
PHYSICAL REVIEW D, VOLUME 62, 084024
Gravitational waves from the dynamical bar instability in a rapidly rotating star

J. David Brown
Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202

~Received 31 March 2000; published 25 September 2000!

A rapidly rotating, axisymmetric star can be dynamically unstable to anm52 ‘‘bar’’ mode that transforms
the star from a disk shape to an elongated bar. The fate of such a bar-shaped star is uncertain. Some previous
numerical studies indicate that the bar is short lived, lasting for only a few bar-rotation periods, while other
studies suggest that the bar is relatively long lived. This paper contains the results of a numerical simulation of
a rapidly rotatingg55/3 fluid star. The simulation shows that the bar shape is long lived: once the bar is
established, the star retains this shape for more than 10-bar-rotation periods, through the end of the simulation.
The results are consistent with the conjecture that a star will retain its bar shape indefinitely on a dynamical
time scale, as long as its rotation rate exceeds the threshold for secular bar instability. The results are described
in terms of a low-density neutron star, but can be scaled to represent, for example, a burned-out stellar core that
is prevented from complete collapse by centrifugal forces. Estimates for the gravitational-wave signal indicate
that a dynamically unstable neutron star in our galaxy can be detected easily by the first generation of ground
based gravitational-wave detectors. The signal for an unstable neutron star in the Virgo cluster might be seen
by the planned advanced detectors. The Newtonian-quadrupole approximation is used throughout this work.

PACS number~s!: 04.30.Db, 04.40.Dg, 95.30.Lz, 97.10.Kc
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I. INTRODUCTION

A self-gravitating, axisymmetric fluid body with a suffi
ciently high rotation rate can be dynamically unstable to n
axisymmetric perturbations. Typically, the fastest growi
unstable mode is them52 ‘‘bar’’ mode which acts to trans-
form the body from a disklike shape to an elongated bar
tumbles end over end. This instability has been descri
analytically for the case of uniform density bodies@1,2#, and
has been the subject of numerous numerical studies.1 The
numerical results show that bar formation is accompanied
the ejection of mass and angular momentum, and that
ejected matter forms long spiral arms in the equatorial pla
The subsequent evolution is less certain. Some simulat
indicate that the bar shape is short lived, with the star retu
ing to a predominantly disklike shape after a few bar-rotat
periods. Other simulations predict that the bar persists
many bar-rotation periods. In recent work, New, Centre
and Tohline@3# address this issue with a series of simu
tions using two different codes at various resolutions, a
conclude that the bar shape is persistent. In their high
resolution run the bar decayed after roughly six or se
bar-rotation periods. This was believed to be caused by
merical errors that induced an unphysical center of mass
tion. In a lower resolution run a symmetry condition w
imposed that prevented any center of mass motion. In
case the star maintained its bar shape throughout the sim
tion.

The purpose of the present work is to simulate the lo
time evolution of a rapidly rotating, self-gravitating star u
ing Newtonian hydrodynamics and gravity. As discussed
Sec. III, the numerical code is substantially different fro

1For a brief review, see Ref.@3#.
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the codes that have been used previously to address
problem. The initial data for this study consists of ag55/3
polytrope with stability parameterb50.30. The stability pa-
rameter is defined byb5T/uWu, whereT is rotational kinetic
energy andW is gravitational potential energy. The resul
here suggest that the bar shape is indeed long lived—the
displays a prominent bar shape at the end of the simulat
which includes more than ten bar-rotation periods.

Numerical studies of fluids with various equations of sta
and initial rotation profiles have shown that the dynami
bar instability appears when the stability parameterb ex-
ceeds a certain critical value, typically close to 0.27@4,5#.
For thesecular instability, which arises through dissipativ
mechanisms, the critical value ofb is near 0.14. A neutron
star might reach the critical value ofb for dynamical or
secular instability by accreting matter and angular mom
tum from a binary companion. A stellar core that has e
hausted its nuclear fuel might reach a critical rotation rate
it collapses.

A star or stellar core that develops a rotating-bar-like co
figuration will generate large amounts of gravitational rad
tion. Depending on the distance of the source, this radia
might be strong enough to be detected by the worldw
network of gravitational-wave detectors currently under co
struction@6#. Here, the question of the persistence of the
shape becomes very important. The detectability of a sou
depends on its characteristic amplitudehc'hAn, whereh is
the amplitude of the waves with frequencyf and n is the
number of wave cycles in a bandwidth nearf @7#. Thus, long-
duration signals with largen can be more easily detecte
than short-duration signals.

Should we expect the bar shape to persist or decay?
reason why the bar might decay is the loss of mass
angular momentum from the ends of the bar. The accom
nying drop in rotational kinetic energy could reduce the s
bility parameter and allow the star to return to axisymmet
©2000 The American Physical Society24-1
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Loss of rotational kinetic energy through shock heat
might also occur. For the simulation presented here,b has an
initial value of 0.30, large enough to dynamically trigger t
growth of the bar mode. During the initial period of b
formation, mass and angular momentum are shed from
ends of the bar and long, spiral arms are formed. The sta
ity parameter rapidly drops below 0.27 and eventually set
to a value of about 0.24. However, these losses of mass
angular momentum, with the accompanying drop inb, are
insufficient to completely rob the star of its bar shape.

The results here are consistent with the conjecture tha
star will retain its bar shape indefinitely on a dynamical tim
scale, as long asb stays above the critical value for secul
instability @8#. If this is correct, the bar should still decay du
to secular processes. Imamura, Durisen, and Pickett hav
gued that the bar continues to shed small amounts of ang
momentum to the spiral arms, and these losses cause th
to decay@8#. Other secular mechanisms, such as energy
angular momentum loss through gravitational radiati
could play a role as well.

