egs.(27), (28), and(30), to be given below. Consider, for
whereR,; is the Ricci tensor an® is the curvature scalar. €xample, the casg=0, with P,(cosx)=1 for all I, corre-

The third term in the expression for the total self-force rep-sponding to both the source and evaluation points lying in
resents the non-local “tail” contribution. It may be ex- the same radial direction. At largevalues, the Legendre

pressed as polynomial P,(¢) admits the asymptotic form
x| ~12x oscillations with respect tb [the exact asymptotic

Flah= jim (9, (120  formis given in Appendix A below; see EGA13)]. Thus, at

0" large | one findsGy,|Y?x oscillations, implying that the

084027-4



SELF-FORCE ON A SCALAR PARTICLE IN . .. PHYSICAL REVIEW [B2 084027

infinite sum over all modes fails to converg@lathemati-

cally speaking, this failure of the naive multipole decompo- Gmod™
sition may be associated with the fact that the Green’s func- '
tion of our problem exhibits a strong irregularity along the
intersection of the future light cone of the source with the
sphere of constant andt. In Appendix A we discuss this
Ers\?vl#? ‘2% g]re?rgtée?].d\(/a\;Z"t!herﬁfgSg;gges:Oa waey taonc?\ll)(/asrfor?é force. Equation(18) thus implies that the calculation of the

the difficulty caused by the presence of the irregularity, angelf-force can be carried out through analysis of the original

y . y I . .
explain how a well-defined mode decomposition can still bec"€€N'S function’s mode&', by applying thetilde summa-

accomplished. Although the detailed discussion of this issu%ﬁOn ‘”Stﬁ%‘?' of the.éi”'diﬁﬂe@ standard Isurr&fnatim[\é\ mo.rlta
is left to Appendix A, we outline here the basic argument,orough discussion of the arguments leading to(8). wi

and present some definitions and notation needed in the sBE 9iven in Appendix A. .
quel Let us now turn to study the form of the multipole modes

In Appendix A we construct a “modified” Green’s func- G' in greater detail. These modes can be written more ex-

tion G,o=G— 8G, where the functionsG is chosen such Plicitly as

that G,,oq has the following propertiesi) it is a continuous [

function of # and ¢ across the sphere of constargndt, and Gl(XE XM= D Ym(8,0)g™(t,r:x'#), (19

(i) it yields the same self-force, through E@.3), as the m=—I

original Green'’s functiorG (this is guaranteed by taking the - ) )

function 5G to have no support inside the future light cone Where Y™(6,¢) are the standard spherical harmonic

of the sourcg It is then argued that the modified Green’s functions on the sphere of constantar)d L. Sub,st|tu't|ng

function admits ar(absolutely convergent multipole expan- EG- (19 and the relation 5(6—6")6(¢—¢')/sing

sion, Gpog=31(G'— 8G'). Next, we define the new opera- ==mYim(6:¢)Yin(6',¢"), (Where an asterisk denotes complex
~ conjugation in Eq. (5), we obtain, from the orthogonality of

the spherical harmonics,

M s

G'. (18)

0

We emphasize once more that the modified Green’s function
Gog Can serveinsteadof the original functionG for the
calculation of self-force, as both functions yield the same

tion lim,_.. (“tilde limit” ) of a series of number4, , as the
standard limit lim_,.. (when existing and finiteof the series

_RrMW_Rp@), . . _Rpk (i) i ~ ~ “
A—-B/Y—=B|”. .. —B g where the(IJ_B)l_s :;re any finite rzf—l(r)g{g_[rzf(r)glyin]’r_i_|(|+1)glm
number of terms having the forB|"’=a;l”icosi;l+G)),
with a;, b;, @;, andg; being some-independent real num- =478(t—t")S(r—r" )Yy (0" ,¢"). (20

bers, and with none of the numberg vanishing. Namely, if
there existk quantitiest” of the above form, such that In terms of themrindependent variabig'(t,r;t’,r), defined
subtracting them from the original serids would yield a  through
well-defined finite limit ad — <, then we define R 5
g"m=27g"Yn (6" ") (1), (2D)
fimy .. A= lim (16)  Eq.(20) becomes

| —oo

k
A-3 80|

a[tt—ﬁ{r*r*+4v'(r)§'=2f(r)5(t—t')5(r—r'), (22
We also define the “tilde sum” of a serie% by
B where the radial coordinate, (r) admitsdr, /dr="f"1(r),
I and the effective potentiat'(r) is given by

A|Elfi?n’m|220 A, 17)

M s

1=0

(=1
vi(n=Z1(n)

+
r? r

(23

[(1+1) f’(r))

where 3| is the standard summation operation. It can be

easily verified(see Appendix Athat when the “tilde limit”  (with a prime denotingi/dr).

(or the “tilde sum”) of a series exists, then it isnique In To account for the causality condition, it is convenient to

particular, if a standard infinite sum,"A; converges, then introduce the(Eddington-Finkelstein-likenull coordinates

one may replace it with a “tilde sum” operation. Thus, we

may Ireplace the convergent standard sGmy,=2"(G' v=t+r, and u=t—r,. (24)
-6G’) with a tilde summation. In Appendix A we show that The relation S(t—t')o(r—r")=2f-3(r")8(v—v')S(u

o0 Iy —
21=(8G)) =0. Consequently, we conclude —u’) can then be used to write E(R2) in the simple form

9t VI(Ng'=8v—v")s(u—u"). (25
3In the more general case, witg#0, there is also ax| 2
x oscillations factor coming at lardgefrom P,(cosy), yielding the ~ We now impose causality by writing
asymptotic forrTG'ﬂatocconstx oscillations. Hence, clearly, the sum ~
over modesG' diverges in the general case as well. 9'=g'(v,u;v’,u)B(v—0")O(u—u"), (26)
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where0 is the standard step function. The “reduced Green’s For practical reasons which become clear below, let us
function” g'(v,u;v’,u’) obeys the homogeneous equation now write

QloutV(1)g'=0 27 FI9=F,— oF (), (34)

for all u>u’ andv>v'. Substituting Eq(26) into Eq. (25) in which®
and examining the behavior along the null raysv’ and

— 1’ : | H o
u=u’, one finds thag' must admit F,(X:qu Gfa[xg;xg(r)]dr,
g'(v=v")=g'(u=u")=1. (28)

For any fixed source point’,u’, the homogeneous equation SF!(9 = quoo G [x¢ x(7)]dr. (35)
(27), supplemented by the initial conditiofi88), constitutes —e
a characteristic initial-value problem for the functighany-
where atu>u’ andv>v’. Here,F'a is thel mode ofF ,=q® ,—the quantity given in

Finally, to expressG' in terms of the reduced Green’s EQq.(8), which is sourced by the entire world line. This quan-
function g', we substitute Eq(21) [with Eq. (26)] into Eq. tity can be obtained from themode of the self-field, which,
(19). In the resulting expression we can explicitly sum overin turn, can be calculated essentially with no difficulting
m by making use of the relatiof28] numerical methods, in most casg®3,24,26). The other
quantity appearing in Eq34), 5F'(<), is local in nature, and
N . thus may be treated, in principle, by means of local analytic
m;| Yim(6,@)Yin(6',¢")=(4m)" (21 +1)P (cosy), methods(as we, indeed, demonstrate in this paper

29 In terms ofF', and 5F (<), the tail part of the self-force is
calculated through

where cog is the quantity given in Eq15). We then find,
for thel mode of the Green'’s function,

oo

F@= lim > (F,—oFy9). (36)
+ 1=0
| g'(v,usv’,u’) =0
G'=LP|(cosy) ——0O(v—v")O(u—u’'), . . .
rr’ To carry out this calculation, one may be tempted to first
(30 calculate the sum ové¥', (which is e independent and then

evaluate the local contribution Iignmi,&FL(E). However,

here one comes across a problem: Although each of the
L=I+1/2. (32) modesF!, yields a finite contribution at the particle’s loca-
tion, in generakhe sum over all modes'aFdiverges As we
mentioned in the Introduction, this can be demonstrated even
in the simple case of a static scalar charge in flat space. To
A. Need for a mode sum regularization overcome this type of divergence, the introduction of a cer-
tain regularization procedure for the mode sum is required.

