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Spectral methods for numerical relativity: The initial data problem
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The partial differential equations of numerical relativity have traditionally been solved using a finite differ-
ence(FD) approximation. The accuracy of a FD solution increases as a fixed power of resolution while the
computational resources required for the solution increase as the resolution raised(spate+ time)
dimensionality of the problem. Modest accuracy solutions to problems involving either the initial conditions or
the evolution of a dynamical black hole spacetime tax the capabilities of the computers presently available for
the task, while the resources required for modest accuracy binary black hole problems are beyond what is
presently available. For problems with smooth solutions alternatives to the FD approximation exist that may
make more efficient use of the available computational resources. Here we investigate one of these techniques:
the pseudo-spectral collocatioRSQ approximation. To determine its effectiveness relative to FD methods in
solving problems in numerical relativity we use PSC to solve several two-dimensional problems that have been
previously studied by other researchers using FD methods, focusing particularly on the computational re-
sources required as a function of the desired solution accuracy. We find that PSC methods applied to these
problems can achieve close to the theoretical limit of exponential convergence with problem resolution, while
the computational resources required continue to scale only as the resolution raised to the problem dimension-
ality. Correspondingly, for solutions of even modest accuracy we find that PSC is substantially more efficient,
as measured by either execution time or memory required, than FD; furthermore, these savings increase rapidly
with increasing accuracy. We also discuss less quantitative but no less tangible advantages that the PSC
approximation holds over the FD approximation. In particular, the solution provided by PSC is an analytic
function given everywhere on the computational domain, not just at fixed grid points. Consequeatihoo
interpolation operators are required to determine field values at intermediate points or to evaluate the approxi-
mate solution or its derivatives on the boundaries. Since the practice of numerical relativity by finite differ-
encing has been, and continues to be, hampered by both high computational resource demands and the
difficulty of formulating acceptable finite difference alternatives to the analytic boundary conditions, we argue
that PSC should be further pursued as an alternative way of formulating the computational problem of finding
numerical solutions to the field equations of general relativity.

PACS numbd(s): 04.25.Dm, 02.70.Hm

I. INTRODUCTION AND SUMMARY to an approximate system of equations, one can describe
PSC as finding an approximate solution to the exact equa-
The partial differential equatio®DE) of numerical rela-  tions.
tivity have typically been solved using finite difference  Pseudo-spectral collocation has been applied successfully
methods. In finite differencin¢FD) one first chooses a finite to solve problems in many fields, including fluid dynamics,
number of coordinate “grid” pointx,, and approximates the meteorology, seismology, and relativistic astrophydick
space and time derivatives in the PDEs by ratios of differ{1-4]). Its advantage over FD arises for problems with
ences between field and coordinate values on the grid. Witsmooth solutions, where the approximate solution obtained
a choice of grid and “differencing scheme” for converting using PSC converges on the actual solugeponentiallyas
derivatives to ratios of differences, the equations of generahe number of basis functions is increased. The approximate
relativity are approximated by a system of algebraic equaFD solution, on the other hand, never converges faster than
tions whose solution approximates that of the underlyingalgebraically with the number of grid points. While the com-
PDEs. putational cost per “degree of freedom” — basis functions
In this paper we explore an alternative method for solvingfor PSC, grid points for FD — is higher for PSC than for FD,

the elliptic PDEs encountered in numerical relativity: the computational cost of a high accuracy PSC solution is a
pseudo-spectral collocatioPSQ. In PSC one begins by small fraction of the cost of an equivalent FD solution. Even
postulating an approximate solution, generally as a sum ovebor problems in which only modest accuracy is needed, PSC
some finite basis of polynomials or trigonometric functions.generally results in a significant computational savings in
The coefficients in the sum are determined by requiring thaboth memory and time compared to FD, especially for mul-
the residual error, obtained by substituting the approximatéidimensional problems.
solution into the exact PDEs, is minimized in some suitable The detailed relative performance of alternative solution
sense. Thus, if one describes FD as finding the exact soluticechniques is necessarily problem, formulation and result
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specific. The asymptotic behavior of different solution meth- CIR+K2—K,,K2=0, (2.1a
ods can be revealing, but it is the real resources required for
a solution of specified accuracy that is important to us. Here Gy, (Ka—Ky'3)=0, (2.1b

we investigate the relative performance of the FD and PSC

approximations applied to several problems in numericahere )R is the Ricci scalar associated with; , @)V, is
relativity. We focus on the solution of the elliptic constraint the covariant derivative associated witly;, and K
equations for two axisymmetric problems: the initial data for:=K 5, y?".

a black hole spacetime with angular momentum, and a York[9] has developed a convenient formalism for speci-
spacetime with a black hole superposed with gravitationafying the initial data such that Eq$§2.1) are satisfied. Split

waves (Brill waves). We have chosen these problems be-y,. into a conformal factors and the conformal metrig;
cause solutions in the FD approximation have been found foy= ¢—47ij , andK'l into its traceK and its trace-free part
both by other researchef§—7], and also the complexity of All.=ki—14liK. The constraint equation€.1) then be-
the spatial operators are representative of the more complepme
three-dimensional problems in numerical relativity, but not
so complex that their formulation and solution obscures the — — 1 ol
nature of our investigation, which is the relative efficiency of V- ng/;— 1_2K ¥+ gAabA ¢ =0, (2.29
the FD and PSC approximations to their solution.

