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Bulk standard model in the Randall-Sundrum background
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We discuss issues in an attempt to put the standard model~SM! in five-dimensional anti–de Sitter spacetime
compactified onS1/Z2. The recently proposed approach to the gauge hierarchy problem by using this back-
ground geometry, with the SM confined on a boundary, is extended to a situation where~some of! the SM
particles reside in the five-dimensional bulk. In particular, we find a localization of zero modes of bulk
fermions near the boundary with a negative tension. Unlike the compactification with the flat metric, these
fermion zero modes couple to Kaluza-Klein~KK ! excitations of the SM gauge bosons. Interestingly, only
low-lying modes of such KK gauge bosons have non-negligible couplings. Current electroweak precision data
give a constraint that the first KK mode be heavier than 9 TeV. We also argue that at least the Higgs field
should be confined on the brane to utilize the Randall-Sundrum background as a solution to the gauge
hierarchy.

PACS number~s!: 04.50.1h, 11.10.Kk, 12.60.2i
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I. INTRODUCTION

There have recently been new proposals to the gauge
erarchy problem by using geometry of extra dimension~s!.
The first of such proposals in Ref.@1# was that extra dimen
sions with large radii can account for the weakness of
gravitational interactions in four dimensions, even if the fu
damental scale is close to the electroweak scale~see also
Refs.@2,3# for earlier attempts!.

More recently Randall and Sundrum@4,5# proposed an-
other approach to the gauge hierarchy by utilizing a war
extra dimension. In this approach, the spacetime is five
mensional, with one extra dimension compactified onS1/Z2.
The metric in the Randall–Sundrum~RS! model is

ds25e22s(y)hmndxm dxn2dy2, ~1!

wherey5x5 is a coordinate of the fifth dimension with iden
tifications y;y12pr c and y;2y, ands(y)5kuyu with a
curvature scalek determined by the negative cosmologic
constantL,0 in the five-dimensional bulk. At each bound
ary y5yi (y050 andy15pr c), there locates a set of brane
whose tension~vacuum energy! Vi has to be fine tuned to
realize four-dimensional Poincare´ invariance:

k2[
2L

24M5d
3

,
V0

24M5d
3

5k5
2V1

24M5d
3

. ~2!

It was then argued that the Planck massMpl in the effective
four-dimensional theory is related to the ‘‘fundamenta
scaleM5d in five dimensions by
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Mpl
2 5

M5d
3

k
~12e22pkrc!. ~3!

In the following we assume that bothM5d andk are of the
orderMpl ~with k&M5d).

The warp factore2s(y) represents an energy scale
physics phenomena at the positiony as measured by the
four-dimensional flat metric. Thus the electroweak scale
naturally realized on the distant brane aty5pr c , with V1
,0 if one appropriately adjusts the length of the extra
mension to getke2pkrc;100–1000 GeV. In fact, in the pro
posal of Ref.@4#, all the standard model~SM! particles are
assumedto be confined on this brane.

Various aspects of this model and its extensions@6,7#
have been studied in the literature@8–12#. Among other
things, Goldberger and Wise pointed out in Ref.@13# that the
physics scale of a scalar field is characterized by the w
factor at the distant brane, even if it resides in the wh
bulk. This leads one to imagine that the Higgs field can na
rally be embedded in the bulk of the five-dimensional spa
time. Furthermore the authors of Refs.@14,15# considered the
gauge bosons in the bulk while the leptons and quarks ar
the brane.

In this paper, we would like to pursue this line furthe
and in particular consider a situation that fermions as wel
the gauge bosons reside in the bulk. We will show in Sec
that zero modes of the bulk fermions, which we identify
quarks and leptons in the SM, are localized near the bran
y5pr c . This explains why the RS solution to the gau
hierarchy problem applies also for the bulk SM even if w
are not assuming from the start that the SM fields are c
fined on ‘‘our’’ brane; put differently, the gravity isauto-
matically weak for the matter fields in the bulk SM. It turn
out, however, that such fermion zero modes couple
Kaluza-Klein~KK ! modes of the SM gauge bosons. Thus t
theory is severely constrained by the electroweak meas
ment because the exchange of the KK modes generates
©2000 The American Physical Society25-1
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Fermi type interactions as we will describe in Sec. IV. Th
is in contrast to the case with the flat metric for the ex
dimension, where the KK modes of the gauge bosons
couple from the zero mode fermions at the tree level@16#.