Following the discussion of the preceding section, we . ) . ,
now replaceG in Eq. (13) by G,,04, and then substitute for stlrjlz? fgllg\:\?scedure is describédind later implementgdin

Gmog from Eq. (18). We find'

where we have set

IV. MODE SUM REGULARIZATION SCHEME

> B. Regularization scheme
F§5>=IZO i, (32

To regularize the modes sum, one seeksimple as pos-
sible) e-independent functionh! , such that the series

a?

where F'(9 represents the contribution %69 associated =(FL—h!,) would converge. Once such a function is found,

with the -mode Green’s function: Eg. (36) can be written as
thf)=q2ff G [Xt ;xt(7)]dr. (33) Fe=2 (Fi=hy)~D., (37)
where

“It is assumed here that both the differentiation and the integration
involved in constructing:(;) out of G can be performed term by
term with respect to the tilde summation. This assumption should °Strictly speaking, the two quantitieE,Ja and 5F'a(€) are not well
be verified by more closely inspecting the convergence propertiedefined without specifying the direction through which the gradient
of the tilde sum oveiG' in Eqg. (18), which, however, would be of G' is calculated. This issue is discussed in length later in this
beyond the scope of the current paper. section.
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rA o Contribution
@ Contribution from 3[u-u,(1)]
/@M 4/ from 8[v-v,(v)]
s .
7 ekQ
/./0096 u v
e
o
8
/%°° worldline: worldline: «06)/
xg(t) - xg(T)

FIG. 1. Discontinuity ofF} and 8F|(9 . These quantities are calculated from E85) by integrating overr the Green’s function’s
derivative at the particle’s locatiom=r . If this r derivative is calculated from the limit—r (right figure, then the term in Eq(39)
involving &(u—up) will contribute to ther integration, whereas th&(v —v ;) term will have no contribution. The situation is reversed if the
r derivative is calculated from the limit—r, (left figure): then, a contribution will come only from thé&(v —v ;) term. Since these two
contributions are different, one finds that each of the quanfijeand 5F () has two different one-sided valuésoth of which are finite in
magnitude.

> [G'(r)—G'(ro)1/(r—ry)), then thed(u—u’) term in Eq.

D,= lim > (sF9—n!). (38)  (39) will have a nonvanishing contribution t6! and to

0t !” SFX9 [through the integrals in Eq35)], whereas theS(v
o . o —v') term will have no contribution—see Fig. 1. On the

In pr|nC|p_Ie, a _regglanzaﬂon funct|(_)rtna can_ be con- other hand, if the derivative is taken from, it will be the
structed by investigating the asymptotic behaworFégj as  5(y—p') term to contribute, and th&(u—u’) term to have
| —oo. It is also possible, however, to derive, from the g contribution. One can easily verifgs we explicitly do in
larged asymptotic behavior adF(9: the latter andF}, must  the following sectioh that these two differend terms yield
have the same singular behavior at the tilde limit (for  different contributions to the integrals in E(®5). Thus, al-
fixed €), as their difference yields a convergent tilde sumthough each of the quantiti¢s and 6F|' has well-defined
over|. Obviously, in order to determinkl, (andD,) from  yalues when calculated from either the limit>ry or the
SF (9, one merely needs the asymptotic behaviosBt(? jimit r—r/, these two one-sided values do not coincide
in the immediate neighborhood ef=0. This allows one 10 [Note that the quantityr\(® defined in Eq.(33) does not
deriveh;, (andD,,) using local analytic methods, as shall be exhibit this kind of discontinuity, as for any finite neither

demonstrated in the next section. of the two & terms contribute to this quantity.
First, however, it would be necessary to comment here one can similarly show that the componentsF} and

about a certain indefiniteness involved in the above defini-5|:lt(e) also exhibit this kind of discontinuity through the par-

; it [(e) . . . . ; .
tions of the quantities, and 6F ;. ticle’s location (see the explicit calculation carried out in
Sec. V below. On the other hand, thé and ¢ components
C. Discontinuity of F!, and 6F (¢ are obviously continuous through the particle’s location, as

| .
Whereas the quantiﬂ;‘/[,ff’ of Eq. (33) is well defined, the G' depends on the angular coordinates only through the

values of the two quantities', and sF'(?) depend on how regFLllarﬂf]uncuEnP,Ecdos?()..t hall denoteEby and
exactly one evaluates the gradiéh"tu at the particle’s loca- ,(gi € sake ot detiniteness, we shafl deno s an
tion. To make this point clear, consider first thecompo- OF; " the one-sided values arising from the-r, limit,

I- 1(e)— . ’
nentsF! and sF!). These are calculated according to Eq.2"d PYF;  and oF 7" the ones ar|5||r1(g)lfrom the—r,
(35) from ther derivative ofG', reading limit. In addition, the symbol&,;~ anddF;'“~ will stand for

the values derived from the limit—tg if dr/dt>0 at the

, LPi(cosy) _ | | force’s evaluation point or from the Iimitﬂtg if dr/dt
G,= —{[9,—9/r]®(v—0v")O(u—-u") <0 there.(In casedr/dr=0 at the force’s evaluation point,
the two one-sided values of thecomponent turn out to
+f1g[8(v—v")O(u—Uu")—O(v—0')d(u—u’)]}. coincide, as we obtain beloywVith this notation we find, for

=r ort,
39
I I(€ ; ; N ot .+
To calculateF| and 5F (9 one negds to .evaluate thIS. deriva- 5|:Icfe)—:q2f G'Z[xt xt(7)]dT (40)
tive at the self-force’s evaluation poink*=x4, with a —e€

source pointx’#=xg (7). Now, if the derivative atxy is
calculated fromr{ (namely, by taking the limit—rJ of  (and similarly forF'"), where
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LP,(cos
Gl (ki) = o) , X)[g',r—g'/rif’lg'é(wt—w;)]
rr
(41
and
|+ ! _LPI(COSX) | | ’
Gy (xx"#)=————[g+g d(w.—w.)]. (42

!

Here, we have introduced the notation

PHYSICAL REVIEW D 62 084027

Ar=2VgeL (14 =Tyo). (47)
whereVy,=Vy(ro). We shall refer to a variable of this kind,
having the formL X (small spacetime deviation), as a “neu-
tral” variable. Such “neutral” variables shall play an impor-
tant role in our analysis, allowing one to properly take into
account the delicate interplay between laigand small
spacetime deviations. Expressing—r, o in terms ofA, /L,
substituting in the above Taylor expansion, and collecting
terms of the same powers lin(with fixed A,), Eq.(46) takes
the form

w,=u and w_=v, (43 VI(r)=Vod L2+ L(f1A,) + (fo+f3A2)]+O(11L),
48
and, likewisew’,=u’ andw’ =v’. 48
wheref,, f,, andf; are coefficients given by
V. LOCAL ANALYSIS OF G' FOR LARGE | 1
— -3IA, - ’
The execution of the regularization procedure introduced fi= §Voo3 No=f"Mrf'—2f), (49
above involves the construction of the quantitibsandD', .
As we pointed out earlier, this can be done by analyzing f,=VoiVi=rf’'—1/4, (50)

SF!(9) or, more accurately, the quantitie®' (9= given in

Eq. (40). For that goal, we must have sufficient information

about the Green'’s functionlsmodeG!', for large values of,

at the immediate vicinity of the self-force evaluation point.

1 = r?
fa= g Voo Vo= 5 [(F)¥F+1]+3(f=rf"). (51

In this section we use local analysis to obtain analytic ap{Here, all quantities are evaluatedratr,.)

proximation forG', up to the accuracy needed for the deri-

vation ofh!, andD',.

A. Perturbation analysis

Defining now the dimensionless “neutral” coordinates

In Sec. Ill above we have reduced the problem of calcu-

lating G' to that of solving a(1+1)-dimensional homoge-

neous partial DE for the functiog', Eq. (27), with the char-
acteristic initial data specified in E(R8). Given the function
g', the “four-dimensional” Green’s functioh mode,G', is
then constructed from E@30).