In Sec. Il we review briefly the key constraint equations __ 2 _ _
that arise in the traditional space-plus-time decomposition of VAR~ §¢6y'aVaK=0,
the Einstein field equationsExperts may wish to skip this
review, which is intended principally for the non-expert, and
proceed directly to Sec. Ill where we describe the PSC ap; ...« (3)¥ is the covariant derivative ang is the Ricci
proximation) We describe three different elliptic problems: b — =i 10,1} .
a nonlinear model problem whose analytic solution isSclar associated with;;, andA”:=¢"A". Equation(2.28

known, the nonlinear Hamiltonian constraint equation for arfS 9enerally referred to as the Hamiltonian constraint, while

axisymmetric black hole spacetime with angular momentumEdS: (2.20 are generally referred to as the momentum con-

and the Hamiltonian constraint equation for a spacetime wittytraints. For the problems examined in this paper, the mo-
a black hole superposed with Brill waves. The solution toMentum constraints can be solved analytically. Ther.efore we
each of these problems using FD techniques has been r@ill only need to apply our PSC method to solving the
ported on by other researchers; we use those solutions tbt@miltonian constraint2.2a for the conformal factow.
gether with our own, obtained using the PSC approximation, " order to solve the Hamiltonian constraint we must
to compare the efficiency of FD and PSC solution methodsSPecify the boundary conditions. The problems we examine
on representative problems in vacuum numerical relativity. CONSiSt of an axisymmetric spacetime containing a single
In Sec. Il we describe in detail the PSC approximation,blaCk hole. Let the initial hypersurface be asymptotically flat,
while in Sec. IV we compare the idealized asymptotic per-SC that on the hypersurface far from the black hole the cur-
formance of PSC and FD solutions to problems with smootYature vanishes. Describe the black hole by an Einstein-
solutions. In Sec. V we solve the problems described in Sed?0sen bridgdi.e., by two asymptotically flat three-surfaces
Il using PSC and compare the performance of these PS@pnnected by.athro)aand insist that the spacetime .be inver-
solutions with the FD solutions to the same problems obSiOn symmetnc_t_hrough the throat. These choices impose the
tained by other authors. In Sec. VI, we discuss the results gfeundary conditions
our comparisons as well as other differences between PSC
and FD techniques, and their implications for solving prob-
lems in vacuum numerical relativity. Finally, whether by FD
or PSC the solution of the nonlinear elliptic systems de- [(w W
—_ + —_

(2.2b

imy(r)=1 asymptotic flatness, (2.39

I
r—

scribed here involves solving a potentially large system of =0 inversion symmetry, (2.3b

(nonlineay algebraic equations. We describe the methods we o 2al_,
use for solving them in Appendix A. p
J
(— =0 axisymmetry, (2.30
Il. INITIAL VALUE EQUATIONS 90) 4on
A. Introduction on ¢ wherer =a is the coordinate location of the throat.
We use the standard+3 formalism of[8] which is dis- A useful diagnostic of an initial data slice is to compute

cussed in detail bj9]. The general relativistic Cauchy initial the total energy contained in the slice. Murchadha and
value problem requires that we specify the metyic and ~ YOrk [10] have examined the ADM energgf. [8]) in terms
extrinsic curvature;; of a three-dimensional spacelike hy- Of the conformal decomposition formalism. For the problems
persurface. These quantities cannot be specified arbitrarilyve Will examine below, the ADM energy is given by

rather they must satisfy a set of constraint equations, which 1

are a subse; of _the Einstein field equations. The four con- Eppm=— — é Vj¢//d2§, (2.4)
straint equationgin vacuun) are 27 Jo !
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i.e., it is proportional to the integral of the normal component . 7+ 10\ 2 7= 70\ 2

of the gradient of the conformal factor about the sphere at q:=Asin¢| expg — +exg — p )
infinity. 2.9

B. Three test problems n:=In(r/a), n is an even integer, andl, 7, ando are con-

stant parameters that describe the superposed Brill wave’s

amplitude, position, and width, respectively. With this choice
Bowen and York{11] describe a nonlinear “model” of the Hamiltonian constraint equation becomes

the Hamiltonian constraint equation that can be solved ex-

actly, which we utilize in Sec. V to test our code. The model Py 29y 1Py cot dy

1. A model problem

equation is &r2+rﬁ rzﬁ 2 96
_ 3P a?’
Pur 1S v s v(Fa 1m 1)
' ' A\ grz 1 ar 2992 '
with P a constant. Together with the boundary conditions
described abovgEgs.(2.3)], Eq. (2.5) has the solution lll. SPECTRAL METHODS
oE 2 22 at 1/4 A. Introduction
g=|1+ —+b6o+——+ 7|, (2.6a Consider an elliptic differential equation, specified by the
r r r operatorL on thed-dimensional open, simply-connected do-
where mainD, with boundary conditions given by the operagun
the boundaryD:
— 2 2\1/2
E=(P+4a%)™™" (2.6b L(u)(x)=f(x), xeD, (3.1a
If we evaluate Eq(2.4) for this solution, we find that it has S(U)(X)=g(x), xedD. 3.1

ADM energyE.

There may be more than one boundary condition, in which

case we can inde$ andg over the boundary conditions.
Focus next on the initial data corresponding to an axisym- Approximate the solutionu(x) to this system as a sum

metric black hole spacetime with angular momentum. Thisover a sequence dfasis functionsp,(x) on D+ 9D,

problem was first examined analytically §¢1], and has

been explored numerically H%,6]. Choosing the conformal _

background metric to be flat11] found an analytic solution Un(X)= 2, Uey(), (3.2

to the momentum constrain(&.2b) that carries angular mo- k=0

mentum and obeys the isometry condition at the black hole

throat. Corresponding to this solution is the HamiltonianWhere

2. Black hole with angular momentum

N—-1

theu, are constant coefficients. Corresponding to the

constrainf Eq. (2.2a] for the conformal factogy, approximate solutiony is a residuaRy onD andry on JD:
— 9 J%irfe Ry=L(uy)—f on D, (3.33

Vi g ——— v =0, (2.7)
' rv=S(uy)—g on aD. (3.3b

whereJ is the angular momentum of the physical space. The residual vanishes everywhere for the exact solution

In PSC we determine the coefficients by requiring that
uy satisfies the differential equation and boundary conditions
The second physical problem upon which we demonstratexactlyat a fixed set otollocation points x: i.e., we require
the use of spectral methods for numerical relativity is that ofthat
a black hole superposed with a Brjll2] wave, a problem

