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Divergence of the quantum stress tensor on the Cauchy horizon in 2D dust collapse
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We prove that the quantum stress tensor for a massless scalar field in two dimensional non-self-similar
Tolman-Bondi dust collapse and Vaidya radiation collapse models diverges on the Cauchy horizon, if the latter
exists. The two dimensional model is obtained by suppressing angular coordinates in the corresponding four
dimensional spherical model.
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I. INTRODUCTION

If a classical model of gravitational collapse results in t
formation of a naked singularity, quantum effects can
expected to play a significant role during the final stages
the collapse. One way to study these effects is the quan
tion of test matter fields in the background spacetime p
vided by the collapsing classical matter. The semiclass
approximation is expected to be valid up to Planck scales
particular, one is interested in the behavior of the stress
sor of the quantized field in the approach to the Cau
horizon. The divergence of the vacuum expectation value
the quantized stress tensor on the Cauchy horizon signa
instability of the horizon, and suggests that back react
will prevent the naked singularity from forming.

Two well-known examples of the formation of naked si
gularities are the spherical collapse of inhomogeneous
~the Tolman-Bondi model! and the spherical collapse of nu
dust ~the Vaidya model!. It is known for both these model
that for certain initial data the collapse ends in a black h
and for other initial data it ends in a naked singularity@1–3#.
The Penrose diagrams in Fig. 1 exhibit the formation o
black hole and a naked singularity.

The stress-tensor of a quantized scalar field on these b
ground spacetimes has been investigated, by specializin
the case of 2D self-similar collapse. The restriction to 2D
similar to the geometric optics approximation in 4D—t
latter amounts to keeping only thel 50 modes. The 2D
spacetime is obtained by suppressing the angular coordin
in the 4D spherical model. For a two dimensional mod
explicit expressions for the vacuum expectation value of
stress-tensor can be obtained from the trace anomaly, by
posing conservation of the stress tensor. The assumptio
self-similarity allows double null coordinates to be co
structed explicitly. Using these coordinates it has be
shown that the outgoing quantum flux diverges on
Cauchy horizon, for self-similar Vaidya collapse@2#, as well
as for self-similar Tolman-Bondi collapse@4#.
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A priori, it may be the case that the divergence in the
model could be because of the assumption of self-similar
In this paper, we prove that this assumption can be relax
and that the outgoing quantum flux will diverge on th
Cauchy horizon, for all initial conditions for which a nake
singularity forms in the 2D Vaidya and Tolman-Bondi mo
els.

The outline of the proof is as follows. Consider the co
lapse of a classical non-self-similar spherical dust cloud
choose the initial conditions to be such that the collapse
sults in a naked singularity. We now construct a new init
distribution by replacing a spherical region by a self-simi
distribution. The new distribution is hence a self-simil
spherical region surrounded by part of the original distrib
tion. The free parameter of the self-similar distribution
fixed by requiring the first and second fundamental forms
match at the boundary between the self-similar region
the original distribution. It is then shown that if the evolutio
of the original distribution results in a naked~covered! sin-
gularity, the evolution of the modified distribution also r
sults in a naked~covered! singularity. We show that, in gen
eral, the density of the cloud will change discontinuously
the boundary, but this change will be finite, and not infini

We next consider the quantum stress tensor for a mass
scalar field on the classical background dust spacetime
has been shown earlier, the stress tensor diverges on
Cauchy horizon for a self-similar model. Consider now t
modified distribution~self-similar region surrounded by non

FIG. 1. Formation of a black hole and a naked singularity.
©2000 The American Physical Society21-1
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self-similar region! mentioned above. We show that the n
ture of the divergence in the self-similar region is such tha
implies a divergence in the outer non-self-similar region
well. Then, by considering a family of initial distributions
the size of the self-similar region is shrunk to zero—for ea
distribution in the family there is a divergence on the Cauc
horizon. The limiting distribution, in which the self-simila
region disappears entirely, is the original distribution, a
this also has a divergence on the Cauchy horizon.

The plan of the paper is as follows. In Sec. II we constr
the modified distribution which includes a self-simil
spherical region in the interior. In Sec. III we obtain th
quantum stress tensor for a test scalar field on this mod
distribution and prove that it diverges on the Cauchy horiz
for a non-self-similar dust cloud.

II. THE MODIFIED DISTRIBUTION

In this section, we show how the modified initial distrib
tion is constructed, for the cases of marginally bound a
non-marginally bound dust collapse, as well as for
Vaidya model.