To explore the behavior of the functiog' for small

spacetime intervals and largewe apply the following per-
turbation analysis. Let us separate the effective potential

given in Eq.(23) into two pieces, in the form

V(1) =L2Vo(r)+Vq(r), (44)
where
f(r) i,
Vo(r)=? andVl(r)=E[4rf (r)—1]. (45

Let us next expand/'(r) in a Taylor series in the small

deviationr —r about the particle’s location=r . It is con-
venient to take the small expansion parameter torpe
—r,0, yielding

V)=V (1) +VI(ro)(re —r o)
1—
V(1 =10+ (49)

where an overbar denotéédr*. Let us also define

y=Vi2(v—v') and x=VIA (u—u"), (52
Equation(27) becomes
f1A, fot+fsA?
| 127 2 3=y 3 |
Qlyuct| 1+ =5 +O(LY) [g'=0. (53
We next expandy' in the form
g':g,0 L %9 (A, A ,2), (54)

where the expansion coefficiergg are considered as being
dependent on only the “neutral” variablées, ,

A=2VEA(rl —r,,), (55)
and
z=2\xy=(L/rq)s. (56)

Here, s is the geodesic distance, to leading order iar’,
between the Green’s function evaluation and source points
(when these two points have the sameand ¢ values:

s=[f(ro)(v—v")(u—u")]*" (57)
Substituting now the expansidb4) into Eq. (53) and com-
paring powers oL, we obtain a hierarchy of equations for
the various functiong), having the form

gk,yx+gk:Sk- (58
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TABLE |. Specific solutions to the inhomogeneous partial DE 1 5
g,yxtg=S for various source functions of the for®(z;x—y), 82=Zf§z‘]1(z)[(y—x)2+ 3A(y—Xx)+2A,]
wherez=2\/x_y. These solutions can be verified by substitution. In
this table,J, are the Bessel functions of the first kind, of oraer _fsJo(Z)[(y_X)2+2Ar/(y_x)+Ar2r]_ f,Jo(2).
S(z;x—y) Solution tog x+g=S(z;x—y) (64)
J Ji(2)/2

0(_2) z 1_(2) With the help of Table I, we then construct the following
(y=2930(2) (VX2 (2)/4 solution forg,, satisfying Eq.(60):
(y=x)%30(2) [2232(2) +2(y—x)?23y(2)]/12 2 T
z23,(2) 7223,(2)14 L
(y—x)231(2) (y—x)Z235(2)/6 __ = 2, FAZ )4
(-X)%2,(2) [2235(2)+3(y~X)220(2) 1124 927~ g PO Arber &) 3]
+iz23 (2)[3f2(A,+A,/)2—8f5]+ ifzz3J (2).

Here, the sourcé, is determined for eack™>0 by the func- 96" “2 vere 3796 1773
tions g,/ < precedingg, in the hierarchy. In the analysis (65)

below we shall only need the terms witk=0, 1, and 2. For

these values ok, the source terms are given by
C. G!:f expanded in powers of 1L

S=0, (593 We are now in position to write the three leading-order
terms in the 1. expansion of the gradier@[cf[xg ;Xp]. To
S,=—f1A.0o, (59b) that end we shall need, in view of Eggll) and (42), to

evaluate the functiong, derived above, along with their

_ B 2 gradientsgy ., for x*=x§ andx’#=xg . For the calculation
S2= ~ 11891~ (T2 341 go. (599 Ok« it is convenient to use the auxiliary relations
Finally, to complete the formulation of a characteristic d[2"3,(2)]/dz=2"3,_1(2) (66)

initial data problem for each of the functiogg, we supple-

ment Eq.(58) with the initial conditions [for n=0 recalld_(z)=—J,(2)], along with

(v =v")=g(u=U")= dio, (60) dzidr=—fol(y—x)/z and dzZ/dt=ffol(y+x)/z,
(67)
which conform with the original initial conditions fay', Eq.
(28). where
B. Analytic solutions for k=0, 1, and 2 fOE[roflIZ(ro)]fll (69)
The solution to Eq(58) for k=0, subject to the initial
conditions, Eq(60), is given by With the help of these relations we derive from E¢R1),
B (63), and (65 expressions forg,, and gy, (where k
9o=Jo(2), (62) =0,1,2). We then set“=xg andx’#=xg in these expres-

_ ] ) sions and also in the expressions for the functigpshem-
wherelJ,, are the Bessel_ functions of the first kind, oflolrdner selves(noticing the vanishing of\,). All resulting expres-
To solve forg,, we first express the sour& explicitly  gjons are then substituted in the formulas & andG'*
as a function ofy —x andz, using Eq.(61) and the relation pgs (41) and (42). In these equations we also make the
Ar=y=x+Ap. We find substitution S(w. —w’,)=2LVa2s(W.), where w. are

“neutral” variables defined by
S;= = f130(2)(y=Xx) = 14,/ J0(2). (62

Then, with the help of Table I, we find the solution flr w.=2x andw_=2y. (69)
=1 [satisfying Eq.(60)] to read
Finally, collecting common powers df we obtain, fora
1 =r ort, an expression of the form
9:=~ 7112Ah(D(A+Ap). (63)
G|i[XlOL;XM]ZM(Q(O)1L2+H(1)L+|:|(2)+ ),
We now use the above solutions fgg andg, to express “ P rr’ “ “ “

S, as (70)
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where the various coefficient%a are functions of only the
“neutral” spacetime-interval variablés\,. , z, w. , and

A=2VEiL(to—ty). (72)
These coefficient functions are given by

AO==f[—A,,34(2)/2F Io(2) S(W-)], (729

. 1
AWM= — 7 foflzh(2) +A%34(2)]-Jo(2)Ire,  (72b)

. 1
H§2>=9—6f0Ar,[7f§zsz(z)+3le(z)(f§Af,—8f3)
) 1
—16J0(2) (A, +3f5) ]+ 7 f14,,221(2)/ro,
(720
and
HO" = o[~ AJy(2)/z+ Io(2) S(W-.)], (73a
~wy. L
Ht :_fooflArrAtJo(Z), (73b)

R 1
A= ge oAl 112202(2) +23,(2) (31347, — 8f)

PHYSICAL REVIEW D 62 084027

and replacer by —rg(N/L). The integrand then takes the
form of a power series in L} with N-dependent coefficients.
Transforming finally from integration over to integration
over\, one obtains an expression f6F'(9* in the form of

a power series in L/ as desired. In the rest of this paper we
carry out the above calculation in full detdénd deriveh!,
andD,) for the case of a purely radial trajectory.

VI. FORM OF THE REGULARIZATION FUNCTION  h':
THE CASE OF RADIAL MOTION

When considering radial trajectori¢samely, ones along
whichdd=d¢=0) one has|(cosy)=1. Consequently, the
Green'’s function given in Eq(30) becomesd, ¢ indepen-
dent, resulting in the vanishing of both angular components
of the self-force(as should be expected, of course, by virtue
of the background being spherically symmetrim the fol-
lowing we discuss the andt components of the self-force.

To carry out the integration in Eq40) we first expand
eachr-dependent quantity in the integrand in powers af, 1/
with X\ held fixed. Ther-dependent quantities to be expanded
areA,,, A, 1ir’, z, and the various Bessel functions ap-
pearing in Egqs(72) and(73).

By expanding)A,, in a Taylor series inr aboutr =r, and
transforming to the variabl®, we obtain the expansion

. 1. 1.
Ar/:Ar/T+ EAr/TZ+gArrT3+ ..

oL 1.
=T =1 A ST (/L) = 5T A3(ro /L)

—16J0(2)(f5A% +3f,)] (739 +O(1L)3, (75)
(where the functiorf is to be evaluated at=r). In the Where
above expressions foi{")(2) and H{* () we have omitted Pt
~ * 1
terms of the formez*J,,(z) 5(w..), with k being a positive
integer, as such terms would yield vanishing contributions to r,=f"2(fr—f'r?),

SF'(9* when integrated over in Eq. (40).

The quantitiessF'()* can now be constructed, in prin-

ciple, for any given world line, by inserting E¢Z0) into Eq.
(40) and carrying out the integration over In practice, to

=130 2= "H)r*=3f ' frr+12r],  (76)

and where all quantitiegexcept\) are evaluated at=r,

integrate overr, one should proceed as follows: Recalling (7=0). In a similar manner we obtain, fay,,

that 7 is a small quantitywe have| 7/ <€), one first expands 1 1

in powers ofr all -dependent quantities in the integrand of ~ , _ ¢1/2 4 vy 2 o3 2
. . - . = tN— tNS(ro/L) + =t N (rg/L

Eq. (40). (At that point, the details of the specific trajectory ! 2 (ro/L) 6 (fo/L)

under consideration enter the calculation in an explicit man- (77)

ner; specifically, the power expansion coefficients turn out to

. . and for 1f’,
depend on the values of*, u®, andu“ at the force’s evalu-
ation point) Then, since we are interested in extracting the

+0O(1L)3,

L A . 1 . .
largel (largeL) behavior of6F (9, we introduce the “neu- = = =| 1+ (\/L)+ 5 (2r2—rgf )(AM/L)?|+O(11L)°.
tral” dimensionless proper time variable, defined by r Fo 2 79
=—(LIro)7, (74 Next, recallingz=(L/r,)s, we obtain
. z=—s\+ léxz(r /L)—Eé')\e’(r /L)?+0(1L)3
5We hereafter use the symbals,, z, andw. to represent the 2 0 6 0 '
values of these variables far‘=x{ andx’#=x{ . (79
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To calculate ther derivatives ofs (which are understood 1 " )
here to be evaluated at=0), we make use of the normal- Jo(2)=Jo(N) = 5 (ro/L)sN"Jy (M) + O(ILT),  (84)

ization relationou=1/f and of the relations derived from it
by successively differentiating its both sides with respect

