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Cosmological dynamics on the brane
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In Randall-Sundrum-type brane-world cosmologies, the dynamical equations on the three-brane differ from
the general relativity equations by terms that carry the effects of embedding and of the free gravitational field
in the five-dimensional bulk. Instead of starting from an ansatz for the metric, we derive the covariant nonlinear
dynamical equations for the gravitational and matter fields on the brane, and then linearize to find the pertur-
bation equations on the brane. The local energy-momentum corrections are significant only at very high
energies. The imprint on the brane of the nonlocal gravitational field in the bulk is more subtle, and we provide
a careful decomposition of this effect into nonlocal energy density, flux and anisotropic stress. The nonlocal
energy density determines the tidal acceleration in the off-brane direction, and can oppose singularity forma-
tion via the generalized Raychaudhuri equation. Unlike the nonlocal energy density and flux, the nonlocal
anisotropic stress is not determined by an evolution equation on the brane, reflecting the fact that brane
observers cannot in general make predictions from initial data. In particular, isotropy of the cosmic microwave
background may no longer guarantee a Friedmann geometry. Adiabatic density perturbations are coupled to
perturbations in the nonlocal bulk field, and in general the system is not closed on the brane. But on super-
Hubble scales, density perturbations satisfy a decoupled third-order equation, and can be evaluated by brane
observers. Tensor perturbations on the brane are suppressed by local bulk effects during inflation, while
nonlocal effects can serve as a source or a sink. Vorticity on the brane decays as in general relativity, but
nonlocal bulk effects can source the gravito-magnetic field, so that vector perturbations can be generated in the
absence of vorticity.

PACS numbd(s): 04.50:+h, 98.80.Cq

I. INTRODUCTION (see, e.g.[5-7]), and inflationary scalar perturbations in
these models have also been consid¢gddThe models are
Einstein’s theory of general relativity breaks down at highcompatible with observations subject to reasonable con-
enough energies, and is likely to be the limit of a more genstraints on the parameters. A broader study of cosmological
eral theory. Recent developments in string theory indicatelynamics, i.e., for induced metrics more general than the
that gravity may be a truly higher-dimensional theory, be-simple Friedmann case, has not been done. In particular, the
coming effectively 4-dimensional at lower energies. Theseanalysis of perturbed Friedmann models also remains to be
exciting theoretical developments need to be accompaniedlone.(Considerable work has been done on perturbations of
by efforts to test such higher-dimensional theories againsflat brane metrics; see, e.§2,9,10.)
their cosmological and astrophysical implications. In that In this paper, we initiate a study of nonlinear and per-
spirit, we investigate here a particular class of models, showturbed cosmological dynamics in Randall-Sundrum-type
ing how their dynamical properties generalize those of Einbrane-world models, generalizing some important results in
stein’s theory, and discussing the broad implications of thesgeneral relativity. We find the bulk corrections to the propa-
generalizations for cosmological dynamics. gation and constraint equations, using the covariant Lagrang-
In many higher-dimensional gravity theories inspired byian approact11,12. This approach is well suited to identi-
string theory, the matter fields are confined to a 3-brane ifiying the geometric and physical quantities that determine
1+ 3+d dimensions, while the gravitational field can propa-inhomogeneity and anisotropy on the brane, and it is also the
gate also in thel extra dimensiongsee, e.g.[1]). It is not  basis for a gauge-invariant perturbation thefd$]. Our first
necessary for thel extra dimensions to be small, or even task is to identify and interpret the covariant physical content
finite: recently Randall and Sundrui] have shown that for of the bulk effects on the brane. Local effects lead to qua-
d=1, gravity can be localized on a single 3-brane even whemlratic corrections of the density, pressure and energy flux.
the fifth dimension is infinitésee alsd3]). An elegant geo- The nonlocal effects of the free gravitational field in the bulk
metric formulation and generalization of the Randall-are transmitted by a Weyl projection term, which we decom-
Sundrum scenario has been given by Shiromizu, Maeda angbse into energy density, energy flux and anisotropic stress
Sasaki[4]. The Friedmann equation on the brane in thesgarts. We calculate the gravitationdtidal) and non-
models is modified by both high-energy matter terms and gravitational acceleration of fluid world lines, finding the
term carrying nonlocal bulk effects onto the brane. Therole of the nonlocal energy density in localization of gravity,
Friedmann brane models have been extensively investigatethd showing how the world lines have a non-gravitational
acceleration off the brane at high energies. During inflation,
the acceleration is directed towards the brane.
*Email address: roy.maartens@port.ac.uk We derive the propagatiofi‘conservation”) equations
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governing the nonlocal energy density and flux parts; the The field equations induced on the brane are derived via
evolution of the anisotropic stress partrist determined on  an elegant geometric approach by Shiroreral. [4], using

the brane. These nonlocal terms also enter into crucial dythe Gauss-Codazzi equations, matching conditions and
namical equations, such as the Raychaudhuri equation arsymmetry. The result is a modification of the standard Ein-
the shear propagation equation, and can lead to importastein equations, with the new terms carrying bulk effects
changes from the general relativistic case. For example, it isnto the brané:

possible via the nonlocal term to avoid the initial singularity _

in a nonrotating model without cosmological constant. Non- G,,=—Ag,,+ KT, +«'S,,—&,,, (2
local effects also mean that isotropy of the cosmic micro-

wave backgroundCMB) may no longer guarantee a Fried- where K2=87TIMS. The energy scales are related to each

mann geometry. other via
The covariant nonlinear equations lead to a covariant and 5
gauge-invariant description of perturbations on the brane. _ K Am| - Am ),
. . ' - . N=6=, A=—=—%|A+|—=5|N\|. (3)
We derive the equations governing adiabatic scalar perturba- 4 YE 3v3
K P P

tions, which are not in general closed on the brane, because
of nonlocal effects. However, on super-Hubble scales, the The bulk corrections to the Einstein equations on the
density perturbations satisfy a decoupled third-order equasrane are of two forms: first, the matter fields contribute
tion, with an additional nonlocal degree of freedom, and carocal quadratic energy-momentum corrections via the tensor
therefore be evaluated by brane observers. Tensor perturbg;,, and second, there are nonlocal effects from the free
tions cannot be determined by brane observers on any scalggavitational field in the bulk, transmitted via the projection
The local bulk effects tend to enhance tensor perturbations,,, of the bulk Weyl tensor. The matter corrections are
during non-inflationary expansion and suppress them duringiven by
inflation. Nonlocal bulk effects can in principle act either
way. Vorticity on the brane decays as in general relativity, S, = T,“T,,— T, T%+ % gw[BTaBT“ﬁ—(Ta")z].
but bulk effects act as a source for the gravito-magnetic field, (4)
and hence vector perturbations, on the brane. o .