It is possible that, for the equation of state and angu
velocity profile used here, the star is able to retain its
shape simply because the critical value ofb for dynamical
instability is 0.24 or less. This possibility was tested by co
ducting a second simulation using the same equation of s
and scaling the angular velocity by a factor of 3/4. The
sulting model has an initial value ofb equal to 0.25. The ba
mode showed no signs of growth in this simulation. Th
for the models tested here, the bar mode does not spon
ously grow unlessb exceeds a critical value greater tha
0.25. However, once the bar shape is established, it can
sist for many bar-rotation periods withb equal to 0.24 or
less.

In the present numerical calculation there are two sour
of error in angular momentum. First, some of the angu
momentum that is lost off the edge of the computational g
might, ideally, fall back onto the star. Second, numeri
errors at each time step introduce a purely artificial loss
angular momentum. Both of these errors act to decrease
angular momentum of the star. One expects such losse
cause the bar shape to deteriorate. What is seen, both i
gravitational wave analysis and in the Fourier analysis of
density, is a relatively persistent signal with a modest dec
in amplitude over the duration of the simulation.

The physical model and initial data that form the basis
the simulation are described in Sec. II. Section III contain
discussion of the numerical code. The results of the sim
tion are described qualitatively and quantitatively in Sec.
Conclusions and results are summarized in Sec. V. Detai
the initial data code are given in the Appendix.

II. PHYSICAL MODEL

The initial data for the simulation consist of a stationa
axisymmetric Newtonian fluid star with polytropic equatio
of state,P5Krg. The equation of state parameters are c
sen to coincide roughly with those of a low-density neutr
star with soft equation of state,g55/3 and K55.38
3109 cgs @2#. The bar instability in stellar cores with stif
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equations of state has been investigated by Houser and
trella @9#.

The equations of hydrostatic equilibrium are solved us
an algorithm described in the Appendix, in which the free
specifiable data are the central densityrc and the angular
velocity distributionv(r ). Here r is the distance from the
rotation axis. With the choices

rc52.0031014 g/cm3, ~1a!

v~r !5~4000/s!e2~r /4.803106 cm!2
, ~1b!

the equilibrium configuration has mass, equatorial radius,
lar radius, angular momentum, and stability parameter gi
by

M52.37M ( , ~2a!

Req54.913106 cm, ~2b!

Rp51.113106 cm, ~2c!

J56.9831049 g cm2/s, ~2d!

b50.300, ~2e!

respectively. Equations~1b! and ~2b! show that the angula
velocity has values

v~0!54000/s, v~Req!51400/s, ~3!

on the rotation axis and at the equator. The azimuthal ve
ity at the equator is 6.893109 cm/s, below the Kepler veloc
ity of 8.903109 cm/s. Note that the mass~2a! is consider-
ably larger than the masses of observed neutron stars,
exceeds the limit for nonrotating neutron stars for most eq
tions of state. However, as discussed by Baumgarte, Sha
and Shibata@10#, differentially rotating ‘‘hypermassive’’
neutron stars withM.2M ( might appear as the immediat
products of core-collapse supernovas or binary neutron
mergers.

The rotation law for a uniform density Maclaurin sphero
is

j sp~mem!5~5J/2M !@12~12men/M !2/3#, ~4!

wherej sp5r 2v is the specific angular momentum andmen is
the mass enclosed in a cylindrical radius. Many previo
works on the dynamical bar instability have employed t
same rotation law~see, for example, Refs.@11,12,9,3#!. For
the initial data code used here the angular velocity is sp
fied as a function of radiusr, so the rotation law~4! cannot
be used directly. However, the rotation law~1b! was chosen
for its similarity to the Maclaurin law, as Fig. 1 shows. I
Fig. 1, the numerical data forj sp andmen are plotted for the
rotation law~1b!, along with the Maclaurin rotation law~4!.
For clarity, only one in five numerical data points is show
The data and the rotation law~4! agree on the value ofj sp to
within 2% throughout most of the star, out to aboutmen/M
50.8. At the surface of the star, the rotation law~1b! differs
from the Maclaurin rotation law by about 8%.
4-2
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The dimensionful model described here can be resc
by introducing parametersl, m, andt that scale the lengths
masses, and times. To be precise, a quantityQ with dimen-
sions@Q#5LAMBTC, whereL is length,M is mass, andT is
time, is rescaled according toQnew5Qold /(lAmBtC). A
physical, dimensionful model is retained if the paramet
are dimensionless and Newton’s constantG is unchanged by
the rescaling. This requiresl, m, andt to satisfyl35mt2.
Alternatively, the model can be converted to polytropic un
@12# in which G5K5M51 by settingl54.813105 cm,
m54.7131033g, andt51.8831025 s. This leads to

rc54.7331023, ~5a!

Req510.2, ~5b!

v~0!57.5331022, ~5c!

for the central density, equatorial radius, and central ang
velocity.

For the model with the scaling displayed in Eqs.~1! and
~2!, the maximum flow velocity is 8.23109 cm/s. This
occurs at a distance of 3.43106 cm from the rotation axis.
At this peak velocity, the special relativistic gamma fac
(12v2/c2)21/2, wherec is the speed of light, differs from
unity by about 4%. General relativistic effects should
greatest near the surface of the star at the poles, where
gravitational potential is approximatelyGM/Rp52.8
31020cm2/s2. Comparing this result withc2, we find that
general relativistic effects represent a correction of roug
30% at the poles. Thus, with the scaling used in Eqs.~1! and
~2!, the errors that we introduce by ignoring special and g
eral relativity are substantial.