1 .
to 7 outol=(UM)'t and ou+200+ol=(1/)"r2 1(2) =31\ 5 (1r/L)SA (V) =M I (V)]
+(1/f)'r. Using these relations we find

+(ro/L)? %éz[x%z(x)—x“h(x)]

s(r=0)=—1, (80)

: Lo 1 A3Jo(N)—N2J(N)]|+O(1L®). (85)
s(r=0)=5(f'/f)r, (81) 5S[A"Jo(N) 1(M)]]{+0( :

1 1 We now substitute the above expansions&er, A,, z
s(7=0)=——[(8f"f—13f'?)r2+8f'fr]+ - fou and the Bessel functions in Eq$2),(73). We also substitute
16f2 4 for the delta functions in Eqg72a and (73a:
(82

(note that whereas is non-positive throughout the integra- S(W o) o)

tion domain,z ands are, by definition, non-negative = |dw.. /d\| _fl’z\}vi a
Finally, we need to similarly expand the various Bessel o o
functions appearing in the integrand of E40). Using Egs. where the last equality is due to the normalization of the

fY2_5(\),  (86)

(79) and(80) we find, for anyn=0, four-velocity. We thereby obtain expressions for the various
L functionsﬂg‘;o'l'z), each expanded in powers ofL1lip to
_ - “\27 orderO(L"™4) (with A-dependent coefficientsSubstitution
In(2)=dn(M)+ 5 (Fo/L)SAIn(h) of these expressioriand of the expansion for 1/, Eq. (78)]
1 1 into Eq. (70) finally yields the desired expression for the
+(ro/L)? S8ANAII(N) — =SN331(N) | +O(1L?), Green’s function’s gradient, as a power series In @ith X
8 6 held fixed. We find (for a=r,t)

(83

where a prime denoted/d\. Using this general form to-
gether with Eq.(66), we obtain the following expansions, Where the various coefficients" are functions of\ along

G =HO*" L2+ HPL+H®+0o(11), (87)

o

needed for our analysis: the world line, given by
©=_1r v
Hy ‘=r—3[r*31(>\)+W:Jo(>\)5(>\)], (88)
0
H§1)=—F[)\Jl()\)(fllfl’z—4rr*+4rosr*+2r0r*)+)\2\]0(7\)(f1’2f1r§—2rosr*)+4Jo(7\)], (89)

0

H®=— @[4&%()\)(3 — £, ) FAN3Io(N)(BF 1o/ Y2+ 6r2s?r, +4rdsr, —affyrd
0

+6r2sr, —6fY2 ror, r, —12rrosr, +6fY2F,rr2) +8\23 (N ) (3f,r/f¥2—6r,s—3far, —12r%r,
+6rorr, +12rorsr, —6r2s?r, —4r3sr, +6rqrr, —6rasr, —2rar, +3f%fr,)
+ 3NN (Ar3s?r, + FE2r3 —AFY2f r osr2) + N3J,(N ) (7F2r, —12r35%r, )], (90)
and
©=_ " ' i
Hi *=r—3[Jo(>\)w¢5(A)—J1(>\)t], (91
0
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H§1>=F{>\Jl(x)[—4rt+2ro(2st+t)]+>\230<>\)(—2rost+ 12 r, 1)}, (92
0

H§2)=—@{48)\‘]0()\)@—4)\3J0()\)[r§(652t+4st+6$t)—3r0(4rst+fl’zfltr*+f1’2fltr*)
0

+6fY2f rtr, —4ff4tr2]+8N20,(N)(fat+12r%t —6rort—12r orst+6r3s’t + 4rast—6rort

+6r3st+2r3t) + 3N (N (— 4r3s?t+4F Y2 rostr, — F12tr2)+ N3J,(N)(— F2t+ 12r35%)). (93

Changing the integration variable in E40) from 7to A,  these parameters will also become clear then. As to the pa-
we now have rameterD,, substituting now Eqgs(94) and (95) into Eq.
(38), one obtain$

Lelr
5FL§f>i:q2roJ "[LHO= + HO 4+ H@)/L + O(L~2)dA.
0

(94) D,=—a?rolim > | [LHO*+HO+H®/Ldx.
e-01=0 JLelrg

The desired regularization functidﬂa is to be constructed 97

such as to extract the lardesingular behavior ofsF!(9)*

(while maintaining the simplest form possihl®y virtue of

Eq. (94) we take this function to be In conclusion, we find the tail part of the self-force to be

given by
h'*=LA>+B,+C,I/L, (95)

a

where F@b=> (Fl*-A;L-B,~C,/L)-D,, (98
=0

i ~1opl(e) =y — 42 ” 0)=
Ay=Ilim (L™ 70F,“7)=q fofo Ha 7" (M)dA, where, from the above constructiontdf, it follows that the

(969  sum overl converges at least as1/l. The implementation
of our regularization scheme thus amounts to analytically
~ . . P determining the regularization parametérs, B,,, C,, and
BaE“mlawaIng)__LAE):QZVOL H O )dN, D,, using Egqs(96) and(97). For the czglgcgulation of the tail
(9sh)  term, one may use eith@,” (with A) or Fy (with A,).
Of course, one may also use any combination of these two
—_ % one-sided quantitie®.g., their averagelt should be empha-
C.=lim_ L(sF(9F—LAZ -~ Ba)=q2r0J H@(\)d\, sized here that théinal result of the calculation, namely the
0 (o6g @il term F(& (having a well defined value at the evaluation
point), should be the same regardless of whether it is derived
from one of the one-sided limits or from the other, or, say,

with f;()d)\ standing form_mfx()d)\.7 That the second .00 their average.

equality in each of 595{9?9_ and(960) is valid, and thatthe "y finally point out that, although E¢98) has been de-
above choice of functioh,,” indeed satisfies the requirement veloped here for radial motion, an expression of this form is

that the tilde sun;” o(F (9= —h!") would converge will  also valid for any other trajectorj29]. The details of the
be shown in the next section, where we explicitly calculatespecific trajectory under consideration would only affect the
the parameteré\,, B,, andC,. The reason for using the values of the various regularization parameters.

tilde limit instead of the standard limit in the definitions of

8%We assume here that the contribution associated with the
"Here we extend the definition of the tilde limit, given in Appen- O(L~?) term in Eq.(94) vanishes upon taking the limié—0, as

dix A, from discrete functions with indekto continuous functions this contribution is of ordeiO(e€) (this becomes clear from the
of \. In an analogous manner, the tilde limit of a functibfA) as  calculation ofD, in the next section However, a problem may
A— would be defined through the subtraction of a finite sum ofoccur if this term fails to yield a finite contribution when integrated
functions of the formBM(\)=a;\"icos@\+ ;) (with «;#0 for  over \. Here we do not further investigate the behavior of the
all j). It is simple to verify that the tilde limit of a function, when O(L ?) term, and just assume that the above potential problem is
existing, is single valued. not realized.
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VII. DERIVATION OF THE REGULARIZATION PARAMETERS FOR RADIAL MOTION

To carry out the calculation of the regularization parameters in this section, we shall need the following integrals, the

derivation of which will be described in Appendix B. Fkm e N we have

(n+k—1)11/ (n—k—1)!,
Fwn(x)dp (— 1)k n—
0

0, oddk—n>0

[in applying this formula fok=n, recall (- 1)!!=1]. If the

O0=<k=n,

HIN(k—n—=1)!", evenk—n>0, (99

behaves as:| ~*2 times oscillations with respect io[these

differencek—n is a positive odd integer, then we also have components are linear combinations of Bessel functions, the

fw)\k\]n()\)ln)\ d\
0

=(—1)& D2k n—1)11 (k—n—1)!1.
(100

A. Derivation of A

Substituting Eqs(88) and(91) into Eq. (969 and carry-
ing out the tilde integratiofwith the help of Eq.(99)] we
find, recallingJy(0)=1 andJy(»)=0,

2 2

Ari:q—z('r* FW.)= Iq—'t,
o o
2 2
A;—'=fq—2(—'t+\}vi)=iq—2'r. (102
o o

Note that the two one-sided valuesAf are, in general, not
the same. Consequently, as argued above, the funbﬁon
(and alsosF'()) exhibits two different one-sided values. We
note that theaveragedvalue of the parametef,, to be
denoted byA,, , is found to vanish:

— 1
Ao=5(AL+A;)=0. (102

This vanishing ofKa seems to occur for all trajectories of a
scalar particle, not only the radial ones considered [29g

B. Derivation of B,

By the definition ofB, in Eq. (96b we have, after sub-
stituting for A, from Eq. (96,

B,= —qzroﬁﬁm{ L fx Hff’)i()\)d)\}
Lelrg
+q2r0f°chj)()\)d)\. (103
0

The first term here cancels out upon taking the tilde limit
—: At largel (and fixede), each of the componenk$?)*

asymptotic form of which is described in E@®6)]. To lead-
ing order in 1f, this is also the form of the integral over
H(®= in Eq. (103 (which is carried out over asymptotically
large values of\). Hence, the expression in the squared
brackets is found to diverge ad 2 times oscillations. When
taking the tilde limit, this divergent piece is removed, with
the remaining part dying off at largeas «<| ~¥? (times os-
cillations). Therefore, no contribution arises from the first
term in Eq.(103), and the second equality of E(P6b) is
shown to be valid.