3. Black hole plus Brill wave

studied using FD by7]. Let the initial slice be a spacetime O0=L[un(Xp)]—f(x,) for x, in D, (3.439

isometry surfacg(i.e., time symmetrig then, the extrinsic

curvatureK;; vanishes and the momentum constrargs. 0= un(X,)]—9(x,) for x, on D, (3.4b

(2.2b] are trivially satisfied. Let the line-element of the con-

formal background metric have the form for all n. When the expansion functions and collocation
. points are chosen appropriately a numerical solution of these
ds?=[e?9(dr?+r2d#?) +r?sirf6d ¢?], (2.8  equations can be found very efficiently. In the following sub-

section we discuss choices of the expansion basis and collo-
where cation points.
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B. Expansion basis and collocation points tions. In the case of periodic boundary conditions we can
have our cake and eat it, too. More generally we choose a

isfies the differential equation and boundary conditions ex?2sis in which we can efficiently compute the derivatives of

actly at theN collocation points,, . The basisp, should not YN at the coIIocati_on point§ and require separatel_y that the
constrain the values of the approximation at the collocatior@PProximate solutiomuy satisfy the boundary conditions at
points; correspondingly, we can write the basis as a st of collocation points on the boundary.

functions ¢ (x) that satisfy a discrete orthogonality relation- For g_eneral boundary conditions a basis of Chebyshev
ship on the collocation points, : polynomials often meets all of our requiremeh®ecall that

the Chebyshev polynomials are definedldoy

In PSC we require that the approximate solutignsat-

N—-1

;0 bi(Xn) i (Xn) = VS, (3.5 T(x)=cogk cos x). (3.9

A simple recursion relation allows us to find the derivative of
where they, are normalization constants. Note that the basig) as another sum over Chebyshev polynomial8: if
functions are inextricably linked with the collocation points.

It is sometimes the case that the basis can be chosen so -
that the boundary conditions are automatically satisfied. For Un(X)= 2, UTi(x), (3.10
example, consider a one-dimensional problem on the interval -

N

I=[-1,1]. 3.6 then
N—1
If the boundary conditions are periodic then each element of dﬂ = ~
the basis ax 0= 2 W), (311
Pi(X) =exp mi(x+1)k], (3.78  where
satisfies the boundary conditions; correspondingly, the ap- CRUL= U o+ 2(K+ 1)Uy 1, (3.12
proximate solutionuy automatically satisfies the boundary
conditions. If, in addition, we choose the collocation points with
2n 2 k=0
Xp=———1, 3.7b = '
then the basis satisfies the discrete orthogonality relation If we choose collocation points, (for 0<n<N) accord-
1 N1 ing to
S=g 2 $i(Xn) i (Xn). (379
N =0 mn
Xp= cosﬁ, (3.19

In an arbitrary basis, or with arbitrarily chosen collocation
points, finding theu, from the uy(x,) requires the solution then the Chebyshev polynomials satisfy the discrete orthogo-
of a general linear system ™ equations inN unknowns, nality relation

which involvesO(N?) operations. For the basis and colloca- , N
. . . . ~ . 1
tion points given in Eqs(.3._7)_the Uy can be determlqed from Sj=— E =T TilXn), (3.15
the un(x,) quickly and efficiently via the fast Fourier trans- Nc, n=0 ¢,
form in O(N In N) operations.
Arbitrary derivatives of theuy can also be computed Where
uickly: writin
quickly- wriing _ (2 k=0 or N,
- Cx= . 3.1
dPuy, ~0) “11 otherwise. (3.19
=2 UP (), (3.83
dxP k=0
we see immediately that The geometry of a problem might suggest other expansion func-
- I tions, such as Legendre polynomials; however, a Chebyshev expan-
P = (rik)Pu. (3.8D  sion does quite well and has the added convenience that, with ap-

propriately chosen collocation points, ont)(N In N) are required
Consequently, any derivative ofy can be evaluated at all to convert from the expansion coefficients to the function values at
the collocation points in jusD(N In N) operations. the collocation points and vice versa3].
The ability to evaluate efficiently the derivatives uf at 2For Chebyshev bases the conventional notation is khatns
the collocation points is much more important than finding afrom 0 toN, notN—1; thus, there ar&l+ 1 coefficients and collo-
basis whose individual members satisfy the boundary condieation points.
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Finally, exploiting the relation between the Chebyshev poly- If the elliptic system being solved is linear then the alge-
nomials and the Fourier badisf. Eq.(3.9)] allows us to find  braic equations arising from either a FD or a PSC method are

the Uy from theuy(x,,) in O(N InN) time using a fast trans- also linear and a gnique.solution is _guaran_teed. If, on the
form (see Appendix B of Ref.2]). With an expansion basis other hand, the differential system is nonlinear, then the
of Chebyshev polynomials and an appropriate choice of col€guations arising from FD or PSC are also nonlinear and a
location points we can thus evaluate derivatives of arbitrarjnique solution is not guaranteed. Newton's methisee
order at the collocation points i@(N In N) operations. Sec. 12.13 and Appendices C and D of Réf), where one

For problems on an arbitrary domain of dimensidn Solves the linearized equations beginning with a guess and
greater than unity it is rarely the case that we can find a basi§en iterating, works well for these types of equations. As
which permits rapid evaluation of derivatives. Consider,/0ng as a good initial guess is chosen, the iteration will usu-

however, ad-dimensional domain ally converge. In Appendix A we describe in detail the vari-
ant of Newton’s methodRichardson’s iterationthat we
D=[a;,bi]X[ay,by]X---X[ag,bg], (3.17 have used to solve the nonlinear system of algebraic equa-

_ ) tions that arise when we apply PSC to solve the Hamiltonian
where{a;} and{b;} are constants. If the physical domain can constraint equations as posed in Sec. I.