A. Marginally bound dust collapse

The collapse of a spherical dust cloud is described by
Tolman-Bondi line-element, using comoving coordina
(t,r ,u,f):

ds252dt21
R82

11 f ~r !
dr21R2~ t !dV2, ~1!

whereR(t,r ) is the area radius at timet of the shell labeled
r, andf (r ) is a free function, satisfyingf .21. The margin-
ally bound solution is one for whichf (r )50. The only non-
zero component of the energy-momentum tensor is the
ergy densityr(t,r ), which satisfies the Einstein equation

r5
F8~r !

R2R8
, ~2!

whereF(r ) is another free function, and has the interpre
tion of being the mass to the interior of the shellr. The only
other Einstein equation is

Ṙ25
F~r !

R
1 f ~r !. ~3!

Let us consider the collapse of marginally bound d
cloud, starting at a timet i and having an initial density dis
tribution r0(r ), for r<r b , wherer b is the boundary of the
star. Integrating~3! gives the solution

R3/2~ t,r !5
3

2
AF~r !„t0~r !2t… ~4!

for the evolution of the area radius of the shellr. t0(r ) is a
function of integration, to be determined by choosing an i
tial scaling,R(t i ,r ), at the start of collapse. The area shrin
to zero att5t0(r ), resulting in the formation of a curvatur
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singularity. It is the singularity atr 50, the central singular-
ity, which is of interest to us, as this has been shown to
naked for some initial conditions. Specifically, it has be
shown@1# that if the initial density distributionr0(R) has a
Taylor expansion

r0~R!5r01r1R1
1

2
r2R21

1

6
r3R31•••, ~5!

then the singularity is at least locally naked if one of t
following conditions is satisfied:~i! r1,0, or ~ii ! r150,r2

,0, or ~iii ! r15r250,r3,0 andj5A3r3/4r0
5/2 is less than

or equal to225.9904. The singularity may or may not b
globally naked. We are interested in showing that in eith
case the outgoing quantum flux diverges on the Cauchy
rizon.

The self-similar solution, i.e. one for which the spacetim
of the collapsing cloud possesses a homothetic Killing vec
field, is a special case of the marginally bound solution. If
choose the scaling in such a way thatt0(r )5r , then the mass
function of the self-similar solution is of the formFss(r )
5lr , with l a non-negative constant. All dimensionle
quantities are functions oft/r . The central singularity forms
at t50, and is known to be~globally! naked for l<lc
50.1809 @5#. It can also be shown that the initial densi
distribution for a self-similar cloud is of the form

r0~R!5r01r3R31r6R61r9R91•••. ~6!

In order to construct the modified initial density distrib
tion, we start with the original distributionr0(r ) and replace
a central region, up to somer 5r c , by the self-similar solu-
tion ~with r c,r b!. For r c,r ,r b , the distribution continues
to be the original distributionr0(r ). There is only one free
parameter in the self-similar solution, namelyl, and this is
determined by requiring that the total mass in the self-sim
region is equal to the total mass contained in the origi
distribution, up tor 5r c . That is,lr c5F(r c).

We would now like to ensure that the determined value
l is such that in the limitr c going to zero, the modified
distribution admits a naked singularity if and only if th
original distributionr0(r ) admits a naked singularity. This i
essential because we are interested in examining prope
of the Cauchy horizon in the original distribution. Hence it
natural to demand that the modified distribution posses
Cauchy horizon if and only if the original distribution doe
The limiting valuel0, of l, is clearly dF(r )/drur 50, and
should satisfy the conditionl<lc if and only if the original
distributionr0(r ) admits a naked central singularity.

To check this, we go back to the solution~4! and assume,
for simplicity, the scaling to be such thatt0(r )5r , so that the
solution can be written as

R35
9

4
F~r ! ~ t2r !2. ~7!

We substitute this in Eq.~2! and assuming the collapse t
begin att5t in , find the initial densityr0(r ) near the center,
to be
1-2
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r0~r !5
4

3t in
2 F11

2F~r !

F8~r ! t in
G . ~8!