The errors are reduced if the model is rescaled appro
ately. For example, withl51/2,m52, andt51/4, the mass
of the star is cut in half, its linear size is increased by a fac
of 2, and its angular velocity is decreased by a factor of 4
this case the model might represent a stellar core that
partially collapsed, but is prevented from contracting

FIG. 1. The specific angular momentumj sp, in units of J/M ,
versus the massmen enclosed in a cylindrical radius, in units ofM.
Both the numerical data~crosses3! and the Maclaurin rotation law
~solid curve! are shown.
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nuclear density by centrifugal forces.~Note that with this
scaling Newton’s constant is unchanged. Also note that
speed of light should not be scaled, since it does not app
in the Newtonian hydrodynamical equations or the Pois
equation.! The scaling reduces the maximum speed by
factor of 2 and reduces the gravitational potential by a fac
of 4. For this model, special and general relativistic effe
represent corrections of about 2% and 8%, respectively.

III. NUMERICAL CODE

The axisymmetric initial data were calculated on a grid
the r-z plane consisting of 5123511 zones. Details and tes
of the initial data code are contained in the Appendix.
preparation for the evolution of this data, the grid was cho
to cover a physical domain of 1.773107 cm in radius and
2.503107 cm in thez direction. Thus the star was containe
in a small region of the grid, roughly the inner 142345
zones. The quality of the data can be checked with the d
nostic expressionV5(2T1W13*P dV)/W, whereT is ki-
netic energy,W is gravitational potential energy, and*P dV
is the volume integral of pressure. According to the vir
equations, this quantity should vanish@1,13#. For the numeri-
cally generated model, this diagnostic has a value oV
53.231025.

At the beginning of the evolution, the density and veloc
are interpolated onto a three-dimensional Cartesian grid.
grid contains 1283 zones and covers a cubic domain wi
sides of length 2.503107 cm. The equatorial radius of th
star spans 25 zones, while the polar radius spans 6 zo
The density in each zone is modified with a random pert
bation ranging from210% to 110% of the unperturbed
value. Initially, the specific internal energye is obtained
from the density by the relatione5Krg21/(g21). There-
after, the star is evolved with the equation of state

P5~g21!re, ~6!

with g55/3.
The evolution code includes the nonrelativistic hydrod

namics codeVH-1, written by Blondin, Hawley, Lindahl, and
Lufkin. VH-1 is based on the piecewise-parabolic meth
~PPM! as described by Colella and Woodward@14#. The
PPM scheme is a higher-order extension of Goduno
method @15#. It uses parabolas as interpolation functio
within each zone and characteristics to determine the
mains of dependence for zone interfaces. The average va
of density, pressure, and velocity within these domains
used as inputs to the Riemann problem between adja
zones. The solution of the Riemann problem determi
time-averaged values of pressure and velocity, which in t
are used to compute hydrodynamical fluxes. InVH-1, each
time step is reduced to three one-dimensional evolution
‘‘sweeps’’ via operator splitting. For each one-dimension
sweep, the fluid variables are evolved in Lagrangian coo
nates and then remapped onto the original Eulerian g
The order of the sweeps is cycled through all possi
permutations.
4-3
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J. DAVID BROWN PHYSICAL REVIEW D 62 084024
For the simulation presented here, I used a ‘‘Cour
number’’ of 0.3. That is, the time step was set to 0.3 tim
the maximum allowed by the Courent-Friedricks-Lew
~CFL! condition. This is a relatively small time step for
PPM code. It was chosen to help minimize the artificial lo
of angular momentum, discussed below.

The Poisson equation for the gravitational potential
solved using multigrid methods@16#. The finest grid has size
1293, with grid points that lie at the corners of the 123

hydrodynamical zones. The boundary conditions are co
puted from a multipole expansion of the potential that
cludes monopole, dipole, quadrupole, and octupole term

The PPM method is designed to evolve the fluid m
densityr, linear momentum density, and total energy de
sity, and in the process to conserve the mass, linear mom
tum, and total energy of the system. Unfortunately, for su
a rapidly rotating star, the total energy densityE is domi-
nated by kinetic energy densityK. This is a problem becaus
the internal energy densityre5E2K is needed for the cal
culation of pressure from the equation of state~6!. Sincere
is a difference of large numbers, it is subject to large num
cal errors. As long as the fluid flow is smooth, one can so
this problem by modifying the code so that internal ener
rather than total energy, is evolved. However, this modifi
tion of the PPM algorithm leads to the wrong jump con
tions at shock fronts. Thus, for the present simulation, a co
promise was struck: in regions of smooth flow the co
evolves internal energy, and in the neighborhood of sho
the code evolves total energy. Similar schemes have b
described in Refs.@17,18#.

VH-1 uses the shock flattening algorithm described
Colella and Woodward@14# as a dissipation mechanism. Th
algorithm determines a ‘‘flattening coefficient’’f for each
computational zone, which ranges from 0 for smooth flow
a maximum of 0.5 in the presence of a strong shock. T
flattening coefficient is also used to determine whether in
nal energy or total energy is used to update the fluid v
ables in each zone. Thus internal energy is used whenf is
less than some threshold valuef t , while total energy is used
for f . f t . In practice, the performance of the code w
found to be insensitive to the value of the thresholdf t , for
values ranging from 0.1 to 0.5.

