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Cosmological dynamics on the brane
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~Received 25 April 2000; published 25 September 2000!

In Randall-Sundrum-type brane-world cosmologies, the dynamical equations on the three-brane differ from
the general relativity equations by terms that carry the effects of embedding and of the free gravitational field
in the five-dimensional bulk. Instead of starting from an ansatz for the metric, we derive the covariant nonlinear
dynamical equations for the gravitational and matter fields on the brane, and then linearize to find the pertur-
bation equations on the brane. The local energy-momentum corrections are significant only at very high
energies. The imprint on the brane of the nonlocal gravitational field in the bulk is more subtle, and we provide
a careful decomposition of this effect into nonlocal energy density, flux and anisotropic stress. The nonlocal
energy density determines the tidal acceleration in the off-brane direction, and can oppose singularity forma-
tion via the generalized Raychaudhuri equation. Unlike the nonlocal energy density and flux, the nonlocal
anisotropic stress is not determined by an evolution equation on the brane, reflecting the fact that brane
observers cannot in general make predictions from initial data. In particular, isotropy of the cosmic microwave
background may no longer guarantee a Friedmann geometry. Adiabatic density perturbations are coupled to
perturbations in the nonlocal bulk field, and in general the system is not closed on the brane. But on super-
Hubble scales, density perturbations satisfy a decoupled third-order equation, and can be evaluated by brane
observers. Tensor perturbations on the brane are suppressed by local bulk effects during inflation, while
nonlocal effects can serve as a source or a sink. Vorticity on the brane decays as in general relativity, but
nonlocal bulk effects can source the gravito-magnetic field, so that vector perturbations can be generated in the
absence of vorticity.

PACS number~s!: 04.50.1h, 98.80.Cq
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I. INTRODUCTION

Einstein’s theory of general relativity breaks down at hi
enough energies, and is likely to be the limit of a more g
eral theory. Recent developments in string theory indic
that gravity may be a truly higher-dimensional theory, b
coming effectively 4-dimensional at lower energies. The
exciting theoretical developments need to be accompa
by efforts to test such higher-dimensional theories aga
their cosmological and astrophysical implications. In th
spirit, we investigate here a particular class of models, sh
ing how their dynamical properties generalize those of E
stein’s theory, and discussing the broad implications of th
generalizations for cosmological dynamics.

In many higher-dimensional gravity theories inspired
string theory, the matter fields are confined to a 3-brane
1131d dimensions, while the gravitational field can prop
gate also in thed extra dimensions~see, e.g.,@1#!. It is not
necessary for thed extra dimensions to be small, or eve
finite: recently Randall and Sundrum@2# have shown that for
d51, gravity can be localized on a single 3-brane even w
the fifth dimension is infinite~see also@3#!. An elegant geo-
metric formulation and generalization of the Randa
Sundrum scenario has been given by Shiromizu, Maeda
Sasaki@4#. The Friedmann equation on the brane in the
models is modified by both high-energy matter terms an
term carrying nonlocal bulk effects onto the brane. T
Friedmann brane models have been extensively investig
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~see, e.g.,@5–7#!, and inflationary scalar perturbations
these models have also been considered@8#. The models are
compatible with observations subject to reasonable c
straints on the parameters. A broader study of cosmolog
dynamics, i.e., for induced metrics more general than
simple Friedmann case, has not been done. In particular
analysis of perturbed Friedmann models also remains to
done.~Considerable work has been done on perturbation
flat brane metrics; see, e.g.,@2,9,10#.!

In this paper, we initiate a study of nonlinear and pe
turbed cosmological dynamics in Randall-Sundrum-ty
brane-world models, generalizing some important results
general relativity. We find the bulk corrections to the prop
gation and constraint equations, using the covariant Lagra
ian approach@11,12#. This approach is well suited to ident
fying the geometric and physical quantities that determ
inhomogeneity and anisotropy on the brane, and it is also
basis for a gauge-invariant perturbation theory@13#. Our first
task is to identify and interpret the covariant physical cont
of the bulk effects on the brane. Local effects lead to q
dratic corrections of the density, pressure and energy fl
The nonlocal effects of the free gravitational field in the bu
are transmitted by a Weyl projection term, which we deco
pose into energy density, energy flux and anisotropic str
parts. We calculate the gravitational~tidal! and non-
gravitational acceleration of fluid world lines, finding th
role of the nonlocal energy density in localization of gravit
and showing how the world lines have a non-gravitatio
acceleration off the brane at high energies. During inflati
the acceleration is directed towards the brane.

We derive the propagation~‘‘conservation’’! equations
©2000 The American Physical Society23-1
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ROY MAARTENS PHYSICAL REVIEW D 62 084023
governing the nonlocal energy density and flux parts;
evolution of the anisotropic stress part isnot determined on
the brane. These nonlocal terms also enter into crucial
namical equations, such as the Raychaudhuri equation
the shear propagation equation, and can lead to impor
changes from the general relativistic case. For example,
possible via the nonlocal term to avoid the initial singular
in a nonrotating model without cosmological constant. No
local effects also mean that isotropy of the cosmic mic
wave background~CMB! may no longer guarantee a Frie
mann geometry.

The covariant nonlinear equations lead to a covariant
gauge-invariant description of perturbations on the bra
We derive the equations governing adiabatic scalar pertu
tions, which are not in general closed on the brane, beca
of nonlocal effects. However, on super-Hubble scales,
density perturbations satisfy a decoupled third-order eq
tion, with an additional nonlocal degree of freedom, and c
therefore be evaluated by brane observers. Tensor pertu
tions cannot be determined by brane observers on any sc
The local bulk effects tend to enhance tensor perturbat
during non-inflationary expansion and suppress them du
inflation. Nonlocal bulk effects can in principle act eith
way. Vorticity on the brane decays as in general relativ
but bulk effects act as a source for the gravito-magnetic fi
and hence vector perturbations, on the brane.

Our results remain incomplete in one fundamental asp
i.e., we do not provide a description of the gravitational fie
in the bulk, but confine our investigations to effects that c
be measured by brane observers. In order to fill this gap,
would need to study the off-brane derivatives of the cur
ture, which are given in general in@4,10#. This is an impor-
tant topic for further research.

The 5-dimensional field equations are Einstein’s eq
tions, with a ~negative! bulk cosmological constantL̃ and
brane energy-momentum as source:

G̃AB5k̃2@2L̃g̃AB1d~x!$2lgAB1TAB%#. ~1!