Finally in Sec. V, we will discuss the Higgs mechanis
and how the gauge bosons and the fermions acquire ma
We will mainly examine the simplest case in which t
Higgs field also lives in the bulk and develops aconstant
vacuum expectation value~VEV!. Then, as is shown in the
Appendix, the gauge boson masses naturally become o
order of the energy scale of our brane, which is forced to
much higher than the weak scale by the constraint from
current precision experiments, unless we make an extr
fine tuning for the Higgs boson mass. In this case the ga
hierarchy problem would be back, and thus the bulk Hig
case should be virtually excluded. This leaves the case w
the Higgs is confined on our brane.

II. BULK FERMION AND LOCALIZATION
OF ZERO MODE

The five-dimensional Lagrangian for a free massless
mion C(x,y) can be written as1

e21Lfermion5C̄ iGAeA
AS ]A1

1

8
vA

BC@GB ,GC# DC, ~4!

where eA
A is the inverse of the fu¨nfbein, and the gamma

matrices in five dimensions are given byGM5(gm ,ig5), sat-
isfying $GM ,GN%52hMN52diag(1,2,2,2,2). In the RS
background, Eq.~1!, which respects the four-dimension
Poincare´ invariance, only the nonvanishing component of t
spin connectionvA

BC is given by

vm
n552em

ne55]5s51e2ss8dm
n, ~5!

wheres85]5s. Therefore we obtain

Lfermion5e23sC̄@ igm]m2g5e2s~]522s8!#C

5e2(3/2)sC̄F igm]m2g5e2sS ]52
1

2
s8D Ge2(3/2)sC.

~6!

Interestingly, the mass operatorg5e2s(]522s8) for C re-
ceives such a piece from the spin connection that hasa kink
profile with a gap

Ds i8[s8~yi10!2s8~yi20!5
2Vi

24M5d
3

, ~7!

1The term containing the spin connection cancels if one parti
integrates the action into the form that is manifestly invariant un
charge conjugation. But this is not done here in order to mak
clear that such a term is present in the Dirac equation that foll
from the action.
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where Vi is a tension of the brane located aty5yi . To
pursue an analogy with the domain wall fermion@17# is an-
other motivation to consider the bulk fermions in the R
background.

Before going into any detail, let us first consider the fe
mion zero mode C(x,y)5C0(x)e3s(y)/2ẑ(y) with
igm]mC0(x)50, where a factore3s(y)/2 brings the kinetic
term in Eq.~6! into the canonical form. By solving the five
dimensional Dirac equation, we find that the zero mode
localized near the brane with anegativetensionV1,0:

ẑ~y!5 ẑ~pr c!e
2(k/2)upr c2yu. ~8!

We should remark that our mechanism for localizing fermi
zero modes resembles many earlier attempts@18,2,17,19#
which utilizes a kink background induced by a topologic
defect or scalar field, except thatit is automatic; our kink
mass term in Eq.~6! appears not by hand, but as a cons
quence of the gravitational background in the manner
Randall and Sundrum. One may regard the RS backgro
as generated by the scalar potential in gauged supergra
@20#, but the point we stress here is that one and the sa
mechanism is responsible for the generation of the ga
hierarchy and the localization of fermions.

In the simplest setting we are describing, the chiral nat
of fermions results from the compactification onS1/Z2 by
imposing theZ2 projection.2 For the bulk fermion, we im-
pose thatC(x,y) is even under five-dimensional parity:

g5C~x,2y!51C~x,y!. ~9!

Then there remains only one zero mode with positive chi
ity ~right-handed fermion!, as we will see shortly. If we con
sider the opposite conditiong5C(x,2y)52C(x,y), we
will have a left-handed fermion as the zero mode.