The ability of this ‘‘hybrid’’ code to switch from interna
energy to total energy at shock fronts was demonstrated
variety of one-dimensional test problems. These include
standard Sod shock tube problem with density and pres
ratios of up to 1.03106, and strong standing shocks. Figur
2 and 3 show the results of the most extreme test, a stan
shock wave with an upstream Mach number of 1.03108.
Results are shown for the hybrid code, a total energy c
~which evolves total energy exclusively!, and an internal en-
ergy code~which evolves internal energy exclusively!. The
simulations use 100 zones to cover the computational
main 0<x<1 and a Courant number of 0.6. The upstre
fluid, in the region 0.5,x<1, has densityr51.0, pressure
P51.0, and velocityu521.33108. The downstream fluid
in the region 0<x,0.5, has densityr54, pressureP
51.2531016, and velocityu523.23107. Ideally the dis-
continuities should be maintained atx50.5. Figures 2 and 3
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show the pressure and density after 250 time steps. The
condition for this simulation is determined by the upstrea
velocity, so the upstream fluid travels a distance of;0.006
in each time step.

Figure 2 shows that the total energy code produces
tremely large errors in the upstream pressure. As expec
Figs. 2 and 3 show that the results from the internal ene
code are quite poor. Altogether, the hybrid code is the m
successful at maintaining the proper pressure and den
profiles. For this extreme test, the largest errors from
hybrid code appear in the downstream fluid where the d
sity and pressure differ from their ideal values by at m
11% and 1.6%, respectively. The hybrid code also lost ab
2.7% of the total energy during the 250-time-step simulati

Because the present code conserves linear momen
there is no erroneous center of mass motion due to nume
errors. On the other hand, the code does not conserve an
momentum. This is a fairly serious problem because the
gular motion of the star is the central effect we wish to stu
The amount of angular momentum that is lost, or gain
through numerical error is found by computing the total a

FIG. 2. Logarithm of pressure for the strong standing shock t
The curves were obtained from the hybrid code~solid line!, total
energy code~dashed line!, and internal energy code~dotted line!.

FIG. 3. Density for the strong standing shock test. The cur
are obtained from the three codes, as in Fig. 2.
4-4
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GRAVITATIONAL WAVES FROM THE DYNAMICAL BA R . . . PHYSICAL REVIEW D 62 084024
gular momentum on the grid,Jgrid , and correcting for the
amount of angular momentum that is lost~or gained! through
the grid boundaries,Jlost. The angular momentum passin
through the grid boundaries is obtained by computing
angular momentum that moves off the Eulerian grid dur
each Lagrangian time step. Ideally, the sum of the ang
momentum on the grid and the angular momentum
through the boundaries,Jgrid1Jlost, should be constant. A
seen in the next section, over the course of the simula
~8000 time steps! about 8% of the star’s angular momentu
is lost through the boundaries. During this same time,
total angular momentum drops by nearly 25%. Thus num
cal errors account for a drop of about 17% in the angu
momentum of the star.

In the Newtonian-quadrupole approximation, the gravi
tional wave signalhi j is formed from linear combinations o
components of the second time derivative of the redu
quadrupole moment I–̈ i j . The relationship is hi j

5(2G/Rc4)Pi j
kl I–̈kl , wherePi j

kl is the projection operator fo
transverse directions andR is the distance from the source
the observation point@19#. Using the hydrodynamical equa
tions, the time derivatives that appear inI–̈ i j can be elimi-
nated@20# so that, to within boundary terms, we have

I–̈ i j 5STFE d3x 2r@v iv j2xi] jF#. ~7!

Here ‘‘STF’’ stands for the symmetric, trace-free part of t
expression that follows,v i is the fluid velocity,] j5]/]xj is
a spatial derivative, andF is the gravitational potential.

The gravitational-wave signal is computed numerically
using expression~7! for I–̈ i j . This calculation is subject to
errors due to the finite size of the computational grid. Rec
that during the course of the simulation, matter is expel
from the star. Some of this matter, a total of 0.048M ( ,
passes through the grid boundaries. As a consequence
relationshiphi j 5(2G/Rc4)Pi j

kl I–̈kl is not correct, even in the
Newtonian-quadrupole approximation, because the lost m
ter is not included in the calculation ofI–̈ i j . A second source
of error stems from the fact that boundary terms were d
carded in the derivation of Eq.~7!. These boundary term
would vanish if the density were always zero on the g
boundary. Fortunately, the matter that reaches the boun
has relatively low density and the errors that arise from
missing boundary terms in Eq.~7! are small. This has bee
verified by comparing the results from Eq.~7! with the re-
sults obtained by computing numerically the second ti
derivative of the reduced quadrupole moment. The numer
derivatives were obtained by performing a least-squares fi
a quadratic using five or seven consecutive data points.
second derivative at the central time is found from the c
vature of the quadratic. This calculation is subject to a c
tain amount of numerical noise, but otherwise the res
agree quite closely with those obtained from Eq.~7!. Since
the matter that passes through the grid boundaries does
greatly effect the calculation ofI–̈ i j with Eq. ~7!, it is plau-
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sible to assume that the errors obtained by equatinghi j and
(2G/Rc4)Pi j

kl I–̈kl are also small.
The frequency spectrum for the gravitational-wave sig

is computed with the Lomb normalized periodogram@16#.
This method was chosen for its ability to handle the u
evenly sampled data. In the Newtonian-quadrupole appr
mation, the gravitational-wave luminosity is given byL
5G I–̂ i j I–̂ i j /(5c5), and the radiated energyDE is the time
integral of L @19#. The calculation of the time derivative
I–̂ i j 5d I–̈ i j /dt must be handled with care since, otherwis
even small errors inL will accumulate in the integration ove
time. For this calculation, I use a Savitzky-Golay approa
@16#. Specifically, the time derivative of the functionI–̈ i j in
each time interval is computed from the slope of a quadr
polynomial that is obtained from a least-squares fit to sev
nearest neighbor data points. The number of points use
typically between 10 and 20.