The tildes denote the bulk~5-dimensional! generalization of
standard general relativity quantities, andk̃258p/M̃p

3 ,

where M̃p is the fundamental 5-dimensional Planck ma
which is typically much less than the effective Planck ma
on the brane,Mp51.231019 GeV. The brane is given byx
50, so that a natural choice of coordinates isxA5(xm,x),
where xm5(t,xi) are spacetime coordinates on the bra
The brane tension isl, andgAB5g̃AB2nAnB is the induced
metric on the brane, withnA the spacelike unit normal to th
brane. Matter fields confined to the brane make up the br
energy-momentum tensorTAB ~with TABnB50).

Although it is usually assumed that the spacetime is
actly anti–de Sitter in the absence of a brane (l505TAB),
this is not necessarily the case. The brane-free bulk me
can be any solution ofG̃AB52k̃2L̃g̃AB , including non-
conformally flat solutions. When the induced metric on t
brane is Friedmann, then the 5-dimensional Schwarzsch
anti–de Sitter metric is a solution of Eq.~1! @7#. However,
more general bulk metrics are in principle possible.
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The field equations induced on the brane are derived
an elegant geometric approach by Shiromizuet al. @4#, using
the Gauss-Codazzi equations, matching conditions andZ2
symmetry. The result is a modification of the standard E
stein equations, with the new terms carrying bulk effe
onto the brane:1

Gmn52Lgmn1k2Tmn1k̃4Smn2Emn , ~2!

where k258p/Mp
2 . The energy scales are related to ea

other via

l56
k2

k̃4
, L5

4p

M̃p
3 F L̃1S 4p

3M̃p
3D l2G . ~3!

The bulk corrections to the Einstein equations on
brane are of two forms: first, the matter fields contribu
local quadratic energy-momentum corrections via the ten
Smn , and second, there are nonlocal effects from the f
gravitational field in the bulk, transmitted via the projectio
Emn of the bulk Weyl tensor. The matter corrections a
given by

Smn5 1
12 Ta

aTmn2 1
4 TmaTa

n1 1
24 gmn@3TabTab2~Ta

a!2#.
~4!

The projection of the bulk Weyl tensor is2

EAB5C̃ACBDnCnD, ~5!

which is symmetric3 and traceless (E[AB]505E A
A) and

without components orthogonal to the brane, so thatE ABnB

50 andEAB→EmndA
mdB

n asx→0. The Weyl tensorC̃ABCD
represents the free, nonlocal gravitational field in the bu
The local part of the bulk gravitational field is the Einste
tensorG̃AB , which is determined via the bulk field equation
~1!. Thus Emn transmits nonlocal gravitational degrees o
freedom from the bulk to the brane, including tidal (or Co
lomb), gravito-magnetic and transverse traceless (gravi
tional wave) effects.

II. COVARIANT DECOMPOSITION OF BULK EFFECTS

We now provide a covariant decomposition of the bu
correction tensors given by Shiromizuet al. @4#.

A. Local bulk effects

For any matter fields~scalar fields, perfect fluids, kineti
gases, dissipative fluids, etc.!, including a combination of

1For clarity and consistency, we have changed the notation of@4#.
2This projection is called the ‘‘electric’’ part of the Weyl tensor i

@4#, but the term is potentially misleading, since the electric par
associated with projection on a timelike vector@11,14#, andnA is
spacelike.Emn should not be confused with the electric part of t
braneWeyl tensor,Emn , defined below.

3Round~square! brackets enclosing indices denote~anti-! symme-
trization.
3-2
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COSMOLOGICAL DYNAMICS ON THE BRANE PHYSICAL REVIEW D62 084023
different fields, the general form of the brane energ
momentum tensor can be covariantly given as

Tmn5rumun1phmn1pmn12q(mun) . ~6!

The decomposition is irreducible for any chosen 4-veloc
um. Herer andp are the energy density and isotropic pre
sure, andhmn5gmn1umun projects orthogonal toum. The
energy flux obeysqm5q^m& , and the anisotropic stress obe
pmn5p^mn& , where angular brackets denote the project
symmetric and tracefree part:

V^m&5hm
nVn , W^mn&5@h(m

ahn)
b2 1

3 habhmn#Wab .

Equations~4! and~6! imply the irreducible decomposition

Smn5 1
24 @2r223pabpab#umun1 1

24 @2r214rp

1pabpab24qaqa#hmn2 1
12 ~r12p!pmn

1pa^mpn&
a1q^mqn&1

1
3 rq(mun)2

1
12 qapa(mun) .

~7!

For a perfect fluid or minimally coupled scalar field,

Smn5 1
12 r2umun1 1

12 r~r12p!hmn ,

in agreement with@4#. The quadratic energy-momentum co
rections to standard general relativity will be significant f
k̃4r2*k2r, i.e., in the high-energy regime

r*l;S M̃p

Mp
D 2

M̃p
4.

B. Nonlocal bulk effects

The symmetry properties ofEmn imply that in general we
can decompose it irreducibly with respect to a chos
4-velocity fieldum as

Emn52S k̃

k
D 4

@U~umun1 1
3 hmn!1Pmn12Q(mun)#. ~8!

The factor (k̃/k)4 is introduced for dimensional reason
Here

U52S k

k̃
D 4

E mnumun

is an effective nonlocal energy density on the brane, aris
from the free gravitational field in the bulk. This nonloc
energy density need not be positive~see below!. There is an
effective nonlocal anisotropic stress

Pmn52S k

k̃
D 4

E^mn&

on the brane, arising from the free gravitational field in t
bulk, and
08402
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Qm5S k

k̃
D 4

E ^m&nun

is an effective nonlocal energy flux on the brane, aris
from the free gravitational field in the bulk.

If the induced metric on the brane is flat, and the bulk
anti–de Sitter, as in the original Randall-Sundrum scena
@2#, thenEmn50. Treating this as a background, it follow
that tensor~transverse traceless! perturbations on the bran
arising from nonlocal bulk degrees of freedom are given

U505Qm , DnPmn50, ~9!

where Dm is the totally projected part of the brane covaria
derivative:

DmFa•••
•••b5hm

nha
g•••hb

d¹nFg•••
•••d .

Equation~9! provides a covariant characterization of bra
tensor perturbations on an anti–de Sitter background.

In cosmology, the background induced metric is not fl
but a spatially homogeneous and isotropic Friedmann mo
for which

DmU5Qm5Pmn50. ~10!

Thus for a perturbed Friedmann model, the nonlocal b
effects are covariantly and gauge invariantly described by
first-order quantities Dm U, Qm , Pmn . SinceUÞ0 in general
in the Friedmann background@5,6#, it follows that, for tensor
perturbations on the brane,

DmU505Qm , DnPmn50. ~11!

Scalar perturbations~Coulomb-like bulk effects! will be
characterized by

Qm5DmQ, Pmn5D^mDn&P, ~12!

for some scalarsQ and P, while for vector perturbations
~gravito-magnetic-like bulk effects!

