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Spectral methods for numerical relativity: The initial data problem
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The partial differential equations of numerical relativity have traditionally been solved using a finite differ-
ence~FD! approximation. The accuracy of a FD solution increases as a fixed power of resolution while the
computational resources required for the solution increase as the resolution raised to the~space1 time!
dimensionality of the problem. Modest accuracy solutions to problems involving either the initial conditions or
the evolution of a dynamical black hole spacetime tax the capabilities of the computers presently available for
the task, while the resources required for modest accuracy binary black hole problems are beyond what is
presently available. For problems with smooth solutions alternatives to the FD approximation exist that may
make more efficient use of the available computational resources. Here we investigate one of these techniques:
the pseudo-spectral collocation~PSC! approximation. To determine its effectiveness relative to FD methods in
solving problems in numerical relativity we use PSC to solve several two-dimensional problems that have been
previously studied by other researchers using FD methods, focusing particularly on the computational re-
sources required as a function of the desired solution accuracy. We find that PSC methods applied to these
problems can achieve close to the theoretical limit of exponential convergence with problem resolution, while
the computational resources required continue to scale only as the resolution raised to the problem dimension-
ality. Correspondingly, for solutions of even modest accuracy we find that PSC is substantially more efficient,
as measured by either execution time or memory required, than FD; furthermore, these savings increase rapidly
with increasing accuracy. We also discuss less quantitative but no less tangible advantages that the PSC
approximation holds over the FD approximation. In particular, the solution provided by PSC is an analytic
function given everywhere on the computational domain, not just at fixed grid points. Consequently, noad hoc
interpolation operators are required to determine field values at intermediate points or to evaluate the approxi-
mate solution or its derivatives on the boundaries. Since the practice of numerical relativity by finite differ-
encing has been, and continues to be, hampered by both high computational resource demands and the
difficulty of formulating acceptable finite difference alternatives to the analytic boundary conditions, we argue
that PSC should be further pursued as an alternative way of formulating the computational problem of finding
numerical solutions to the field equations of general relativity.

PACS number~s!: 04.25.Dm, 02.70.Hm
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I. INTRODUCTION AND SUMMARY

The partial differential equations~PDE! of numerical rela-
tivity have typically been solved using finite differenc
methods. In finite differencing~FD! one first chooses a finite
number of coordinate ‘‘grid’’ pointsxn and approximates the
space and time derivatives in the PDEs by ratios of diff
ences between field and coordinate values on the grid. W
a choice of grid and ‘‘differencing scheme’’ for convertin
derivatives to ratios of differences, the equations of gen
relativity are approximated by a system of algebraic eq
tions whose solution approximates that of the underly
PDEs.

In this paper we explore an alternative method for solv
the elliptic PDEs encountered in numerical relativit
pseudo-spectral collocation~PSC!. In PSC one begins by
postulating an approximate solution, generally as a sum o
some finite basis of polynomials or trigonometric function
The coefficients in the sum are determined by requiring t
the residual error, obtained by substituting the approxim
solution into the exact PDEs, is minimized in some suita
sense. Thus, if one describes FD as finding the exact solu
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to an approximate system of equations, one can desc
PSC as finding an approximate solution to the exact eq
tions.

Pseudo-spectral collocation has been applied success
to solve problems in many fields, including fluid dynamic
meteorology, seismology, and relativistic astrophysics~cf.
@1–4#!. Its advantage over FD arises for problems w
smooth solutions, where the approximate solution obtai
using PSC converges on the actual solutionexponentiallyas
the number of basis functions is increased. The approxim
FD solution, on the other hand, never converges faster t
algebraically with the number of grid points. While the com
putational cost per ‘‘degree of freedom’’ — basis functio
for PSC, grid points for FD — is higher for PSC than for FD
the computational cost of a high accuracy PSC solution
small fraction of the cost of an equivalent FD solution. Ev
for problems in which only modest accuracy is needed, P
generally results in a significant computational savings
both memory and time compared to FD, especially for m
tidimensional problems.

The detailed relative performance of alternative solut
techniques is necessarily problem, formulation and re
©2000 The American Physical Society26-1
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specific. The asymptotic behavior of different solution me
ods can be revealing, but it is the real resources required
a solution of specified accuracy that is important to us. H
we investigate the relative performance of the FD and P
approximations applied to several problems in numer
relativity. We focus on the solution of the elliptic constrai
equations for two axisymmetric problems: the initial data
a black hole spacetime with angular momentum, and
spacetime with a black hole superposed with gravitatio
waves ~Brill waves!. We have chosen these problems b
cause solutions in the FD approximation have been found
both by other researchers@5–7#, and also the complexity o
the spatial operators are representative of the more com
three-dimensional problems in numerical relativity, but n
so complex that their formulation and solution obscures
nature of our investigation, which is the relative efficiency
the FD and PSC approximations to their solution.

In Sec. II we review briefly the key constraint equatio
that arise in the traditional space-plus-time decomposition
the Einstein field equations.~Experts may wish to skip this
review, which is intended principally for the non-expert, a
proceed directly to Sec. III where we describe the PSC
proximation.! We describe three different elliptic problem
a nonlinear model problem whose analytic solution
known, the nonlinear Hamiltonian constraint equation for
axisymmetric black hole spacetime with angular momentu
and the Hamiltonian constraint equation for a spacetime w
a black hole superposed with Brill waves. The solution
each of these problems using FD techniques has been
ported on by other researchers; we use those solutions
gether with our own, obtained using the PSC approximat
to compare the efficiency of FD and PSC solution meth
on representative problems in vacuum numerical relativit

In Sec. III we describe in detail the PSC approximatio
while in Sec. IV we compare the idealized asymptotic p
formance of PSC and FD solutions to problems with smo
solutions. In Sec. V we solve the problems described in S
II using PSC and compare the performance of these P
solutions with the FD solutions to the same problems
tained by other authors. In Sec. VI, we discuss the result
our comparisons as well as other differences between
and FD techniques, and their implications for solving pro
lems in vacuum numerical relativity. Finally, whether by F
or PSC the solution of the nonlinear elliptic systems d
scribed here involves solving a potentially large system
~nonlinear! algebraic equations. We describe the methods
use for solving them in Appendix A.