be mapped smoothly tb, then we can write

N NQ) IV. COMPARING FINITE DIFFERENCE
~ AND PSEUDO-SPECTRAL COLLOCATION METHODS
uN(l)”'N(d)(X):kE—o EO Uy kg @iy k(XD
=

Kg= )
(3.183 A. Introduction
Finite differencing and pseudo-spectral collocation are al-
where ternative ways to find approximate solutions to a system of
) () differential equations. Consider the Poisson problem in one
X=X, X, (3.18D  dimension:
and ¢y ...k, is a tensor product of basis functions defined on d2u
one (e.g., Chebyshev polynomialsr more (e.g., spherical W=f(x), (4.1a

harmonic$ dimensions. For example, ib=19 then we

could choose . . - .
on the intervall with Dirichlet boundary conditions

d
Biie0) = L1 A, (3.189 u(—1)=u(1)=0. (4.1b

where the{qﬁﬂl)}, for fixed I, is a basis orl which permits  In a FD approach to this problem we seek the values aff

fast evaluation of derivatives with respect to its argumendiscrete points,, say
(e.g., Chebyshev polynomials
Associated with each set of basis functions are the collo- 2n
cation point9<§]') ; correspondingly, the collocation points as- Xp=—1+ N’ (4.2)
sociated Withq‘)kl. -k, are just theN, - - - Ng-tuples

for n=0,1, ... N. Algebraic equations are found by ap-
proximating the differential operatat?u/dx? in Eq. (4.13
by a ratio of differences: e.g.,

Xn,..ong= (X5 xED). (3.189

With this choice of basis and collocation points we can
evaluate efficiently arbitrary derivatives of an approximation

Un@)...n(@). If the domain cannot be mapped smoothlyito d?u Un+1— 2Up+Up-g
either more sophisticated methods such as domain decompo- d_xf(xﬂ)z Ax? ' 4.3
sition [1,2] must be used, or the problem may not be ame-
nable to solution by PSC. S¢&4] for an example of using _
multiple spherical-like domains for astrophysical problems. for integern=1,2,...N—1 where
C. Solving the system of equations Up :=U(Xp), (4.43

The expansion basis, collocation points and differential
equation with boundary conditions determine a system of Ax:=2/N. (4.4
equations for the coefficients, or, equivalently, the ap-
proximate solutionuy evaluated at the collocation points. With this discretization the differential equati¢f.13 yields
Iterative solution methods[which require as few as N-—1 equations for theN+1 unknownu,. The boundary
O(N In N) operationgwork well to solve the kind of systems conditions[Eq. (4.1b] yield two more equations, completely
of equations that arise from the application of a PSC methoddetermining theu,, :
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Uy+1—2U,tU
ntL SN TNl f(x,), l=n=N-1, (4.59
AX?
UOZO, (45b)
UNZO. (45@

The solution to these equations is the FD approximation tQ
u(x) at the pointsx,.
The FD solution to Eqs(4.1) begins by approximating

the differential equations. In the PSC method, on the othe

hand, we first approximate the solution at all pointg by a

sum over a finite set of basis functions. For this example, we

choose a Chebyshev basis; so, we write

N

Un(X) =, UT(X).
k=0

(4.6

Now insist thatuy satisfies the differential equation and

boundary conditions exactly at the collocation points

n
Xp=C0S—,

S @7

forn=0,1, .. .N. In particular, we require that the boundary

conditions are satisfied and that, in addition, the differential

equation is satisfied for integerranging from 1 toN—1:

uN(XO):()! (483

Un(Xn) =0, (4.8b
ZUN B

W(Xn)_f(xn)- (48(:)

To evaluate Eq(4.89 note thatd?uy /dx? can be written as

dzuN 2
T2 ()= 2 d@un(Xm). (4.99
Thed{?) can be determined by noting that
d2uy N
& 0= 2 UTix), (4.9
with
Cup=uy, ,+2(k+1)uy, 4,
Clp=Up o+ 2(K+ 1)Uy 1, (4.90
and
N
= 2 Xo) T(Xn). (4.99

o||

?

wherec, andc, are given by Eqs(3.13 and(3.16), respec-
tively.
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The result is, again, a set of algebraic equations for
un(X,): the values of the approximate solution at the collo-
cation points. Finding they(x,) yields an approximate so-
lution to the differential equation over the entire domain
since the spectral coefficients are given by Eq(4.9d).3

For the linear problem posed here the solution to the al-
gebraic system of equations that arise in either a FD or PSC
solution can be solved directly or by any of the many stan-
dard iterative methods. For nonlinear problems the systems
are generally solved by linearizing the equations about an
initial guess and then iterating the solution until it converges.

e discuss one method of solution in Appendix A.

B. Convergence of approximations

In either a FD or PSC solution to a differential equation
with boundary conditions we expect that, ldsends to in-
finity, the approximate solution should become arbitrarily ac-
curate. For largd\, theL, error in a FD approximation con-
verges upon the exact solution [dsS P for positive integep.

The value ofp depends on the smoothnessfaind the error

in the approximation of the differential operat@n the ex-
ample aboveg?/dx?). Assuming thaf is smooth the rate of
convergencémeasured by the, error of the FD solutiopis
N~ P when the truncation error of the differential operator is
O(AXP).

In contrast, when the solutiamis smooth the error made
by a properly formulated spectral approximation decreases
faster than any fixed power of (whereN is now the number

of collocation points or basis function$For a heuristic un-
derstanding of this rapid convergence, note first that a PSC
solution’s derivatives at each collocation point involve all
the{un(x,)} [cf. Eqg.(4.9)]. Correspondingly, it is as exact as
possible, given the information available at theollocation
points. This suggests that an orddrcollocation spectral
approximation to the derivatives of the unknown should
make errors on ordaP(AxN). The intervalAx, however, is
also proportional td\~1; so, we expect that the error in the
spectral solutionuy should vary as2(N~N). A more rigor-
ous analysis using convergence the@ge Chap. 2 of Ref.
[1]), shows that for any function which is analytic on the
domain of interest, a Chebyshev expansion will converge
exponentially[i.e. as@(e N)]. If the function is also peri-
odic then a Fourier expansion will converge exponentially.