DmQm50, Pmn5D^mPn& , DmPm50. ~13!

C. Gravitational and non-gravitational acceleration

In order to find the role of bulk effects in tidal acceler
tion on the brane, we start from the relation

E mnumun5 lim
x→0

C̃ABCDũAnBũCnD,

whereũA is an extension off the brane of the 4-velocity~with
ũAnA50). The tidal acceleration in thenA direction mea-
sured by comoving observers is2nAR̃A

BCDũBnCũD. Now

R̃ABCD5C̃ABCD1 2
3 $g̃A[CR̃D]B1g̃B[DR̃C]A%

2 1
6 R̃g̃A[Cg̃D]B ,
3-3
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ROY MAARTENS PHYSICAL REVIEW D 62 084023
so that by the field equation~1! ~and recalling thatTABnB

50),

2R̃ABCDnAũBnCũD52E ABũAũB1 1
6 k̃2L̃.

Thus the comoving tidal acceleration on the brane, in t
off-brane direction, is

S k̃

k
D 4

U1
1

6
k̃2L̃. ~14!

SinceL̃ is negative, it contributes to acceleration towards
brane. This reflects the confining role of the negative b
cosmological constant on the gravitational field in t
warped metric models of Randall-Sundrum type. Equat
~14! shows thatlocalization of the gravitational field nea
the brane is enhanced by negativeU, while positiveU acts
against confinement, by contributing to tidal acceleration
away from the brane. This picture is consistent with a Ne
tonian interpretation, where the gravitational field carr
negative energy density.

The non-gravitational acceleration of fluid world lines o
the brane is

ÃA5ũB¹̃BũA at x50.

Locally, near the brane, the metric may be written as@4#

ds̃ 25dx21gmn~xa,x!dxmdxn,

so that

G̃A
mn~x,0!5Ga

mn~x!da
A2 1

2 gmn,x~x,0!dx
A.

This allows us to express the 5-dimensional accelerationÃA

in terms of the 4-dimensional accelerationAm5un¹num on
the brane. First, we use the covariant formgmn,x5Lngmn ,
whereLn is the Lie derivative alongnA. Then we use the
expression for the extrinsic curvature of the brane@4#,

Kmn
1 5

1

2
lim

x→01

Lngmn ,

which leads to

ÃA~x,01!5Am~x!dm
A2Kmn

1 ~x!um~x!un~x!nA~x,01!,
~15!

on the brane. The extrinsic curvature is given in terms of
brane tension and energy-momentum by@4#

Kmn
1 52 1

6 k̃2@lgmn13Tmn1~r23p!gmn#.

Substituting in Eq.~15!, we find

ÃA~x,01!5Am~x!dm
A1 1

6 k̃2@2r~x!13p~x!2l#nA~x,01!.
~16!

It follows thatnAÃA is nonzero on the brane; i.e., there
a non-gravitational acceleration of fluid world lines orthogo
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nal to the brane. The direction depends on the sign of 2r
13p2l: for 2r13p2l.0, the transverse acceleration i
away from the brane, while for2r13p2l,0, it is towards
the brane.If the pressure is positive, then at high energ
2r13p2l.0, so that either the brane must accelerate,
there must be a non-gravitational mechanism for keep
matter on the brane.

Inflationary expansion, when pressure is negative,
change this situation. Inflation on the brane is characteri
by @8#

p,2S l12r

l1r D r

3
, ~17!

and this condition implies that 2r13p2l,0. Thus during
inflation on the brane, the transverse acceleration is towa
the brane;inflation acts as a non-gravitational mechanis
keeping matter on the brane.

D. Effective total energy-momentum tensor

All the bulk corrections may be consolidated into effe
tive total energy density, pressure, anisotropic stress and
ergy flux, as follows. The modified Einstein equations ta
the standard Einstein form with a redefined energ
momentum tensor:

Gmn52Lgmn1k2Tmn
tot , ~18!

where

Tmn
tot 5Tmn1

k̃4

k2
Smn2

1

k2Emn . ~19!

Then

r tot5r1
k̃4

k6 Fk4

24
~2r223pmnpmn!1UG ~20!

ptot5p1
k̃4

k6 Fk4

24
~2r214rp1pmnpmn24qmqm!1 1

3 UG
~21!

pmn
tot 5pmn1

k̃4

k6 Fk4

12
$2~r13p!pmn

1pa^mpn&
a1q^mqn&%1PmnG ~22!

qm
tot5qm1

k̃4

k6 Fk4

24
~4rqm2pmnqn!1QmG . ~23!

~Note thatk̃4/k6 is dimensionless.!
These general expressions simplify in the case of a per

fluid ~or minimally coupled scalar field or isotropic one
particle distribution function!, i.e., for qm505pmn . How-
ever, the total energy flux and anisotropic stress do not v
ish in this case in general:
3-4
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qm
tot5

k̃4

k6
Qm , pmn

tot 5
k̃4

k6
Pmn .

Thusnonlocal bulk effects can contribute to effective imp
fect fluid terms even when the matter on the brane has
fect fluid form.

III. LOCAL AND NONLOCAL CONSERVATION
EQUATIONS

As a consequence of the form of the bulk energ
momentum tensor in Eq.~1! and ofZ2 symmetry, it follows
@4# that the brane energy-momentum tensor separately s
fies the conservation equations, i.e.,

¹nTmn50. ~24!

Then the Bianchi identities on the brane imply that the p
jected Weyl tensor obeys the constraint

¹mEmn5k̃4¹mSmn , ~25!

which shows that its longitudinal part is sourced by quadra
energy-momentum terms, including spatial gradients
time derivatives. Thus evolution and inhomogeneity in t
matter fields generates nonlocal Coulomb-like gravitatio
effects in the bulk, which ‘‘back react’’ on the brane.
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The brane energy-momentum tensorand the consolidated
effective energy-momentum tensor areboth conserved sepa
rately. Conservation ofTmn gives the standard general rel
tivity energy and momentum conservation equations@15#

ṙ1Q~r1p!1Dmqm12Amqm1smnpmn50, ~26!

q̇^m&1
4
3 Qqm1Dmp1~r1p!Am

1Dnpmn1Anpmn1smnqn2@v,q#m50. ~27!

An overdot denotesun¹n , Q5Dmum is the volume expan-
sion rate of the um congruence,Am5u̇m5A^m& is its
4-acceleration,smn5D^mun& is its shear rate, andvm
52 1

2 curlum5v^m& is its vorticity rate. The covariant spatia
curl is given by@12#

curlVm5«mabDaVb, curlWmn5«ab(mDaWb
n) ,

where«mns is the projected alternating tensor. The covaria
cross-product is

@V,Y#m5«mabVaYb.