II. INITIAL VALUE EQUATIONS

A. Introduction

We use the standard 311 formalism of@8# which is dis-
cussed in detail by@9#. The general relativistic Cauchy initia
value problem requires that we specify the metricg i j and
extrinsic curvatureKi j of a three-dimensional spacelike h
persurface. These quantities cannot be specified arbitra
rather they must satisfy a set of constraint equations, wh
are a subset of the Einstein field equations. The four c
straint equations~in vacuum! are
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(3)R1K22KabK
ab50, ~2.1a!

(3)¹a~Kia2Kg ia!50, ~2.1b!

where (3)R is the Ricci scalar associated withg i j , (3)¹a is
the covariant derivative associated withg i j , and K
ªKabg

ab.
York @9# has developed a convenient formalism for spe

fying the initial data such that Eqs.~2.1! are satisfied. Split
g i j into a conformal factorc and the conformal metricḡ i j
ªc24g i j , and Ki j into its traceK and its trace-free par
Ai j

ªKi j 2 1
3 g i j K. The constraint equations~2.1! then be-

come

¹̄2c2
1

8
R̄c2

1

12
K2c51

1

8
ĀabĀ

abc2750, ~2.2a!

¹̄aĀia2
2

3
c6ḡ ia¹̄aK50,

~2.2b!

where (3)¹̄ i is the covariant derivative andR̄ is the Ricci
scalar associated withḡ i j , andĀi j

ªc10Ai j . Equation~2.2a!
is generally referred to as the Hamiltonian constraint, wh
Eqs. ~2.2b! are generally referred to as the momentum co
straints. For the problems examined in this paper, the m
mentum constraints can be solved analytically. Therefore
will only need to apply our PSC method to solving th
Hamiltonian constraint~2.2a! for the conformal factorc.

In order to solve the Hamiltonian constraint we mu
specify the boundary conditions. The problems we exam
consist of an axisymmetric spacetime containing a sin
black hole. Let the initial hypersurface be asymptotically fl
so that on the hypersurface far from the black hole the c
vature vanishes. Describe the black hole by an Einste
Rosen bridge~i.e., by two asymptotically flat three-surface
connected by a throat! and insist that the spacetime be inve
sion symmetric through the throat. These choices impose
boundary conditions

lim
r→`

c~r !51 asymptotic flatness, ~2.3a!

F]c

]r
1

c

2aG
r 5a

50 inversion symmetry, ~2.3b!

S ]c

]u D
u50,p

50 axisymmetry, ~2.3c!

on c wherer 5a is the coordinate location of the throat.
A useful diagnostic of an initial data slice is to compu

the total energy contained in the slice. O´ Murchadha and
York @10# have examined the ADM energy~cf. @8#! in terms
of the conformal decomposition formalism. For the proble
we will examine below, the ADM energy is given by

EADM52
1

2p R̀ ¹̄ jcd2S̄j , ~2.4!
6-2
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i.e., it is proportional to the integral of the normal compone
of the gradient of the conformal factor about the sphere
infinity.

B. Three test problems

1. A model problem

Bowen and York@11# describe a nonlinear ‘‘model’’ of
the Hamiltonian constraint equation that can be solved
actly, which we utilize in Sec. V to test our code. The mod
equation is

¹̄2c1
3

4

P2

r 4 S 12
a2

r 2 D 2

c2750, ~2.5!

with P a constant. Together with the boundary conditio
described above@Eqs.~2.3!#, Eq. ~2.5! has the solution

c5F11
2E

r
16

a2

r 2
1

2a2E

r 3
1

a4

r 4G 1/4

, ~2.6a!

where

E5~P214a2!1/2. ~2.6b!

If we evaluate Eq.~2.4! for this solution, we find that it has
ADM energyE.

2. Black hole with angular momentum

Focus next on the initial data corresponding to an axisy
metric black hole spacetime with angular momentum. T
problem was first examined analytically by@11#, and has
been explored numerically by@5,6#. Choosing the conforma
background metric to be flat,@11# found an analytic solution
to the momentum constraints~2.2b! that carries angular mo
mentum and obeys the isometry condition at the black h
throat. Corresponding to this solution is the Hamiltoni
constraint@Eq. ~2.2a!# for the conformal factorc,

¹̄2c1
9

4

J2sin2u

r 6
c2750, ~2.7!

whereJ is the angular momentum of the physical space.

3. Black hole plus Brill wave

The second physical problem upon which we demonst
the use of spectral methods for numerical relativity is tha
a black hole superposed with a Brill@12# wave, a problem
studied using FD by@7#. Let the initial slice be a spacetim
isometry surface~i.e., time symmetric!; then, the extrinsic
curvatureKi j vanishes and the momentum constraints@Eqs.
~2.2b!# are trivially satisfied. Let the line-element of the co
formal background metric have the form

ds̄25@e2q~dr21r 2du2!1r 2sin2udf2#, ~2.8!

where
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qªAsinnuH expF2S h1h0

s D 2G1expF2S h2h0

s D 2G J ,

~2.9!

hª ln(r/a), n is an even integer, andA, h0, ands are con-
stant parameters that describe the superposed Brill wa
amplitude, position, and width, respectively. With this choi
the Hamiltonian constraint equation becomes

]2c

]r 2
1

2

r

]c

]r
1

1

r 2

]2c

]u2
1

cotu

r 2

]c

]u

1
c

4 S ]2q

]r 2
1

1

r

]q

]r
1

1

r 2

]2q

]u2D 50. ~2.10!

III. SPECTRAL METHODS

A. Introduction

Consider an elliptic differential equation, specified by t
operatorL on thed-dimensional open, simply-connected d
mainD, with boundary conditions given by the operatorSon
the boundary]D:

L~u!~x!5 f ~x!, xPD, ~3.1a!

S~u!~x!5g~x!, xP]D. ~3.1b!

There may be more than one boundary condition, in wh
case we can indexS andg over the boundary conditions.

Approximate the solutionu(x) to this system as a sum
over a sequence ofbasis functionsfk(x) on D1]D,

uN~x!5 (
k50

N21

ũkfk~x!, ~3.2!

where theũk are constant coefficients. Corresponding to t
approximate solutionuN is a residualRN onD andr N on ]D:

RN5L~uN!2 f on D, ~3.3a!

r N5S~uN!2g on ]D. ~3.3b!