Our results remain incomplete in one fundamental aspectthe projection of the bulk Weyl tensor’is
i.e., we do not provide a description of the gravitational field - coD
in the bulk, but confine our investigations to effects that can Eag=CacpN™N", )
be measured by brane observers. In order to fill this gap, one

. . . _ _ A
would need to study the off-brane derivatives of the curva-WhICh is symmetri¢ and traceless Hag=0=E4") and

ture, which are given in general [#,10]. This is an impor- without components orthogonal to the brane, so Eh@énB

tant topic for further research. =0 and&ap—E,,,00" 08" asxy—0. The Weyl tensoCapcp
The 5-dimensional field equations are Einstein’s equalfepresents the free, nonlocal gravitational field in the bulk.

tions, with a(negativeé bulk cosmological constank and The local part of the bulk gravitational field is the Einstein

brane energy-momentum as source: tensoréAB, which is determined via the bulk field equations
(1). Thus &, transmits nonlocal gravitational degrees of
Gap=r — AQap+ S(x){~Ngas+ Tas]- (1) freedom from the bulk to the brane, including tidal (or Cou-

lomb), gravito-magnetic and transverse traceless (gravita-

The tildes denote the bulls-dimensional generalization of tional wave) effects.

standard general relativity quantities, anét=8w/M?2,

where Mp is the fundamental 5-dimensional Planck mass,
which is typically much less than the effective Planck mass We now provide a covariant decomposition of the bulk
on the braneM,=1.2X 10'® GeV. The brane is given by correction tensors given by Shiromizt al. [4].

=0, so that a natural choice of coordinatescfs=(x*,x),

where x#=(t,x') are spacetime coordinates on the brane. A. Local bulk effects

The brane tension is, andgag=gas—NaNe iS the induced For any matter fields(scalar fields, perfect fluids, kinetic

metric on the b_rane, WithA the spacelike unit normal to the gases, dissipative fluids, etcincluding a combination of
brane. Matter fields confined to the brane make up the brane

energy-momentum tensdiyg (with Togn®=0).
Although it is usually assumed that the spacetime is ex- | _ _ )
actly anti—de Sitter in the absence of a brake=0=Tg), For clarity and consistency, we have changed the notati¢a]of

this is not necessarily the case. The brane-free bulk metri 2This projection is called the “electric” part of the Weyl tensor in
. f4], but the term is potentially misleading, since the electric part is

can be any solution of5,g=—«“Agag, including non-  5qqpciated with projection on a timelike vecfad, 14, andn® is
conformally flat solutions. When the induced metric on thespacelikef,‘w should not be confused with the electric part of the

brane is Friedmann, then the 5-dimensional Schwarzschildyrane weyl tensorE,,,, defined below.
anti—de Sitter metric is a solution of E¢l) [7]. However, Round(squarg brackets enclosing indices dend#ati-) symme-
more general bulk metrics are in principle possible. trization.

II. COVARIANT DECOMPOSITION OF BULK EFFECTS
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different fields, the general form of the brane energy- A
momentum tensor can be covariantly given as Q.= =] Epyt”
K
T,,=pu,u,+ph,, +m,,+2q.,U,. (6)

is an effective nonlocal energy flux on the brane, arising
The decomposition is irreducible for any chosen 4-velocityfrom the free gravitational field in the bulk.
u”. Herep andp are the energy density and isotropic pres-  |f the induced metric on the brane is flat, and the bulk is
sure, andh,,=g,,+Uu,u, projects orthogonal ta”. The anti-de Sitter, as in the original Randall-Sundrum scenario
energy flux obeys|, =g, and the anisotropic stress obeys[2], then&,,=0. Treating this as a background, it follows
.= Ty, Where angular brackets denote the projectedtihat tensor(transverse tracelesgerturbations on the brane
symmetric and tracefree part: arising from nonlocal bulk degrees of freedom are given by

V(M: hMVVV’ W(/w>: [h(,uahV)B_ % haﬂhﬂv]waﬁ' U=0= Q,u ’ D"P#,,Z 0, 9

Equationg(4) and(6) imply the irreducible decomposition  where D, is the totally projected part of the brane covariant
1 2 N ) derivative:
S, =31 [2p?—3mpm*Flu,u,+ 3 [2p?+4pp 5
D Fa =h Vha "'h VFy .
" B M Y B Vv )
+ ’n—aﬁﬂ-aﬁ_él'qaqa]h,uv_ ﬁ (P+ 2p)77/,w
Equation(9) provides a covariant characterization of brane

T (T T )+ 5 P0(uUy)— 130T o,y - tensor perturbations on an anti—de Sitter background.
@) In cosmology, the background induced metric is not flat,
but a spatially homogeneous and isotropic Friedmann model,
For a perfect fluid or minimally coupled scalar field, for which
SMV:%pZUMUV‘F 1_12p(p+2p)h,u,va Dﬂu: QM:’P,U'V:O' (10)

in agreement witti4]. The quadratic energy-momentum cor- Thus for a perturbed Friedmann model, the nonlocal bulk
rections to standard general relativity will be significant for effects are covariantly and gauge invariantly described by the

in the Friedmann backgroun8,6], it follows that, for tensor
YREE perturbations on the brane,
pP=N~ M_p Mg.
p Du=0=9,, D"P,,=0. 11
B. Nonlocal bulk effects Scalar perturbationgCoulomb-like bulk effects will be

The symmetry properties &, imply that in general we characterized by

can decompose it irreducibly with respect to a chosen

4-velocity fieldu” as Q,=D,Q, P,,=D\D,P, (12)

~\4 for some scalar®) and P, while for vector perturbations
Epv= _(;) [U(u,u,+ 1 h,)+P,.,+2Q,u,l. (8) (gravito-magnetic-like bulk effects

~ o ) i b*Q,=0, P,,=DP,, D*P,=0. (13
The factor /«)* is introduced for dimensional reasons.

