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Gravitational waves from the dynamical bar instability in a rapidly rotating star
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A rapidly rotating, axisymmetric star can be dynamically unstable tmar? “bar” mode that transforms
the star from a disk shape to an elongated bar. The fate of such a bar-shaped star is uncertain. Some previous
numerical studies indicate that the bar is short lived, lasting for only a few bar-rotation periods, while other
studies suggest that the bar is relatively long lived. This paper contains the results of a numerical simulation of
a rapidly rotatingy=5/3 fluid star. The simulation shows that the bar shape is long lived: once the bar is
established, the star retains this shape for more than 10-bar-rotation periods, through the end of the simulation.
The results are consistent with the conjecture that a star will retain its bar shape indefinitely on a dynamical
time scale, as long as its rotation rate exceeds the threshold for secular bar instability. The results are described
in terms of a low-density neutron star, but can be scaled to represent, for example, a burned-out stellar core that
is prevented from complete collapse by centrifugal forces. Estimates for the gravitational-wave signal indicate
that a dynamically unstable neutron star in our galaxy can be detected easily by the first generation of ground
based gravitational-wave detectors. The signal for an unstable neutron star in the Virgo cluster might be seen
by the planned advanced detectors. The Newtonian-quadrupole approximation is used throughout this work.

PACS numbg(s): 04.30.Db, 04.40.Dg, 95.30.Lz, 97.10.Kc

[. INTRODUCTION the codes that have been used previously to address this
problem. The initial data for this study consists ofya 5/3
A self-gravitating, axisymmetric fluid body with a suffi- polytrope with stability parameteg=0.30. The stability pa-
ciently high rotation rate can be dynamically unstable to nonfameter is defined bg=T/|W|, whereT is rotational kinetic
axisymmetric perturbations. Typically, the fastest growingEN€rgy andW is gravitational potential energy. The results
unstable mode is tha=2 “bar” mode which acts to trans- here suggest that the bar shape is indeed long lived—the star

- isplays a prominent bar shape at the end of the simulation,
form the body from a disklike shape to an elongated bar thﬂ L i . .
tumbles end over end. This instability has been describe hich includes more than ten bar-rotation periods.

Wtically for th f unif density bod q Numerical studies of fluids with various equations of state
analytically for the case of uniform density bo [@s2], an and initial rotation profiles have shown that the dynamical
has been the subject of numerous numerical studiEise

- U : bar instability appears when the stability paramegeex-
numerical results show that bar formation is accompanied b, qs a certain critical value typically close to O[275].

the ejection of mass and angular momentum, and_ that thﬁor the secularinstability, which arises through dissipative
ejected matter forms long spiral arms in the equatorial planemechanisms, the critical value @ is near 0.14. A neutron

The subsequent evolution is less certain. Some simulationg, might reach the critical value ¢ for dynamical or
indicate that the bar shape is short lived, with the star retugaclar instability by accreting matter and angular momen-

ing to a predominantly disklike shape after a few bar-rotationtum from a binary companion. A stellar core that has ex-

periods. Other simulations predict that the bar persists fop,gteq its nuclear fuel might reach a critical rotation rate as
many bar-rotation periods. In recent work, New, Centrella,, collapses

and Tohline[3] address this issue with a series of simula- A gtar or stellar core that develops a rotating-bar-like con-

tions using two different code_s at various resolut|.ons., anqiguration will generate large amounts of gravitational radia-
conclude that the bar shape is persistent. In phe|r hlghe"ﬂon. Depending on the distance of the source, this radiation
resolution run the bar decayed after roughly six or sevenin e strong enough to be detected by the worldwide
bar-rotation periods. This was believed to be caused by NUsgqyork of gravitational-wave detectors currently under con-
r_nerlcal errors that mduc_ed an unphysical center Of_ Mass My ction[6]. Here, the question of the persistence of the bar
tion. In a lower resolution run a symmetry condition Was oy 556 hecomes very important. The detectability of a source

imposed that pr(a_veqted any center of mass motion. ”? thac]epends on its characteristic amplitdmLevh\/ﬁ whereh is
case the star maintained its bar shape throughout the S'mUIﬁ’Te amplitude of the waves with frequentya’nd nis the

tion. . .
. : number of wave cycles in a bandwidth né@r]. Thus, long-
The purpose of the present work is 1o simulate the IOng'duration signals with large can be more easily detected

time evolution of a rapidly rotating, self-gravitating star US-+han short-duration signals.

ing Newtonian hydrodynamics and gravity. As discussed in Should we expect the bar shape to persist or decay? One

Sec. lll, the numerical code is substantially different fromreason why the bar might decay is the loss of mass and
angular momentum from the ends of the bar. The accompa-
nying drop in rotational kinetic energy could reduce the sta-

YFor a brief review, see Ref3]. bility parameter and allow the star to return to axisymmetry.
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Loss of rotational kinetic energy through shock heatingequations of state has been investigated by Houser and Cen-
might also occur. For the simulation presented hgrieas an  trella [9].