The residual vanishes everywhere for the exact solutionu.
In PSC we determine the coefficientsũk by requiring that

uN satisfies the differential equation and boundary conditio
exactlyat a fixed set ofcollocation points xn : i.e., we require
that

05L@uN~xn!#2 f ~xn! for xn in D, ~3.4a!

05S@uN~xn!#2g~xn! for xn on ]D, ~3.4b!

for all n. When the expansion functions and collocati
points are chosen appropriately a numerical solution of th
equations can be found very efficiently. In the following su
section we discuss choices of the expansion basis and c
cation points.
6-3
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B. Expansion basis and collocation points

In PSC we require that the approximate solutionuN sat-
isfies the differential equation and boundary conditions
actly at theN collocation pointsxn . The basisfk should not
constrain the values of the approximation at the collocat
points; correspondingly, we can write the basis as a set oN
functionsfk(x) that satisfy a discrete orthogonality relatio
ship on the collocation pointsxn :

(
n50

N21

f j~xn!fk* ~xn!5nk
2d jk , ~3.5!

where thenk are normalization constants. Note that the ba
functions are inextricably linked with the collocation point

It is sometimes the case that the basis can be chose
that the boundary conditions are automatically satisfied.
example, consider a one-dimensional problem on the inte

I5@21,1#. ~3.6!

If the boundary conditions are periodic then each elemen
the basis

fk~x!5exp@p i ~x11!k#, ~3.7a!

satisfies the boundary conditions; correspondingly, the
proximate solutionuN automatically satisfies the bounda
conditions. If, in addition, we choose the collocation poin

xn5
2n

N
21, ~3.7b!

then the basis satisfies the discrete orthogonality relation

d jk5
1

N (
n50

N21

f j~xn!fk* ~xn!. ~3.7c!

In an arbitrary basis, or with arbitrarily chosen collocati
points, finding theũk from theuN(xn) requires the solution
of a general linear system ofN equations inN unknowns,
which involvesO(N3) operations. For the basis and colloc
tion points given in Eqs.~3.7! the ũk can be determined from
the uN(xn) quickly and efficiently via the fast Fourier trans
form in O(N ln N) operations.

Arbitrary derivatives of theuN can also be compute
quickly: writing

dpuN

dxp
5 (

k50

N21

ũk
(p)fk~x!, ~3.8a!

we see immediately that

ũk
(p)5~p ik !pũk . ~3.8b!

Consequently, any derivative ofuN can be evaluated at a
the collocation points in justO(N ln N) operations.

The ability to evaluate efficiently the derivatives ofuN at
the collocation points is much more important than finding
basis whose individual members satisfy the boundary co
08402
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tions. In the case of periodic boundary conditions we c
have our cake and eat it, too. More generally we choos
basis in which we can efficiently compute the derivatives
uN at the collocation points and require separately that
approximate solutionuN satisfy the boundary conditions a
collocation points on the boundary.

For general boundary conditions a basis of Chebys
polynomials often meets all of our requirements.1 Recall that
the Chebyshev polynomials are defined onI by

Tk~x!5cos~k cos21x!. ~3.9!

A simple recursion relation allows us to find the derivative
uN as another sum over Chebyshev polynomials: if2

uN~x!5 (
k50

N

ũkTk~x!, ~3.10!

then

duN

dx
~x!5 (

k50

N21

ũk8Tk~x!, ~3.11!

where

ckũk85ũk128 12~k11!ũk11 , ~3.12!

with

ck5H 2 k50,

1 k>1.
~3.13!

If we choose collocation pointsxn ~for 0<n<N) accord-
ing to

xn5cos
pn

N
, ~3.14!

then the Chebyshev polynomials satisfy the discrete ortho
nality relation

d jk5
2

Nc̄k
(
n50

N
1

c̄n

Tj~xn!Tk~xn!, ~3.15!

where

c̄k5H 2 k50 or N,

1 otherwise.
~3.16!

1The geometry of a problem might suggest other expansion fu
tions, such as Legendre polynomials; however, a Chebyshev ex
sion does quite well and has the added convenience that, with
propriately chosen collocation points, onlyO(N ln N) are required
to convert from the expansion coefficients to the function value
the collocation points and vice versa@13#.

2For Chebyshev bases the conventional notation is thatk runs
from 0 toN, not N21; thus, there areN11 coefficients and collo-
cation points.
6-4
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Finally, exploiting the relation between the Chebyshev po
nomials and the Fourier basis@cf. Eq. ~3.9!# allows us to find
the ũk from theuN(xn) in O(N ln N) time using a fast trans
form ~see Appendix B of Ref.@2#!. With an expansion basi
of Chebyshev polynomials and an appropriate choice of
location points we can thus evaluate derivatives of arbitr
order at the collocation points inO(N ln N) operations.

For problems on an arbitrary domain of dimensiond
greater than unity it is rarely the case that we can find a b
which permits rapid evaluation of derivatives. Consid
however, ad-dimensional domain

D5@a1 ,b1#3@a2 ,b2#3•••3@ad ,bd#, ~3.17!

where$ai% and$bi% are constants. If the physical domain c
be mapped smoothly toD, then we can write

uN(1)
•••N(d)~x!5 (

k150

N(1)

••• (
kd50

N(d)

ũk1•••kd
fk1•••kd

~x!,

~3.18a!

where

x5~x(1), . . . ,x(d)!, ~3.18b!

andfk1•••kd
is a tensor product of basis functions defined

one ~e.g., Chebyshev polynomials! or more ~e.g., spherical
harmonics! dimensions. For example, ifD5Id, then we
could choose

fk1•••kd
~x!5)

l 51

d

fkl

( l )~x( l )!, ~3.18c!

where the$fkl

( l )%, for fixed l, is a basis onI which permits

fast evaluation of derivatives with respect to its argum
~e.g., Chebyshev polynomials!.

Associated with each set of basis functions are the co
cation pointsxn

( l ) ; correspondingly, the collocation points a
sociated withfk1•••kd

are just theN1•••Nd-tuples

xn1•••nd
5~xn1

(1) ,•••,xnd

(d)!. ~3.18d!