We make a mode expansion with respect to the fifth
mension:

C~x,y!5(
n

@cL
(n)~x!jn~y!1cR

(n)~x!hn~y!# , ~10!

whereg5cL/R
(n) 57cL/R

(n) . Using this expansion in Eq.~6! and
integrating overy, we get the four-dimensional effectiv
theory

L fermion
(4dim) 5(

n
@cL

(n)igm]mcL
(n)1cR

(n)igm]mcR
(n)

2~mncL
(n)cR

(n)1H.c.!#. ~11!

Here the mode functions satisfy the eigenvalue equation

2e2s~]y22s8!jn~y!5mnhn~y!, ~12!

y
r
it
s

2The chiral asymmetry could be produced if we introduced a s
able Dirac mass term for our bulk fermion. In fact the fiv
dimensional parity invariance forbids us from introducing such
bare mass term, and both chirality of zero modes are localized
the same brane.
5-2
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1e2s~]y22s8!hn~y!5mnjn~y! ~13!

with the normalizations

E
0

pr c
dye23sjn~y!jm~y!5E

0

pr c
dye23shn~y!hm~y!5dmn .

~14!

Since condition~9! is translated intojn(y)52jn(2y) and
hn(y)51hn(2y), the Z2 projection and the periodicity
C(x,y12pr c)5C(x,y) give the boundary conditions

jn~y5yi !505]yhn~y5yi ! ~15!

at y050 andy15pr c . With these conditions, one can eas
find the explicit solution for the mode functions. We prese
the result for ĵn(y)[e23s(y)/2jn(y) and ĥn(y)
[e23s(y)/2hn(y), for which a physical picture is most trans
parent@since the normalization condition~14! becomes the
canonical ones3#:

ĵn~y!5A 2k

12e2pkrc
e2 k/2 upr c2yusin

mn

k
~es(y)21!,

ĥn~y!5A 2k

12e2pkrc
e2 k/2 upr c2yucos

mn

k
~es(y)21!

~16!

for mn5npk/(epkrc21)Þ0. For the zero modem050,

ĵ0~y!50, ĥ0~y!5A k

12e2pkrc
e2 k/2 upr c2yu. ~17!

This clearly shows that the right-handed fermion zero mo
is localized near the orientifold plane aty5pr c , while the
left-handed zero mode is projected out.

As mentioned above, the left-handed zero mode can
obtained by the opposite projection. One expects that, a
the SM, these fermion zero modes will acquire their mas
through Yukawa couplings to the Higgs field. To realize th
in our model, we prepare anSU(2) doubletCL(x,y) and a
singlet CR(x,y), and impose theZ2-projection condition
g5CL/R(x,2y)57CL/R(x,y). Then theZ2-invariant opera-
tors are given byC̄RCLH. As for the Higgs fieldH, there
are two distinct possibilities thatH also lives in the bulk, or
it is confined on the brane aty5pr c . Which of these two
cases leads to a viable model is the subject of the subseq
sections.

3This is similar to the rescaling that was discussed in Ref.@21#,
but it is not exactly the same because we are considering the e
tive theory after integrating over the fifth dimension, not that on
brane.
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III. GAUGE BOSONS IN THE BULK

Let us now proceed to the bulk gauge bosons, which w
recently discussed in Refs.@14,15#. Here we briefly discuss
the abelian case for simplicity. The Lagrangian for a bu
gauge field in the RS background, Eq.~1!, is given by

Lgauge52
1

4
~Fmn!21e22sF1

2
~]5Am!22]5Am]mA5

1
1

2
~]mA5!2G , ~18!

where the contraction by using the flat metric should be
derstood. The action principle requires a gauge-invari
boundary condition 05F5m5]5Am2]mA5 at y050 andy1
5pr c , but Z2-orbifold projection implies stronger condi
tions

]5Am~x,y5yi !505A5~x,y5yi !. ~19!

That is,Z2 projection implies the Neumann~Dirichlet!-type
boundary condition forAm (A5). Although we can proceed
in a gauge covariant manner,4 let us takeA550 gauge@14#
for simplicity. Then after integrating by parts, the Lagran
ian reduces to

Lgauge52
1

4
~Fmn!22

1

2
Am]5~e22s]5Am!, ~20!

supplemented with Gauss law constraint 0']5(]mAm).
Let us expandAm into the KK modes as

Am~x,y!5(
n

Am
(n)~x!x̂n~y!, ~21!

by using mode functionsx̂n(y) specified by the conditions

2]y~e22s]yx̂n~y!!5Mn
2x̂n~y!, ~22!