C. Computational cost of solutions

The computational cost, in time, of a FD solution to a
system of elliptic differential equations scales linearly with
the number of grid pointdN while the accuracye of the
solution scales abl~P, wherep is the order of the FD op-
erator truncation error. Correspondingly, the ckst, for a
given accuracy scales as

3Alternatively, we could have constructed a system of equations
in terms of the unknown spectral coefficients. This would corre-
spond to a spectral tau method: f£,2].

“4In addition the individual spectral coefficient should decrease
exponentially withN once the problem is sufficiently resolved.
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Kep~ e b, (4.10a subject to the boundary conditions
The costKpsc0f a PSC solution to the same system, on the lim ¢=1, (5.39
other hand, scales &6In N (for an iterative solutionwhile e x—-1
scales as exp{N); consequently, the cost scales with accu- a1
racy € as — =0. (5.3b
ox 4 1
Kpsc"“_(ln E)ln(_ln E). (410[)

Note that with our choice of variables and expansion bases
Since it is the computational cost required to achieve a givefhe angular boundary conditioh&q. (2.39] are automati-
accuracy that is important, the more rapid convergence of gally satisfied.
PSC solution confers upon it a clear advantage. This advan- Sincey is not periodic in eithek or y, we adopt a Cheby-
tage is made clear by considering how the ratio of costshev basis for the approximate solution:
scales with accuracy:

Kpsc

N Ny
lﬁNX,NY(XaY):;O k§=:O i T () T(y), (5.4a
Krp

~—eneln(=Ine), (4.11

. . ) ) with the corresponding collocation points
which tends to zero withe; consequently, increasing accu-

racy with a PSC solution is always more efficient than with a i

FD solution. X]=CO§ (5.4b
The equations that arise from either a FD or PSC treat- X

ment of an elliptic differential system are typically solved k

using iterative methods; thuat fixed resolutiorthe storage Y= o8- (5.49

requirements for either solution method are equivalent. As y

we have seen, however, fixed resolution does not c:orresporlg0

to fixed solution accuracy. As the desired solution accuracy

increases, the storage requirements of a PSC solution fall W= 4, (5.5)

relative to those of an FD solution by a factor ofe*PIn e. ’

r this problem, focus on approximations

for integerl. We keepN, fixed as the model problem is
V. SOLVING THE HAMILTONIAN CONSTRAINT independent ofy.

Following the discussion in Appendix A, solve the PSC
equations using Richardson’s iteration with a second-order
As a first example we solve the model Hamiltonian con-FD preconditioner. To obtai¥,, we need an initial guess
straint equation(2.5) described in Sec. 11B1, with the llffo) to begin the iteration. For the lowest resolution expan-
boundary condition$2.3) on the domairr e[a,©). As de-  sion (N,=4) begin the iteration with the guess

scribed this problem is spherically symmetric; nevertheless,

A. Nonlinear model problem

we treat it as axisymmetric to illustrate the methods used to 0) _(3+X)
solve the Hamiltonian constraint for the black hole with an- Wir(xy)= 2 (5.6
gular momentum(cf. Sec. Il B2 and the black hole plus
Brill wave problems(cf. Sec. Il B 3. which is the trivial solution forP=0. Applying Richard-
As a first step we map the domair[a,»),0<[0,m7] to  son’s iteration will then give us the approximate solution
a square ik?: letting W¥,. Through the expansiofb.4a this determines an ap-
proximation fori everywhere; in particular, it determines an
x=2—a—1 (5.13 approximation at the collocation points corresponding to
r ' ' N,=8, which we then use as the initial guess for determin-
ing the approximate solutioW,. In this same way we use a
y=co0s#, (5.1b lower-resolution approximate solution as the initial guess for

the approximate solution at the next higher-resolution, i.e.
we havexe (—1,1] andye[—1,1]. In terms of the X,y)

coordinates, the model Hamiltonian constréid. (2.5)] be- vO=y _,. (5.7
comes
To investigate the accuracy of our solution as a function
>y Y Y of resolution (basis dimension for PSC, number of grid
(x+ 1)2_2+(1_y2)_2_2y¢9_ points for FD we evaluate a number of solutions differing
oX ay y only in resolution and evaluate several different error mea-
p\2 sures.
+ ﬁ;(g) (x+1)2(3—2x—x%)?y~"=0, (1) For this problem we know the exact solutipef. Eq.

(2.6)]; so, we calculate the, norm of the absolute error as a
(5.2  function ofl:
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FIG. 1. Spectral convergence for a nonlinear model problem. FIG. 2. Spectral convergence for the solution of the Hamiltonian
Plotted are a measure of the absolute eX®#,, and two approxi- constraint equation for a black hole with angular momentum. Plot-

mate measures of the erré¥, and 5‘1& as a function ofN,, the  ted are three approximate measures of the ey, 5\Tf| and SE

number of radial functions, for the cafe=1. as a function oiN,, the number of radial functions, far=1.
Ne Ny 1 1/2 lem becomes more nonlineére., P be.comes Iargermqre
AW, = E E [ (X; %) — (X X012 terms are needed in the expansion in order to achieve the
=0 k=0 NyN,cjcy same accuracy.
This system of equations has also been solved using FD
=[|V =2, (5.8 methods[6]. A point comparison is telling: ifi6] a second
o order accurate FD solution with a resolution of 1024 radial
wherecy is given by Eq.(3.16). points were required for a solution withdE=10"°, inde-

(2) We can also characterize the convergence of the agsendent ofP. The PSC solution described here achieves the
proximate solutionsV, by calculating thel, norm of the  same accuracy using an expansion with only 12 radial func-
difference between the successive approximate solutions: tions forP=1, and 24 functions foP=10. In either case a

PSC solution with an accuracy afE~ 101 is obtained by
W =W =W _yl,. (5.9 doubling the number of radial functions. To achieve the

) ) same accuracy the FD approximation would reqag&sum-
The errorsé¥ and AV are defined for either FD or PSC ing second order FDa resolution of 3 10° radial points.

solutions.