initial value of 0.30, large enough to dynamically trigger the  The equations of hydrostatic equilibrium are solved using
growth of the bar mode. During the initial period of bar an algorithm described in the Appendix, in which the freely
formation, mass and angular momentum are shed from thspecifiable data are the central density and the angular
ends of the bar and long, spiral arms are formed. The stabikelocity distributionw(r). Herer is the distance from the

ity parameter rapidly drops below 0.27 and eventually settlesotation axis. With the choices

to a value of about 0.24. However, these losses of mass and

angular momentum, with the accompanying dropginare pc=2.00< 10" g/en, (1a)
insufficient to completely rob the star of its bar shape. & om?
The results here are consistent with the conjecture that the o(r)=(4000/ge " (1/480<10° em* (1b)

star will retain its bar shape indefinitely on a dynamical time _ i ) . .
scale, as long ag stays above the critical value for secular the equilibrium configuration has mass, equatorial radius, po-

instability [8]. If this is correct, the bar should still decay due !2r radius, angular momentum, and stability parameter given
to secular processes. Imamura, Durisen, and Pickett have &Y

gued that the bar continues to shed small amounts of angular M=23M (23

momentum to the spiral arms, and these losses cause the bar ' ©

to decay[8]. Other secular mechanisms, such as energy and R.=491x10 cm (2b)

angular momentum loss through gravitational radiation, e ’

could play a role as well. Rp,=1.11x10° cm, (20)
It is possible that, for the equation of state and angular

velocity profile used here, the star is able to retain its bar J=6.98x 10" gcnt/s, (2d)

shape simply because the critical value@for dynamical

instability is 0.24 or less. This possibility was tested by con- 5=0.300, (20)

ducting a second simulation using the same equation of state

and scaling the angular velocity by a factor of 3/4. The re-respectively. Equation€lb) and (2b) show that the angular
sulting model has an initial value ¢@f equal to 0.25. The bar velocity has values

mode showed no signs of growth in this simulation. Thus,

for the models tested here, the bar mode does not spontane- w(0)=4000/s, w(Rey)=1400/s, (©)]

ously grow unlessB exceeds a critical value greater than

0.25. However, once the bar shape is established, it can pe(?n the rotation axis and at the equator. The azimuthal veloc-
sist for many bar-rotation periods with equal to 0.24 or ity at the equator is 6.8910° cm/s, below the Kepler veloc-
less. ity of 8.90x 10° cm/s. Note that the mag®a) is consider-

In the present numerical calculation there are two source@PlY 1arger than the masses of observed neutron stars, and
of error in angular momentum. First, some of the angu|a'gxceeds the limit for nonrota’glng neutron stars for most equa-
momentum that is lost off the edge of the computational gricions of state. However, as discussed by Baumgarte, Shapiro,
might, ideally, fall back onto the star. Second, numerical@nd Shibata[10], differentially rotating “hypermassive
errors at each time step introduce a purely artificial loss off€utron stars wittM>2Mg, might appear as the immediate

angular momentum. Both of these errors act to decrease tfEOdUCts of core-collapse supernovas or binary neutron star

angular momentum of the star. One expects such losses fBEI9€rs. _ _ _ _

cause the bar shape to deteriorate. What is seen, both in the The rotation law for a uniform density Maclaurin spheroid

gravitational wave analysis and in the Fourier analysis of thé>

density, is a relatively persistent signal with a modest decline . _ 2/

in amp))llitude over th?a/ Iguration of t%]e simulation. Jsf Mem) = (53/2M)[ 1= (1= men/M)*), @
The physical model and initial data that form the basis ofyherej =" is the specific angular momentum amg, is

the simulation are described in Sec. Il. Section Ill contains §he mass enclosed in a cylindrical radius. Many previous

discussion of the numerical code. The results of the simulagorks on the dynamical bar instability have employed this

tion are described qualitatively and quantitatively in Sec. IV.ggme rotation lawsee, for example, Ref§11,12,9,3). For

Conclusions and results are summarized in Sec. V. Details Qfe injtial data code used here the angular velocity is speci-

the initial data code are given in the Appendix. fied as a function of radius, so the rotation law4) cannot

be used directly. However, the rotation ldtb) was chosen

for its similarity to the Maclaurin law, as Fig. 1 shows. In

Fig. 1, the numerical data fgg, andm, are plotted for the
The initial data for the simulation consist of a stationary, rotation law(1b), along with the Maclaurin rotation la).

axisymmetric Newtonian fluid star with polytropic equation For clarity, only one in five numerical data points is shown.

of state,P=Kp?”. The equation of state parameters are cho-The data and the rotation lai#) agree on the value gfto

sen to coincide roughly with those of a low-density neutronwithin 2% throughout most of the star, out to aboog,/M

star with soft equation of statey=5/3 and K=5.38 =0.8. At the surface of the star, the rotation l&lb) differs

X 10° cgs [2]. The bar instability in stellar cores with stiff from the Maclaurin rotation law by about 8%.

Il. PHYSICAL MODEL
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2.5 T T T T nuclear density by centrifugal forcefNote that with this
scaling Newton’s constant is unchanged. Also note that the
o L ol speed of light should not be scaled, since it does not appear
in the Newtonian hydrodynamical equations or the Poisson
g equation. The scaling reduces the maximum speed by a
= 1.5 7] factor of 2 and reduces the gravitational potential by a factor
~ of 4. For this model, special and general relativistic effects
a 1 - represent corrections of about 2% and 8%, respectively.
=
05 7 IIl. NUMERICAL CODE
0 1 ] ] | The axisymmetric initial data were calculated on a grid in
0 0.2 0.4 0.6 0.8 1 ther-z plane consisting of 512511 zones. Details and tests
e (]\/[) of the initial data code are contained in the Appendix. In

preparation for the evolution of this data, the grid was chosen
. . 7 . .