The evolution code was run on a Cray T90 vector co
puter, while the initial data, gravitational wave spectrum, a
gravitational wave luminosity were computed on local wor
stations. The evolution required 8000 time steps and ab
45 CPU hours.

IV. DESCRIPTION OF THE EVOLUTION

The star retains its predominantly circular, disklike sha
for about 10 ms, which amounts to approximately six ro
tion periods for the fluid near the center of the star. Over
next few milliseconds, the bar mode grows rapidly, so t
by 13 ms the star is highly elongated as shown in Fig.
After a few more milliseconds the central regions of the s
recircularize, and by 16 ms the inner density contours h
nearly lost their bar shape as seen in Fig. 5. The cycle of
formation and recircularization repeats; by 19 ms the s
again shows a strong barlike shape, as shown in Fig. 6.
episodes of bar formation and recircularization continue w
diminishing amplitude and a period of about 6.5 ms. Duri
each episode, the bar undergoes a little more than 1.5 r
lutions. Near the end of the simulation, at a time of; 50 ms,
the oscillations become quite weak and the star settles in

FIG. 4. Contour plot of the density in the equatorial~X-Y! plane
at 13.58 ms. The contour levels are 1010, 1012, and 1014 g/cm3.
4-5
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bar-shaped configuration of modest strength. See Fig. 7
During the initial episode of rapid bar formation, matter

thrown outward from the ends of the bar. The ejected ma
forms long spiral arms, clearly visible in Figs. 4 and 5. So
of this matter is lost off the edge of the computational grid
between 14 and 20 ms the mass loss totals 0.040M ( . The
subsequent episodes of bar formation are less violent,
only small amounts of ejected mass reaching the grid bou
aries. The mass loss between 20 ms and the end of the s
lation amounts to 0.008M ( .

When the star assumes its bar shape, the individual
ticles in the inner regions of the star circulate along trajec
ries that roughly coincide with the constant density contou
For example, at the time shown in Fig. 4, 13.58 ms, the
is rotating about the center of mass with a period of appro
mately 4 ms. Individual particles flow along the 1014g/cm3

density contour with fairly uniform speeds ranging fro
about 6.53109 cm/s to about 7.53109 cm/s. The density
contour at 1014g/cm3 has a perimeter length of approx
mately 1.73107 cm. Thus the particles orbit along this co
tour with period;2.5 ms as the contour precesses about
star’s center with period;4 ms.

The shape of the star can be quantified by Fourier ana

FIG. 6. Density contours as in Fig. 4, at 19.48 ms.

FIG. 5. Density contours as in Fig. 4, at 16.58 ms.
08402
er
e

th
d-
u-

r-
-

s.
r

i-

e

z-

ing the density in a circle in the equatorial plane@21,12#. The
Fourier coefficients are defined by

Am1 iBm5
1

2p E
0

2p

dw r~w!eimw, ~8!

wherer(w) is the density in the equatorial plane at an ar
trarily chosen distance of 2.03106 cm from the center of the
star. Herew is the azimuthal angle. The amplitude of themth
Fourier mode is defined byCm5AAm

2 1Bm
2 , and the phase

angle is fm5arctan(Bm /Am). Figure 8 shows the natura
logarithm of the ratio of the amplitudeCm and the average
densityC0 for them52 bar mode and them54 mode. The
m53 mode is small and is not displayed in Fig. 8. T
coefficientC3 /C0 remains less than 0.01 through most of t
evolution, reaching peak values of; 0.02 in the late stages

The periodic growth and decay of the bar shape is clea
seen in the peaks and valleys of the graph in Fig. 8. T
amplitudes grow exponentially for several milliseconds d
ing the initial episode of bar formation. For them52 bar
mode, the growth rate near 10 ms isd ln C2 /dt'820/s. For

FIG. 7. Density contours as in Fig. 4, at the end of the simu
tion ~52.57 ms!.

FIG. 8. Natural logarithm of the ratiosC2 /C0 and C4 /C0 of
Fourier amplitudes.
4-6
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GRAVITATIONAL WAVES FROM THE DYNAMICAL BA R . . . PHYSICAL REVIEW D 62 084024
the m54 mode, the growth rate isd ln C2 /dt'1400/s. In
polytropic units (t51.8831025 s), the growth rates for the
m52 and m54 modes are 0.015 and 0.026, respective
For m52, this value differs by a few percent from the res
0.0145 reported in Ref.@5#. In units of the ‘‘dynamical time’’
tD5@Req

3 /(GM)#1/2, where Req is the initial equatorial ra-
dius, the growth rates are 0.50/tD and 0.86/tD for the m52
and m54 modes. Comparing these results to the val
0.55/tD and 1.1/tD obtained from the highest resolution ru
in Ref. @3#, we find a fairly large discrepancy in them54
case. This difference might be caused by numerical error
the present code associated with the cartesian grid.

Near the end of the simulation, the oscillations in t
Fourier amplitudes have subsided and the star settles in
bar shape with strengthC2 /C0'0.18. The downward drift in
C2 /C0 , visible in Fig. 8, is possibly due to numerical err
as discussed below.

The phase angles for them52 and m54 modes are
shown in Fig. 9. The eigenfrequencies aredf2 /dt
53.24/ms and df4 /dt56.52/ms. The pattern speed
m21dfm /dt @12# are 1.62/ms for them52 mode and
1.63/ms for them54 mode. These speeds, which equ
0.99/tD and 1.0/tD in dynamical time units, agree with th
results obtained in Refs.@5,3# to within 1%. The approximate
equality of the pattern speeds shows that them54 mode is a
harmonic of them52 bar mode.