With this choice of basis and collocation points we c
evaluate efficiently arbitrary derivatives of an approximati
uN(1)

•••N(d). If the domain cannot be mapped smoothly toD,
either more sophisticated methods such as domain decom
sition @1,2# must be used, or the problem may not be am
nable to solution by PSC. See@14# for an example of using
multiple spherical-like domains for astrophysical problem

C. Solving the system of equations

The expansion basis, collocation points and differen
equation with boundary conditions determine a system
equations for the coefficientsũk or, equivalently, the ap-
proximate solutionuN evaluated at the collocation point
Iterative solution methods@which require as few as
O(N ln N) operations# work well to solve the kind of system
of equations that arise from the application of a PSC meth
08402
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If the elliptic system being solved is linear then the alg
braic equations arising from either a FD or a PSC method
also linear and a unique solution is guaranteed. If, on
other hand, the differential system is nonlinear, then
equations arising from FD or PSC are also nonlinear an
unique solution is not guaranteed. Newton’s method~see
Sec. 12.13 and Appendices C and D of Ref.@1#!, where one
solves the linearized equations beginning with a guess
then iterating, works well for these types of equations.
long as a good initial guess is chosen, the iteration will u
ally converge. In Appendix A we describe in detail the va
ant of Newton’s method~Richardson’s iteration! that we
have used to solve the nonlinear system of algebraic eq
tions that arise when we apply PSC to solve the Hamilton
constraint equations as posed in Sec. II.

IV. COMPARING FINITE DIFFERENCE
AND PSEUDO-SPECTRAL COLLOCATION METHODS

A. Introduction

Finite differencing and pseudo-spectral collocation are
ternative ways to find approximate solutions to a system
differential equations. Consider the Poisson problem in o
dimension:

d2u

dx2 5 f ~x!, ~4.1a!

on the intervalI with Dirichlet boundary conditions

u~21!5u~1!50. ~4.1b!

In a FD approach to this problem we seek the values ofu at
discrete pointsxn , say

xn5211
2n

N
, ~4.2!

for n50,1, . . . ,N. Algebraic equations are found by ap
proximating the differential operatord2u/dx2 in Eq. ~4.1a!
by a ratio of differences: e.g.,

d2u

dx2 ~xn!.
un1122un1un21

Dx2
, ~4.3!

for integern51,2, . . .N21 where

unªu~xn!, ~4.4a!

Dxª2/N. ~4.4b!

With this discretization the differential equation~4.1a! yields
N21 equations for theN11 unknownun . The boundary
conditions@Eq. ~4.1b!# yield two more equations, completel
determining theun :
6-5
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un1122un1un21

Dx2
5 f ~xn!, 1<n<N21, ~4.5a!

u050, ~4.5b!

uN50. ~4.5c!

The solution to these equations is the FD approximation
u(x) at the pointsxn .

The FD solution to Eqs.~4.1! begins by approximating
the differential equations. In the PSC method, on the ot
hand, we first approximate the solution at all points inI by a
sum over a finite set of basis functions. For this example,
choose a Chebyshev basis; so, we write

uN~x!5 (
k50

N

ũkTk~x!. ~4.6!

Now insist thatuN satisfies the differential equation an
boundary conditions exactly at the collocation points

xn5cos
pn

N
, ~4.7!

for n50,1, . . .N. In particular, we require that the bounda
conditions are satisfied and that, in addition, the differen
equation is satisfied for integern ranging from 1 toN21:

uN~x0!50, ~4.8a!

uN~xN!50, ~4.8b!

d2uN

dx2 ~xn!5 f ~xn!. ~4.8c!

To evaluate Eq.~4.8c! note thatd2uN /dx2 can be written as

d2uN

dx2 ~xn!5 (
m50

N

dnm
(2)uN~xm!. ~4.9a!

The dnm
(2) can be determined by noting that

d2uN

dx2 ~xn!5 (
k50

N

ũk9Tk~xn!, ~4.9b!

with

ckũk95ũk129 12~k11!ũk118 ,

ckũk85ũk128 12~k11!ũk11 , ~4.9c!

and

ũk5
2

Nc̄k
(
n50

N
1

c̄n

uN~xn!Tk~xn!, ~4.9d!

whereck and c̄k are given by Eqs.~3.13! and~3.16!, respec-
tively.
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The result is, again, a set of algebraic equations
uN(xn): the values of the approximate solution at the col
cation points. Finding theuN(xn) yields an approximate so
lution to the differential equation over the entire domainI
since the spectral coefficientsũk are given by Eq.~4.9d!.3

For the linear problem posed here the solution to the
gebraic system of equations that arise in either a FD or P
solution can be solved directly or by any of the many sta
dard iterative methods. For nonlinear problems the syste
are generally solved by linearizing the equations about
initial guess and then iterating the solution until it converg
We discuss one method of solution in Appendix A.

B. Convergence of approximations

In either a FD or PSC solution to a differential equati
with boundary conditions we expect that, asN tends to in-
finity, the approximate solution should become arbitrarily a
curate. For largeN, theL2 error in a FD approximation con
verges upon the exact solution asN2p for positive integerp.
The value ofp depends on the smoothness off and the error
in the approximation of the differential operator~in the ex-
ample above,d2/dx2). Assuming thatf is smooth the rate of
convergence~measured by theL2 error of the FD solution! is
N2p when the truncation error of the differential operator
O(Dxp).

In contrast, when the solutionu is smooth the error made
by a properly formulated spectral approximation decrea
faster than any fixed power ofN ~whereN is now the number
of collocation points or basis functions!.4 For a heuristic un-
derstanding of this rapid convergence, note first that a P
solution’s derivatives at each collocation point involve
the$uN(xn)% @cf. Eq.~4.9!#. Correspondingly, it is as exact a
possible, given the information available at theN collocation
points. This suggests that an orderN collocation spectral
approximation to the derivatives of the unknown shou
make errors on orderO(DxN). The intervalDx, however, is
also proportional toN21; so, we expect that the error in th
spectral solutionuN should vary asO(N2N). A more rigor-
ous analysis using convergence theory~see Chap. 2 of Ref
@1#!, shows that for any function which is analytic on th
domain of interest, a Chebyshev expansion will conve
exponentially@i.e. asO(e2N)]. If the function is also peri-
odic then a Fourier expansion will converge exponentiall

C. Computational cost of solutions

The computational cost, in time, of a FD solution to
system of elliptic differential equations scales linearly w
the number of grid pointsN while the accuracye of the
solution scales asN2p, wherep is the order of the FD op-
erator truncation error. Correspondingly, the costKFD for a
given accuracy scales as

3Alternatively, we could have constructed a system of equati
in terms of the unknown spectral coefficients. This would cor
spond to a spectral tau method: cf.@1,2#.