E
0

pr c
dyx̂n~y!x̂m~y!5dmn , ~23!

as well as the Neumann-type boundary condition]yx̂n(yi)
50 at y050 andy15pr c . Substituting this expansion into
Eq. ~20! and integrating overy gives the four-dimensiona
effective theory

Lgauge
(4dim)5(

n
F2

1

4
~Fmn

(n)!21
1

2
Mn

2Am
(n)A(n)mG . ~24!

The explicit form ofx̂n(y) is given by the Bessel function
of the ordern51;

c-
e

4In this case, the ‘‘Nambu-Goldstone’’ fieldA5(x,y) should be
mode expanded by using the Bessel functions of the ordern50 to
diagonalize the mixing betweenAm

(m)(x) andA5
(n)(x). Note also that

the zero mode ofA5 is projected out.
5-3
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x̂n~y!5
A2kes(y)

Nn
@J1~lnes(y)!1cnY1~lnes(y)!#, ~25!

whereln[Mn /kÞ0, and by denotingzc[epkrc,

cn52
J0~ln!

Y0~ln!
, Nn

25E
1

zc
2zdz@J1~lnz!1cnY1~lnz!#2

5z2@J1~lnz!1cnY1~lnz!#2u1
zc .

~26!

The mass eigenvalues are determined by the cond
]yx̂n(pr c)50;

J0~ln!Y0~lnepkrc!5Y0~ln!J0~lnepkrc!. ~27!

The behavior of the mass eigenvaluesMn is depicted in Fig.
1, where we plot the values of (Mn /k)exp@s(prc)# for n
51, . . .,40. Asymptotically at higher mass leveln@1, the
mode functions behave like

x̂n~y!;A 2k

12e2pkrc
e2 k/2 upr c2yucosS np

es(y)21

epkrc21
D
~28!

with the same mass eigenvaluesMn;mn as the KK fermion
masses. The zero mode is flat in the extra dimens
x̂0(y)51/Apr c, and the KK gauge bosons show the unive
sal behavior of localizing near the brane aty15pr c as in
other bulk fields.

IV. BULK PHENOMENOLOGY

In this section we will examine phenomenological co
straints on the bulk gauge bosons and fermions. For the
ment we assume that a Higgs mechanism takes place an
zero modes corresponding to theW and Z bosons acquire
tiny masses of the weak scale. We will discuss the detail
the mechanism in Sec. V.

In the case that both fermions and gauge bosons are li
in the bulk, the gauge coupling of the bulk fermion to t

FIG. 1. Plot of the masses of thenth Kaluza-Klein modes of the
gauge bosons in units of 10216k. We takekrc512.
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bulk gauge boson is written as

e21Lcoupling5g5dC̄~x,y!iGMeM
M~y!AM~x,y!C~x,y!.

~29!

Using the results given above, we find that the coupling c
stant of a KK mode of the gauge boson to the mass
~zero-mode! fermion bilinear is given by

gn5g
A2pkrc

Nn
E

1

zc z dz

zc21
@J1~lnz!1cnY1~lnz!#, ~30!

wherezc5epkrc, and g5g5d/Apr c is the four-dimensional
gauge coupling constant. In Fig. 2, we plot the values
gn /g. We found that the KK modes of the gauge boson ha
nonvanishing couplings to the bilinear of the zero-mode f
mions. This is in sharp contrast to the flat metric case~or the
factorizable extra dimension!, where the conservation of th
fifth-dimensional momentum prohibits these couplings. A
other interesting point to be stressed is thatonly the first KK
mode of the gauge boson strongly couples to the ferm
zero mode. We find

g1

g
.4.1,

g2

g
.0.55,

g3

g
.0.54, ~31!

and gn!1 for higher n. Physically this suppression fo
higher KK modes is understood by the oscillating behavi
Eq. ~28!, of the Bessel functions. Thus one may expect t
the high energy behavior of this model is rather modera
Note that this is quite different from the case of the bra
fermion where the coupling is determined by the wave fu
tion at the brane and turns out to be universal, i.e.,gn /g
5A2pkrc.8.4 for all KK modes.