(3) We also evaluate, by analogy with and 6V, the B. Black hole with angular momentum

guantities . ] ] .
Now turn to consider a truly non-radial, but still axisym-
AE,=|E,—E|, (5.10  Mmetric, problem: a rotating black holef. Sec. I B 2. As
before [cf. Eq. (5.1)] we map the semi-infinite domain
SE,=|E,—E,_4| (5.11) =a to the finite boxxe (—1,1], ye[—1,1], obtaining the
o system of equations
whereE, is the ADM mass-energy associated with the ap- 5 9
proximate conformal facto®,. We evaluateE using Eg. (x+ 1)2(9—¢+(1—y2)(9—¢—2y(9—¢
(2.4). ax? ay? ay
(4) For PSC solutions only we define the relative error )
measure 9(1J
+ —(—2 (x+1)*1-y?)y =0, (5.13
NN 64\ g
lego go =5, (512 subject to the boundary conditions given in E(&3).

For this problem we do not have the exact solution; so, we

which characterizes the changes in the spectral coefficiengPnsider only the relative erro®V, &% and SE. Figure 2
as the order of the approximation increases. (3) shows these quantities as functiond\gffor J/M? equal
For a properly formulated spectral method, all of our errorto 1 (100. For these solution®,= iy, v, , where initially
measures should decrease exponentially \ith the solu- Ny,=4 and is incremented by twavhenever the difference
tion to the problem is analytic.
Figure 1 shows the absolute and relative ertbil; and

oW, along with the change in the spectral coefficiems » °Along with axisymmetry, this problem has equatorial plane sym-
for P=1. The exponential convergence of the solution withmetry so¥, is even iny. By exploiting this symmetry, we could
increasing\, is apparent. Experience shows that as the probreduce our number of angular functions by a factor of two.
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FIG. 3. Same as Fig. 2 with=100. FIG. 4. Spectral convergence for the solution of the Hamiltonian

constraint equation for a black hole plus Brill wave. Plotted is an
Iapproxmate measure of the errﬁﬂf, as a function ofN,, the
number of radial functions, for the cage= np=0=1, n=2.

betweensWV, with and without the increment was greater
than ten percent. Again we see rapid, exponential conve
gence of the solution with\.

This problem has also been solved using second order FD
[6] For a solution accuranE 1075 [6] found that a reso- attribute this behavior to the resolution of the faCR){Cf
lution 1024 radial and 384 angular grid points was requiredEd. (5.14D and also Eq(2.9) for q]. Figure 5 shows the
roughly independent of the value df We find that PSC  error AR obtained when we form approximat n, ac-
achieves the same accuracy with an expansion basis of Xrding to
radial (and 4 angularfunctions forJ=1, and 24 radialand
8 angulay functions for J=100. Solution accuracies of

N N
10 %% can be obtained for the PSC solution simply by dou- _ =
bling the size of the expansion bagia x andy). For a RNx'Ny_JZO go RicT 0T (y), (5.153

similar increase in accuracy of the FD solution a grid ap-

proximately 300 times larger in each dimension would be

required. 5 N Ny
Rx=———== >

N NyckcJ =0 m=0

O
[EEN

T;(X)Ti(Ym)R(X1 ,Ym) -

C. Black hole plus Brill wave (5.150

As a final example we consider the Hamiltonian con-
straint for a black hole superposed with a Brill wave. After ) o )
mapping this problem to thex(y) domain we obtain the TNe Structure in the solution is the same as the structure in

system of equations the Chebyshev approximation R
This problem has also been solved using FD meth@ds
92 92 ¥ TR enabling us to compare the resolution required for approxi-
(x+ 1)2—+(1 yz)——2y—+ T=0, mate FD or PSC solution for a given accuracy. With second
% order FD a solution whose err@iE is 3x 10 ° required a
(5143 resolution of 400 radial and 105 angular grid points. To
with
1 T I LI LI | LI
92 @ d
R= (x+1)2—q+(x+1) (1 2)—q—y d 1071
10-#2
(5 14bh 10-3 h"-
-4 [
whereq is given by Eq.(2.9), and subject to the boundary AR 18_5 E -\"-
conditions(5.3). e = \
In Fig. 4 we showsV as a function ofN, for the Brill 10-7 é
wave parameters=A=7,=1 andn=2. For these solu- 10-8 %_
tions ¥, = ¢4|,Ny where initially Ny=4, and is incremented 10-9 E | | |
by two whenever the difference betweéw, with and with- 0_ 20 40 60 80

out the increment was greater than ten percent. The conver- N
gence, while rapid, is not quite exponential. In addition, the

nearly exponentially decreasing error is impressed with a FIG. 5. The error in the spectral representation RfEq.
wave that is nearly periodic in spectral resolutioniyg We  (5.140] for the case shown in Fig. 4.