The conservation ofTmn
tot gives, upon using Eqs.~20!–

~27!, a propagation equation for the nonlocal energy den
U,
U̇1 4
3 QU1DmQm12AmQm1smnPmn5 1

24 k4@6pmnṗmn16~r1p!smnpmn12Q~2qmqm2pmnpmn!12Amqnpmn

14qmDmr1qmDnpmn1pmnDmqn22smnpampn
a22smnqmqn#, ~28!

and a propagation equation for the nonlocal energy fluxQm :

Q̇^m&1
4
3 QQm1 1

3 DmU1 4
3 UAm1DnPmn1AnPmn1smnQ n2@v,Q#m

5 1
24 k4@24~r1p!Dmr1qnṗ^mn&1pm

nDn~2r15p!

16~r1p!Dnpmn2 2
3 pab~Dmpab13Dapbm!

23pmaDbpab1 28
3 qnDmqn14rAnpmn23pmaAbpab1 8

3 Ampabpab

2pmasabqb1smapabqb

1pmn@v,q#n2«mabvapbnqn14~r1p!Qqm16qmAnqn1 14
3 Amqnqn14qnsabpab#. ~29!
grees
the

it-
en-
ns.

the
,
so-
These equations may be thought of as conservation equa
on the brane for the nonlocal energy density and energy
due to the free gravitational field in the bulk. In general, t
4 independent equations determine 4 of the 9 indepen
components ofEmn on the brane. What is missing is an ev
lution equation forPmn ~which has up to 5 independent com
ponents!. Thus, in general, the projection of th
5-dimensional field equations onto the brane does not lea
a closed system. Nor could we expect this to be the c
since there are bulk degrees of freedom whose impact on
ns
x

nt

to
e,
he

brane cannot be predicted by brane observers. These de
of freedom could arise from propagating gravity waves in
bulk, possibly generated by inhomogeneity on the brane
self. The point is that waves which penetrate the 5th dim
sion are governed by off-brane bulk dynamical equatio
Our decomposition ofEmn has shown thatthe evolution of
the nonlocal energy density and flux (associated with
scalar and vector parts ofEmn) is determined on the brane
while the evolution of the nonlocal anisotropic stress (as
ciated with the tensor part ofEmn) is not.
3-5
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ROY MAARTENS PHYSICAL REVIEW D 62 084023
If the nonlocal anisotropic stress contribution from t
bulk field vanishes, i.e., if

Pmn50,

then the evolution ofEmn is determined by Eqs.~28! and
~29!. A special case of this arises when the induced metric
the brane is Friedmann, i.e., when Eq.~10! holds. ThenEmn

has only 1 independent component,U, and it is determined
by Eq. ~28! ~see below!, with Eq. ~29! reducing to 050.
Another case when the equations close on the brane is w
the brane is static~see@16#!.

In the perfect fluid case, the conservation equations~26!–
~29! reduce to

ṙ1Q~r1p!50, ~30!

Dmp1~r1p!Am50. ~31!

For a minimally coupled scalar field,r5 1
2 ¹mw¹mw1V(w)

and p5 1
2 ¹mw¹mw2V(w). In the adiabatic case, Eq.~31!

gives

Am52
cs

2

r1p
Dmr, cs

25
ṗ

ṙ
. ~32!

The nonlocal conservation equations~28! and~29! reduce
to

U̇1 4
3 QU1DmQm12AmQm1smnPmn50, ~33!

Q̇^m&1
4
3 QQm1 1

3 DmU1 4
3 UAm1DnPmn

1AnPmn1smnQ n2@v,Q#m

52 1
6 k4~r1p!Dmr. ~34!

Equation~34! shows thatif Emn50 and the brane energy
momentum tensor has perfect fluid form, then the densir
must be homogeneous@4#. The converse does not hold; i.e
homogeneous density doesnot in general imply a vanishing
Emn . This is readily apparent from Eq.~34!. A simple ex-
ample is provided by the Friedmann case: Equation~34! is
trivially satisfied, while Eq.~33! gives the ‘‘dark radiation’’
solution

U5U0S a0

a D 4

. ~35!

A simple generalization of the Friedmann case is the pu
Coulomb-like case,Qm505Pmn . Equation~35! still holds,
but with a an average scale factor, which is in general inh
mogeneous. Equation~34! reduces to a constraint on the a
celeration. Local momentum conservation already provi
the constraint in Eq.~32!. It follows that in the purely
Coulomb-like case, the spatial gradient of the nonlocal
ergy density must be proportional to that of the local ene
density:
08402
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DmU5F8cs
2U2k4~r1p!2

2~r1p!
GDmr.

Linearization about a Friedmann background does
change Eqs.~30! and ~31!, but Eqs.~33! and ~34! lead to

U̇1 4
3 QU1DmQm50, ~36!

Q̇m14HQm1 1
3 DmU1 4

3 UAm1DnPmn52 1
6 k4~r1p!Dmr,

~37!

whereH is the Hubble rate in the background. The nonloc
tensor mode, which satisfies DnPmn50ÞPmn , does not en-
ter the nonlocal conservation equations.

IV. PROPAGATION AND CONSTRAINT EQUATIONS

Equations~26!–~29! are propagation equations for the lo
cal and nonlocal energy density and flux. The remaining
variant equations on the brane are the propagation and
straint equations for the kinematic quantities and the f
gravitational field on the brane. The kinematic quantit
govern the relative motion of neighboring fundamental wo
lines, and describe the universal expansion and its lo
anisotropies. The locally free gravitational fieldon the brane
is given by the brane Weyl tensorCmnab . This splits irre-
ducibly for a givenum into the gravito-electric and gravito
magnetic fields on the brane:

Emn5Cmanbuaub5E^mn& ,

Hmn5 1
2 «mabCab

ngug5H ^mn& ,

where Emn must not be confused withEmn . The Ricci
identity for um and the Bianchi identities¹bCmnab
5¹ [m(2Rn]a1 1

6 Rgn]a) produce the fundamental evolutio
and constraint equations governing the above covar
quantities@11#. Einstein’s equations are incorporated via t
algebraic replacement of the Ricci tensorRmn by the effec-
tive total energy-momentum tensor, according to Eq.~18!.
These are derived directly from the standard general rela
ity versions~see, e.g.,@15#! by simply replacing the energy
momentum tensor termsr, . . . byr tot, . . . . The result for a
general imperfect fluid is given in Appendix A.