4In addition the individual spectral coefficientũk should decrease
exponentially withN once the problem is sufficiently resolved.
6-6
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KFD;e21/p. ~4.10a!

The costKPSC of a PSC solution to the same system, on
other hand, scales asN ln N ~for an iterative solution! while e
scales as exp(2N); consequently, the cost scales with acc
racy e as

KPSC;2~ ln e!ln~2 ln e!. ~4.10b!

Since it is the computational cost required to achieve a gi
accuracy that is important, the more rapid convergence
PSC solution confers upon it a clear advantage. This adv
tage is made clear by considering how the ratio of co
scales with accuracy:

KPSC

KFD
;2e1/pln e ln~2 ln e!, ~4.11!

which tends to zero withe; consequently, increasing accu
racy with a PSC solution is always more efficient than with
FD solution.

The equations that arise from either a FD or PSC tre
ment of an elliptic differential system are typically solve
using iterative methods; thus,at fixed resolutionthe storage
requirements for either solution method are equivalent.
we have seen, however, fixed resolution does not corresp
to fixed solution accuracy. As the desired solution accur
increases, the storage requirements of a PSC solution
relative to those of an FD solution by a factor of2e1/pln e.

V. SOLVING THE HAMILTONIAN CONSTRAINT

A. Nonlinear model problem

As a first example we solve the model Hamiltonian co
straint equation~2.5! described in Sec. II B 1, with the
boundary conditions~2.3! on the domainr P@a,`). As de-
scribed this problem is spherically symmetric; neverthele
we treat it as axisymmetric to illustrate the methods used
solve the Hamiltonian constraint for the black hole with a
gular momentum~cf. Sec. II B 2! and the black hole plus
Brill wave problems~cf. Sec. II B 3!.

As a first step we map the domainr P@a,`),uP@0,p# to
a square inR2: letting

x5
2a

r
21, ~5.1a!

y5cosu, ~5.1b!

we havexP(21,1# and yP@21,1#. In terms of the (x,y)
coordinates, the model Hamiltonian constraint@Eq. ~2.5!# be-
comes

~x11!2
]2c

]x2
1~12y2!

]2c

]y2
22y

]c

]y

1
3

256S P

a D 2

~x11!2~322x2x2!2c2750,

~5.2!
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subject to the boundary conditions

lim
x→21

c51, ~5.3a!

F]c

]x
2

1

4
cG

x51

50. ~5.3b!

Note that with our choice of variables and expansion ba
the angular boundary conditions@Eq. ~2.3c!# are automati-
cally satisfied.

Sincec is not periodic in eitherx or y, we adopt a Cheby-
shev basis for the approximate solution:

cNx ,NY
~x,y!5(

j 50

Nx

(
k50

Ny

c̃ jkTj~x!Tk~y!, ~5.4a!

with the corresponding collocation points

xj5cos
p j

Nx
, ~5.4b!

yk5cos
pk

Ny
. ~5.4c!

For this problem, focus on approximations

C l5c4l ,4 , ~5.5!

for integer l. We keepNy fixed as the model problem i
independent ofy.

Following the discussion in Appendix A, solve the PS
equations using Richardson’s iteration with a second-or
FD preconditioner. To obtainC l , we need an initial guess
C l

(0) to begin the iteration. For the lowest resolution expa
sion (Nx54) begin the iteration with the guess

C1
(0)~x,y!5

~31x!

2
, ~5.6!

which is the trivial solution forP50. Applying Richard-
son’s iteration will then give us the approximate soluti
C1. Through the expansion~5.4a! this determines an ap
proximation forc everywhere; in particular, it determines a
approximation at the collocation points corresponding
Nx58, which we then use as the initial guess for determ
ing the approximate solutionC2. In this same way we use
lower-resolution approximate solution as the initial guess
the approximate solution at the next higher-resolution, i.e

C l
(0)5C l 21 . ~5.7!

To investigate the accuracy of our solution as a funct
of resolution ~basis dimension for PSC, number of gr
points for FD! we evaluate a number of solutions differin
only in resolution and evaluate several different error m
sures.

~1! For this problem we know the exact solution@cf. Eq.
~2.6!#; so, we calculate theL2 norm of the absolute error as
function of l:
6-7
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DC l5H (
j 50

Nx

(
k50

Ny 1

NxNyc̄j c̄k

@C l~xj ,xk!2c~xj ,xk!#
2J 1/2

ªiC l2ci2 , ~5.8!

whereck is given by Eq.~3.16!.
~2! We can also characterize the convergence of the

proximate solutionsC l by calculating theL2 norm of the
difference between the successive approximate solutions

dC l5iC l2C l 21i2 . ~5.9!

The errorsdC and DC are defined for either FD or PSC
solutions.

~3! We also evaluate, by analogy withDC anddC, the
quantities

DEl5uEl2Eu, ~5.10!

dEl5uEl2El 21u, ~5.11!

whereEl is the ADM mass-energy associated with the a
proximate conformal factorC l . We evaluateE using Eq.
~2.4!.

~4! For PSC solutions only we define the relative er
measure

dC̃ l5(
j 50

Nx

(
k50

Ny

uc̃ jk
( l )2c̃ jk

( l 21)u, ~5.12!

which characterizes the changes in the spectral coeffici
as the order of the approximation increases.

For a properly formulated spectral method, all of our er
measures should decrease exponentially withN if the solu-
tion to the problem is analytic.