X
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achieve the same accuracy the PSC solution described here 16(U;_ 1 — 20+ Ui 1) — (Ui _p—2Ui+ U 4 »)
i- i i- [ R 2

requires a basis of only 36 radiédnd 12 angularCheby- 5 f(x),
shev polynomials. Ax 62
VI. DISCUSSION Where
Pseudo-spectral collocatidRPSQ is a very efficient way U =u(jAx) 6.3
i . .

of solving the nonlinear elliptic equations that arise in nu-
merical relativity. These problems typically have smooth so-Before this finite difference operator can be used in(Bd)
lutions; correspondingly, the approximate solutions obtaineg must be modified at the grid points 1+ Ax and 1— Ax
using PSC converge upon the exact solution exponentiallgince—1— Ax and 1+ Ax both lie outside the computational
with the number of collocation points. As a result, the cost ofgomain. In this case, four boundary conditions are required
a high accuracy PSC solution is not significantly greater thanat x equal to—1, —1+Ax, 1—Ax and 1 even though
the cost of a similar solution of modest accuracy. Since thehe second order equatigf.1a properly admits of only two
computational burden of solving the PSC equations with &oundary conditions.
given number of collocation points is no greater than that |n PSC, on the other hand, no auxiliary boundary condi-
required to solve the finite difference equations for the sam@ons need be formulated. Since the approximate solution is
number of grid points, the computational demands of a PS@xpressed as an analytic function its derivatives on the
solution are far less than those of a finite difference solutiorhoundary are known and can be required to satisfy the
for even modest accuracy. boundary condition equations exactly at the boundary collo-
While we have considered only axisymmetric problems incation points.
this paper, we have full confidence that PSC will perform  These advantages of PSC solution come at a cost. When
just as well when applied to truly three-dimensional prob-properly implemented the computational expense of PSC
lems. In fact[4,14] have applied spectral methods to numer-may be considerably less than the expense of finite differenc-
ous 3D problems in relativistic astrophysics with great sucing: however, the difficulty of implementation is greater. The
cess. In addition to our own work several other groups havefficient solution of the algebraic equations arising from PSC
applied PSC methods to problems in vacuum relativity. Folgenerally require the use of sophisticated iterative methods.
example[15] to compute initial data for the conformal Ein- additionally, the exact solution itself must be smooth on the
stein’s equations|,16] to evolve Einstein’s equations in the computational domain if the superior convergence of the so-
null quasi-spherical gauge, ahti7] to compute a shift vector |ution is to be achieved. Finally, and perhaps most impor-
for a Kerr black hole. tantly, for problems of dimension greater than unity the com-
Numerical relativity research has developed the reputatioputational domain must be sufficiently simple that it can be
that it can only be practiced by large groups using the mosgnapped tdD (3.17 or be decomposed into sub-domains that
advanced computing hardware, and that progress is only pogan each be mapped 1o (e.g., an L-shaped region can be
sible through adVanC.eS in Computing hardWare-. Itis C-ertainlwecomposed into two regionS, each of which can be mapped
true that advances in hardware have and will continue tgq I2). A spacetime containing multiple black holes cannot
power advances in numerical relativity. Nevertheless, we,e mapped intd). We believe, however, that such a space-
maintain that there is room for substantially greater effi-time can be treated using a multidomain PSC method. This is
ciency in the numerical methods employed and that the emcurrently under investigation.
ciency of PSC makes research addressing a wider range of \we have not here investigated the application of PSC
significant problems possible sooner, and also accessible {achniques to evolution problems. PSC methods have been
smgller groups or individual investigators using local com-sed to solve problems in other fieltsg., fluid dynamics
puting resources. with great succesf2,18]. Our own experience in applying
There is another important advantage of the PSC approxihese techniques to 1D evolution problems in numerical rela-

mation, involving the formulation of boundary conditions, tjyity [19] shows promise, but our extension to evolution
which has not so far been discussed. In a FD solution bouncbroblems in mu|t|p|e dimensions is not yet Comp|ete_

ary conditions involving derivatives of the fields must be

reformulated as finite difference equations. This generally ACKNOWLEDGMENTS
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o APPENDIX A: SOLVING THE PSEUDO-SPECTRAL
u(=1)=u(1)=0. (6.1b COLLOCATION EQUATIONS

A fourth-order accurate finite difference approximation to In this appendix we describe one method of solving the
the differential operatod®/dx? is nonlinear equations that arise from applying a PSC method
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to a nonlinear elliptic system of equations andw is a relaxation parameter, which must be determined.
The optimal value ofw and the rate of convergence of the
L(w=f on D, (Ala)  jterations depend upon the eigenvaluestofFor Richard-
son’s iteration the optimab is
S(u)=g on JD. (Alb)
2
Choosing an expansion basis and corresponding colloca- @opt=y Ty (A9)
tion points, the PSC solution of these equations is fully char- max fmin
acterized by the values afy at the collocation point%,:  \here\ ., and\ iy, are the largest and smallest eigenvalues
from these the coefficients of the expansion and all the degf A This choice minimizes the spectral radjus
rivatives of the approximate solution can be determined.
Write the values of the approximate solutiog at the col- N max— Amin
location pointsx,, as a vectot, P n (A10)
max min
Un=Un(Xn)- (A2) of the iteration matrixG=1—wA. The convergence rate of
. . . . the iteration iq2
Corresponding to the approximate solutiog is aresidual 2]
Ry on D andry on dD: R=—Inp. (A11)
Ry=L(uy)—f on D, (A3a)  The reciprocal ofR measures the number of iterations re-
quired to reduce the error by a factor @f
rn=S(uy)—g on dD. (A3b) Richardson’s iteration is, by itself, not necessarily more

efficient than a direct solution method. Consider, for ex-

The residual vanishes everywhere for the exact solution ample, the second-order differential equation

Write the values of the residual at the collocation poixys

as a vector, d?u
sz(X), XE(—l,l), (A12a)
Rn(Xp) X, on D X
n=— (A4)
rn(Xn) X, on dD. u(—1)=u(1)=0 (Al2b)
The PSC solutiod satisfies the algebraic equations (cf. also Sec. IY. A PSC solution with a Chebyshev expan-
sion basis leads to an operat@rwith a spectral condition
R[U]=0. (A5)  number\ ma/Amin that is O(N2). This gives a rate of con-

vergenceR~O(N~2); correspondingly,O(N?) iterations

are required to obtain a reasonable solution. Since each itera-

tion requiresO(N In N) operationdi.e., it is asymptotically

dominated by the cost of evaluating the derivatidés/dx?

given theN+1 uy(x,)] the total cost of obtaining a solu-

tion U is O(N®In N), which is slightlymoreexpensive than a

direct solution.