A. Nonlinear equations

For a perfect fluid or minimally coupled scalar field, th
equations in Appendix A reduce to the following:

Expansion propagation~generalized Raychaudhuri equ
tion!:

Q̇1 1
3 Q21smnsmn22vmvm2DmAm1AmAm

1 1
2 k2~r13p!2L

52
1

12
S k̃

k
D 4

@k4r~2r13p!112U#. ~38!

Vorticity propagation:
3-6
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v̇^m&1
2
3 Qvm1 1

2 curlAm2smnvn50. ~39!

Shear propagation:

ṡ^mn&1
2
3 Qsmn1Emn2D^mAn&1sa^msn&

a

1v^mvn&2A^mAn&

5
1

2
S k̃

k
D 4

Pmn . ~40!

Gravito-electric propagation:

Ė^mn&1QEmn2curlHmn1 1
2 k2~r1p!smn22Aa«ab(mHn)

b

23sa^mEn&
a1va«ab(mEn)

b

52
1

12
S k̃

k
D 4

@$k4r~r1p!18U%smn16Ṗ^mn&

12QPmn16D^mQn&112A^mQn&

16sa
^mPn&a16va«ab(mPn)

b#. ~41!

Gravito-magnetic propagation:

Ḣ ^mn&1QHmn1curlEmn23sa^mHn&
a

1va«ab(mHn)
b12Aa«ab(mEn)

b

5
1

2
S k̃

k
D 4

@curlPmn23v^mQn&1sa
(m«n)abQ b#.

~42!

Vorticity constraint:

Dmvm2Amvm50. ~43!

Shear constraint:

Dnsmn2curlvm2 2
3 DmQ12@v,A#m52S k̃

k
D 4

Qm .

~44!

Gravito-magnetic constraint:

curlsmn1D^mvn&2Hmn12A^mvn&50. ~45!

Gravito-electric divergence:

DnEmn2 1
3 k2Dmr2@s,H#m13Hmnvn

5
1

18
S k̃

k
D 4

$k4rDmr16DmU26QQm

29DnPmn19smnQ n227@v,Q#m%. ~46!

Gravito-magnetic divergence:
08402
DnHmn2k2~r1p!vm1@s,E#m23Emnvn

5
1

6
S k̃

k
D 4

$k4r~r1p!vm23 curlQm

18Uvm23@s,P#m23Pmnvn%. ~47!

Here the covariant tensor commutator is

@W,Z#m5«mabWa
gZbg.

The standard 4-dimensional general relativity results are
gained by setting all right hand sides to zero in Eqs.~38!–
~47!.

Together with Eqs.~30!–~34!, these equations govern th
dynamics of the matter and gravitational fields on the bra
incorporating both the local~quadratic energy-momentum!
and nonlocal~projected Weyl! effects from the bulk. These
effects give rise to important new driving and source ter
in the propagation and constraint equations. The vortic
propagation and constraint, and the gravito-magnetic c
straint have no explicit bulk effects, but all other equatio
do. Local and nonlocal energy densities are driving terms
the expansion propagation, and note that these are the t
that determine the gravitational and non-gravitational acc
eration transverse to the brane. The spatial gradients of l
and nonlocal energy densities provide sources for
gravito-electric field. The nonlocal anisotropic stress is
driving term in the propagation of shear and the gravi
electric or -magnetic fields, and the nonlocal energy flux i
source for shear and the gravito-magnetic field.

In general the system of equations is not closed: ther
no evolution equation for the nonlocal anisotropic stre
Pmn , which carries the tensor modes in perturbed solutio
If we setEmn50 to close the system, i.e., if we allow onl
local matter effects from the fifth dimension, then, as no
above, the density is forced to be homogeneous. This
clearly too restrictive. A less restrictive way of closing th
system is to assume that the nonlocal anisotropic stress
ishes, i.e.,Pmn50. However, this rules out tensor mode
arising from the free field in the bulk, and also limits th
scalar and vector modes, which will in general also
present inPmn .

B. Linearized equations

We have derived the exact nonlinear equations that g
ern gravitational dynamics on the brane as seen by br
observers. These equations hold for any geometry of
brane, and they are fully covariant on the brane. In particu
this means that we can linearize the equations by takin
suitable limit, and without starting from a given backgrou
solution. In this way we avoid the need for choosing coor
nates, and we deal directly with covariant physical and g
metric quantities, rather than metric components.

The limiting case of the background Friedmann brane
characterized by the vanishing of all inhomogeneous and
isotropic quantities. These quantities are then first orde
smallness in the linearization scheme, and since they va
in the background, they are gauge invariant@13#. The stan-
3-7
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dard general relativity scheme is modified by the additio
degrees of freedom arising from bulk effects. In particul
the generalized Friedmann equation on the brane is@6#

H25 1
3 L1 1

3 k2r2
K

a2 1 1
36 k̃4r21

1

3
S k̃

k
D 4

U0S a0

a D 4

,

~48!

whereK50,61.
Linearization about a Friedmann brane model of

propagation and constraint equations leads to the redu
system

Q̇1 1
3 Q22DmAm1 1

2 k2~r13p!2L

52
1

12
S k̃

k
D 4

@k4r~2r13p!112U#, ~49!

v̇m12Hvm1 1
2 curlAm50, ~50!

ṡmn12Hsmn1Emn2D^mAn&5
1

2
S k̃

k
D 4

Pmn , ~51!

Ėmn13HEmn2curlHmn1 1
2 k2~r1p!smn

52
1

12
S k̃

k
D 4

@$k4r~r1p!18U%smn

16D^mQn&16Ṗmn16HPmn#, ~52!

Ḣmn13HHmn1curlEmn5
1

2
S k̃

k
D 4

curlPmn , ~53!

Dmvm50, ~54!

Dnsmn2curlvm2 2
3 DmQ52S k̃

k
D 4

Qm , ~55!

curlsmn1D^mvn&2Hmn50, ~56!

DnEmn2 1
3 k2Dmr5

1

18
S k̃

k
D 4

@k4rDmr16DmU

218HQm29DnPmn#, ~57!

DnHmn2k2~r1p!vm5
1

6
S k̃

k
D 4

@$k4r~r1p!18U%

3vm23 curlQm#. ~58!

These equations, together with the linearized conserva
equations~30!, ~31!, ~36! and ~37!, are the basis for a cova
riant and gauge-invariant description of perturbations on
brane. The local bulk effects~quadratic energy-momentum
effects! are purely scalar, as is the nonlocal energy dens
The nonlocal energy flux has in general scalar and ve
modes
08402
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Qm5DmQ1Q̄m , ~59!

and scalar, vector and tensor modes enter the nonlocal a
tropic stress:

Pmn5D^mDn&P1D^mP̄n&1P̄mn . ~60!