Here
C. Gravitational and non-gravitational acceleration
4 . . .
|« o In order to find the role of bulk effects in tidal accelera-
U=- = €k tion on the brane, we start from the relation
. . . .. — i > TIALBT CHD
is an effective nonlocal energy density on the brane, arising € pufur=lim Cpgcpu™n u=n=,

from the free gravitational field in the bulk. This nonlocal x=0

energy density need not be positiisze below. There is an

effective nonlocal anisotropic stress whereu” is an extension off the brane of the 4-velodityith

UAn,=0). The tidal acceleration in the” direction mea-

4 ) o -
K sured by comoving observers isnyR*gcpuncuP. Now
Puv=— Eur)

« - - L
o o S Rasco=Cascot 5 {gacRojs+ 9spReat
on the brane, arising from the free gravitational field in the o
bulk, and - % RgA[CgD]B'
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so that by the field equatiofl) (and recalling thafl ,gn®
=0),

_ﬁABCDnAaBnCDD: - 5AB’C|A’C|B+ %7{27\

PHYSICAL REVIEW D 62 084023

nal to the brane The direction depends on the sign ob 2
+3p—A: for 2p+3p—A>0, the transverse acceleration is
away from the brane, while fdtp+3p—\ <0, it is towards
the brane.If the pressure is positive, then at high energies

2p+3p—A>0, so that either the brane must accelerate, or

Thusthe comoving tidal acceleration on the brane, in thehere must be a non-gravitational mechanism for keeping
off-brane direction, is matter on the brane.

~\ 4 Inflationary expansion, when pressure is negative, can
(f u+£7<27\. (14) change this situation. Inflation on the brane is characterized
K 6 by [8]
SinceA is negative, it contributes to acceleration towards the - AN+2p)\p 1
brane. This reflects the confining role of the negative bulk P== A+p |3’ (17)

cosmological constant on the gravitational field in the

warped metric models of Randall-Sundrum type. Equatiorand this condition implies that@+3p—A<0. Thus during
(14) shows thatlocalization of the gravitational field near inflation on the brane, the transverse acceleration is towards
the brane is enhanced by negatidfe while positivel{ acts  the braneinflation acts as a non-gravitational mechanism
against confinementby contributing to tidal acceleration keeping matter on the brane.

away from the brane. This picture is consistent with a New-

tonian interpretation, where the gravitational field carries D. Effective total energy-momentum tensor

negative energy density.

The non-gravitational acceleration of fluid world lines on

the brane is
AA=UBVgUuA  at x=0.
Locally, near the brane, the metric may be writter{ 4ls
ds 2=dx?+g,,(x* x)dx“dx",
so that
T2, (X0 =T,,(X) 8, 3 9 (X0 8,2

This allows us to express the 5-dimensional acceleraiion
in terms of the 4-dimensional acceleratiéff=u"V ,u* on
the brane. First, we use the covariant fogp, ,=£.9,.,
where £, is the Lie derivative along®. Then we use the
expression for the extrinsic curvature of the brisg

1
+
Ko=5

5 lim £.9,,,

x—0t

which leads to

AA(X,07) = Ak(x) 3,4 = K () uX(x)u”(x)n?(x,07),
(15

on the brane. The extrinsic curvature is given in terms of the

brane tension and energy-momentum|[ 8y
K== §&°ING,u 3Tt (p—3P)G,, .
Substituting in Eq(15), we find

AA(x,01) = A*(x) 8,2+ § k%[ 2p(x) +3p(x) —NIn"(x,0%).
(16)

All the bulk corrections may be consolidated into effec-
tive total energy density, pressure, anisotropic stress and en-
ergy flux, as follows. The modified Einstein equations take
the standard Einstein form with a redefined energy-
momentum tensor:

— 2tot
G,,=—Ag,, Tk T:V, (18
where
tot ;4 1
To=Tut —ZSW— —2E - (19
K K
Then
Kk
p'=p+ E{ﬂ(zpz—swwwwwu (20)

~ar 4
PO pt | = (2p2+ 4pp+ m,,, m— 40, q4) + SU
KG 24 P pp 2% q/.Lq 3

(21)
~4r 4
ot = +K— K—{—(p+3p)7‘r
ya4 Mmv K6 12 Mmv
+7Ta(,u771/)a+q(,uqv)}+lp,uv (22)
~47 4
g+ 5 (4pq, - m,,q7)+Q 29
q/,L q,u K6 24 pq/L ,lLVq Mot

(Note thatx*/ «® is dimensionless.

These general expressions simplify in the case of a perfect
fluid (or minimally coupled scalar field or isotropic one-
particle distribution functiop i.e., forq,=0=m,,. How-

It follows thatn,A” is nonzero on the brane; i.e., there is ever, the total energy flux and anisotropic stress do not van-
a non-gravitational acceleration of fluid world lines orthogo- ish in this case in general:
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P P The brane energy-momentum tensoid the consolidated
qft=_6Qw W;:ﬁy:—epw_ effective energy-momentum tensor dreth conserved sepa-
K K rately. Conservation of ,, gives the standard general rela-

. - tivity energy and momentum conservation equati
Thusnonlocal bulk effects can contribute to effective imper- y 9y quatipi

fect fluid terms even when the matter on the brane has per-

fect fluid form. p+O(p+p)+DHa,+2A%q, + o m,, =0, (26)

y7a%
: 4
I1l. LOCAL AND NONLOCAL CONSERVATION G * 3 @qM+DMp+(p+p)AM
EQUATIONS +D'7,, + AT, +0,,0"—[0,q],=0. (27
As a consequence of the form of the bulk eNergy-an, overdot denotes

momentum tensor in Eq1) and ofZ, symmetry, it follows . u o
[4] that the brane energy-momentum tensor separately sati§ion rate of theu® congruence,A,=u,=A, is its

"V,, ®=D*u, is the volume expan-

fies the conservation equations, i.e., 4-acceleration,o,,,=D,u,) IS its shear rate, andy,
=—zcurlu, = w,, is its vorticity rate. The covariant spatial
v'T,,=0. (24)  curl is given byle]

Then the Bianchi identities on the brane imply that the pro- curlvﬂzswﬁD"Vﬁ, curlwﬁyzsaB(MD“Wﬂy),
jected Weyl tensor obeys the constraint
B wheree ,,,, is the projected alternating tensor. The covariant
VHE,,=K'VHS,,, (250  cross-product is

which shows that its longitudinal part is sourced by quadratic [V,Y]M=sﬂaBV“Yﬁ.