FIG. 1. The specific angular momentuiny, in units of J/M, to Cover7a phyS'Cal d_oma,m of 1.X70°cm in radius and
versus the mass,, enclosed in a cylindrical radius, in units bf. _2'50X 10°cm 'n_ thez d'reCt'or_]' Thus the star \_Nas contained
Both the numerical dat&crossesx) and the Maclaurin rotation law 1N @ small region of the grid, roughly the inner 1425
(solid curve are shown. zones. The quality of the data can be checked with the diag-

nostic expressiow= (2T+W+3fP dV)/W, whereT is ki-

The dimensionful model described here can be rescale@etic energyW is gravitational potential energy, agd® dV
by introducing parametets, ., and = that scale the lengths, IS the_ volumg mtegrgl of pressure. According to the v;nal
masses, and times. To be precise, a quaityith dimen-  equations, this quantity should vanish13]. For the numeri-
sions[Q]=LAMBTC, whereL is length,M is mass, and’ is  cally generated model, this diagnostic has a valueVof
time, is rescaled according tQe,=Qua/ (N uB76). A =3.2x107°. o _ _ _
physical, dimensionful model is retained if the parameters At the beginning of the evolution, the density and velocity
are dimensionless and Newton’s const@ris unchanged by are interpolated onto a three-dimensional Cartesian grid. The
the rescaling. This requires u, and 7 to satisfy\= u72. grid contains 128 zones and covers a cubic domain with
Alternatively, the model can be converted to polytropic unitssides of length 2.58 10" cm. The equatorial radius of the
[12] in which G=K=M=1 by setting\ =4.81x 10° cm, star spans 25 zones, while the polar radius spans 6 zones.

w=4.71x10%g, andr=1.88<10"°s. This leads to The density in each zone is modified with a random pertur-
bation ranging from—10% to +10% of the unperturbed
pe=4.73x103, (58  value. Initially, the specific internal energy is obtained
from the density by the relatioa=Kp?~%/(y—1). There-
Req=10.2, (5b)  after, the star is evolved with the equation of state
_ -2
w(0)=7.53x10" 4, (50 P=(y—1)pe, (6)
for the central density, equatorial radius, and central angular
velocity. with y=5/3.
For the model with the scaling displayed in E¢s) and The evolution code includes the nonrelativistic hydrody-

(2), the maximum flow velocity is 8:210°cm/s. This namics codesH-1, written by Blondin, Hawley, Lindahl, and
occurs at a distance of 3«10° cm from the rotation axis. Lufkin. vH-1 is based on the piecewise-parabolic method
At this peak velocity, the special relativistic gamma factor(PPM) as described by Colella and Woodwat4]. The
(1—v%/c?) "2 wherec is the speed of light, differs from PPM scheme is a higher-order extension of Godunov's
unity by about 4%. General relativistic effects should bemethod[15]. It uses parabolas as interpolation functions
greatest near the surface of the star at the poles, where tlhndthin each zone and characteristics to determine the do-
gravitational potential is approximatelyGM/R,=2.8  mains of dependence for zone interfaces. The average values
X 10?%cn?/s?>. Comparing this result witte?, we find that  of density, pressure, and velocity within these domains are
general relativistic effects represent a correction of roughlyused as inputs to the Riemann problem between adjacent
30% at the poles. Thus, with the scaling used in Efjsand  zones. The solution of the Riemann problem determines
(2), the errors that we introduce by ignoring special and gentime-averaged values of pressure and velocity, which in turn
eral relativity are substantial. are used to compute hydrodynamical fluxesvhyl, each

The errors are reduced if the model is rescaled appropritime step is reduced to three one-dimensional evolutionary
ately. For example, with =1/2, u=2, andr=1/4, the mass “sweeps” via operator splitting. For each one-dimensional
of the star is cut in half, its linear size is increased by a factosweep, the fluid variables are evolved in Lagrangian coordi-
of 2, and its angular velocity is decreased by a factor of 4. Imates and then remapped onto the original Eulerian grid.
this case the model might represent a stellar core that hakhe order of the sweeps is cycled through all possible
partially collapsed, but is prevented from contracting topermutations.
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For the simulation presented here, | used a “Courant 20 I I T
number” of 0.3. That is, the time step was set to 0.3 times -
the maximum allowed by the Courent-Friedricks-Lewey i
(CFL) condition. This is a relatively small time step fora — 10 - ! N TS T T
PPM code. It was chosen to help minimize the artificial loss &5 5 : |
of angular momentum, discussed below. @ : {i

The Poisson equation for the gravitational potential is % L o I'l;

— 1
B !
b
!

solved using multigrid method46]. The finest grid has size
129, with grid points that lie at the corners of the £28

hydrodynamical zones. The boundary conditions are com- 10 E i
puted from a multipole expansion of the potential that in- ' '
cludes monopole, dipole, quadrupole, and octupole terms. 220 1 ] 1
The PPM method is designed to evolve the fluid mass 0 0.25 0.5 0.75 1

density p, linear momentum density, and total energy den-
sity, and in the process to conserve the mass, linear momen-
tum, and total energy of the system. Unfortunately, for such FIG. 2. Logarithm of pressure for the strong standing shock test.
a rapidly rotating star, the total energy dendfyis domi-  The curves were obtained from the hybrid cadelid line), total
nated by kinetic energy densiky. This is a problem because energy codddashed ling and internal energy codelotted ling.

the internal energy densifye=E—K is needed for the cal-

culation of pressure from the equation of stk Sincepe  ghoy the pressure and density after 250 time steps. The CFL
is a difference of large numbers, it is subject to large numeri¢ongition for this simulation is determined by the upstream

cal errors. As long as the fluid flow is smooth, one can 5°|V"7‘s/elocity so the upstream fluid travels a distance~&f.006
this problem by modifying the code so that internal energy;, each’time step.