To calculate the parametd,, we now substitute for
H® from Eqgs.(89) and (92) (for the r andt components,
respectively. The calculation involves tilde integrating over
terms of the formeAJ;(N), *A2Jg(N), andxJy(\). Read-
ing the values of the integrals from E®9), and substituting
for f,, r,, r,, ands [using Eqs(49), (76), and(81)], we
obtain

2

Br=—q—szl(f+rof’/2—'r2+rof) (104
2rg
and
Q> ...
Btzﬁ[frotﬂr(rof’—f)]. (105
r

0

Recallinga’=r+f'/2 anda'=t+f'r, t in the case of radial
motion considered here, we may express this result in a more
compact form as

9 :
= — (8 Froa,—ruy).
2rg

B,= (106

C. Derivation of C,,

By its definition in Eq.(96¢), we have for the parameter
C,, after substituting foA, andB,,

C.= —q2r0 %Iﬂx[ jw

LE/I'O

[LHOO) +H®( ) 1dn

+02rg f:Hff)()\)d)\. (107)
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Again, there is a residual part left from the calculatiornAgf %
and B,, which involves integration over asymptotically D@=—q?ry lim| (rq/e) 22 (elrg)
large values of\. This part can again be shown to vanish as e—0

the tilde limitl — oo is taken, resulting in that only the second
integral in Eq.(107) survives.

To calculateC,, we thus use the second equality of Eq.
(960), in which we substitute foH® from Egs.(90) and
(93) (for ther andt components, respectivglyOne then has  Comparing the form of the sum in this expression to the
to evaluates the tilde integral of a sum of various terms of thgeft-hand side of Eq(111), we find
form «<\XJ,()\), all of which havek>n and oddk—n. Ac-

x| (Lelrg) - Hgo)i(x)dx)l. (112

LE/TO

cording to Eq.(99), all such integrals vanishThus, we find %
D®=—qg?rg lim (I’O/e)zf O)(x)
e—0
C,=0. (108
1

. _ ——(e/ro>2[l<£,°><x>]"”, (113
The vanishing of the paramet€r, seems to be a universal 24
feature of our scheme, regardless of the specific trajectory
under consideratiof29]. As we also find below, this vanish- where
ing constitutes a necessary condition for the self-consistency
of the whole regularization scheme. (0)()() XJ’ (0)+()\) (114

D. Derivation of D, o 0
Note here how the contribution t6(®) due to theO(€°)

To calculate the parametér, we write Eq.(97) in the term appearing in Eq.111) vanishes upon taking the limit

form e—0. We recall that each of the two componeh&’* and
D,=D@+pW4+D®), 109 H{®*. given explicitly in Eqs.(88) and (91), contains two
oo “ terms: one proportional t6(\) and the other td;(\). The
h «§(N\) term has no contribution ttb(go), resulting in that
where both two one-sided valugd(¥" andH(®)~ yield the same
- function KEYO) (for that reason, na= sign has been assigned
- B . to this quantity. There is an apparent danger of divergence
D= —q?rglim ;O L LEHP= (0N, (110 coming from theO(e~2) term in Eq.(113. Such a diver-
0 0 gence is avoided, however, as we have
In calculating the above three pieces®f, we shall trans- 2 0 u. (= %
form from summation ovelrto integration over a continuous J' KQ(x)dx=— f dx Xf N)d
variable. For this transformation we will make use of the
relation u
2 “3 ZJl(x)dx 0, (115

1
K(x)—ﬂ(e/rO)ZK”(x) dx

Z (elrg)K( Le/ro)—fm

where in the second equality we integrated by parts with
respect tox, and where the vanishing of the last integral is
implied by Eq.(99). Thus, theO(e ?) term in Eq. (113
vanishes, and the—0 limit in this equation turns out well
whereK (x) is any(sufficiently regulay integrable real func- defined. The remainin@(e°) contribution reads

tion, andx is an integration variable. Here, ti@(°) term

+0(€d), (112

on the right-hand sidéRHS) is the standard“Riemann q%ry
N . : e D= [K(O)(x)]”dx
type”) integral, which is obtained, by definition, when the a o4
e—0 limit of the left-hand side is taken. We also indicated
here theO(e?) correction to the integral, which we shall q 0 (0)+ (0)+
have to take into account in the calculation belditvis =T o1 {H () +[xH"™ (x)]"}dx
straightforward to verify the form of this correction term
using standard calculusObviously, Eq(111) also holds for q2 ro
) 5 L =—— H<°>*(x)dx (116
the t|Ige sum=,_,, where on the RHS we use the tilde inte- 24
gral [§.

©) " we write Eq. as the surface term vanishes. SubstitutingHé®*(x) and
(110 for n=0 as integrating using Eq(99), we finally obtain

Beginning with the calculation oDH(®
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2 ~ 2

Qu, (= QU
D(O):——f Ji(N)dh=— :
a 2 o l( ) 2 2

0 0

(117

We next turn to calculat®! . Writing Eq. (110 for n
=1 in the form

DW=—g%, lim

e—0

(ro/e) 2, <e/ro>f° HPO)dA
=0 Lé/ro
(118

and applying the summation formu(a11), we obtain

D®=—q?r, lim [(role)focdxmegl)(k)d)\
0 X

e—0

(119
with all O(€?) terms appearing in Eq111) vanishing in the

PHYSICAL REVIEW [B2 084027

D@= —qzrofwln xH®(x)dx. (124)
0
With the explicit form ofof), given in Eqs.(90) and (93),
the integrand in the last expression is found to consist of
various terms of the formexXInxJ,(x), with k—n being

positive odd integers. The integrafg of such terms can be
read from the formuld100), which we derive in Appendix
B. Using this formula we obtain expressions @ and

D{, which, after substituting for, , r, , r,,s, s, f;, f,,
andf,, read

2

1 e e qer
DSZ):ng(f 1r+ruu)+24f2

rg[f(4f—3)

+8rof ' (f—ror)+2r3(3ff"—£'2)], (125

limit e—0. By integrating the last expression by parts with ;4

respect tox (noticing the vanishing of the surface terone
finds

DW= —qg?rg lim (rO/e)fxxHE})(x)dx
0

e—0

. (120

Here, the integrand contains only terms of the form

«x*J,(x), with k—n being positive odd integefsee Egs.
(89 and (92)]. Hence, by virtue of Eq(99), the integral
vanishes, yielding

DW=o. (121)
Finally, from Eq.(110 with n=2 we obtain
D@ =—q%, lim| >, (e/ro)(Le/rO)_lfm H®(\)dr

e—0 I=0 Le o

_ —qzrofw(dx/x)waf)()\)d)\, (122
0 X
which, after integrating by parts, becomes
D@= —qzro[ fwln xH@(x)dx
0
= Iim(ln xJ“Hg”(x)dx) . (123
x—0 X

1 R |
D®=— §q2(f r +f2tou)— quf’rt
o’t

243

+ [3f_4f2+4f—1(f/)ng'r2_8f//rg'r2

—Af'r3r—2ff"r2—8ff'ro]. (126)

We are now in position to write an expression for the
“overall” parameterD,,. We haveD ,=D®+D®, yield-
ing

2

D=3 Q% +roi)+ [2f(f—1)

12f%r3
+arof (F—ror)+r3(3ff"—f'2)], (127
and
Dy=— %qz(f r+f2tou) — %qu’if+ %[21‘(1— f)
+2f—1(f")%r3r2—af"r3r2—2f'r2r
—ff"r3—4ff'ry]. (128

In the case of radial motion, the four-acceleration’s com-
ponents admit the explicit forma"=r+3f’ and a'=t

We notice here that the second integral on the RHS is just ¢ { Recalling also that in the spacetime class consid-

C,1t0O(x) [up to a multiplicative constant; see E@60)].
The above-deduced vanishing of the param&grguaran-
tees the definiteness of the—0 limit in Eq. (123, and

makes the second term on its RHS vanish. Note the way the
vanishing of the paramet&® , appears as a necessary self-

consistency condition in our scheme: had we @qt~ 0, the

parameterD , would have been indefinite, and the whole

ered here the Ricci scalar read®= —[f"+4f'/r+2(f

—1)/r?], one can show that the above two expressions for
D, andD, can be put into the simple vectorial form

D :qu(a —au )—iquu (129
o 3 o o 12 a "

regularization scheme would have been rendered meaning@zomparing now this result with Eq$10) and (11), and re-

less.

calling that in the case considered héi®at of radial motion

As thex—0 limit in Eq. (123 vanishes, we are left with on static spherically symmetric backgrounithe first two
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terms in the expression fé#{X°®) [Eq. (11)] cancel out, we ~Of (i) the modes~,, to be derived by supplementafyasi-
arrive at the remarkable conclusion tHaf, is exactly the cally straightforward numerical analysis, as done in Refs.