energy-momentum terms, including spatial gradients and

time derivatives. Thus evolution and inhomogeneity in the The conservation off?, gives, upon using Eqs20)—
matter fields generates nonlocal Coulomb-like gravitational27), a propagation equation for the nonlocal energy density
effects in the bulk, which “back react” on the brane. U,

U+ % OU+ D*Q,+2A*Q, +0o"'P,, =3 K4[677"”’7'TW+ 6(p+p)ot’m,,+20(29"*q,— " m,,)+2A*q" T,
+49“D,p+9*D’7,,+7*'D,q,— 20" 7,7, —20""q,0,], (28
and a propagation equation for the nonlocal energy @x
Qu+ $0©Q,+ DU+ SUA,+D"P,,+A"P,,+7,,Q"—[0,Q],
=23 K= 4(p+P)Dyp+ 04" 7,y + ,"D,(2p+5p)

+6(p+p)D'm,,~ 5 7*F(D,m,p+3D,7g,)

—3m,,Dpm*+ 2 q'D,q,+4pA" T, — 37, Agm P+ § A, P,

. wﬂaaaﬁqﬁ-k O'Ma’TTanB

+ 1, 0,0]" & g7, +4(p+p)Oq,+60,A'q,+ 5 A,Q"q,+ 40,04 (29)

These equations may be thought of as conservation equatiobsane cannot be predicted by brane observers. These degrees
on the brane for the nonlocal energy density and energy fluef freedom could arise from propagating gravity waves in the
due to the free gravitational field in the bulk. In general, thebulk, possibly generated by inhomogeneity on the brane it-

4 independent equations determine 4 of the 9 independestlf. The point is that waves which penetrate the 5th dimen-
components of,,, on the brane. What is missing is an evo- sion are governed by off-brane bulk dynamical equations.
lution equation forP,,,, (which has up to 5 independent com- Our decomposition of,, has shown thathe evolution of
ponents. Thus, in general, the projection of the the nonlocal energy density and flux (associated with the
5-dimensional field equations onto the brane does not lead tecalar and vector parts of ,,) is determined on the brane,

a closed system. Nor could we expect this to be the casayhile the evolution of the nonlocal anisotropic stress (asso-
since there are bulk degrees of freedom whose impact on thgated with the tensor part of,,,) is not.
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If the nonlocal anisotropic stress contribution from the

bulk field vanishes, i.e., if

P

ur=—

01

then the evolution oft,, is determined by Eqs(28) and

(29). A special case of this arises when the induced metric on

the brane is Friedmann, i.e., when Efj0) holds. Thenf,,,
has only 1 independent componettt,and it is determined
by Eg. (28) (see below, with Eq. (29) reducing to G=0.

the brane is stati¢see[16]).
In the perfect fluid case, the conservation equati@&s—
(29) reduce to

p+0(p+p)=0, (30)

D,p+(p+p)A,=0. (31
For a minimally coupled scalar fielgy=2V ,oV*o+V(¢)
and p=%VM<pV“<p—V(go). In the adiabatic case, E¢31)
gives

2

Cs ,_P
D,qu CS:;.

A,=—

ko ptp 32

The nonlocal conservation equatiof28) and(29) reduce

to
U+ 4 OU+D*Q,+2A*Q,+o*"P,,=0, (33
Quy+ $0Q,+ DU+ SUA,+D"P,,
+A'P,,+07,,0"—[w,Q],
=— 5 «*(p+p)D,p. (34)

Equation(34) shows thatf £,,=0 and the brane energy-

momentum tensor has perfect fluid form, then the depsity
must be homogeneo({¥]. The converse does not hold; i.e.

homogeneous density doastin general imply a vanishing
&,y This is readily apparent from E¢34). A simple ex-
ample is provided by the Friedmann case: Equati®$ is
trivially satisfied, while Eq{(33) gives the “dark radiation”
solution

4

Qo
a

U= UO (35)

. L . . tlo
A simple generalization of the Friedmann case is the purely

Coulomb-like case@,=0="7P,,. Equation(35) still holds,

but with a an average scale factor, which is in general inho-
mogeneous. Equatiof34) reduces to a constraint on the ac-
celeration. Local momentum conservation already provides

the constraint in Eq.(32). It follows that in the purely

Coulomb-like case, the spatial gradient of the nonlocal en-

Q,+4HQ,+ ;D U+ 5 UA,+D"P,,=—
Another case when the equations close on the brane is when

PHYSICAL REVIEW D 62 084023
8c2U— k4 (p+p)?
2(p+p)

Linearization about a Friedmann background does not
change Eqs(30) and(31), but Egs.(33) and(34) lead to

D, U=

D.p.

U+ 4 0U+D"Q,=0, (36)

s *(p+p)D,p,
(37

whereH is the Hubble rate in the background. The nonlocal
tensor mode, which satisfies"B,,=0+#P,,, does not en-
ter the nonlocal conservation equations.

IV. PROPAGATION AND CONSTRAINT EQUATIONS

Equations(26)—(29) are propagation equations for the lo-
cal and nonlocal energy density and flux. The remaining co-
variant equations on the brane are the propagation and con-
straint equations for the kinematic quantities and the free
gravitational field on the brane. The kinematic quantities
govern the relative motion of neighboring fundamental world
lines, and describe the universal expansion and its local
anisotropies. The locally free gravitational fiedd the brane
is given by the brane Weyl tens@,,.z. This splits irre-
ducibly for a givenu* into the gravito-electric and gravito-
magnetic fields on the brane:

E..=Cpanpu®UP=E

uv uv)o

Ho= 2 Swﬁcaﬁwuyz H )

where E,, must not be confused witlf,,. The Ricci
identity for u* and the Bianchi identitiesV'BCMmﬁ

=V (=Rt %ngl ») produce the fundamental evolution
and constraint equations governing the above covariant
guantities[11]. Einstein’s equations are incorporated via the
algebraic replacement of the Ricci tens®y, by the effec-
tive total energy-momentum tensor, according to Ed).
These are derived directly from the standard general relativ-

' ity versions(see, e.g.[15]) by simply replacing the energy-

momentum tensor terms ... byp'®, ... . The result for a
general imperfect fluid is given in Appendix A.