rather than total energy, is evolved. However, this modifica- Figure 2 shows that the total energy code produces ex-

tion of the PPM algorithm leads to the wrong jump condi- yremely large errors in the upstream pressure. As expected,
tions at shock fronts. Thus, for the present simulation, aCOMEjgs. 2 and 3 show that the results from the internal energy
promise was struck: in regions of smooth flow the codeqge are quite poor. Altogether, the hybrid code is the most
evolves internal energy, and in the neighborhood of shockgccessful at maintaining the proper pressure and density
the code evolves total energy. Similar schemes have begliofiles. For this extreme test, the largest errors from the
described in Refd17,18, ) i . hybrid code appear in the downstream fluid where the den-
VH-1 uses the shock flattening algorithm described bysiyy, and pressure differ from their ideal values by at most
Colella and Woodwari14] as a dissipation mechanism. The 110, and 1.6%, respectively. The hybrid code also lost about

algorithm determines a “flattening coefficient” for each 5 704 of the total energy during the 250-time-step simulation.
computational zone, which ranges from 0 for smooth flow to  gacause the present code conserves linear momentum
a maximum of 0.5 in the presence of a strong shock. Thenere js no erroneous center of mass motion due to numerical
flattening coefficient is also used to determine whether interg rors. On the other hand. the code does not conserve angular
nal energy or total energy is used to update the fluid variy,omentum. This is a fairly serious problem because the an-
ables in each zone. Thus internal energy is used when  g,jar motion of the star is the central effect we wish to study.
less than some threshold valfig while total energy is used The amount of angular momentum that is lost, or gained,

for f>f,. In practice, the performance of the code wasinrough numerical error is found by computing the total an-
found to be insensitive to the value of the threshfld for

values ranging from 0.1 to 0.5.

T

The ability of this “hybrid” code to switch from internal 10 T | |
energy to total energy at shock fronts was demonstrated on ¢ [ 3
variety of one-dimensional test problems. These include the 8 -

standard Sod shock tube problem with density and pressure
ratios of up to 1. 10°, and strong standing shocks. Figures
2 and 3 show the results of the most extreme test, a standin¢
shock wave with an upstream Mach number of X10P.
Results are shown for the hybrid code, a total energy code™
(which evolves total energy exclusivghand an internal en-
ergy code(which evolves internal energy exclusivehhe
simulations use 100 zones to cover the computational do-
main 0<x=<1 and a Courant number of 0.6. The upstream 0 ] ] ]
fluid, in the region 0.5:x=<1, has densityp=1.0, pressure 0 0.25 0.5 0.75 1
P=1.0, and velocityu= — 1.3x 1¢%. The downstream fluid,
in the region G=x<0.5, has densityp=4, pressureP
=1.25<10'%, and velocityu= —3.2x10". Ideally the dis- FIG. 3. Density for the strong standing shock test. The curves
continuities should be maintainedyat 0.5. Figures 2 and 3 are obtained from the three codes, as in Fig. 2.

density
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gular momentum on the gridlyq, and correcting for the sible to assume that the errors obtained by equatjpgnd
amount of angular momentum that is lést gained through (ZG/RC“)P!(j'i'-k, are also small.

the grid boundaries],,s;. The angular momentum passing  The frequency spectrum for the gravitational-wave signal
through the grid boundaries is obtained by computing thés computed with the Lomb normalized periodogrén6.
angular momentum that moves off the Eulerian grid duringThis method was chosen for its ability to handle the un-
each Lagrangian time step. Ideally, the sum of the angulagvenly sampled data. In the Newtonian-quadrupole approxi-
momentum on the grid and the angular momentum losmation, the gravitational-wave luminosity is given hy

through the boundarieggq+ Jiost, Should be constant. As :G_]'_'ij_i'_'ij/(SCS), and the radiated energyE is the time

seen in the next section, over the course of the simulatiomtegm of L [19]. The calculation of the time derivative

1 0, ’ "
.(8000 time stepsabout 8% O.f the star's angular momentum +,;=d+;; /dt must be handled with care since, otherwise,
is lost through the boundaries. During this same time, the " J L . ; .
-even small errors ih will accumulate in the integration over
total angular momentum drops by nearly 25%. Thus UM e, For this calculation, | use a Savitzky-Golay approach
cal errors account for a drop of about 17% in the angular =~ ' y y app

momentum of the star. [16]. Specifically, the time derivative of the functidhj in

In the Newtonian-quadrupole approximation, the gravita-eaCh tim_e interyal is cqmputed from the slope of a quadratic
tional wave signah;; is formed from linear combinations of polynomial that is obtained from a least-squares fit to several

ij . . . .
components of the second time derivative of the reduce§€arest neighbor data points. The number of points used is

P . - typically between 10 and 20.
quadrupole  moment +;;. The relationship is h;; The evolution code was run on a Cray T90 vector com-

_ 4y pkl ¥ Kl T . L S

=(2G/Rc")Pjj+yq, wherePyj is the projection operator for ,ter, while the initial data, gravitational wave spectrum, and
transverse directions arRlis the distance from the source to gravitational wave luminosity were computed on local work-
the observation poinftl9]. Using the hydrodynamical equa- stations. The evolution required 8000 time steps and about
tions, the time derivatives that appear #f can be elimi- 45 CPU hours.

nated[20] so that, to within boundary terms, we have

IV. DESCRIPTION OF THE EVOLUTION

4'-” =STF| d3 2plvjv;—X;9;P]. (7) The star retains its predominantly circular, disklike shape
for about 10 ms, which amounts to approximately six rota-
tion periods for the fluid near the center of the star. Over the

Here “STF” stands for the symmetric, trace-free part of thenext few milliseconds, the bar mode grows rapidly, so that
expression that followsy; is the fluid velocity,a,=a/dx; is ~ PY 13 ms the star is highly elongated as shown in Fig. 4.
a spatial derivative, an® is the gravitational potential. After a few more milliseconds the central regions of the star

The gravitational-wave signal is computed numerically byrecwcularlze, a_md by 16 ms the inner dgnsny contours have
using expressioi7) for 4-_” . This calculation is subject to nearly lost their bar shape as seen in Fig. 5. The cycle of bar

errors due to the finite size of the computational grid. Recalrormat'on and recwculanzgtlon repeats; by 19'ms.the star
that during the course of the simulation, matter is expelleoagf”lln shows a strong _barhke shape, as_sh(_)wn in Fig. 6. The
from the star. Some of this matter, a total of 0.DAS epls_o_des_ of bar f(_)rmat|on and re_C|rcuIar|zat|0n continue vy|th

; Y ’ Hlmlmshmg amplitude and a period of about 6.5 ms. During
passes through the grid boundaries. As a consequence, the : .