“standard” local part of the self-force: [23,24,26 and (ii) four regularization parameters for each
o spacetime component of the force. In this paper we have
D,=FAD) 4 p(Ricc) (130  worked out the entire calculation of the regularization pa-

rameters for the case of radial motion. For any other trajec-
tory, the derivation of these parameters can be carried out
along the same lines, based on the explicit form of the
The total self-force acting on the radially moving scalar Gréen’s function’d mode given in Eq(30), with Eqs.(61),
particle is obtained by substitutirl@‘;a") from Eq.(99) in Eq. (63), and (65). To that end, one flrst_obtams an expression
(9). By virtue of Eq.(130), the contribution oD, to the tail for the gradient of thel Green's functionfsmode, as in Eq.
term is then found to exactlgancel outhe local term in the (70 [Supplemented with Eqs72) and (73)]. One next ex-
expression for the total self-force. This, in addition to thePands this gradient in powers of proper timealong the

vanishing of the paramete®, , leads to the simple result ~ World line about the force’s evaluation point, and re-
expresses the resulting expansion as an expansion in powers

VIIl. SUMMARY AND CONCLUDING REMARKS

* of 1/L, by holding 7L fixed—as in Eq.(87) [supplemented
Florl="> (F!*—AZL-B,) (131)  with Egs. (88)—(93)]. One finally uses the values of the
1=0 above expansion coefficientidenoted in this paper by

HEY“)(TL)] to construct the regularization parameters through
Egs.(96) and (97).

For a scalar particle moving radially in a spacetime of the
class considered in this paper, we found the total self-force to
be given by Eq{132. This constitutes our main result for

% the radial motion case, together with the explicit values of
Floa—> (Fl —B,), (132  the regularization parameters given in E¢$02), (106),
=0 (108, and(129. We have found that, in the radial motion
= 1 cls el case, the parametesfs, and C, both vanish(the one-sided
where F,=3(F, +F,). Recall that the parameteB,,  yalues ofA, do not vanish; they are given in EGL01)], and
given in Eq.(106), is just the asymptotic value of the aver- {he parameteD , is just the standard local part of the self-
aged| modeaa at the limitl —o; namely, the total self force force. The vanishing o€, shown here explicitly, appeared
is obtained by simply subtracting from ea@two one-sided as a necessary condition for the definiteness of the whole
averagetl mode its largd asymptotic value, and then sum- scheme(hadC,_#0, the parameteD , would have diverge;
ming over all modes. see the discussion in Sec. YIIThis point serves to demon-

To summarize, in this paper we have developed a methogtrate the self-consistency of the regularization scheme.

for calculating the self force on a scalar particle in curved A question arises, whether the above res(thg vanish-

spacetime, through regularization of the multipole modeIng of Ka and C, and the special value d,) represent
sum. The basic difficulty in applying the mode decomposi-generic features of the regularization scheme or rather are

tion approach—the apparent divergence of the sum ovegnecial to radial trajectories. Preliminary investigat[@]

modes—has been taken care of by the introduction of an . o . . .
. " s . suggests that, indeed,, andC,, vanish for all trajectories, at
appropriate regularization scheme, providing a practical prer

scription for calculating the self-force. It should be empha—IeaSt In the Schwarzschild case. As to the parani2fgrthis

sized that the proposed method does not involve any wea yas shown so far to obey EG130 at least in one more

field or slow-motion approximations, and thus allows Important example, that of a circular orbit around a
. ) PP ’ .~ Schwarzschild black hol€29,22. It might be conjectured
effective calculations of the self-force even for strong field

. (and be subject to further investigatjaiat Eq.(130 holds
orbits. . . . . .
for any trajectory in any static spherically symmetric back-

The basic expression for the tail part of the self force is : ;
given in Eq.(98). This expression was developed here forground. In that case, the simple equat(qj?pZ) fpr the total
self-force would be valid for all such trajectories.

radial motion; however, the same general form applies for : ' N
) . . . Under the above conjecture, we find that regularization of
any trajectory{29], with the details of the orbit encoded only ; .
the total self-force requires knowledge of just one parameter,

in the values of the regularization paramet&rs well as, of ] )

course, in the form of the “bare” mode&.). To apply this B, ., representing the asymptotic vgl_ue of.the rr_lo%sas

general expression for a given trajectory requires knowledglﬁz_’m'_The valug of8,, for any §peC|f|c r.ad|al trajectory on
any given spherically symmetric spacetime can be read from
Eq. (106 (valid regardless of the above conjeciuréor ex-

ample, in the special case of static particle we find
9The simplicity of our main result, E132), may lead one to B(statio)— 5 and

wonder whether there could be simple arguments leading directly to t

(where, we recallL=141/2). An even simpler form is ob-
tained when calculating ®® using theaveragedvalue of
the modesF'a, obtained by averaging over their two one-

sided values. Then, by virtue of E(L02), we find

this result. Such arguments might perhaps rely on general properties . q2 rof’
of the Hadamard expansion. This should make an interesting sub- B{statio= —| 1+ 7) (133
ject for further investigation. 2rg
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For radialgeodesianotion we find ing it. | would also like to thank Lior Burko for discussions
and for reading the manuscript.
2 2
ngeodesic): _ q—Z'I’E, Bﬁgeodesic): _ q_2(2_ EZ/f),
2rg APPENDIX A: MULTIPOLE EXPANSION OF THE
(134 GREEN’S FUNCTION USING “TILDE SUMMATION”
whereE=—vu, is the energy parametéwhich is a constant DeWwitt and Brehme wrote a general expression for the

of motion in the absence of self force effedEor the value Scalar Green’s function in curved spacetifisee Eq.(2.21)
of B, in the case of uniforneircular motion in Schwarzs- Of Ref.[7]], of the form

child spacetimg(the derivation of which will be presented

elsewherd 29]) we refer the reader to E¢34) of Ref.[22]. G(x#x"#)=a(x*;x"#)8(o) +b(x*;x"*)O (7). (A1)

The applicability of the regularization prescription de- . . o
scribed here was demonstrated recently in actual calculatiorfd€re, o is plus or minus half the squared geodesic distance
of the self-force for various scenarios. Burko first studied thedetween the source point* and the evaluation point’*,
cases of statif23] and circular24] orbits in the Schwarzs- according to whether the geodesic connecting the points
child spacetime. For these stationary scenarios, the modéglong which the invariant distance is measurisdime like
F'. were obtained by summing over the Fourier-multipole(o>0) or else ¢<0); ais a certain function having a well-
modesF'™ | first derived by solving the appropriate ordi- defined value ai=0; andb is a function which may be
nary field equations in the frequency domain. Later, BaracRV/tten as a Taylor expansion i abouto=0. [This expan-
and Burko [26] analyzed the case of radial motion in SION Was shown by Hadamatslee pp. 96-98 in Ref8]) to
Schwarzschild spacetime. In this case, which is no longe

gonverge uniformly at least inside the region whereis
stationary, numerical evolution of the appropriate partial DESINGle valued. While the first term in Eq(A1) is associated

in the time domain was applied to directly infer the modesWith the familiar delta function exhibited already in_ flat
F' . In each of these studies, the overall force acting on th&Pacetime, the second term represents a curvature-induced
scalar particle was finally deduced by summing over allta'l’ which “f'”§” the I.'ght. cone (defl.ned byo=0). Note'
modes, using the above regularization scheme. In each of tﬁgat the Green's functpn is strongly irregular along the light
cases analyzed, the vanishing®©f was demonstrated, and cone of the source .ponxt’“. . .

the analytically derived expressions gy, andB , were veri- NOV}” the question to consider N whether the above
fied. Aside from demonstrating the applicability of the regu-Green § function may be expanded in terms of the standard