Phenomenologically the existence of the nonvanish
couplings, Eq.~30!, plays an important role@22,23# because
the exchange of the KK modes of the gauge bosons indu
four Fermi interactions. For the weak boson case, follow
Ref. @14#, it is convenient to define

FIG. 2. Plot of the couplingsgn of thenth Kaluza-Klein modes
to the bilinear of the zero modes of the bulk fermions relative to
gauge coupling constantg.
5-4
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V[
( gn

2/Mn
2

g2/mW
2

5 (
n51

` S gn

g D 2 mW
2

Mn
2

. ~32!

Using Eq.~31!, we approximate the above equation to

Vbulk'4.12
mW

2

M1
2

'17
mW

2

M1
2

. ~33!

Here it is interesting to compare it with the case of the bra
fermion. In this case, as we mentioned,gn /g5A2pkrc

.8.4 for all n, and(M1
2/Mn

2.1.5, we find

Vbrane'8.4231.5
mW

2

M1
2

'100
mW

2

M1
2

. ~34!

Comparison between Eqs.~33! and ~34! implies that, for a
given experimental constraint onV, the bound on the firs
excited mode in the bulk fermion case is weaker than tha
the brane fermion case by a factorA100/17;2.5.

Using the data of the electroweak precision measu
ments, Ref.@14# gives the constraintV,0.0013 at 95% C.L.
In our case of the bulk fermion, this gives the followin
bound on the mass of the first KK excitation of theW boson:

M1*9 TeV. ~35!

Note that this bound is certainly weaker than the case of R
@14#, though it still exceeds the electroweak scale.5

Another stringent bound comes from photon and glu
The KK modes of the photon and gluon will effectively ge
erate contact interactions

Leff5
2p

L2
JmJm . ~36!

ExperimentallyL is constrained to be higher than 2–4 Te
@24#, with detail depending on which current one conside
Note that the coupling of the first KK mode is enhanced
g154.1g. Thus this constraint alone will raise the bound
the first excited state well above 1 TeV.

In passing, some remarks are in order. First, the reason
having such stringent constraints is that the first KK mo
couples to fermions more strongly than the massless ga
boson; recalling Eq.~26!, we can approximate Eq.~30! for a
largezc5epkrc to

5Reference@15# considered the case where the fermions are lo
ized aty50. In this case the bound on the KK excitations from t
electroweak measurement is relaxed due to the small coupling
the KK modes of the gauge bosons to the boundary fermionsy
50. The energy scale at this brane does not contain the small w
factor so that one needs to invoke another mechanism to solve
hierarchy problem.
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g1

g
'A2pkrcE

1

zc zdz

zc
2

J1~l1z!

J1~l1zc!
;

A2pkrc

2
. ~37!

This fact can be understood by noting that although the z
mode of the gauge boson is flat in the fifth dimension,
first KK mode is localized~without oscillating! near the TeV
brane where fermion zero modes are also localized. Sec
we comment on how the constraint could be changed w
we consider the massive gauge bosons. In that case, a
describe in Sec. V, the lowest mode of a massive bulk ga
boson has the mass of the orderM1 ~unless we make an
extreme fine tuning of the bulk gauge boson mass!. Given
that, one might wonder whether the gauge coupling of ouW
boson should be identified byg1, notg of the zero mode, and
it would beM2 and notM1 that should be constrained as th
mass of the first KK mode. If this were the case, the co
straint discussed above would have further been relaxed
factor g1 /g2;7.5; M2 /mW'M2 /M1;(g2 /g1)/AV*3.7.
Unfortunately, however, this is actually ruled out from a
other constraint coming from the KK photon and gluons.