] T PRI ] edch episode, the bar undergoes a little more than 1.5 revo-
relationshiph;; = (2G/Rc”) Pij+, is not correct, even in the  |,tions, Near the end of the simulation, at a time-060 ms,
Newtonian-quadrupole approximation, because the lost mathe oscillations become quite weak and the star settles into a
ter is not included in the calculation &f; . A second source
of error stems from the fact that boundary terms were dis-
carded in the derivation of Eq7). These boundary terms -1x107
would vanish if the density were always zero on the grid
boundary. Fortunately, the matter that reaches the boundary
has relatively low density and the errors that arise from the
missing boundary terms in E¢7) are small. This has been
verified by comparing the results from E) with the re-
sults obtained by computing numerically the second time
derivative of the reduced quadrupole moment. The numerical
derivatives were obtained by performing a least-squares fit to
a quadratic using five or seven consecutive data points. The 1x107
second derivative at the central time is found from the cur- I , ,
vature of the quadratic. This calculation is subject to a cer- -1x107 0 1x107
tain amount of numerical noise, but otherwise the results
agree quite closely with those obtained from Ef. Since X (em)
the matter that passes through the grid boundaries does not g 4. contour plot of the density in the equatol@s+Y) plane

greatly effect the calculation dFij with Eq. (7), it is plau-  at 13.58 ms. The contour levels are'4010'%, and 18*g/cnt.

Y (cm)
o
|
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7 7 -
-1x10 -1x10
AN

£ 0 - £ 0 A w

gl gl

1x107 1x107
T T T T T T
-1x107 0 1x107 -1x107 0 1x107
X (cm) X (cm)
FIG. 5. Density contours as in Fig. 4, at 16.58 ms. FIG. 7. Density contours as in Fig. 4, at the end of the simula-

tion (52.57 ms.

bar-shaped configuration of modest strength. See Fig. 7.
During the initial episode of rapid bar formation, matter is
thrown outward from the ends of the bar. The ejected matte
forms long spiral arms, clearly visible in Figs. 4 and 5. Some 1 (o
of this matter is lost off the edge of the computational grid— Am+iBm:_f de p(@)em?, ®)
between 14 and 20 ms the mass loss totals W40 The 2m Jo
subsequent episodes of bar formation are less violent, with
only small amounts of ejected mass reaching the grid boundyherep(¢) is the density in the equatorial plane at an arbi-
aries. The mass loss between 20 ms and the end of the simuarily chosen distance of 2:010° cm from the center of the
lation amounts to 0.008, . star. Herep is the azimuthal angle. The amplitude of tin¢h
When the star assumes its bar shape, the individual paFourier mode is defined bg,,= JAZ+B2, and the phase
ticles in the inner regions of the star circulate along trajectoangle is ¢,,=arctanB,,/A,). Figure 8 shows the natural
ries that roughly coincide with the constant density contourslogarithm of the ratio of the amplitud€,, and the average
For example, at the time shown in Fig. 4, 13.58 ms, the badensityC, for them=2 bar mode and themm=4 mode. The
is rotating about the center of mass with a period of approxiim=3 mode is small and is not displayed in Fig. 8. The
mately 4 ms. Individual particles flow along the't@/cn®  coefficientC5/C, remains less than 0.01 through most of the
density contour with fairly uniform speeds ranging from evolution, reaching peak values of 0.02 in the late stages.
about 6.5¢10°cm/s to about 7.510°cm/s. The density The periodic growth and decay of the bar shape is clearly
contour at 18*g/cn® has a perimeter length of approxi- Seen in the peaks and valleys of the graph in Fig. 8. The
mately 1.7< 107 cm. Thus the particles orbit along this con- @mplitudes grow exponentially for several milliseconds dur-
tour with period~2.5 ms as the contour precesses about thé"d the initial episode of bar formation. For the=2 bar
star's center with period-4 ms. mode, the growth rate near 10 msdsn C,/dt~=820/s. For

The shape of the star can be quantified by Fourier analyz-

ing the density in a circle in the equatorial pldi2d,12. The
Ir:ourier coefficients are defined by

| |
Cs/Ch

-1x107 7

Y (cm)
(]
|

In(fourier amplitude)
&S e

-10 -
1x107 o \ 7 I | I I I
T T T 0 10 20 30 40 50
-1x107 0 1x107 time (ms)
X (em) ] )
FIG. 8. Natural logarithm of the ratio€,/Cy and C,/C, of
FIG. 6. Density contours as in Fig. 4, at 19.48 ms. Fourier amplitudes.
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phase angle
stability parameter
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FIG. 9. Phase of then=2 andm=4 Fourier modes. FIG. 10. The stability parameteg as a function of time.

the m=4 mode, the growth rate id InC,/dt~1400/s. In in Eq. (1) so that the central value of angular velocity is
polytropic units ¢=1.88x 10" °s), the growth rates for the 3000/s rather than 4000/s. The parameters describing this

m=2 andm=4 modes are 0.015 and 0.026, respectivelymodel are
Form=2, this value differs by a few percent from the result

0.0145 reported in Ref5]. In units of the “dynamical time” M=13Mg, (93
to=[R3{/(GM)]*2, where Ry, is the initial equatorial ra-

dius, the growth rates are 0.5¢/and 0.86f, for the m=2 Req=5.88X 10° cm, (9b)
and m=4 modes. Comparing these results to the values