In these equations, an overbar denotes a transv
~divergence-free! quantity:

DmQ̄m505DmP̄m , DnP̄mn50.

V. NONLINEAR AND PERTURBATIVE DYNAMICS

Bulk effects introduce new degrees of freedom into t
dynamics on the brane, subject to the additional nonlo
‘‘conservation’’ equations~33! and ~34!. Standard results in
general relativity may or may not continue to hold under t
higher-dimensional modification. We now use the conser
tion, propagation and constraint equations to generalize s
standard results of 4-dimensional general relativity.

A. CMB isotropy and brane homogeneity

In standard general relativity, the isotropy of the CM
radiation has crucial implications for the homogeneity of t
universe. If all fundamental observers after last scatter
observe an isotropic CMB, then it follows from a theorem
Ehlers, Geren and Sachs@17# that the universe must have
homogeneous Friedmann geometry. This has been gen
ized to the almost-isotropic case@18#, providing a foundation
for the perturbative analysis of CMB anisotropies. T
Ehlers-Geren-Sachs theorem is based on the collision
Boltzmann equation and on the kinematic-dynamic char
terization:

Am5vm5smn50ÞQ and

qm5pmn50⇒Friedmann geometry. ~61!

Bulk effects do not change the Boltzmann equation,
they do mean that the Friedmann characterization is
longer in general true on the brane. While the gravi
magnetic constraint, Eq.~45!, still leads toHmn50, the shear
propagation equation~40! no longer forcesEmn50, because
of the nonlocal termPmn , so that the intrinsic metric nee
not be conformally flat.

A consistent solution on the brane of the system of~non-
linear! conservation, propagation and constraint equati
can be given as follows. We take

Dmr5Dmr r5DmU5DmQ50, Qm505DnPmn .

Then the system of equations reduces to the consistent

ṙ1Qr50,

ṙ r1
4
3 Qr r50,

U̇1 4
3 QU50,
3-8
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Q̇1 1
3 Q21 1

2 k2~r12r r!2L52
1

12
S k̃

k
D 4

@k4~r1r r!

3~2r13r r!112U#,

Ṗmn1 2
3 QPmn50,

Emn5
1

2
S k̃

k
D 4

Pmn .

In general, provided that the propagation equation forPmn

is consistent with the bulk geometry,Emn need not be zero
so that the brane geometry need not be Friedmann, altho
it is asymptotically Friedmann.

Thus it is in principle possible via nonlocal bulk effec
that isotropic CMB doesnot force the brane metric to b
Friedmann.

B. Generalized gravitational collapse

Another important question is how the highe
dimensional bulk effects modify the picture of gravitation
collapse and singularities, which depends on Raychaudh
equation@11#.

The generalized Raychaudhuri equation~38! governs
gravitational collapse and initial singularity behavior on t
brane. The local energy density and pressure correction

1
12 k̃4r~2r13p!

further enhance the tendency to collapse, if 2r13p.0. This
condition will be satisfied in thermal collapse~or time-
reversed expansion!, but it is violated during very high-
energy inflation (r@l), by Eq. ~17!, and in that case the
local bulk term acts to further accelerate expansion. Thi
consistent with the results given in@8#. Thus local bulk ef-
fects at high energy reinforce the formation of singulariti
during thermal collapse, as predicted in general relativi
while further accelerating expansion during high-energy
flation.

The nonlocal term

S k̃

k
D 4

U

can act either way, depending on its sign. As shown from
~14!, a negativeU enhances the localization of the gravit
tional field on the brane. In this case, the effect ofU is to
counteract gravitational collapse. A positiveU acts against
localization, and also reinforces the tendency to collapse

If higher-dimensional corrections to Einstein’s theo
tend topreventsingularities, then the effective energy de
sity U on the brane of the free gravitational field in the bu
should benegative. In this case,U also acts to reinforce
confinement of the gravitational field to the brane.
08402
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C. Cosmological scalar perturbations

The linearized equations on the brane derived in the p
vious two sections encompass scalar, vector and te
modes. In order to covariantly~and locally! separate out the
scalar modes, we impose the condition that all perturba
quantities be spatial gradients of scalars, i.e.,

Vm5DmV, Wmn5D^mDn&W.

The identities in Appendix B, the vorticity constraint equ
tion ~54! and the gravito-magnetic constraint equation~56!
then show that

curlVm505curlWmn , DnWmn5 2
3 D2~DmW!,

vm505Hmn , ~62!

as in standard general relativity.
If we choose the fundamental 4-velocityum such that

smn50, which is the covariant analogue of the longitudin
or conformal Newtonian gauge in metric-based perturbat
theory ~see @19,20# for further discussion!, then the shear
propagation equation~51! becomes a constraint determinin
the brane tidal tensor:

Emn5D^mDn&FF1
1

2
S k̃

k
D 4

PG .

Here F is the relativistic generalization of the gravitation
potential, defined byAm5DmF, andP is the potential for the
nonlocal anisotropic stress, defined in Eq.~60!. It follows
that nonlocal bulk effects lead to a change in the gravit
tional tidal potential~in longitudinal-like gauge!:

F→F1
1

2
S k̃

k
D 4

P. ~63!

In the general case, i.e., whenum is not chosen to givesmn

50, this simple relation does not hold.
In order to derive the equations governing density pert

bations in the general case, we define the density and ex
sion gradients~as in @13#!

Dm5
a

r
Dmr, Zm5aDmQ, ~64!

and the~dimensionless! gradients describing inhomogenei
in the nonlocal quantities:

Um5
a

r
DmU, Qm5

1

r
DmQ, Pm5

1

ar
DmP, ~65!

where Q is defined in Eq.~59!. Then we take the spatia
gradient of the energy conservation equations~30! and ~36!
and the generalized Raychaudhuri equation~49!, using the
identities in Appendix B and the adiabatic equation~32!. We
arrive at the following system of equations:

Ḋm53wHDm2~11w!Zm , ~66!
3-9
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Żm522HZm2S cs
2

11wDD2Dm2S k̃

k
D 4

rUm

2 1
2 rFk21 1

6 k̃4~413w!r2S k̃

k
D 4S 2cs

2

11wD U
r
GDm ,

~67!

U̇m5~3w21!HUm2S 4cs
2

11wD S U
r DHDm

2S 4U
3r DZm2aD2Qm , ~68!

Q̇m5~123w!HQm2
1

3a
Um2

2

3
aD2Pm

1
1

6a F S 8cs
2

11wD U
r

2k4r2~11w!GDm , ~69!

where w5p/r. The background Friedmann equation~48!
relatesH andr, with U in the background given by Eq.~35!.