A. Nonlinear equations

For a perfect fluid or minimally coupled scalar field, the
equations in Appendix A reduce to the following:

Expansion propagatior{generalized Raychaudhuri equa-

n):
+30%40,,04"—2w,0"—DHA, +A A*

+112(p+3p)— A
P

1 4
T 12\«

[k*p(2p+3p)+124]. (39

ergy density must be proportional to that of the local energy

density:

Vorticity propagation:

084023-6
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oy +50w,+3culA,—0,,0"=0. (39)
Shear propagation:

U<,4LV>+%®O-MV+ E’uv— D(MA,,)"F 0'a<,u0',,>a

t o0y~ ALA)

P
—) Puv- (40
Gravito-electric propagation:

E(uny+ OF,,—curlH,,,+3k%(p+p)o,,—2A% 4g,H,)*

- 30‘a<MEy>a+ w“saﬁ(MEy)ﬁ
K

. |
= 1—2( K) [{<*p(p+P)+8U} 0, + 67

+ 2@7)/“/4— 6 D<#QV>+ 12A(,ugv)
+60%,Pyat 6w 45, Py’ 1. (41)

Gravito-magnetic propagation:

Hun+ OH,,+curlE,,—30,,H

alp
+w% a’ﬂ(,uH V)B+ ZAHSQB(ILLEV)’B

K
) [eurlP,,—3w(, Q)+ %8 V)a,BQB]'

2\«
(42)
Vorticity constraint:
Dfw,—A*w,=0. (43
Shear constraint:
7{ 4
D’o,,—curlw,—3D,0+2[wA],=— =] Q-
(44)
Gravito-magnetic constraint:
curlo,,+Dg0,y—H,,+2A,0,=0. (45

Gravito-electric divergence:
D'E,,~3«’D,p—[o,H],+3H,,0"

1
18

K
(;) {x*pD,p+6D,U-60Q,

-9D"P,,+90,,0"—27Mw,Q],}. (46

Gravito-magnetic divergence:

PHYSICAL REVIEW D62 084023

v 2 v
D'H,,—«“(p+p)w,+[0,E],—3E,, 0

1k

6

K

) {«*p(p+p)w,—3curlQ,
+8Uw,— 3[0,7?]“—373#,@”}. (47)
Here the covariant tensor commutator is
[W,Z]#:s#aBW‘*yZ'By.

The standard 4-dimensional general relativity results are re-
gained by setting all right hand sides to zero in EG8)—
(47).

Together with Eqs(30)—(34), these equations govern the
dynamics of the matter and gravitational fields on the brane,
incorporating both the localquadratic energy-momentym
and nonlocalprojected Weyl effects from the bulk. These
effects give rise to important new driving and source terms
in the propagation and constraint equations. The vorticity
propagation and constraint, and the gravito-magnetic con-
straint have no explicit bulk effects, but all other equations
do. Local and nonlocal energy densities are driving terms in
the expansion propagation, and note that these are the terms
that determine the gravitational and non-gravitational accel-
eration transverse to the brane. The spatial gradients of local
and nonlocal energy densities provide sources for the
gravito-electric field. The nonlocal anisotropic stress is a
driving term in the propagation of shear and the gravito-
electric or -magnetic fields, and the nonlocal energy flux is a
source for shear and the gravito-magnetic field.

In general the system of equations is not closed: there is
no evolution equation for the nonlocal anisotropic stress
P,.,, Which carries the tensor modes in perturbed solutions.
If we set&,,=0 to close the system, i.e., if we allow only
local matter effects from the fifth dimension, then, as noted
above, the density is forced to be homogeneous. This is
clearly too restrictive. A less restrictive way of closing the
system is to assume that the nonlocal anisotropic stress van-
ishes, i.e.,P,,=0. However, this rules out tensor modes
arising from the free field in the bulk, and also limits the
scalar and vector modes, which will in general also be
present inP,,, .

B. Linearized equations

We have derived the exact nonlinear equations that gov-
ern gravitational dynamics on the brane as seen by brane
observers. These equations hold for any geometry of the
brane, and they are fully covariant on the brane. In particular,
this means that we can linearize the equations by taking a
suitable limit, and without starting from a given background
solution. In this way we avoid the need for choosing coordi-
nates, and we deal directly with covariant physical and geo-
metric quantities, rather than metric components.

The limiting case of the background Friedmann brane is
characterized by the vanishing of all inhomogeneous and an-
isotropic quantities. These quantities are then first order of
smallness in the linearization scheme, and since they vanish
in the background, they are gauge invarigt®]. The stan-
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dard general relativity scheme is modified by the additional 0.=D,0+0, (59)
degrees of freedom arising from bulk effects. In particular, meoR e
the generalized Friedmann equation on the braréJis and scalar, vector and tensor modes enter the nonlocal aniso-
—_4 A tropic stress:
H2mip+ie2y— K paza 2 1K) [0 _
TIATEPT TR TR ) Yol ) Puv=D(,DyyP+D, Py +P,, . (60)
48
“8 In these equations, an overbar denotes a transverse
whereK=0,+1. (divergence-freequantity:
Linearization about a Friedmann brane model of the . . .
propagation and constraint equations leads to the reduced b*Q,=0=D*P,, D"P,,=0.

system

. V. NONLINEAR AND PERTURBATIVE DYNAMICS
O +302-DHA,+35k%(p+3p)—A _ _
Bulk effects introduce new degrees of freedom into the

1(%\* 4 dynamics on the brane, subject to the additional nonlocal
=~ 15| =/ [xP(2p+3p)+124], (49 “conservation” equationg33) and (34). Standard results in
general relativity may or may not continue to hold under this
&)M+2Hwﬂ+ %curIAﬂzo, (50) hlgher—dlmen§|onal mod|f|cat|_on. We now use the conserva-
tion, propagation and constraint equations to generalize some
~\ 4 standard results of 4-dimensional general relativity.
. K
o,,t2Ho,,+E, ,—D A =5 —) Puvs (51)
. a . W2 # A. CMB isotropy and brane homogeneity

In standard general relativity, the isotropy of the CMB

radiation has crucial implications for the homogeneity of the

1 (% universe. If all fundamental observers after last scattering
=— —(—) [{K4p(p+ p)+8u}gw observe an isotropic CMB, then it follows from a theorem of

12\ x Ehlers, Geren and Sachs7] that the universe must have a

. homogeneous Friedmann geometry. This has been general-

+6D, Q)+ 6P, TOHP ], (52 ized to the almost-isotropic caf&8], providing a foundation
~\ 4 for the perturbative analysis of CMB anisotropies. The
( ) curlP,,,

E,,+3HE,,—curlH,,,+3x%(p+p)a,,

(53) Ehlers-Geren-Sachs theorem is based on the collisionless
Boltzmann equation and on the kinematic-dynamic charac-
terization:

. 1
H,,+3HH,, +curl E“”:E

D*w,=0, (54
A,=w,=0,,=0#0 and

H M

4
D'c,,~curlw,—2D,0=— ( ) Q,, (55) q,=m,,=0=Friedmann geometry. (61)
Bulk effects do not change the Boltzmann equation, but
curle,,+Dy, 0, —H,,=0, (56) they do mean that the Friedmann characterization is no
longer in general true on the brane. While the gravito-
4 magnetic constraint, E¢45), still leads toH ,, =0, the shear
) [K4pDMp+6DMU propagation equatio#0) no longer force€ ,, =0, because
of the nonlocal tern,,, so that the intrinsic metric need
—-1849,-9D"P,,], (57)  not be conformally flat.
A consistent solution on the brane of the systentnain-
4 linean conservation, propagation and constraint equations
) [{«*p(p+p)+8U} can be given as follows. We take

K

K

1
v 2 —
D E;w_%K D’up— 1_8(

K
D"H,,— KZ(P"'p)w,u:g(;
Xw,—3curlQ,]. (58) D,p=D,p,=D,U=D,0=0, Q,=0=D"P,,.

These equations, together with the linearized conservatio-r|1—hen the system of equations reduces to the consistent set

equationg30), (31), (36) and(37), are the basis for a cova-

riant and gauge-invariant description of perturbations on the p+0p=0,
brane. The local bulk effect&qquadratic energy-momentum o,

effectg are purely scalar, as is the nonlocal energy density. prt 30p=0,
The nonlocal energy flux has in general scalar and vector _

modes U+ % OU=0,
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_ 1% 4 C. Cosmological scalar perturbations
O+350%+3k%(p+2p)—A=— 1_2(; [«*(p+py) The linearized equations on the brane derived in the pre-
vious two sections encompass scalar, vector and tensor
X (2p+3p,)+124], modes. In order to covariantiiand locally separate out the
scalar modes, we impose the condition that all perturbative
) X quantities be spatial gradients of scalars, i.e.,
P,uv+ §®PMV: 0!
V,=D,V, W,,=D;D,W.
£ :E( 5) The identities in Appendix B, the vorticity constraint equa-
AN e tion (54) and the gravito-magnetic constraint equati&)

then show that

. In ggneral, p.rowded that the propagation equatiorpy curlV,=0=curlW,,, D'W,,= %DZ(D;LW),
is consistent with the bulk geometr,,, need not be zero,
so that the brane geometry need not be Friedmann, although
it is asymptotically Friedmann.

Thus it is in principle possible via nonlocal bulk effects as in standard general relativity.
that isotropic CMB doesot force the brane metric to be If we choose the fundamental 4-velocity* such that
Friedmann. ,,=0, which is the covariant analogue of the longitudinal
or conformal Newtonian gauge in metric-based perturbation
theory (see[19,2(Q for further discussion then the shear

) ) _ _ propagation equatiofbl) becomes a constraint determining
Another important question is how the higher- the prane tidal tensor:
1(%\*
—| P|.
K

dimensional bulk effects modify the picture of gravitational
<I>+§

®,=0=H (62

v

B. Generalized gravitational collapse

collapse and singularities, which depends on Raychaudhuri’s

equation[11]. E,.=D;.D,
The generalized Raychaudhuri equati¢d8) governs

gravitational collapse and initial singularity behavior on the

brane. The local energy density and pressure corrections

Here @ is the relativistic generalization of the gravitational
potential, defined b, =D, ®, andP is the potential for the
nonlocal anisotropic stress, defined in EG0). It follows
that nonlocal bulk effects lead to a change in the gravita-
tional tidal potential(in longitudinal-like gaugg

HK*p(2p+3p)

further enhance the tendency to collapse gft23p>0. This

condition will be satisfied in thermal collaps@r time- 1/ %\*

reversed expansignbut it is violated during very high- (D—>¢)+§ ;) P. (63)
energy inflation p>\), by Eq. (17), and in that case the

local bulk term acts to further accelerate expansion. This igy the general case, i.e., whert is not chosen to giver,,
consistent with the results given [8]. Thuslocal bulk ef-  —q thjs simple relation does not hold. .
fects at high energy reinforce the formation of singularities | order to derive the equations governing density pertur-

during thermal collapse, as predicted in general relativity, pations in the general case, we define the density and expan-
while further accelerating expansion during high-energy in-sjon gradientgas in[13])

flation.
The nonlocal term

a
A#=F—)D#p, Z,=ab,0, (64)
~\4
(f) U and the(dimensionlessgradients describing inhomogeneity
in the nonlocal quantities:

can act either way, depending on its sign. As shown from Eq.
(14), a negative/ enhances the localization of the gravita-
tional field on the brane. In this case, the effectlbfs to
counteract gravitational collapse. A positieacts against where Q is defined in Eq.(59). Then we take the spatial
localization, and also reinforces the tendency to collapse. gradient of the energy conservation equati@®® and (36)

If higher-dimensional corrections to Einstein’s theory and the generalized Raychaudhuri equati48), using the
tend topreventsingularities, then the effective energy den- identities in Appendix B and the adiabatic equati@g). We
sity 2/ on the brane of the free gravitational field in the bulk arrive at the following system of equations:
should benegative In this casel also acts to reinforce )
confinement of the gravitational field to the brane. A,=3wHA,—(1+wW)Z,,, (66)

w

a 1 1
Uu= D, Q#ZEDMQ, Pu=, 0k (65)
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§ A third-order equation for density perturbations during matter
7 _ 2 H H .
Z,=—2HZ,— TTw DA, - - pU, domination, on a flat background:
~\4 2 4%\
~ K 2cs \U A D) e e — 204528 A | A
—3p K2+%K4(4+3W)p—(; 1+\SN nea Apt2HA,+ 3 K) A L S
(67) +[3x°—5k*p]pHA ,=0. (70)
2
U,= (3w— 1)HUM— s _) HAM D. Cosmological tensor perturbations
1+w/ip Tensor perturbations are covariantly characterized by
U _ - -0 = "y —
_<5) 7,-aD%Q,, 68 D,f=0, A,=w,=Q,=0, D'W,,=0,

where f=p,p,®,4, andW,,=0o,,,E,, H,,,P,,. Then
_ all the conservation equations reduce to background equa-
Q,=(1-3w)HQ,— gu#— §aD2PM tions, and the system of linearized propagation and constraint

equations in the previous section reduces to

L[ B U 1+w) |A 69 7. o
il “_ .
+ 6a 1+W p K p ( +W) M ( ) O-IJ—V+2HO-MV+ E,u,V_07 (71)
where w=p/p. The background Friedmann equati¢48) El,+3HE), —curlH,,+3k%(p+p)o,,

relatesH andp, with ¢/ in the background given by E¢35). ~

In standard general relativity, only the first two equations _ i(f) [{x*0(p+ p)+8u};
apply, with 'k set to zero in Eq(67). In this case we can 12\ k g
decouple the density perturbations via a second-order equa-

tion for A,, whose independent solutions are adiabatic +12AP,+2HPL,)], (72)
growing and decaying modes. Nonlocal bulk effects intro- L .