The stability parameterb undergoes fluctuations, drop
ping to a local minimum when the bar amplitudeC2 /C0 is a
local maximum and rising to a local maximum when the b
amplitude is a local minimum. This behavior is shown
Fig. 10. As the fluctuations diminish,b settles to a value o
;0.24 with a slight downward drift. Note that this value ofb
is well below the critical value 0.27 for the growth of the b
mode in a constant density star.

The fact that the bar shape persists withb below 0.27
might indicate that the threshold for bar formation in ag
55/3 star with rotation law given by Eq.~1b! is actually 0.24
or less. This possibility was tested by evolving a seco
model star, obtained by modifying the freely specifiable d

FIG. 9. Phase of them52 andm54 Fourier modes.
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in Eq. ~1! so that the central value of angular velocity
3000/s rather than 4000/s. The parameters describing
model are

M51.34M ( , ~9a!

Req55.883106 cm, ~9b!

Rp51.403106 cm, ~9c!

J52.9031049g cm2/s, ~9d!

b50.253, ~9e!

so, in particular, the stability parameter is between 0.24
0.27. This model was evolved for approximately 23 m
which equals about 11 rotation periods for the fluid near
center of the star. During this time, them52 bar mode
showed no signs of growth. We are thus led to conclude
for a g55/3 fluid star with rotation law of the type consid
ered here, the dynamicalm52 bar mode will not spontane
ously grow unlessb exceeds a critical value near 0.27; how
ever, once a bar shape is established, it can persist for m
rotation periods withb50.24 or less.

As discussed in the previous section, the numerical c
does not conserve angular momentum. In Fig. 11, the t
angular momentum on the grid,Jgrid , is plotted as a function
of time along with the difference between the initial angu
momentumJ056.9831049g cm2/s and the angular momen
tum Jlost that flows off the edge of the numerical grid. Ide
ally, these two curves should coincide; the fact thatJgrid falls
below J02Jlost indicates that numerical errors artificially re
move angular momentum from the system. The results
Jlost were checked by computing the angular momentum fl
from each of the saved data sets, which were generated e
50 time steps. The numerically computed time derivative
Jlost is in very close agreement with the angular moment
flux.

FIG. 10. The stability parameterb as a function of time.
4-7
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J. DAVID BROWN PHYSICAL REVIEW D 62 084024
I have not yet determined the source of the numer
errors in angular momentum. Note, however, that the er
are not significant until the star begins to develop a noti
able bar shape, at about 10 ms. This suggests that the
has difficulty tracking the leading and trailing edges of t
bar-shaped star, with their sharp density gradients, as the
rotates in thex-y plane.

Since numerical errors cause angular momentum to
lost, it is plausible to expect that rotational kinetic energy
artificially lost as well. This might account for the downwa
drift in the stability parameter at late times, as seen in F
10. In turn, one might expect a drop in the stability parame
to cause the star’s bar shape to decay. Figure 8 shows
the Fourier amplitudeC2 is fairly robust at late times with a
slight downward trend on average. If angular moment
were not artificially lost, the simulation might show that aft
the fluctuations cease the bar shape remains unchanged
dynamical time scale.

V. GRAVITATIONAL WAVES

In the Newtonian-quadrupole approximation, the gravi
tional wave amplitude for the plus polarization state,h1 , as
measured at a distanceR in the equatorial plane of the
source, is

c4R

G
h1~eq!5~cos2 w22! I–̈xx1~sin2 w22! I–̈yy

12 cosw sinw I–̈xy . ~10!

Here, I–̈ i j is the second time derivative of the reduced qu
rupole moment andw is the azimuthal angle of the observ
tion point relative to the~arbitrary! x axis of the source.
Figure 12 shows the results forh1 with R520 Mpc andw
5p/2. ~Recent estimates indicate that the distance to
Virgo cluster is;20.9 Mpc@22#.! In the equatorial plane, the

FIG. 11. The angular momentum on the grid,Jgrid , and the
differenceJ02Jlost between the initial angular momentum and t
angular momentum lost at the boundaries of the grid.
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cross polarization amplitude,h3(eq), is a linear combination
of the componentsI–̈xz and I–̈yz . Since the star is approxi
mately symmetric under reflections in the equatorial pla
h3(eq) as measured in the equatorial plane is nearly ze

For an observation point above the north pole of the s
the plus polarization amplitude is

c4R

G
h1~p!5~2 cos2 w21! I–̈xx1~2 sin2 w21! I–̈yy

14 cosw sinw I–̈xy . ~11!

Since the star is highly flattened and has little motion in
z direction, thezzcomponent of the second time derivative
the unreducedquadrupole moment,Ï zz, is very small. Fur-
thermore, because the shape of the bar does not evolve
idly compared to its rotation rate, thexx andyy components
satisfy Ï xx1 Ï yy'0. These observations implyI–̈xx'2 I–̈yy .
As a consequence, we see from Eqs.~10! and ~11! that
h1(p)'2h1(eq). This is confirmed by the results of th
simulation. As expected, the amplitudeh3(p) is almost iden-
tical to h1(p), just phase shifted by 45°.

Although the reliability of the results for the gravitationa
wave signal is rather poor, due both to the crudeness of
physical model and to numerical errors, it is still of som
interest to consider the detectability of these waves. Th
consider the characteristic amplitude of the source, appr
mated by@7#

hc'S 3GDE

2p2c3f cR
2D 1/2

. ~12!