0.55tp and 1.1t obtained from the highest resolution run Rp=1.40<10° cm, (90)

in Ref. [3], we find a fairly large discrepancy in the=4
case. This difference might be caused by numerical errors in
the present code associated with the cartesian grid.
Near the end of the simulation, the oscillations in the
Fourier amplitudes have subsided and the star settles into a B=0.253, (9¢)
bar shape with strengt®,/C,~0.18. The downward drift in
C,/Cy, visible in Fig. 8, is possibly due to numerical error so, in particular, the stability parameter is between 0.24 and
as discussed below. 0.27. This model was evolved for approximately 23 ms,
The phase angles for thm=2 and m=4 modes are which equals about 11 rotation periods for the fluid near the
shown in Fig. 9. The eigenfrequencies amp,/dt  center of the star. During this time, the=2 bar mode
=3.24/ms and d¢,/dt=6.52/ms. The pattern speeds showed no signs of growth. We are thus led to conclude that
m~d¢y,/dt [12] are 1.62/ms for them=2 mode and for a y=5/3 fluid star with rotation law of the type consid-
1.63/ms for them=4 mode. These speeds, which equalered here, the dynamical=2 bar mode will not spontane-
0.99fp and 1.0fp in dynamical time units, agree with the ously grow unlesg exceeds a critical value near 0.27; how-
results obtained in Reff5,3] to within 1%. The approximate ever, once a bar shape is established, it can persist for many
equality of the pattern speeds shows thatrthhe4 mode is a  rotation periods with3=0.24 or less.
harmonic of them=2 bar mode. As discussed in the previous section, the numerical code
The stability parametep undergoes fluctuations, drop- does not conserve angular momentum. In Fig. 11, the total
ping to a local minimum when the bar amplitu@g/Cyisa  angular momentum on the gridy,4, is plotted as a function
local maximum and rising to a local maximum when the barof time along with the difference between the initial angular
amplitude is a local minimum. This behavior is shown in momentumJ,=6.98x 10°°g cnf/s and the angular momen-
Fig. 10. As the fluctuations diminisif settles to a value of tum Jy that flows off the edge of the numerical grid. Ide-
~0.24 with a slight downward drift. Note that this value®f ally, these two curves should coincide; the fact thgy, falls
is well below the critical value 0.27 for the growth of the bar below Jy— J).; indicates that numerical errors artificially re-
mode in a constant density star. move angular momentum from the system. The results for
The fact that the bar shape persists wghbelow 0.27  J,; were checked by computing the angular momentum flux
might indicate that the threshold for bar formation inya from each of the saved data sets, which were generated every
=5/3 star with rotation law given by E¢lb) is actually 0.24 50 time steps. The numerically computed time derivative of
or less. This possibility was tested by evolving a second),; is in very close agreement with the angular momentum
model star, obtained by modifying the freely specifiable datélux.

J=2.90x 10*g cntls, (9d)
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time (ms) FIG. 12. The gravitational-wave amplitudhe. (eq) measured at
an observation point in the equatorial plane of the source at a dis-
FIG. 11. The angular momentum on the gritj,;q, and the tance of 20 Mpc.
differenceJy— Jjost between the initial angular momentum and the

angular momentum lost at the boundaries of the grid. cross polarization amplituda, (eq), is a linear combination

f the components-,, and +,,. Since the star is approxi-

| have not yet determined the source of the numerica ately symmetric under reflections in the equatorial plane,

errors in angular momentum. Note, however, that the errorg (eq) as measured in the equatorial plane is nearly zero
are not significant until the star begins to develop a notice- * : . :
able bar sghape at about 10 ms. T?]is SUGQESts tEat the co%e For an obsgrva}tlon pOIm aboye the north pole of the star,
has difficulty tracking the leading and trailing edges of the € plus polarization amplitude is
bar-shaped star, with their sharp density gradients, as the bar
rotates in thex-y plane. _ 2 . ir? "

Since numerical errors cause angular momentum to be g N+(P)=(2cos =)t +(2siTe— 1)ty
lost, it is plausible to expect that rotational kinetic energy is )
artificially lost as well. This might account for the downward +4 cosp sinpt,, . (11
drift in the stability parameter at late times, as seen in Fig.
10. In turn, one might expect a drop in the stability parameter_. L . S
to cause the star'g bar ghape to gecay Figure )épshows th§{nce the star is highly flattened and has little motion in the
the Fourier amplitud€,, is fairly robust at late times with a zdlirection, thezzcomponent of the"secc.)nd time derivative of
slight downward trend on average. If angular momentunthe unreducedquadrupole moment,,,, is very small. Fur-
were not artificially lost, the simulation might show that after thermore, because the shape of the bar does not evolve rap-
the fluctuations cease the bar shape remains unchanged offlfy compared to its rotation rate, thexandyy components

dynamical time scale. satisfy I x,+1,,~0. These observations impHy,,~—+,,.
As a consequence, we see from E¢E0) and (11) tha
V. GRAVITATIONAL WAVES h.(p)=~2h,(eq). This is confirmed by the results of the

simulation. As expected, the amplitublg (p) is almost iden-
In the Newtonian-quadrupole approximation, the gravita-ical to h, (p), just phase shifted by 45°.

tional wave amplitude for the plus polarization stdtie,, as Although the reliability of the results for the gravitational-
measured at a distand® in the equatorial plane of the wave signal is rather poor, due both to the crudeness of the
source, is physical model and to numerical errors, it is still of some
interest to consider the detectability of these waves. Thus,
c’R . ) N consider the characteristic amplitude of the source, approxi-
5 Ne(ed=(cos o= 2)Fyt (i o= 2)Hy, mated by[7]
+2 cosp singt,y. (10)