Figure 1 shows the absolute and relative errorsDC l and

dC l , along with the change in the spectral coefficientsdC̃ l ,
for P51. The exponential convergence of the solution w
increasingNx is apparent. Experience shows that as the pr

FIG. 1. Spectral convergence for a nonlinear model proble
Plotted are a measure of the absolute errorDC l , and two approxi-

mate measures of the errordC l anddC̃ l as a function ofNx , the
number of radial functions, for the caseP51.
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lem becomes more nonlinear~i.e., P becomes larger! more
terms are needed in the expansion in order to achieve
same accuracy.

This system of equations has also been solved using
methods@6#. A point comparison is telling: in@6# a second
order accurate FD solution with a resolution of 1024 rad
points were required for a solution with aDE.1025, inde-
pendent ofP. The PSC solution described here achieves
same accuracy using an expansion with only 12 radial fu
tions for P51, and 24 functions forP510. In either case a
PSC solution with an accuracy ofDE'10210 is obtained by
doubling the number of radial functions. To achieve t
same accuracy the FD approximation would require~assum-
ing second order FD! a resolution of 33105 radial points.

B. Black hole with angular momentum

Now turn to consider a truly non-radial, but still axisym
metric, problem: a rotating black hole~cf. Sec. II B 2!. As
before @cf. Eq. ~5.1!# we map the semi-infinite domainr
>a to the finite boxxP(21,1#, yP@21,1#, obtaining the
system of equations

~x11!2
]2c

]x2
1~12y2!

]2c

]y2
22y

]c

]y

1
9

64S J

a2D 2

~x11!4~12y2!c2750, ~5.13!

subject to the boundary conditions given in Eqs.~5.3!.
For this problem we do not have the exact solution; so,

consider only the relative errorsdC, dC̃ anddE. Figure 2
~3! shows these quantities as functions ofNx for J/M2 equal
to 1 ~100!. For these solutionsC l5c4l ,Ny

, where initially

Ny54 and is incremented by two5 whenever the difference

5Along with axisymmetry, this problem has equatorial plane sy
metry soC l is even iny. By exploiting this symmetry, we could
reduce our number of angular functions by a factor of two.

. FIG. 2. Spectral convergence for the solution of the Hamilton
constraint equation for a black hole with angular momentum. P

ted are three approximate measures of the errordC l , dC̃ l anddE
as a function ofNx , the number of radial functions, forJ51.
6-8
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betweendC l with and without the increment was great
than ten percent. Again we see rapid, exponential con
gence of the solution withN.

This problem has also been solved using second orde
@6#. For a solution accuracydE.1025, @6# found that a reso-
lution 1024 radial and 384 angular grid points was requir
roughly independent of the value ofJ. We find that PSC
achieves the same accuracy with an expansion basis o
radial ~and 4 angular! functions forJ51, and 24 radial~and
8 angular! functions for J5100. Solution accuracies o
10210 can be obtained for the PSC solution simply by do
bling the size of the expansion basis~in x and y). For a
similar increase in accuracy of the FD solution a grid a
proximately 300 times larger in each dimension would
required.

C. Black hole plus Brill wave

As a final example we consider the Hamiltonian co
straint for a black hole superposed with a Brill wave. Aft
mapping this problem to the (x,y) domain we obtain the
system of equations

~x11!2
]2C

]x2
1~12y2!

]2C

]y2
22y

]C

]y
1

CR

4
50,

~5.14a!

with

R5~x11!2
]2q

]x2
1~x11!

]q

]x
1~12y2!

]2q

]y2
2y

]q

]y
,

~5.14b!

whereq is given by Eq.~2.9!, and subject to the boundar
conditions~5.3!.

In Fig. 4 we showdC̃ as a function ofNx for the Brill
wave parameterss5A5h051 and n52. For these solu-
tions C l5c4l ,Ny

where initially Ny54, and is incremented

by two whenever the difference betweendC l with and with-
out the increment was greater than ten percent. The con
gence, while rapid, is not quite exponential. In addition,
nearly exponentially decreasing error is impressed wit
wave that is nearly periodic in spectral resolution logNx . We

FIG. 3. Same as Fig. 2 withJ5100.
08402
r-

D

,

12

-

-
e

-

er-
e
a

attribute this behavior to the resolution of the factorR @cf.
Eq. ~5.14b! and also Eq.~2.9! for q]. Figure 5 shows the
error DR obtained when we form approximateRNx ,Ny

ac-
cording to

RNx ,Ny
5(

j 50

Nx

(
k50

Ny

R̃jkTj~x!Tj~y!, ~5.15a!

R̃jk5
4

NxNyc̄kc̄j
(
l 50

Nx

(
m50

Ny 1

c̄l c̄m

Tj~xl !Tk~ym!R~xl ,ym!.

~5.15b!

The structure in the solution is the same as the structur
the Chebyshev approximation toR.

This problem has also been solved using FD methods@7#,
enabling us to compare the resolution required for appro
mate FD or PSC solution for a given accuracy. With seco
order FD a solution whose errordE is 331025 required a
resolution of 400 radial and 105 angular grid points.

FIG. 4. Spectral convergence for the solution of the Hamilton
constraint equation for a black hole plus Brill wave. Plotted is

approximate measure of the errordC̃ l as a function ofNx , the
number of radial functions, for the caseA5h05s51, n52.

FIG. 5. The error in the spectral representation ofR @Eq.
~5.14b!# for the case shown in Fig. 4.
6-9
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achieve the same accuracy the PSC solution described
requires a basis of only 36 radial~and 12 angular! Cheby-
shev polynomials.

VI. DISCUSSION

Pseudo-spectral collocation~PSC! is a very efficient way
of solving the nonlinear elliptic equations that arise in n
merical relativity. These problems typically have smooth
lutions; correspondingly, the approximate solutions obtain
using PSC converge upon the exact solution exponent
with the number of collocation points. As a result, the cost
a high accuracy PSC solution is not significantly greater t
the cost of a similar solution of modest accuracy. Since
computational burden of solving the PSC equations wit
given number of collocation points is no greater than t
required to solve the finite difference equations for the sa
number of grid points, the computational demands of a P
solution are far less than those of a finite difference solut
for even modest accuracy.