Here DE is the total energy radiated in gravitational wav
and f c is the characteristic frequency. The gravitational-wa
frequency is sharply peaked about 490 Hz, as shown
Fig. 13. The total energy radiated in gravitational waves,

FIG. 12. The gravitational-wave amplitudeh1(eq) measured a
an observation point in the equatorial plane of the source at a
tance of 20 Mpc.
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GRAVITATIONAL WAVES FROM THE DYNAMICAL BA R . . . PHYSICAL REVIEW D 62 084024
computed in the Newtonian-quadrupole approximation up
the time the simulation was halted, isDE'531024M (c2.
From these data we find the characteristic amplitude of
source to behc'4310222 at a distance of 20 Mpc. This
value forhc is a lower bound, since the radiated energyDE
will continue to increase as long as the bar persists. A
note that the resulthc'hAn'4310222 coincides roughly
with n'25 wave cycles with amplitudeh'0.08310221.
This is consistent with the signal displayed in Fig. 12.

The signalhc'4310222 is probably too weak to be see
by the first generation of interferometric gravitational-wa
detectors, which should have a sensitivity of about 10220 at
500 Hz@6,23#. The signal might be detectable by the plann
advanced detectors, which are expected to have a sensi
below 10221 at 500 Hz@6,23#. For a source at a distance o
;25 kpc, comparable to the diameter of the Milky Way g
axy, the characteristic amplitude ishc'3310219. This is a
relatively large signal that should be detected easily by
first generation of interferometers.

If the simulation is scaled as described in Sec. II,
amplitude as measured at a fixed~unscaled! distance R
changes by a factor oft2/(ml2) and the frequency change
by a factor oft. For example, withl51/2, m52, and t
51/4, the amplitudeh1(eq) atR520 Mpc is reduced from
that shown in Fig. 12 by a factor of 8. The characteris
amplitude hc is also reduced by a factor of 8, to abo
5310223 at 20 Mpc, and the peak frequency occurs at;120
Hz. This signal is somewhat below the expected sensiti
of the advanced gravitational-wave detectors, which is
proximately 10222 at 120 Hz@6,23#. At a distance of 25 kpc
the characteristic amplitude is almost 4310220, well above
the expected sensitivity of;4310221 for the first genera-
tion detectors.

VI. CONCLUSIONS

The simulation presented here shows that a rapidly ro
ing g55/3 fluid star with rotation law Eq.~1b! is dynami-
cally unstable to bar formation and that the bar shape, o

FIG. 13. The frequency spectrum of gravitational waves, co
puted with the Lomb normalized periodogram.
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established, is relatively long lived. Over the final 10 or
ms of the simulation, the star maintains a modest but fa
persistent bar shape with stability parameterb equal to about
0.24. It is possible that, forg55/3 stars with certain initial
angular velocity profiles, the threshold for bar formation
actually 0.24 or less. However, further numerical stu
showed that an axisymmetric star withb50.25 initially is
stable against growth of the bar mode. Thus, for the mod
considered here, the dynamical bar mode requires a valu
b near 0.27 to grow but the bar shape can persist for m
bar-rotation periods withb50.24 or less. Imamura, Durisen
and Pickett suggest that as long asb is greater than the
critical value for growth of the secular instability, about 0.1
a bar-shaped star is dynamically stable against forming
axisymmetric disk@8#. The results here are consistent wi
this conjecture. Recent numerical studies by New, Centre
and Tohline@3# also indicate that the bar shape is long live

The strength of the gravitational-wave signal emitted
an initially axisymmetric, dynamically unstable star depen
on the rotating star’s length and time scales. With the
merical model scaled to represent a low-density neutron
with soft equation of state, the characteristic amplitu
is hc'4310222 at a distance of 20 Mpc. With the mo
del scaled to represent a stellar core that has partially
lapsed and is prevented from contracting to nuclear dens
by centrifugal forces, the characteristic amplitude ishc
'5310223 at 20 Mpc. These signals are probably too we
to be detected by the first generation of interferometers,
though the neutron star signal might be detectable by
planned advanced interferometers. At a distance of 25 k
both signals are quite large and should be detected easil
the first generation interferometers.
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APPENDIX

The technique used in this work to solve the equations
hydrostatic equilibrium is similar to the self-consistent fie
method, first developed by Ostriker and Mark@24# and later
refined by Hachisu@25#. The self-consistent field method i
based on the integral form of the Euler equation which rea
for the equation of stateP5Krg @24,25#:

gK

g21
rg211C1F5C. ~A1!

In this equation,C52*dr rv2 is the ‘‘rotational potential’’
derived from the angular velocityv(r ), F is the gravita-
tional potential, andC is an integration constant. In the sel
consistent field method, one begins with an initial guess
the densityr, solves the Poisson equation forF, and then
uses Eq.~A1! to obtain a corrected density distribution. Th
process is then iterated. Typically, the Poisson equatio
solved by expanding the potentialF in terms of Legendre

-

4-9
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TABLE I. Comparison of results obtained from the initial data code described here~J.D.B.! and Hachisu’s
self-consistent field method code.