3GAE |2
L . . °%(2772c3f RZ) (12
Here, t;; is the second time derivative of the reduced quad- ¢
rupole moment ana is the azimuthal angle of the observa-
tion point relative to the(arbitrary x axis of the source. Here AE is the total energy radiated in gravitational waves
Figure 12 shows the results for, with R=20Mpc ande andf is the characteristic frequency. The gravitational-wave
=m/2. (Recent estimates indicate that the distance to thérequency is sharply peaked about 490 Hz, as shown in

Virgo cluster is~20.9 Mpc[22].) In the equatorial plane, the Fig. 13. The total energy radiated in gravitational waves, as
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1200 T T r T I established, is relatively long lived. Over the final 10 or 20
ms of the simulation, the star maintains a modest but fairly
1000 F - persistent bar shape with stability paramegexqual to about
0.24. It is possible that, foy=5/3 stars with certain initial
800 - angular velocity profiles, the threshold for bar formation is
o) actually 0.24 or less. However, further numerical study
% 600 7 showed that an axisymmetric star wig=0.25 initially is
= stable against growth of the bar mode. Thus, for the models
400 - 7] considered here, the dynamical bar mode requires a value of
B near 0.27 to grow but the bar shape can persist for many
200 [ n bar-rotation periods witl8=0.24 or less. Imamura, Durisen,
| [ I and Pickett suggest that as long Asis greater than the

%00 300 400 500 600 700 800 critical value for growth of the secular instability, about 0.14,
a bar-shaped star is dynamically stable against forming an
axisymmetric disk8]. The results here are consistent with
- this conjecture. Recent numerical studies by New, Centrella,
Uttt the Lot mormired poriodoaram o &Y% €M and Tohiine(3] also indicate that the bar shape is long lived.
The strength of the gravitational-wave signal emitted by
an initially axisymmetric, dynamically unstable star depends
computed in the Newtonian-quadrupole approximation up ten the rotating star's length and time scales. With the nu-
the time the simulation was halted, AE~5x10 *“Moc?.  merical model scaled to represent a low-density neutron star
From these data we find the characteristic amplitude of thevith soft equation of state, the characteristic amplitude
source to ben,~4x10 % at a distance of 20 Mpc. This is h,~4x10 % at a distance of 20 Mpc. With the mo-
value forh, is a lower bound, since the radiated enefgy  del scaled to represent a stellar core that has partially col-
will continue to increase as long as the bar persists. Alsdapsed and is prevented from contracting to nuclear densities
note that the resulh,~h\n~4x10"?? coincides roughly by centrifugal forces, the characteristic amplitude hig
with n~25 wave cycles with amplitude~0.08x10 2. ~5x10"**at 20 Mpc. These signals are probably too weak
This is consistent with the signal displayed in Fig. 12. to be detected by the first generation of interferometers, al-

The signah,~4x 102 is probably too weak to be seen though the neutron_ star signal might be Qetectable by the
by the first generation of interferometric gravitational-wavePlanned advanced interferometers. At a distance of 25 kpc,
detectors, which should have a sensitivity of about 2Gat both_S|gnaIs arelqu[te large and should be detected easily by
500 Hz[6,23]. The signal might be detectable by the plannedtn€ first generation interferometers.
advanced detectors, which are expected to have a sensitivity
below 10 2% at 500 Hz[6,23]. For a source at a distance of ACKNOWLEDGMENTS
~25 kpc, comparable to the diameter of the Milky Way gal-
axy, the characteristic amplitude lig~3x 10" %°. This is a
relatively large signal that should be detected easily by th
first generation of interferometers.

If the simulation is scaled as described in Sec. Il, the
amplitude as measured at a fixédnscaled distance R APPENDIX
changes by a factor of?/(u\?2) and the frequency changes
by a factor of . For example, withh=1/2, u=2, and 7
=1/4, the amplitudén, (eq) atR=20 Mpc is reduced from

that shown in Fig. 12 by a factor of 8. The CharaCte”St'Crefined by Hachisy25]. The self-consistent field method is

amplitude h, is also reduced by a factor of 8, to about based on the inte : -
s gral form of the Euler equation which reads,
5X 10" < at 20 Mpc, and the peak frequency occurs-420 for the equation of stat®=K p? [24,25:

Hz. This signal is somewhat below the expected sensitivity
of the advanced gravitational-wave detectors, which is ap-

frequency (1/s)

| would like to thank John Blondin for helpful discus-
ions. Numerical calculations were carried out on the Cray
90 at the North Carolina Supercomputing Center.

The technique used in this work to solve the equations of
hydrostatic equilibrium is similar to the self-consistent field
method, first developed by Ostriker and M4gd] and later

. . K
proximately 10?2 at 120 Hz[6,23). At a distance of 25 kpc, Y P’ LW+ d=C. (A1)
the characteristic amplitude is almosk40~2°, well above y—1
the expected sensitivity of-4x 102! for the first genera- _ _ . _ _
tion detectors. In this equationV = — [dr r »* is the “rotational potential”

derived from the angular velocity(r), ® is the gravita-
tional potential, ancC is an integration constant. In the self-
consistent field method, one begins with an initial guess for
the densityp, solves the Poisson equation fdy, and then
The simulation presented here shows that a rapidly rotatises Eq(Al) to obtain a corrected density distribution. The
ing y=5/3 fluid star with rotation law Eq(lb) is dynami-  process is then iterated. Typically, the Poisson equation is
cally unstable to bar formation and that the bar shape, oncgolved by expanding the potentidl in terms of Legendre

VI. CONCLUSIONS
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TABLE I. Comparison of results obtained from the initial data code described h&€eB) and Hachisu's
self-consistent field method code.