; : i ogdm
larization scheme and providing verification for the values Ofspherlcal harmonic functions™(6,) on a sphere of con-
tantr,t. The standard theorefsee, e.g., Ref32], p. 513

the regularization parameters, the above studies yielded valg - iy ;
able physical results, as mentioned in the Introduction. states that a;ufﬂmentcond!tlon for (abs_olute and_ un!forbn
Of course, the analysis of the scalar self-force merelyFO"vergence _Of the_sphzencal harmonic expansion 1 thg ex-
serves as a toy model for more realistic cases. Generalizatid?f’mdeq fpnctlon bein@* on the, spherg. Th!s condition is
of the regularization scheme to theectromagneticself- not satisfied here, as th_e Green_s function dlverg_es along the
force seems possible, based on the existing formalisr]. curve generated by the intersection of the fu'gure light cone of
Such a generalization is necessary, for example, for resolviny © @nd the sphere of constant. Therefore, it is not guar-
the interesting question re-raised recently by HubESg, ntegd, in advance, that ;:uch an expansion could be naively
whether a nearly extreme electrically charged black holéPPlied. Indeed, already in flat spacetime the attempt to ap-
might be overchargeéand its event horizon by destroyed ply t_he muIU_poIe expansion to the Green'’s functlc_)n turns out
by throwing in a charged particle: as pointed out by Hubeny!C Yiéld a divergent sum—see E(l4) and the discussion
knowledge of the exact radiation reaction effect is crucial forPoceeding itin Sec. . , .
obtaining a definite answer. More difficult to accomplish L€t us introduce the “modified” Green’s functiolwhich
would be the important generalization of the scheme to th&S Not a“Green’s function™ for the scalar field anymore
gravitational self-force acting on a mass particle. defined by
Finally, it should be mentioned that a closely related ap-
proach was recently applied by Lougt®i] for studying the
gravitational self-force on a mass particle in Schwarzschild
spacetime. This approach is also based on the multipole eX¢here
pansion, yet it employs a different regularization method for
the mode suntit is argued that the correct self-force can be 6G=2a95(0) ~be®(—0), (A3)
deduced by applying the zeta-function regularization tech-
nique. For the geodesic motion case studied by Lousto, thigVith ag=a(o=0) andby=b(co=0). The functionGyq has

approach leads to an expression analogous ta E#). _two gssential featuresi) its support ingide the light cone is
identical to that of the Green’s functio@ (as 4G has no

support therg and(ii) it is continuous throughout any sphere
of constant,t. The first feature implies that we can usg,q

| wish to thank Amos Ori for suggesting the basic idea forinstead ofG in calculating the self-force: We may re-write
the regularization scheme and for his assistance in develojq. (13) as

Gumod=G— G, (A2)
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tween the two limits one would have found [im.[=; B(')

—E“EF”] c—c+0. This, however, is impossible, as the
(standard limit |—< of any quantity of the typeB(‘) is
either diverging or zero, and so is the limit of any finite sum
of such quantities. Hence, we must havec, and the tilde
limit is single valued. In particular, we find that if there ex-
|sts a finite standard limit lip,.A;, then lim_ A,

FE:)EqZJ::{GmOC[xg;xg(r)]}’adr, (Ad)

as thedG term in G,,,oq CONtributes nothing to the integral
along the particle’s world line.

The second of the above features@f,q, its continuity,
may imply that the multipole expansion could now be ap-
plied to it. Strictly speakingG,,,q does not satisfy the above
sufficient condition for absolute and uniform convergence of= |Im|ﬂocA|
the mode suni.e., beingC? on the sphere yet, we shall We can now also define the “tilde sum” of a serigg, as
assumehere thaiG .4, being continuous, is already regular in Eg. (17). Again, if the “tilde sum” of a series exists, then
enough to admit a convergent mode sum. The results of ouf is unique Also, if the standard surx,_.A; converges,
analysis turn out to be consistent with this assumption, as théien we may replace it with a “tilde sum” operation. In
mode sum ofG considered(based on the functios,,,q Particular, we may replace the convergent standard sum of
through the use of “tilde summation”—see belpis found  Ed. (A5) with a tilde summation:
to be (absolutely convergent. The validity of this assump-
tion can also be demonstrated in the flat space casexlihe
tail term vanishes in this case, and by expanding dbe) Grnod= Zo (G'- oG, (A7)
term in Eq.(A3) in spherical harmonics one can easily verify
that thel mode of 5G is exactly thel mode ofG, given in  Below we show that
Eq. (14). Thel mode of G,,o4 then vanishes, and the mode

81

sum converges. Although trivial, this flat-space example may ”
serve to demonstrate how the subtractionS&f from G al- Z '=0 (A8)
ready removes the divergent piece from thmode, making
the mode sum converd8We thus expan@ o4 as (for any evaluation point4 lying inside the future light cone
w ofI the source poinkg). As a consequence, the tilde sum of
mod_E Gmod_Eo (G'—5G"), (A5) Sq |?1f§))uc::cdstgcbtle”fmlte and equal 16,,,q—as indicated in

Combining Egs(A4) and(18) we conclude that the self-
where Gl .4 and 6G' are the spherical harmonic modes of force can be calculated by analyzing the mo@&sof the
Gmog @nd 8G, respectively(obtained by summing over all original Green’s function, provided that in order to sum over
azimuthal numberg). all modes one applies thiélde summation instead of the

To proceed, let us now define the new operatiNOF]jm standard summation._ The validity of this statement crucially
(“tilde limit” ) as follows: Consider a series of numbexs ~ depends on the vanishing of the tilde sum ovs' [Eq.
(with 1=0,1, . . . ). Let B{") be any expression of the form (A8)], which we now prove.

B{=aIPicog a; + 8)), (AB) Proof of Eq. (A8)
To calculate thé modes of5G, it is convenient to use a
spherical coordinate system in which the source pejnies

on the polar axig(i.e., #,=0). In this coordinate system,
contributions tadG would come only from then=0 modes:

wherea;, bj, «;, andg; are somd-independent real num-

bers, witha;# 0 for all j. If there exists a finite numbéeof

expressmnﬁ“) of this form (with j=1,2, ... k), such that

subtracting their sum from the original senéfswould yield

a well-defined finite limit ag— o, then we define the “tilde

limit” lim |, ..A, as in Eq.(16), 8G'= Z_| Yim(6,9)
One may easily be convinced that the tilde limit is single "

valued(when existing. For suppose that for a given serigs 2m , )
there were two different sets of quantitidg’ , one(denoted f de’ f d(cosd’) G (o) Yin (6", ¢")
by _(')) y|eld|ng IlmbwA, ¢ and the other(denoted by )
B yielding lim, ...A,= ¢+ c. Then, for the difference be- =Lj d(cosb’)[agd(a')—be®(—0o")]
-1
X P,(cosf)P,(cosb’), (A9)

00ne may similarly construct a more sophisticated funct@ ) o )
designed to yield &2 modified functionG.4 [by canceling also  Where the integration is carried out over a sphere spanned by

the O(o) and O(o?) terms in the Taylor expansion df] being  €',¢" (containing the evaluation point‘), L=(I+1/2), and
sufficiently regular toassureuniform and absolute convergence of o' is half the squared geodesic distance between the source
the multipole expansion, by the standard mathematical theorenpoint and the integration poir’,¢’. Now, the future light
Such an improved construction will not be examined here. cone of the source poirtalong whicha’=0) intersects the
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integration sphere along a circt =const=6,. The §(o”')

PHYSICAL REVIEW [B2 084027

sum of a few terms of the forng; cos@jl+ﬂj)+0(l‘1) (in

term in EQ.(A9) contributes to the integration only along this the case € 6<w) or of the form a1 2 cosiy| +8)

circle, while the®(— o) term contributes only across the
part of the sphere outside it. We thus find

5G'=LP,(cosh)| agP,(cosby) —bg

cosfy
xj P (cosf’)d(cosb’)
-1

— | |

WhereéoEa0/|da’/d(cos@’)lg,q90 is a constant, and where
the symbolssG'y and 5Gy, represent the two terms propor-

tional to a, andby, respectively.