Test R̂p M̂ Ĵ T̂ 2Ŵ 3P̂ P̂max
V

J.D.B. r 0.6667 0.3288 0.02575 0.006641 0.1164 0.1031 0.2044 1.831024

Hachisu r 0.667 0.328 0.0257 0.00663 0.116 0.103 0.204
J.D.B. v 0.3332 0.6413 0.1378 0.06392 0.3733 0.2454 0.2020 4.731025

Hachisu v 0.333 0.639 0.137 0.0638 0.372 0.244 0.202
J.D.B. j 0.1662 0.8419 0.1036 0.04559 0.5982 0.5070 0.3272 1.631026

Hachisu j 0.167 0.843 0.104 0.456 0.599 0.508 0.327
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polynomials, and the constantC appearing in Eq.~A1! is
determined by specifying certain properties at the star’s
face. For example, Hachisu fixes the ‘‘axis ratio’’Rp /Req
@25#.

For the method used in this paper, the constantC is de-
termined by properties at the center of the star. The rotatio
potential is chosen to vanish at the star’s center,C(0)50,
and the constantC is written as

C5gKrc
g211Fc . ~A2!

Here the subscriptc denotes the center of the star. The ce
tral densityrc is specified as input data, along with the r
tation law v(r ). The initial guess forr is chosen to be a
static, spherically symmetric polytrope with central dens
rc , obtained by solving numerically the Lane-Emden eq
tion. The potentialF and its central value are obtained fro
the Poisson equation using a multigrid algorithm, as d
cussed below. Note that with this scheme the center of
star must have nonzero density. This precludes the poss
ity of generating stars with toroidal surfaces.

Equation~A1! can be written asF50 where the function
F is defined by

F[
gK

g21
rg211C1F2C ~A3!

and the constantC is given by Eq.~A2!. The corrections to
the density are obtained from a Newton-Raphson algori
applied toF50. Note thatF(x) is a nonlocal function of
r(x), wherex labels points in space. The nonlocal depe
dence ofF(x) on r(x) enters through the gravitational po
tential F(x). One might expect that the value ofF at the
point x is insensitive to the densityr(x) at the same pointx,
since the potentialF is determined primarily by the globa
properties of the star, such as its mass. With this observa
in mind, we compute the variation ofF at point x with re-
spect tor at point x by dropping the nonlocal terms. Thi
leads to the approximate resultdF'gKrg22dr. Then set-
ting F1dF50, we find the density correction

dr5
1

gK
r22g~C2F2C!2

1

g21
r, ~A4!

to be used for each Newton-Raphson iteration.
I have not constructed a mathematical argument to jus

the above assumption, namely, that the nonlocal termsF
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can be ignored in computingdF. However, this same as
sumption is implicit in the usual self-consistent field metho
As described in Refs.@24,25#, for the self-consistent field
method the density is updated by solving Eq.~A1! for r,
ignoring ther dependence inF. That is, the change inr is

dr5Fg21

gK
~C2F2C!G1/~g21!

2r, ~A5!

where F is the solution of the Poisson equation. Formu
~A5! can be justified by the same reasoning that led
Eq. ~A4!, but with the following difference: enthalpyH
[gKrg21/(g21), rather than densityr, is treated as the
independent variable. The variation ofF with respect toH,
ignoring the F dependence onH, is dF'dH. Setting
F1dF50 leads to a new enthalpy distributionHnew
5H2F. Solving this equation for the new densityrnew, we
find the density correctiondr5rnew2r of Eq. ~A5!.

The initial data code solves the equations of hydrosta
equilibrium at the zone centers of a 5133513 grid in ther -z
plane of a cylindrical coordinate system. The symmetry a
coincides with the edge of the first column of zones. T
density r is computed on the inner 5123511 zones. One
layer of zones at the top, bottom, and side opposite the s
metry axis are reserved for setting boundary conditions
the gravitational potentialF. The boundary values are ob
tained by expanding the potential in a multipole series t
includes monopole and quadrupole terms.~The dipole and
octupole moments vanish due to rotational symmetry a
reflection symmery about the equatorial plane.! The Poisson
equation is solved with a multigrid algorithm, adapted fro
the code described in Ref.@16# to handle the boundary con
ditions and the cylindrical geometry.

The initial data described in Sec. II was generated b
code that relies on the Newton-Raphson iteration sche
~A4! and the multigrid Poisson solver described above. T
results of three tests of this code~J.D.B.! are shown in Table
I. For comparison, the results obtained by Hachisu@25# are
also listed. The values reported in the table are scaled a
Hachisu’s self-consistent field method, with Newton’s co
stantG, the equatorial radiusReq, and the maximum density
rmax equal to unity. Carets denote these scaled quanti
Also, P denotes the volume integral of pressure,*P dV.

The ‘‘r’’ test assumes a rigid rotation law,v(r )5v0 ,
with the scaled angular velocity given byv̂0

250.266. The
‘‘ v ’’ test assumes the ‘‘v-constant’’ rotation law,v(r )
5v0 /Ad21r 2, with v̂0

250.215 andd̂50.100. The ‘‘j’’ test
4-10



t
1

te

ce

ed

r-

GRAVITATIONAL WAVES FROM THE DYNAMICAL BA R . . . PHYSICAL REVIEW D 62 084024
assumes the ‘‘j-constant’’ rotation law,v(r )5 j 0 /(d21r 2),
with ĵ 0

250.0176 andd̂50.100. For each test,g55/3. For
Hachisu’s data the virial theorem diagnosticV is typically
less than a few times 1024 @25#. The test results show tha
the present code and Hachisu’s code differ by less than
in every case.

Subsequent testing has shown that the density upda
. D

en

-

. J

. J
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Eq. ~A4! is no better, in terms of accuracy and convergen
rate, than the usual self-consistent field method update~A5!.
After 30 Newton-Raphson iterations, the results obtain
from the two update formulas agree to a few parts in 1029, at
worst. For both update formulas, the errors~as compared to
the 30-iteration results! were at most a few tenths of a pe
cent after 10 iterations.
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