duce important changes to this simple picture. First, we note H,,+3HH,, +curl Efwzo, (73
that there is no equation fd'?M, so thatin general, scalar L

perturbations on the brane cannot be predicted by brane curlo,,—H,,=0, (74
observers without additional information from the unobserv-

able bulk. where the overbars denote transverse tensors, and

However, there is a very important exception to this, aris- ~
ing from the fact thaQQ, and P, only occur in Eqs(66)— v = 1 k) —
(68) via the Laplacian terms 4, and P, , and the latter Eun=EBuw—3 =] Puv-
term is the only occurrence @t in the system. It follows
that on super-Hubble scales, the system does close, angince there is no equation far

; . S v, the system of equations
brane observers can predict scalar perturbations from initial 4yas 1ot close on the brarsane observers cannot evaluate

conditions intrinsic to the braneThe system reduces 10 3 ansor perturbations on the brane without additional infor-
coupled equations i, , Z,,, andU,,, plus an equation for - nation from the unobservable bulkhis remains true on

Qy, which is determined once the other 3 quantities aréner-Hubble scales, unlike the scalar perturbation case.
solved for.One can decouple the density perturbations via a Equations(71) and (74) show that the shear is a gravito-
third-order equation forA ,. The nonlocal energy density

plays the role of a non-interacting radiation fluid with the
same velocity as the ordinary fluid, and inhomogeneit§/in

introduces an additional entropy-like scalar mode. As ma
have been expected, this additional mode is absent during

potential forE}; , and ﬁw. Using the identities in Appendix
B, we can derive the following covariant wave equation for
he shear:

radiation domination; in this case Eq®6) and (68) show DZEW—?;W—SH;W— 2A+3k%(p—3p)
that
(o +30) |5,
. Uy . oK plp P)ouy
U,=—4,. 12 .
Po ~\ 4
K . I
In principle, it is straightforward to solve the coupled sys- - _(Z) [Pt 2HP,, ). (79

tem on super-Hubble scales, although numerical techniques
will be necessary. We do not attempt particular solutiong=or adiabatic tensor perturbations in standard general relativ-
here. However, it may be instructive to see the decoupleity, the right hand side falls away. Nonlocal bulk effects
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provide driving terms that are like anisotropic stress terms irceleration felt by brane observers, allowing us to provide

general relativity{21]. In the latter case, however, the evo- covariant characterizations of gravity and matter localization,

lution of anisotropic stress is determined by the Boltzmanrand showing in particular that the non-gravitational off-brane

equation or other intrinsic physics. acceleration of fundamental world-lines is towards the brane
What we can conclude from E¢Z5) is that thelocal bulk during inflation.

effects enhance tensor perturbations for non-inflationary ex- jj) Showing how bulk effects can disrupt the relation be-

pansion, and suppress them during inflatisince inflation  yyeen isotropy of the CMB and spatial isotropy and homo-
implies p+3p<0 (at all energy scalgsby Eq. (17). The  geneity on the brane.

nature of thenonlocal bulk effects carried byP,, requires (i) Showing how bulk effects modify the dynamics of
knowledge of the off-brane dynamics &{g, which we have  gravitational collapse and singularity formation.
not considered. We have derived the exact nonlinear equations governing
cosmological dynamics on the brane and the corresponding
E. Cosmological vector perturbations covariant and gauge-invariant linearized equations. Further

The linearized vorticity propagation equati¢g0) does impl.ications of these equatipns could usefully be p_ursued. In
not carry any bulk effects, and vorticity decays as in Standar@amgular, an important topllc for further research is the cal-
general relativity. However, the gravito-magnetic divergenceFtation of scalar perturbations on very large scales and the
equation(58) shows that the local and nonlocal energy den-nvestigation of limits imposed by observations.
sity and the nonlocal energy flux provide additional sources However, the major further step required, and not under-

for the brane gravito-magnetic field: taken here, is to complete the picture by investigating the
dynamical equations of the gravitational field off the brane.
~\ 4 A starting point is provided by the general equations given in
K . .
DVH,LV:KZ(P+D)0)M+5 ;> [4,10], which determine

X[{x*p(p+p)+ 8Utw,—3curlQ,].
‘CngABa ’CHBABC! EnRABCD!

In standard general relativity, it is necessary to increase the
angular momentum densig?(p+ p)w, in order to increase
the gravito-magnetic field, but bulk effects allow an in- whereRagcp is the 4-dimensional Riemann tensor, and
creased gravito-magnetic field without this. In particular, un-
like in general relativity,|t is possible to source vector per-
turbations even when the vorticity vanishefmce curiQ,, -
Bagc=09a"gsFC nt.
may be nonzero. ABc—9a 9B “DECF