While we have considered only axisymmetric problems
this paper, we have full confidence that PSC will perfo
just as well when applied to truly three-dimensional pro
lems. In fact,@4,14# have applied spectral methods to num
ous 3D problems in relativistic astrophysics with great s
cess. In addition to our own work several other groups h
applied PSC methods to problems in vacuum relativity. F
example,@15# to compute initial data for the conformal Ein
stein’s equations,@16# to evolve Einstein’s equations in th
null quasi-spherical gauge, and@17# to compute a shift vecto
for a Kerr black hole.

Numerical relativity research has developed the reputa
that it can only be practiced by large groups using the m
advanced computing hardware, and that progress is only
sible through advances in computing hardware. It is certa
true that advances in hardware have and will continue
power advances in numerical relativity. Nevertheless,
maintain that there is room for substantially greater e
ciency in the numerical methods employed and that the e
ciency of PSC makes research addressing a wider rang
significant problems possible sooner, and also accessib
smaller groups or individual investigators using local co
puting resources.

There is another important advantage of the PSC appr
mation, involving the formulation of boundary condition
which has not so far been discussed. In a FD solution bou
ary conditions involving derivatives of the fields must
reformulated as finite difference equations. This gener
involves the introduction of auxiliary boundary condition
which are not part of the original problem. For examp
consider the second order elliptic equation onI:

d2u

dx2
5 f ~x!, ~6.1a!

u~21!5u~1!50. ~6.1b!

A fourth-order accurate finite difference approximation
the differential operatord2/dx2 is
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16~uj 2122uj1uj 11!2~uj 2222uj1uj 12!

Dx2
5 f ~xj !,

~6.2!

where

uj5u~ j Dx!. ~6.3!

Before this finite difference operator can be used in Eq.~6.1!
it must be modified at the grid points211Dx and 12Dx
since212Dx and 11Dx both lie outside the computationa
domain. In this case, four boundary conditions are requi
~at x equal to21, 211Dx, 12Dx and 1! even though
the second order equation~6.1a! properly admits of only two
boundary conditions.

In PSC, on the other hand, no auxiliary boundary con
tions need be formulated. Since the approximate solutio
expressed as an analytic function its derivatives on
boundary are known and can be required to satisfy
boundary condition equations exactly at the boundary co
cation points.

These advantages of PSC solution come at a cost. W
properly implemented the computational expense of P
may be considerably less than the expense of finite differe
ing; however, the difficulty of implementation is greater. T
efficient solution of the algebraic equations arising from P
generally require the use of sophisticated iterative metho
Additionally, the exact solution itself must be smooth on t
computational domain if the superior convergence of the
lution is to be achieved. Finally, and perhaps most imp
tantly, for problems of dimension greater than unity the co
putational domain must be sufficiently simple that it can
mapped toD ~3.17! or be decomposed into sub-domains th
can each be mapped toD ~e.g., an L-shaped region can b
decomposed into two regions, each of which can be map
to I2). A spacetime containing multiple black holes cann
be mapped intoD. We believe, however, that such a spac
time can be treated using a multidomain PSC method. Th
currently under investigation.

We have not here investigated the application of P
techniques to evolution problems. PSC methods have b
used to solve problems in other fields~e.g., fluid dynamics!
with great success@2,18#. Our own experience in applying
these techniques to 1D evolution problems in numerical re
tivity @19# shows promise, but our extension to evolutio
problems in multiple dimensions is not yet complete.
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APPENDIX A: SOLVING THE PSEUDO-SPECTRAL
COLLOCATION EQUATIONS

In this appendix we describe one method of solving
nonlinear equations that arise from applying a PSC met
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to a nonlinear elliptic system of equations

L~u!5 f on D, ~A1a!

S~u!5g on ]D. ~A1b!

Choosing an expansion basis and corresponding coll
tion points, the PSC solution of these equations is fully ch
acterized by the values ofuN at the collocation pointsxn :
from these the coefficients of the expansion and all the
rivatives of the approximate solution can be determin
Write the values of the approximate solutionuN at the col-
location pointsxn as a vectorU,

Un5uN~xn!. ~A2!

Corresponding to the approximate solutionuN is a residual
RN on D and r N on ]D:

RN5L~uN!2 f on D, ~A3a!

r N5S~uN!2g on ]D. ~A3b!

The residual vanishes everywhere for the exact solutionu.
Write the values of the residual at the collocation pointsxn
as a vectorR,

Rn5H RN~xn! xn on D
r N~xn! xn on ]D.

~A4!

The PSC solutionU satisfies the algebraic equations

R@U#50. ~A5!

Before describing how to solve Eq.~A5! for a nonlinear
system~i.e., nonlinearL or S) we describe the method o
solution for a linear system.

When the system of differential equations~A1! is linear
so is the system of algebraic equations~A5!. In this case we
can write

LU5F, ~A6!

where L is a matrix andF is a vector whose componen
take on the values off and g evaluated at the collocatio
points in the domainD and its boundary]D. In PSC the
matrix L is typically full. Direct solution methods requir
O(N3) operations for such systems; for efficiency such s
tems are generally solved by iterative methods, which ty
cally requires many fewer operations to find an accurate
lution.

A simple and effective iterative method for solving E
~A6! is Richardson’s iteration. Suppose we have a guessV ( i )

to the solutionU of Eq. ~A6!. A better approximation toU is
V ( i 11) given by

V ( i 11)5V ( i )2vR( i ), ~A7!

where the residualR( i ) vector is given by

R( i )5LV ( i )2F, ~A8!
08402
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andv is a relaxation parameter, which must be determin
The optimal value ofv and the rate of convergence of th
iterations depend upon the eigenvalues ofL. For Richard-
son’s iteration the optimalv is

vopt5
2

lmax1lmin
, ~A9!

wherelmax andlmin are the largest and smallest eigenvalu
of L. This choice minimizes the spectral radiusr,

r5
lmax2lmin

lmax1lmin
, ~A10!

of the iteration matrix,G5I 2vL. The convergence rate o
the iteration is@2#

R52 ln r. ~A11!

The reciprocal ofR measures the number of iterations r
quired to reduce the error by a factor ofe.

Richardson’s iteration is, by itself, not necessarily mo
efficient than a direct solution method. Consider, for e
ample, the second-order differential equation

d2u

dx2 5 f ~x!, xP~21,1!, ~A12a!

u~21!5u~1!50 ~A12b!