In standard general relativity, only the first two equatio
apply, with k̃ set to zero in Eq.~67!. In this case we can
decouple the density perturbations via a second-order e
tion for Dm , whose independent solutions are adiaba
growing and decaying modes. Nonlocal bulk effects int
duce important changes to this simple picture. First, we n
that there is no equation forṖm , so thatin general, scalar
perturbations on the brane cannot be predicted by bra
observers without additional information from the unobse
able bulk.

However, there is a very important exception to this, a
ing from the fact thatQm and Pm only occur in Eqs.~66!–
~68! via the Laplacian terms D2Qm and D2Pm , and the latter
term is the only occurrence ofPm in the system. It follows
that on super-Hubble scales, the system does close,
brane observers can predict scalar perturbations from init
conditions intrinsic to the brane.The system reduces to
coupled equations inDm , Zm, andUm , plus an equation for
Qm , which is determined once the other 3 quantities
solved for.One can decouple the density perturbations via
third-order equation forDm . The nonlocal energy densit
plays the role of a non-interacting radiation fluid with th
same velocity as the ordinary fluid, and inhomogeneity inU
introduces an additional entropy-like scalar mode. As m
have been expected, this additional mode is absent du
radiation domination; in this case Eqs.~66! and ~68! show
that

U̇m5
U0

r0
Ḋm .

In principle, it is straightforward to solve the coupled sy
tem on super-Hubble scales, although numerical techniq
will be necessary. We do not attempt particular solutio
here. However, it may be instructive to see the decoup
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third-order equation for density perturbations during mat
domination, on a flat background:

D̂m12HD̈m1F4

3
S k̃

k
D 4

U2 7
6 k2r2 2

9 k̃4r22 8
3 LG Ḋm

1@ 1
2 k22 2

3 k̃4r#rHDm50. ~70!

D. Cosmological tensor perturbations

Tensor perturbations are covariantly characterized by

Dm f 50, Am5vm5Qm50, DnWmn50,

where f 5r,p,Q,U, and Wmn5smn ,Emn ,Hmn ,Pmn . Then
all the conservation equations reduce to background eq
tions, and the system of linearized propagation and constr
equations in the previous section reduces to

ṡ̄mn12Hs̄mn1Emn* 50, ~71!

Ėmn* 13HEmn* 2curl H̄mn1 1
2 k2~r1p!s̄mn

52
1

12
S k̃

k
D 4

@$k4r~r1p!18U%s̄mn

112~ Ṗ̄mn12HP̄mn!#, ~72!

Ḣ̄mn13HH̄mn1curlEmn* 50, ~73!

curl s̄mn2H̄mn50, ~74!

where the overbars denote transverse tensors, and

Emn* 5Ēmn2
1

2
S k̃

k
D 4

P̄mn .

Since there is no equation forṖ̄mn , the system of equation
does not close on the brane:brane observers cannot evalua
tensor perturbations on the brane without additional info
mation from the unobservable bulk.This remains true on
super-Hubble scales, unlike the scalar perturbation case

Equations~71! and ~74! show that the shear is a gravito
potential forEmn* andH̄mn . Using the identities in Appendix
B, we can derive the following covariant wave equation f
the shear:

D2s̄mn2 s̈̄mn25H ṡ̄mn2F2L1 1
2 k2~r23p!

2
1

12
k̃4r~r13p!G s̄mn

52S k̃

k
D 4

@ Ṗ̄mn12HP̄mn#. ~75!

For adiabatic tensor perturbations in standard general rela
ity, the right hand side falls away. Nonlocal bulk effec
3-10
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provide driving terms that are like anisotropic stress term
general relativity@21#. In the latter case, however, the ev
lution of anisotropic stress is determined by the Boltzma
equation or other intrinsic physics.

What we can conclude from Eq.~75! is that thelocal bulk
effects enhance tensor perturbations for non-inflationary
pansion, and suppress them during inflation, since inflation
implies r13p,0 ~at all energy scales! by Eq. ~17!. The
nature of thenonlocal bulk effects carried byP̄mn requires
knowledge of the off-brane dynamics ofEAB , which we have
not considered.

E. Cosmological vector perturbations

The linearized vorticity propagation equation~50! does
not carry any bulk effects, and vorticity decays as in stand
general relativity. However, the gravito-magnetic divergen
equation~58! shows that the local and nonlocal energy de
sity and the nonlocal energy flux provide additional sour
for the brane gravito-magnetic field:

DnHmn5k2~r1p!vm1
1

6
S k̃

k
D 4

3@$k4r~r1p!18U%vm23 curlQm#.

In standard general relativity, it is necessary to increase
angular momentum densityk2(r1p)vm in order to increase
the gravito-magnetic field, but bulk effects allow an i
creased gravito-magnetic field without this. In particular, u
like in general relativity,it is possible to source vector per
turbations even when the vorticity vanishes,since curlQm
may be nonzero.

VI. CONCLUSION

By adopting a covariant approach based on physical
geometrical quantities that are in principle measurable
brane observers, we have given a comprehensive analys
intrinsic cosmological dynamics in Randall-Sundrum-ty
brane worlds. This has allowed us to carefully delineate w
can and cannot be predicted by brane observers withou
ditional information from the unobservable bulk.

Our main result is probably thatscalar perturbations on
super-Hubble scales can be evaluated intrinsically on
brane. This is a generalization of the result given in@8#, i.e.,
the evaluation of adiabatic scalar perturbations on su
Hubble scales during inflation on the brane, done under
assumption thatEmn may be neglected.

We showed that tensor perturbations cannot be evalu
intrinsically on any scales. This is not surprising, since
ability of gravitational waves to penetrate the 5th dimens
inevitably introduces unpredictability from the standpoint
observers confined to the brane. Vector perturbations on
brane can be generated even in the absence of vorticity
the curl of the nonlocal energy flux.

Our nonperturbative results include the following:
~i! Calculating the gravitational and non-gravitational a
08402
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celeration felt by brane observers, allowing us to prov
covariant characterizations of gravity and matter localizati
and showing in particular that the non-gravitational off-bra
acceleration of fundamental world-lines is towards the bra
during inflation.

~ii ! Showing how bulk effects can disrupt the relation b
tween isotropy of the CMB and spatial isotropy and hom
geneity on the brane.

~iii ! Showing how bulk effects modify the dynamics o
gravitational collapse and singularity formation.

We have derived the exact nonlinear equations govern
cosmological dynamics on the brane and the correspon
covariant and gauge-invariant linearized equations. Fur
implications of these equations could usefully be pursued
particular, an important topic for further research is the c
culation of scalar perturbations on very large scales and
investigation of limits imposed by observations.