V. HIGGS MECHANISM AND GAUGE BOSON MASS

Now, we would like to discuss the mechanisms to gen
ate the gauge boson mass. Let us first consider the
where the Higgs boson is also in the bulk. If we assume t
the potential of the five-dimensional Higgs field takes t
form

V~H !52m2H†H1
l5d

2
~H†H !2, ~38!

with a negative mass squared, the Higgs field develops
constant VEV in the bulk6 ;Am2/l5d, which generates the
bulk mass termm for the gauge boson. Then the mode fun
tions are expressed like in Eq.~25! but with the ordern
5A11m2/k2. With the constraintke2pkrc of the order 10
TeV or higher, one has to take a small mass parameterm to
realize the gauge boson mass of 100 GeV.

One might naively expect that a moderate fine tuning
m/k;1022 would be enough to realize the correct gau
boson mass since there would be an approximate zero m
for a small bulk massm. In fact, as we show explicitly in the
Appendix, the lowest mass eigenvalueM18 for a very smallm
is proportional tom

M18
2.

m2

2 lnes(y1)
5

m2

2pkrc
, ~39!

but there is no suppression by a warp factor!
The absence of a warp factor and the fate of the z

mode may be understood by regarding the small bulk masml-

of

rp
he

6This VEV should be sufficiently smaller than the curvature sc
k not to disturb the background; otherwise, it could be an origin
the bulk vacuum energyL.
5-5
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as a perturbation; evaluating the bulk mass term by using
zero mode eigenfunctionx̂0(y)51/Apr c in the massless
case, we find

M18
2.m2E

0

pr c
dye22s(y)x̂0~y!x̂0~y!

5
m2

2pkrc
~12e22pkrc!. ~40!

This will be a good approximation to the exact mass eig
value M18 as far as the mixings between the ‘‘zero mod
Am

(0)(x) and ‘‘nonzero modes’’Am
(n)(x) are small

M0n
2 5m2E

0

pr c
dye22s(y)x̂0~y!x̂n~y!!M1

2 . ~41!

When the bulk mass~and thus the mixings! goes up and
becomes comparable toM1, then the perturbation break
down and we will find that the lowest mass eigenvalueM18
smoothly goes up and eventually becomes of the same o
asM1 of the first excited state in the massless case. App
ently the~approximate! zero mode disappears even for, sa
m/k;10210.

Therefore the mass parameterm itself must be much
smaller thank;Mpl , whereas the natural value form would
be of the orderk. Since the constraints discussed in Sec
push the energy scaleke2pkrc of our brane well above 1
TeV, the mass parameterm must be chosen to be the ele
troweak scale. This smallm parameter for the gauge boso
requires a hierarchically smallm parameter in the Higgs po
tential. This is nothing but the conventional fine tuning of t
Higgs boson mass in nonsupersymmetric theories and
gauge hierarchy is not solved at all. Thus we should disc
the model with the bulk Higgs mechanism.

This leaves the case where the Higgs is confined on
brane.7 In this case, the energy scale of the brane is alre
reduced to beke2pkrc;10 TeV. Thus to realize the elec
troweak scale, the Higgs mass parameter should be tu
just by 102. This should be compared with the previous ca
of the bulk Higgs mechanism where we need the conv
tional 1016. In fact, the brane Higgs seems to be the o
choice we can take to avoid the extreme fine tuning of
Higgs mass in the ‘‘bulk SM’’ approach.

VI. CONCLUSIONS

We have discussed various issues in an attempt to
struct a bulk standard model in the RS background geome
In particular, by solving the Dirac equation in this bac
ground geometry, we observed the localization of the b
fermion due to the kink profile of the spin connection. Sin
the localization takes place near the brane with a nega

7Another logical possibility would be to consider the bulk Hig
field with a positive mass squared and to expect that some dyna
~in four-dimensional effective theory! would drive the mass square
of its lowest mode negative.
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tension where the gravity is weak, the bulk SM makes
RS approach to the hierarchy problem more attractive. T
chiral nature of the fermion zero mode is realized by t
Z2-orbifold projection in the present model.

We have also found that the couplings of fermion ze
modes to the~oscillating! KK modes of the gauge boson ar
suppressed compared with the brane fermion case. This
laxes the phenomenological constraint, but not enough
fact the first KK mode of theW gauge boson must be heavi
than 9 TeV, which implies that the energy scale of the d
tant brane itself must exceed the TeV scale.