~cf. also Sec. IV!. A PSC solution with a Chebyshev expa
sion basis leads to an operatorL with a spectral condition
numberlmax/lmin that is O(N2). This gives a rate of con-
vergenceR;O(N22); correspondingly,O(N2) iterations
are required to obtain a reasonable solution. Since each i
tion requiresO(N ln N) operations@i.e., it is asymptotically
dominated by the cost of evaluating the derivativesd2u/dx2

given theN11 uN(xn)] the total cost of obtaining a solu
tion U is O(N3ln N), which is slightlymoreexpensive than a
direct solution.

We can speed the convergence of Richardson’s itera
by solving an equivalent problem whose spectral condit
number is better behaved. Introduce thepreconditioningma-
trix H and consider the equivalent system

H21LU5H21F. ~A13!

Now given an approximationV ( i ) to U, a better approxima-
tion V ( i 11) is given by

V ( i 11)5V ( i )2v8H21R( i ), ~A14!

whereR( i ) is given as before andv8 is related to the eigen
values of the linear operatorH21L.

In practice we never actually invert the preconditioni
matrix H; instead we solve

H~V ( i 11)2V ( i )!52v8R( i ), ~A15!

for successive approximations. In order that this equation
successive approximations should converge rapidly we
6-11



f
e

a-
p

a
th
qu
.

to
d

o
f
at

th

e
on
fro

t
d
a
r

qu
is
q

tis
a-

io

g

of
ro-
ear

ing
g to

re-
we

em

lem
PSC
we

i-

ires
rder
the
FDne

cal-

ff

LAWRENCE E. KIDDER AND LEE SAMUEL FINN PHYSICAL REVIEW D62 084026
quire a preconditioning matrixH such that Eq.~A15! is in-
expensive to solve, and the spectral condition numberk8 of
H21L is close to unity. IfH21 is a good approximation o
L21 then the second condition will be satisfied; cons
quently, we look for approximations toL for which Eq.
~A15! is inexpensive to solve.

The operatorL arises from a system of differential equ
tions. For one-dimensional problems a low-order FD a
proximation to this operator~with grid points coincident with
the collocation points! gives rise to a banded system with
small number of bands close to the main diagonal. When
FD operator is used as the preconditioner the system of e
tions ~A15! can be solved efficiently using direct methods6

For instance, in the example considered here@Eq. ~A12!#
we can setH to be the second-order accurate FD opera
corresponding toL. The eigenvalues of the preconditione
operatorH21L are all in the range 1<lp

PC<p2/4: i.e., the
spectral condition number is independent ofN. In this case
the optimal relaxation parameter is

vopt8 '
4

7
, ~A16!

and each iteration reduces the residual by a factor of appr
mately 7/3~independent ofN) @13#. The asymptotic cost o
finding a solution is thus proportional to the cost of evalu
ing the residual,O(N ln N), which is much more rapid than
solution via a direct method or Richardson’s iteration wi
out a preconditioner.

For higher dimensional problems the FD precondition
still leads to a banded system with a small number of n
zero bands; however, some of those bands are found far
the main diagonal and Eq.~A15! can no longer be solved
efficiently using direct methods. IfN becomes so large tha
the cost of solving these equations with the FD precon
tioner is too great, then the equations for the successive
proximations can themselves be solved iteratively, other p
conditioners can be explored~cf. @1,2,20#!, or the original
equations can be solved using another iterative techni
such as multigrid@5#. For the problems considered in th
paperN never became so large that a direct solution of E
~A15! with the FD preconditioner was problematic.

If Eqs. ~A1! are nonlinear, the algebraic equations sa
fied by U are similarly nonlinear. Write the nonlinear equ
tions as

L~U!5F, ~A17!

whereL is a nonlinear function ofU. In order to solve this
nonlinear system of equations, we apply Newton’s iterat
~see Sec. 12.13 and Appendices C and D of Ref.@1#!. For Eq.
~A5!, Newton’s iteration is

LV( i )~V ( i 11)2V ( i )!52R( i ), ~A18!

6For more details on the use of FD operators as preconditio
for spectral problems see@13#.
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whereLV ( i ) is thelinear operator that arises from linearizin
L aboutV ( i ) andR( i ) is thenonlinear residual given by

R( i )5L~U!2F. ~A19!

Equation~A18! is a linear system to be solved at each step
Newton’s iteration. In the same way as before we can int
duce a preconditioner, in which case we have the nonlin
Richardson’s iteration

H~V ( i 11)2V ( i )!52v8R( i ). ~A20!

HereH is any suitable preconditioning matrix forLV ( i ). For
the problems solved in Sec. V we used as a precondition
matrix a second-order accurate FD operator correspondin
the derivative terms ofL ignoring the nonlinear terms.
~Equivalently we could have used the FD operator cor
sponding to the linearized operator, but for the problems
examined this was not necessary.!

As a quick demonstration, consider the example probl

d2u

dx2 2ex@~12p2!sin~px!12p cos~px!#50, ~A21!

u~21!5u~1!50.
~A22!

We have evaluated approximate solutions to this prob
using a second-order accurate FD approximation and a
approximation on a Chebyshev basis. For this problem
know the exact solution,

u~x!5exsin~px!. ~A23!

Table I listsDuPSC andDuFD @cf. Eq.~5.8!# for increasingN
~number of grid points for the FD approximation, basis d
mension for the PSC approximation!. The rapid convergence
of PSC is apparent. The second-order FD solution requ
128 points to equal the moderate accuracy of an eighth-o
PSC solution. In order to match the high accuracy of
16th-order PSC solution would require a second-order
solution with 6.53104 points.
rs

TABLE I. The values of the absolute errorDuPSC of a PSC
calculation, as well as the absolute error of a second-order FD
culationDuFD for several values ofN for the example problem@Eq.
~A21!#. ForN.16, the PSC solution is contaminated with roundo
errors.

N DuPSC DuFD

4 1.7 31021 2.5 31021

8 3.2 31024 5.4 31022

16 6.9310210 1.3 31022

32 - 3.331023

64 - 8.231024

128 - 2.131024
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