To calculate the tilde sum oveiG' we make use of the
finite-sum identity[referred to as “Christoffel’s first summa-
tion formula”—see, e.g., Eq. 3(80) of Ref.[33]]

' 1
(x=y) 2 LPL()P(y)=5(1+D[Pi21(X)Py(y)

="
=P 1 (Y)Pi(X)],

valid for |[x|<1 and|y|<1. Applying this formula to Eq.
(A10), we obtain

(A11)

|
8G'=lim, .. >, (6G|5+ 6G|o))
1"'=0

M s

0

(1+1)

1. i\J
=—aglim,_ .
>80lIm

» P+ 1(X)P1(X0) = P41(X0) P (X)
X—Xo

1

~ 3bolim_.| (1+1)

><JXOPHl(X)Pl(X,)_PI+1(X/)P|(X)dX'
X=X’

-1
(A12)

wherex and x, stand for co® and co%,. (Recall that for
any evaluation poink* lying inside the future light cone of
the source poink4, we have cog>cosf,=cosé’; hence,

the denominators appearing in the last expression are strictly

positive)

Let us consider first the tilde sum 6(’5'(5) . For values of
0 satisfyinge< <7 — e (Wheree>0) we have the large-
asymptotic form

P,(cos@) e \2(1 sin @)~ Y2cog L 6+ m/4) +O(1~3?)
(A13)

[see, e.g., Eq. 3(9) of Ref. [33]]. Using this asymptotic
form with Eq. (A12), we may easily WriteE:,zoéG'(:s) as a

+0(I"Y? (in the case9=0 or ), wherea;, a;#0, andp;
are certain functions o and 6, (independent of). Such
terms all vanish at the tilde limit—oc. Thus, we clearly
have

|:Eo 8G(4=0. (A14)

We next turn to calculate the tilde sum 6G'(®). Inte-

grating by parts in Eq(A12), and using

Pi1(X)—=P1_1(x)
21+1

J Pi(x)dx= (A15)

(see Eq. 7.111 of Ref[27], together with Eq. 8.733-4
therein, we obtain

|
, 1
> 5GI((~))= - §b0(| +1)
0

|"=

Xo

Piy1(X") = P4 (x")

X—x’
dx’]

X0

Pi11(x)
X[ 21+ 1

B f"o Piya(X")—Pi_1(X")

-1 (x—x")?

Pi(x)
21+3

Pia(x")—Py(x")

X—x'

-1

_onPHz(x =PI

-1 (x=x')?

} . (A16)

The surface terms here vanish at the lower boundary, as
Pir1(=1)=P_1(—1) andP;, ,(—1)=P (1) [recalling
P,(—1)=(—1)']. The contribution from the upper boundary
dies off at largel [by virtue of Eq.(A13)] as x| ! (times
oscillationg for 6+0, or asx|~*? (times oscillations for
6=0. In both cases, this contribution thus vanishes at the
standard limitl—< and hence also at the tilde limit. Con-
sider next the integral terms: The difference between two
Legendre functions appearing in these terms may be globally
bounded(in absolute valugas

|Py.1(cos6) — P_y(cosd)|<Cq[ m(1—1)] 12,
(A17)

whereCg is a number independent band 6 (see Eq. 8.838
of Ref.[27]). For any# and 6,, the integrals of Eq/A16) are
thus each bounde(in absolute valugby C,(6,6y) X172,
and we find

<Cy(6,00)1 " Yq|Py.1(cosh)|+|P(cosh)|]

|
> G,
1"=0

—0 (A18)
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as|—o (the above coefficient€,; and C, arel indepen-
deny. Thus, the standard infinite sum ovéG'(@)) vanishes
and hence also the tilde sum:

5Glgy=0. A19
2 % (A19
With Egs.(A14) and (A19), Eq. (A8) is verified.

APPENDIX B: DERIVATION OF INTEGRALS

In this appendix we obtain the tilde integrals given in Egs.
(99 and (100, which are needed in the calculation of the

regularization parameters. We start with E@Q). Let Iﬁ()\)

denote the primitive function at*J,(\), wherex is a real
variable,J,, is the Bessel function of the first kind, of order
andk,ne \:

|';(>\)zf AL (N)dN. (B1)
Let alsol ¥ stand for the definite integral
~, —~ A %
|ﬁs|imﬁxfo ()\’)kJn()\’)d)\’Efo A<I,(N)dN.
(B2)

Consider first the cas&k=0. The standard integral
JoJdn(\)dN=1 is well defined and finite. Thus, in this case,
the tilde integration in Eq(B2) may be replaced with a stan-
dard integration, yielding

T*=%=1, vn=o0. (B3)

Consider next the cade>0. Writing in Eq.(B1) A\kJ,(\)
— )\k*n*l[)\n‘*’l\]n()\)] — )\kfnfl[)\n+1‘]n+l()\)]/ [Where
use is made of Eq(66) and a prime denoted/d\], and
integrating by parts, we arrive at the recursive formula

INETONE

If 0<k=n, then byk successive applications of this recur-
sive formula we obtain

IO) =N (0 = (k=n—1) (B4)

k—1

n—k—1+2j)!! )
=2, ((n—k——nﬁ)“”wﬂm
n+k—1)!
+En_k—_1)!!lg+k()\)- (B5)

Now, the Bessel functiond,(\) admit the asymptotic form

J(N— )~ (2/m\)Y2cogd N —nm/2—wl4)  (B6)

(see, e.g., Eq. 8.451-1jR27]). Therefore, each of theterms
in the sum ovelj in Eq. (B5) diverges at large. as some
positive (half-integej power of\ times oscillations with re-
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o (NFk=DI_ " (n+k—1)!!
N (n—k—1)1 MK (n—k—=1)11”

for 0<k=n,
(B7)

where the last equality is due to E@®3).
If k>n and the differenc&k—n is even then byp=(k
—n)/2 applications of the recursive formu(B4) we obtain

p—1
o S (ken=Du
|n(?\)—j20( 1)'m>\ 1Jnt1+5(N)

+(=1)P(k=n=DHIIWEN). (B8)

Again, all terms in the sum ovgrvanish at the tilde limit
N—o and atA =0, leading to

(k+ n)/Z()\)

TE=(=1)P(k—n—1)!! k4 n)/2

=(—1) & M2(k—n—1)11 (k+n—1)!,

for evenk—n>0, (B9)

where the last equality is due to E®7).

The situation is different in cade>n and the difference
k—n is odd Then, followingg=(k—n—1)/2 applications
of the recursive formulé#B4) one obtains

q—1
o (k=n—1)!! B
Iﬁm:jgo O ey e TR SERICY
+(=1)(k—n—D)1I {2
(k—n—1)!!

N0V,

q
:;o(_l)J(k—n—l—zj)u
(B10)

with no residual integralnotice that when Eq(B4) is ap-
plied with the upper index ofﬁ greater by 1 than its lower

index, then the second term on the RHS of this recursive

formula vanishek This leads, when applying the tilde limit,
to
T8=0, for oddk—n>0. (B11)

The above results, Eq&B3), (B7), (B9), and(B11), are
summarized by Eq99) in Sec. VII.

We further need now to calculate the integral given in Eq.

(100). Integrating by parts, we express the primitive function
of the integrand\*J,,(\)In\, for oddk—n>0, as

|';<'°g)sf A3, (M) In )\d)\zlﬁ()\)ln)\—f [1K(N)/NTdA.
(B12)
By virtue of Eq.(B10), the surface term on the RHS here is

dominated at smallx by X&)
o\ "Ln )\, and therefore it vanishes at the limit—0.

spect to\. Clearly, all such terms are eliminated when theHowever, this surface term diverges at the tilde limit> oo
tilde limit A— is taken. Also, all of these terms vanish at (as\¥~*2In \ times oscillations with respect t0). This can
A=0. We are thus left with be avoided by slightly modifying the definition of a func-
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tion’s tilde limit, by allowing the quantitie8(" in Eq. (A6)
to also admit the formB{)=a;1% Inl cos|+B) (with «;

#0 for all j). It can be shown that all features and resultsupper and lower indices af<;

PHYSICAL REVIEW [B2 084027

where we have substituted fd)h()\) from Eg. (B10). Pro-
vided thatk—n is an odd number the difference between the

171 is also an odd number,

discussed in Appendix A concerning the tilde limit remaink—n— 2 2j. Therefore, by virtue of Eq(B11), we have

valid also under this wider definition. With the revised defi- |k 1

nition of the tilde limit, the surface term in EqB12) van-
ishes at the tilde limihn— as well as for—0. Denoting

Tk = |im, _.1¥0°9 '\e then have

T§m®=-—J:[m(xwx]dx

(k—=n—1)/2

== 2 (-

i=0

(k=n-Dt -,
(k n-1-— 21)” n+1+j>

(B13)

1)]

=0 for anyj satisfyingk—j—1>n+1+j, i.e., |
<(k n 2)/2. We find that of all the terms summed up in
Eg. (B13), the only nonvanishing one is the one witk (k
—n—1)/2. Hence,

THOD= — (= D n—HNTEN S

=(—1)*k=" D2 Kk—n—1)1 (k+n—1)!1,
(B14)
where, in the last equality, the value {171}
inferred from Eq.(B7). This proves Eq(100).
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