However, the major further step required, and not und
taken here, is to complete the picture by investigating
dynamical equations of the gravitational field off the bran
A starting point is provided by the general equations given
@4,10#, which determine

LnEAB , LnBABC , LnRABCD ,

whereRABCD is the 4-dimensional Riemann tensor, and

BABC5gA
DgB

EC̃DECFnF.

However, it may turn out to be more useful to develop
alternative decomposition of the bulk Weyl tensor, along

timelike directionũA rather than a spatial directionnA. Intu-
itively, this may provide a more direct and transparent ro
to the evolution equation forPmn , whose absence leads t
unpredictability on the brane. Such a timelike decomposit
requires a generalization to higher dimensions of
4-dimensional decomposition of the Weyl tensor@11#. The
generalization has been given in@14#.

The complete and closed system of dynamical equati
would allow us to develop more systematic and probing te
of the Randall-Sundrum-type models against observatio
constraints. Despite the appealing geometric and parti
physics properties of such models, it is their confrontat
with cosmological observational tests that will provide
more decisive arbiter as to whether they are viable gene
zations of Einstein’s theory.

Note added. Since this work was completed, a number
papers have appeared, setting up the 5-dimensional for
ism ~metric based! of bulk perturbations@22#, and gravita-
tional waves produced during inflation on the brane ha
also been studied@23#.
3-11
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APPENDIX A: GENERAL PROPAGATION AND CONSTRAINT EQUATIONS

For a general, imperfect energy-momentum tensor, as in Eq.~6!, the propagation and constraint equations~38!–~47! are
generalized to the following:

Propagation:

Q̇1 1
3 Q21smnsmn22vmvm2DmAm1AmAm1 1

2 k2~r13p!2L52
1

12
S k̃

k
D 4

@k4~2r213rp23qmqm!112U#, ~A1!

v̇^m&1
2
3 Qvm1 1

2 curlAm2smnvn50, ~A2!

ṡ^mn&1
2
3 Qsmn1Emn2 1

2 k2pmn2D^mAn&1sa^msn&
a1v^mvn&2A^mAn&

5
1

24
S k̃

k
D 4

@k4$2~r13p!pmn1pa^mpn&
a1q^mqn&%112Pmn#, ~A3!

Ė^mn&1QEmn2curlHmn1 1
2 k2~r1p!smn1 1

2 k2ṗ^mn&1
1
2 k2D^mqn&1

1
6 k2Qpmn1k2A^mqn&

22Aa«ab(mHn)
b23sa^mEn&

a1va«ab(mEn)
b1 1

2 k2sa
^mpn&a1 1

2 k2va«ab(mpn)
b

5
1

72
S k̃

k
D 4

@2k4$3~2r212rp2pabpab22qaqa!smn13~ ṙ1 ṗ!pmn13~r13p!ṗ^mn&26pa^mṗn&
a26q^mq̇n&

1 3
2 D^m~pn&aqa24rqn&!1Q~@r13p#pmn2pa^mpn&

a2q^mqn&!23A^m~4rqn&2pn&aqa!13~r13p!sa
^mpn&a

23sa
^m~pb

^n&pa&b1qn&qa!13~r13p!va«ab(mpn)
b23va«ab

(m~pg
^n)pb&g1qn)qb!%248Usmn236Ṗ^mn&

236D̂ mQn&212QPmn272A^mQn&236sa
^mPn&a236va«ab(mPn)

b#, ~A4!

Ḣ ^mn&1QHmn1curlEmn2 1
2 k2 curlpmn23sa^mHn&

a1va«ab(mHn)
b12Aa«ab(mEn)

b1 3
2 k2v^mqn&2

1
2 k2sa

(m«n)abqb

5
1

48
S k̃

k
D 4

@k4$22 curl„~r13p!pmn2pa^mpn&
a2q^mqn&…212rv^mqn&14v^mpn&aqa1sa

(m«n)ab~4rqb2pbgqg!%

124 curlPmn272v^mQn&124sa
(m«n)abQ b#. ~A5!

Constraint:

Dmvm2Amvm50, ~A6!

Dnsmn2curlvm2 2
3 DmQ1k2qm12@v,A#m52

1

24
S k̃

k
D 4

@k4~4rqm2pmnqn!124Qm#, ~A7!

curlsmn1D^mvn&2Hmn12A^mvn&50, ~A8!

DnEmn1 1
2 k2Dnpmn2 1

3 k2Dmr1 1
3 k2Qqm2@s,H#m13Hmnvn2 1

2 k2smnqn1 3
2 k2@v,q#m

5
1

48
S k̃

k
D 4

@k4$ 2
3 Q~pmnqn24rqm!12Dn@~r13p!pmn2pa^mpn&

a2q^mqn&#1 8
3 rDmr24pabDmpab

1smn~4rqn2pnaqa!13«mabvapbgqg24r@v,q#m%116DmU216QQm224DnPmn124smnQ n272@v,Q#m#,

~A9!

DnHmn1 1
2 k2 curlqm2k2~r1p!vm1@s,E#m1 1

2 k2@s,p#m23Emnvn1 1
2 k2pmnvn

5
1

48
S k̃

k
D 4

„k4$curl~pmnqn24rqm!14~2r212rp2pabpab22qaqa!vm22«mabsa
g~pn

^bpg&n1q^bqg&!

12@~r13p!pmn2pa^mpn&
a2q^mqn&#v

n12~r13p!@s,p#m%224 curlQm164Uvm224@s,P#m224P mnvn
….

~A10!
084023-12
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The 4-dimensional general relativistic results are regained by setting all the right hand sides of these equations t

APPENDIX B: DIFFERENTIAL IDENTITIES

On a flat Friedmann background, the following covariant linearized identities hold@20#:

Dm ḟ 5~Dm f !•1HDm f 2 ḟ Am , ~B1!

D2~Dm f !5Dm~D2f !12 ḟ vm , ~B2!

~D2f !•5D2 ḟ 22HD2f 1 ḟ DmAm , ~B3!

curl Dm f 522 ḟ vm , ~B4!

curl D^mDn& f 50, ~B5!

~DmVn!•5DmV̇n2HDmVn , ~B6!

D[mDn]Va505D[mDn]Wab , ~B7!

Dm curlVm50, ~B8!

DnD^mVn&5
1
2 D2Vm1 1

6 Dm~DnVn!, ~B9!

curl D^mVn&5
1
2 D^mcurlVn& , ~B10!

curl curlVm52D2Vm1Dm~DnVn!, ~B11!

~DmWab!•5DmẆab2HDmWab , ~B12!

Dn curlWmn5 1
2 curl~DnWmn!, ~B13!

curl curlWmn52D2Wmn1 3
2 D^mDaWn&a , ~B14!

whereVm5V^m& andWmn5W^mn& vanish in the background.
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