VI. CONCLUSION
However, it may turn out to be more useful to develop an

. " . o diternative decomposition of the bulk Weyl tensor, along a
geometrical quantities that are in principle measurable b

brane observers, we have given a comprehensive analysis Bielike Q|rect|onuA rather than a spatial directiart’. Intu-
intrinsic cosmological dynamics in RandaII-Sundrum-type't'Vely’ this may prowdg a more direct and transparent route
brane worlds. This has allowed us to carefully delineate what0 the evolution equation foP,,, whose absence leads to
can and cannot be predicted by brane observers without aginpredictability on the brane. Such a timelike decomposition
ditional information from the unobservable bulk. requires a generalization to higher dimensions of the
Our main result is probably thaicalar perturbations on 4-dimensional decomposition of the Weyl tengad]. The
super-Hubble scales can be evaluated intrinsically on thegeneralization has been given[it¥].
brane This is a generalization of the result given[8l, i.e., The complete and closed system of dynamical equations
the evaluation of adiabatic scalar perturbations on supemvould allow us to develop more systematic and probing tests
Hubble scales during inflation on the brane, done under thef the Randall-Sundrum-type models against observational
assumption thaf,,, may be neglected. constraints. Despite the appealing geometric and particle-
We showed that tensor perturbations cannot be evaluatgehysics properties of such models, it is their confrontation
intrinsically on any scales. This is not surprising, since thewith cosmological observational tests that will provide a
ability of gravitational waves to penetrate the 5th dimensiormore decisive arbiter as to whether they are viable generali-
inevitably introduces unpredictability from the standpoint of zations of Einstein’s theory.
observers confined to the brane. Vector perturbations on the Note addedSince this work was completed, a number of
brane can be generated even in the absence of vorticity, vigapers have appeared, setting up the 5-dimensional formal-
the curl of the nonlocal energy flux. ism (metric basef of bulk perturbationg22], and gravita-
Our nonperturbative results include the following: tional waves produced during inflation on the brane have
(i) Calculating the gravitational and non-gravitational ac-also been studief23].

By adopting a covariant approach based on physical an
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APPENDIX A: GENERAL PROPAGATION AND CONSTRAINT EQUATIONS

For a general, imperfect energy-momentum tensor, as in@gthe propagation and constraint equatid&8)—(47) are

generalized to the following:
Propagation:

~\ 4
. 1
®+%@24-0'#,,0'“”—2(1)#(1)'“—D'“AM-FAMA“-F%Kz(p+3p)—A=—1—2( )[K4(2p2+3pp 3q,09*) +124], (A1)

('u<m+%@wﬂ-i-%curlAM—oww”:O, (A2)

) 2 1 2 a
Oy T500,, B, =36, = DAy + 003,00 0,0, = AGA,)

~\4
1
24( ) (Y= (p+3P) 7+ T+ 0,00} +12P,,, ], (A3)

E(,u,v)+ E,uv_ curl H,u,v+ %Kz(p‘f' p)O’MV‘f‘ %KZ’;T“W)'F %K2D<#qv>+ %KZ 7TMV+ K2A<quv>

o _ a o 1.2 « 1.2 «
—2A saﬁ(#Hy)ﬁ 30'a<#EV> +w saﬁ(#EV)B-i-zK TN LT yat 2K @ saﬁ(ﬂ'n',,)ﬁ

1 L . . .
72( )[ «M3(2p*+2pp— T opm**~20,0%) 0, +3(p+P) T, +3(p+3P) ()~ 6T 4Ty~ 60,0,

+ gD(M( WV)aqa_ 4qu}) + ®([p+ Sp] T ™ 7Ta<,u7TV)a_ q(,uqv)) - 3A<,u(4pqv>_ WV}aqa) + 3(P+ Bp)o-a(,u/n-v)a
=30 (TP ) Taypt Aila) +3(p+3P) 06 (a0 — Bwa ™ (u(T7 ()T gy + UyyUlp) s — 48U, — 367,
—36D,Q,,~120P,,—72A,Q,,— 360, P,y o~ 360 45, Py"1, (A4)

H<MV>+ OH,, +curlE,, — 1x%curl Ty =30 o H i+ 0% o5, H V)B-l- 2Aasaﬁ(MEy)ﬁ+ §K2w<ﬂq,,>— %Kzo'a(lus,,)aﬁqﬁ

~\4
1
48( ) [K4{ 2curK(P+3p)7T 7Ta<,u’n-v>a_Q<,qu>)_12pw<,uqv>+4w<,u77v)aqa+a-a(;l,sv)aﬁ(4pqﬁ_Wﬁyqy)}
+24CUnP,,~ 720, Q,)+ 240, )0 QF. (A5)
Constraint:
Dtw,—A*w,=0, (AB)
v 2 2 1 7< ) 4 v
D'o,,—curlw,—5D,0+« q#—'—z[("’A]M:_ﬂ - [«*(4pq,—m,,Q")+24Q,], (A7)
(A8)

CUI"O‘MV‘FD<#wy>—H#V+2A<MwV>:O
D”EW+%KZD”WW—%KZD#p—F%K2®q#—[U,H]#+3waV—%Kza'#,,q”—kgxz[w,q]#

1%

48( ) [K4{3®(7T/.wq 4pq/.1,)+2DV[(p+3p)7TMV a<,u,7TV)a_q<,qu)]+ngMp_A'WaBD,uWa,B

+0,,(4pq"—7""q,) + 38Maﬂw“ﬂ'ﬂyqy—4p[w,q]ﬂ}+ 16D,U—-160 Q,—24D"P,,+240,,Q" -7 w,Q],],

(A9)
DVHMV-F%KZCU”C]M—Kz(p+p)w’u+[0',E]#+%KZ[U,W]M—SE#VQ)V-F%Kzﬂﬂywy
o
48( )(K4{CU|’|(’ITI_Wq 4Pqﬂ)+4(2P2+2Pp Waﬁwaﬁ anqa)w Maﬁoﬂy(ﬂ-v(ﬁﬂ-wv—{_q(ﬁqy))
+2[(p+3P) 7= T — Ay ]0"+2(p+3p)[o, 7]} — 24 curlQ, + 64Uw ,— 24 0, P],— 24P ,,0").
(A10)
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The 4-dimensional general relativistic results are regained by setting all the right hand sides of these equations to 0.

APPENDIX B: DIFFERENTIAL IDENTITIES

On a flat Friedmann background, the following covariant linearized identities[R6]d

D,f=(D,f)"+HD,f—fA,, (B1)

D*D, f)=D,(D?*))+2fw,, (B2)
(D?f)'=D?*f—2HD?f +{D*A,,, (B3)

curl D, f=—2fw,, (B4)
curlD,,D,, f=0, (BS)
(D,V,)’=D,V,—HD,V,, (B6)
D;,.D,;V4=0=D;,D,;W,z, (B7)
D*curlV,=0, (B8)
D'D,V,,=3D?V,+ §D,(D"V,), (B9)
curl D, V,y= 3D ,curlV,,, (B10)
curlcurlV,=—-D?V,+D,(D"V,), (B11)
(D,W,z)"=D,W,z—HD,W,g, (B12)
D”curlW,,= 3 curl(D*W,,,), (B13)
curlcurlW,,,= —D?W,,,+ 3D, DW,,,,, (B14)

whereV, =V, andW,,=W,,, vanish in the background.
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