AU=F (A6) We can speed the convergence of Richardson’s iteration
' by solving an equivalent problem whose spectral condition

where A is a matrix andF is a vector whose components ngmber is better behaved. Ir_1troduce fireconditioningma-
take on the values of and g evaluated at the collocation trix H and consider the equivalent system
points in the domairD and its boundangD. In PSC the a1
matrix A is typically full. Direct solution methods require HPAU=HF. (AL3)
O(N?) operations for such sys_tems.; for efficiency SL_Jch SYSNow given an approximatiol’ ) to U, a better approxima-
tems are generally solved by |terat|ve mt_ethods, which tyPizion VD is given by
cally requires many fewer operations to find an accurate so-
lution. VIFD=y O, HIRD, (A14)

A simple and effective iterative method for solving Eq. ,
(AB) is Richardson’s iteration. Suppose we have a g\e8s whereR() is given as before ana’ is related to the eigen-
to the solutionU of Eq. (A6). A better approximation té) is  values of the linear operatdt *A.
v (+1) given by In practice we never actually invert the preconditioning

matrix H; instead we solve

Before describing how to solve EGA5) for a nonlinear
system(i.e., nonlinearL or S) we describe the method of
solution for a linear system.

When the system of differential equatio®l) is linear
so is the system of algebraic equatidA®). In this case we
can write

VIt D=y O yRO, (A7) , , ‘
' HV Dy ()= — RO, (A15)
where the residuaR(") vector is given by
for successive approximations. In order that this equation for
RO=AVO-F, (A8)  successive approximations should converge rapidly we re-
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quire a preconditioning matril such that Eq(A15) is in- TABLE I. The values of the absolute errdrupsc of a PSC

expensive to solve, and the spectral condition nunageof calculation, as well as the absolute error of a second-order FD cal-
H~LA is close to unity. IfH 1 is a good approximation of culationAugp for several values dNl for the example problerfEq.
A-L then the second condition will be satisfied: COnse_(AZl)]. ForN>16, the PSC solution is contaminated with roundoff

guently, we look for approximations ta for which Eq. errors.

(A15) is inexpensive to solve. Au Au
The operatorA arises from a system of differential equa- PS¢ Fo
tions. For one-dimensional problems a low-order FD ap- 4 1.7%x1071 25x1071
proximation to this operatdwith grid points coincident with 8 3.2x107% 5.4 x10°2
the collocation pointsgives rise to a banded system with a 16 6.9 1010 1.3X10°2
small number of bands close to the main diagonal. When this 32 - 3.3%10°3
FD operator is used as the preconditioner the system of equa- g4 . 8.2%x10 4
tions (A15) can be solved efficiently using direct methdds. 128 . 21x10°*

For instance, in the example considered Hé&g. (A12)]
we can setH to be the second-order accurate FD operator
corresponding td.. The eigenvalues of the preconditioned whereA,, () is thelinear operator that arises from linearizing

operatorH A are all in the range £\[“<7?/4: i.e., the A aboutV® andR® is the nonlinearresidual given by
spectral condition number is independentNofin this case

the optimal relaxation parameter is RO=£(U)-F. (A19)
'~ ‘_1 (A16) Equation(A18) is a linear system to be solved at each step of
ot 77 Newton’s iteration. In the same way as before we can intro-

duce a preconditioner, in which case we have the nonlinear
and each iteration reduces the residual by a factor of approxRichardson’s iteration
mately 7/3(independent oN) [13]. The asymptotic cost of
finding a solution is thus proportional to the cost of evaluat- HVFD -y )= — o' RO, (A20)
ing the residual@(N In N), which is much more rapid than
solution via a direct method or Richardson’s iteration with- joreH is any suitable preconditioning matrix fak, (). For

out a preconditioner. . the problems solved in Sec. V we used as a preconditioning
_For higher dimensional problems the FD preconditioneny iy 5 second-order accurate FD operator corresponding to
still leads to a banded system with a small number of nons, o qerivative terms of” ignoring the nonlinear terms.
zero ba_ndsz however, some of those bands are found far frof‘Equivalently we could have used the FD operator corre-
the main diagonal and EJA1S5) can no longer be solved gn4hding to the linearized operator, but for the problems we
efficiently using direct methods. Ml becomes so large that oy .mined this was not necessary.
the cost of solving these equations with the FD precondi- g 4 quick demonstration, consider the example problem
tioner is too great, then the equations for the successive ap-
proximations can themselves be solved iteratively, other pre- d2u
conditioners can be explore@f. [1,2,20), or the original —— —e(1— md)sin(mx) + 27 cog wx)]=0, (A21)
equations can be solved using another iterative technique, dx
such as multigrid’5]. For the problems considered in this
paperN never became so large that a direct solution of Eqg. u(—1)=u(1)=0.
(A15) with the FD preconditioner was problematic. (A22)
If Egs. (A1) are nonlinear, the algebraic equations satis-

fied by U are similarly nonlinear. Write the nonlinear equa- We have evaluated approximate solutions to this problem

tions as using a second-order accurate FD approximation and a PSC
approximation on a Chebyshev basis. For this problem we
L(U)=F, (A17)  know the exact solution,
where L is a nonlinear function obJ. In order to solve this u(x) =e*sin(mx). (A23)

nonlinear system of equations, we apply Newton’s iteration
(see Sec. 12.13 and Appendices C and D of Réf. ForEq.  rape | jistsAupscandAurp [cf. Eq. (5.8)] for increasingN

(A5), Newton'’s iteration is (number of grid points for the FD approximation, basis di-

mension for the PSC approximatiohe rapid convergence

of PSC is apparent. The second-order FD solution requires

128 points to equal the moderate accuracy of an eighth-order

PSC solution. In order to match the high accuracy of the
SFor more details on the use of FD operators as preconditioner6th-order PSC solution would require a second-order FD

for spectral problems sdé3]. solution with 6.5¢< 10* points.

Ayiy (VD —vOy= RO, (A18)
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