Test R, M J T -W 31 P max %

JDB. r 0.6667 0.3288 0.02575 0.006641 0.1164 0.1031 0.2044 x108*
Hachisu r 0.667 0.328 0.0257 0.00663 0.116 0.103 0.204

JDB. v 0.3332 0.6413 0.1378 0.06392 0.3733 0.2454 0.2020 x&07°
Hachisu v 0.333 0.639 0.137 0.0638 0.372 0.244 0.202
JD.B. | 0.1662 0.8419 0.1036 0.04559 0.5982 0.5070 0.3272 x106°
Hachisu | 0.167 0.843 0.104 0.456 0.599 0.508 0.327

polynomials, and the consta@ appearing in Eq(Al) is  can be ignored in computingF. However, this same as-
determined by specifying certain properties at the star’s sursumption is implicit in the usual self-consistent field method.
face. For example, Hachisu fixes the “axis rati®,/Req ~ AS described in Refg[24,25, for the self-consistent field
[25]. method the density is updated by solving E41) for p,

For the method used in this paper, the constiis de-  ignoring thep dependence i. That is, the change ip is

termined by properties at the center of the star. The rotational _ U(y—1)

i \ ; y—1
potential is chosen to vanish at the star's cerie¢p) =0, Sp=|——(C—D®—-V) -p, (A5)
and the constant is written as AN

where @ is the solution of the Poisson equation. Formula
(A5) can be justified by the same reasoning that led to
Eq. (A4), but with the following difference: enthalpid
=1yKp» Y (y—1), rather than density, is treated as the
independent variable. The variation Bfwith respect toH,

C=1yKp? '+ d,. (A2)

Here the subscript denotes the center of the star. The cen-
tral densityp,.. is specified as input data, along with the ro-

tation law w(r). The initial guess forp is chosen to be a . : . .
static, spherically symmetric polytrope with central dens;ityIgnorlng the ® dependence orH, is 5':%.5'?" _Settlng
pc, obtained by solving numerically the Lane-Emden equa—FJ”SF:O Iegds FO a new enthalpy d|str|bpt|ohlnew
tion. The potentiatb and its central value are obtained from _ H=F. Solv_lng this equatlon for the new densiiy,,, we

the Poisson equation using a multigrid algorithm, as disfind the density correctiodp=ppey—p of Eq. (AS). .
cussed below. Note that with this scheme the center of the 11€ initial data code solves the equations of hydrostatic

star must have nonzero density. This precludes the possibifduilibrium at the zone centers of a 54313 grid in ther-z
ity of generating stars with toroidal surfaces. plane of a cylindrical coordinate system. The symmetry axis

Equation(Al) can be written a§ =0 where the function coincides with the edge of the first column of zones. The
F is defined by density p is computed on the inner 5X511 zones. One

layer of zones at the top, bottom, and side opposite the sym-
Ko metry axis are reserved for setting boundary conditions for
y_lpy +¥+P-C (A3)  the gravitational potentiadb. The boundary values are ob-

tained by expanding the potential in a multipole series that

and the constart is given by Eq.(A2). The corrections to includes monopole and quadrupole terr(iBhe dipole and
the density are obtained from a Newton-Raphson algorithnctupole moments vanish due to rotational symmetry and
applied toF=0. Note thatF(x) is a nonlocal function of reflection symmery about the equatorial plarighe Poisson
p(X), wherex labels points in space. The nonlocal depen_equatlon is sol\_/ed vy|th a multigrid algorithm, adapted from
dence ofF(x) on p(x) enters through the gravitational po- the code described in Rdfl6] to handle the boundary con-

tential ®(x). One might expect that the value &f at the  ditions and the cylindrical geometry.
point x is insensitive to the density(x) at the same point, The initial _data described in Sec. I Was_gene_rated by a
since the potentialp is determined primarily by the global code that relies Qn.the l_\lewton-Raphson iteration scheme
properties of the star, such as its mass. With this observatioff*4) and the multigrid Poisson solver described above. The
in mind, we compute the variation & at pointx with re- results of threg tests of this codlaD.B.) are shown in Table
spect top at pointx by dropping the nonlocal terms. This - For comparison, the results obtained by Hachigg] are
leads to the approximate resdlE~ yKp?~25p. Then set- also listed. The values reported in the table are scaled as in
ting F+ 8F =0, we find the density correction Hachisu’s self-consistent field method, with Newton’s con-
stantG, the equatorial radiuR.y, and the maximum density

F

1, 1 Pmax €qual to unity. Carets denote these scaled quantities.
op= JKP N(C-D W)~ =1 (Ad)  Also, IT denotes the volume integral of pressuf@, dV.
The “r” test assumes a rigid rotation lawy(r)= wg,
to be used for each Newton-Raphson iteration. with the scaled angular velocity given kiy;=0.266. The

| have not constructed a mathematical argument to justify’ v test assumes the ¢-constant” rotation law, w(r)
the above assumption, namely, that the nonlocal ternfs in =y ,/\/d?+r2, with 6(2):0.215 andd=0.100. The |” test
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assumes the j“constant” rotation laww(r)=jq/(d?+r?), Eqg. (A4) is no better, in terms of accuracy and convergence

with j2=0.0176 andd=0.100. For each testy="5/3. For  rate, than the usual self-consistent field method up@he.

Hachisu’s data the virial theorem diagnosticis typically ~ After 30 Newton-Raphson iterations, the results obtained

less than a few times 10 [25]. The test results show that from the two update formulas agree to a few parts in% Gt

the present code and Hachisu’s code differ by less than 1@orst. For both update formulas, the err¢as compared to

in every case. the 30-iteration resuliswvere at most a few tenths of a per-
Subsequent testing has shown that the density update irent after 10 iterations.
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