With this phenomenological constraint, the bulk SM su
fers from a fine-tuning problem. In particular, when th
whole SM is put in the bulk as we discussed in Sec. V,
hierarchy problem is not solved at all and we need an
treme fine tuning to realize the electroweak scale. In this c
the RS background has nothing to do with the hierarc
problem, and we need another mechanism completely,
instance supersymmetry, to realize the idea of the bulk S

If we want to keep the advantage of the RS setting a
solution to the hierarchy problem, we have to confine
Higgs field on the TeV brane. In this case, the VEV of t
Higgs boson localized at the brane will give contributions
the masses of the gauge bosons and fermions. We can e
construct a viable model that contains the SM particles as
lowest modes once we accept a moderate fine tuning
1/100. Of course, some care should be taken to ensure
proton stability; higher-dimensional operators will be su
pressed only by the mass scale of the TeV brane and sh
be forbidden by some symmetry reasons for instance. In
respect, the bulk SM in the simplest formulation suffers fro
similar problem as in models with large extra dimensions

Besides phenomenological implications, the present
mulation of bulk fermion in the RS background~and its gen-
eralization! deserves further study. Among others, an int
esting application would be to formulate chiral fermions on
lattice.

While we completed our manuscript, interesting prepri
appeared@25,26#; the former deals with bulk fermions in
cluding right-handed neutrinos, and our result here is con
tent with theirs. The latter discusses the dynamical Hig
scenario in the extra dimension~s!.
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APPENDIX: FATE OF THE BOSON ZERO MODES

Here we discuss how the masses of the lowest modes
spin 0 and 1 particles behave when they have a nonzero
massm.

As usual, thenth mode of a bosonic bulk field is ex
pressed in terms of Bessel functions as

xn~y!5
A2k

Nn
S xn

2 D a

@Jn~xn!1anJ2n~xn!#, ~A1!

where Nn and an are proper normalization constants a
xn5(Mn8/k)es(y). The ordern is given by

n5Aa21
m2

k2
.a1Dn, ~A2!

wherea52 for scalar anda51 for vector boson, andDn
50 corresponds to the vanishing bulk mass.

We are interested in the mass eigenvaluel1[M18/k of the
lowest modex1(y). Let us consider the situation in whic
the bulk massm is small enough that the resulting mass
tiny (M18/k)epkrc!1. Then we can make the approximatio
for the Bessel functions near the origin; forx1!1

Jn~x1!.S x1

2 D n 1

G~11n!
,

J2n~x1!.S x1

2 D 2nF 1

G~12n!
2

1

G~22n! S x1

2 D 2G .
At y50, x15l1 and the boundary condition gives

2
1

a1
5

d

dx
@~x/2!aJ2n~x!#

d

dx
@~x/2!aJn~x! #

U
x5l1

.S l1

2 D 22n G~11n!

a1n F a2n

G~12n!

2
a122n

G~22n! S l1

2 D 2G . ~A3!
B

s

-
,

08402
or
lk

The boundary condition at the other boundaryy5pr c gives

2
1

a1
.S l1zc

2 D 22n G~11n!

a1n F a2n

G~12n!

2
a122n

G~22n! S l1zc

2 D 2G , ~A4!

wherezc5epkrc. These two equations can be summarized

a122n

G~22n! S l1

2 D 2

5
a2n

G~12n!

12zc
22n

12zc
2(12n)

,

which leads a relation

l1
2.

2~n21!

12zc
2(12n)

Dn. ~A5!

For the scalar case,n.a52, this correctly reproduces th
result in Ref.@13#

l15
M18

k
.A2Dn.

1

A2

m

k
. ~A6!

On the other hand, for the vector boson case,n.a51, Eq.
~A5! reduces to

l1
2.

2Dn~n21!

12~112~12n!ln zc!
.

Dn

ln zc
, ~A7!

which gives the announced relation, Eq.~39!

M18

k
.

1

A2pkrc

m

k
. ~A8!

We note again that these results, Eqs.~A6! and~A8!, with no
suppression by a warp factor, are valid only for a sufficien
small bulk massm.
e,
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