We compare this with the form~5! for the initial density,
after using Eq.~7! with t5t in in Eq. ~5!. This comparison
allows us to deduce the form ofF(r ) nearr 50, from which
the limiting valuel05dF(r )/drur 50 can be worked out. We
find that for two of the naked cases,~i! r1,0, and~ii ! r1
50,r2,0, we getl050, which is a special case of th
naked self-similar model. For the case~iii ! r15r250,r3

,0 we getl0
3/2528r0

5/2/A3r3, which implies that the cho-
sen self-similar distribution is naked if and only if the orig
nal distribution of type~iii ! is naked. For the covered cas
which is r15r25r350, we get thatl0 is infinite, which is
a covered self-similar distribution. Hence it is shown that
modified distribution admits a naked singularity if and on
if the original distribution does.

Next, we discuss the question of the matching of the s
similar region and the non-self-similar region, at the boun
ary r c . By comparing the metrics of the two spacetimes
this boundary we find that the area radii in the self-simi
metric and in the non-self-similar one will be equal if the tw
mass functions are equal. Since the masses have been c
to be equal, that ensures the matching of the first fundam
tal form ~i.e. the line element on the boundary!. The second
fundamental form~i.e., the extrinsic curvature! is defined to
be

Kmn52
1

2
~ja;b1zb;a!hm

ahn
b , ~9!

where ja is a unit normal to the boundary, andhb
a5db

a

2jajb is the projection tensor. The only non-zero comp
nent of the extrinsic curvature isKu

u5Kf
f521/R, which

matches for the two metrics, since the mass functions h
been chosen to be equal. Hence we are assured that the
and second fundamental forms match on the boundary.

We note that the derivativeF8(r ) will in general not
match at the boundary, when calculated for the self-sim
region, and for the non-self-similar region. As a result, t
density functionr(t,r ), given by Eq.~2!, will in general be
discontinuous at the boundary. However, it is important
our purposes to note that this discontinuity will be finit
sinceF8(r ) will be finite.

B. Non-marginally bound dust collapse

The metric functionf (r ) which appears in Eq.~1! is now
non-zero. Equation~3! can be solved exactly, for givenF(r )
and f (r ). WhereasF(r ) is determined from the initial den
sity distribution,f (r ) gets determined from the velocity dis
tribution Ṙ at the onset of collapse.

Given an initial distribution of density and velocity whic
is non-marginal, one cannot straightaway match it to a s
similar region at a boundaryr c , because for the former dis
tribution we havef (r )Þ0, and for the latter we havef (r )
50. Matching of the line-elements requires that bothF(r )
and f (r ) match on the boundary between the two region
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Thus, given the original non-marginal distributio
@r0(r ), f (r )# we construct the modified distribution as fo
lows. Replace the original model by a self-similar one,
before, for r<r c . For some r * ,r b , introduce a non-
marginal dust distribution@r0(r ), f s(r )# in the regionr c,r
,r * , which has the property thatr0(r ) @and henceF(r )# is
the same as in the original distribution;f s(r c)50 and
f s(r * )5 f (r * ). As before, the self-similar model is chose
such thatlr c5F(r c). The introduction of this sandwiche
region ensures that the first and second fundamental fo
are matched at the boundariesr c andr * . The limiting value
of l, as r c goes to zero, is again given byl0
5dF(r )/drur 50, and is calculated by letting bothr c and r *
go to zero, while always keepingr * .r c . By carrying out an
analysis similar to the marginal case, it can be shown thal0
is such that the introduced self-similar model is naked if a
only if the original distribution is naked.

C. The Vaidya model

The collapse of a null dust cloud is described by t
Vaidya metric

ds252S 12
2m~v !

R Ddv212dvdR1r 2dV2, ~10!

where the mass functionm(v) depends on the advanced tim
coordinatev. The mass function is zero forv,0, and con-
stant forv.vb . Thus the cloud is bounded in the region
,v,vb , and its exterior is Schwarzschild spacetime. A c
vature singularity forms when the inner boundary of t
cloud hitsR50. This singularity is known to be naked fo
dm(v)/dvuv50<1/16 @3# and covered fordm(v)/dvuv50
.1/16. The special case of a self-similar model is describ
by the linear mass function,m(v)5mv, 0,v,vb .

Given a non-self-similar modelm(v), we construct the
modified distribution by replacing the original model by
self-similar one in the region 0,v,vc , with vc,vb . The
free parameterm in the self-similar model is fixed by de
mandingmvc5m(vc). The limiting value ofm, asvc goes
to zero, isdm(v)/dvuv50, and it is apparent that the intro
duced self-similar distribution is naked if and only if th
original distributionm(v) is naked.

Since the boundaryvc is a null hypersurface, the match
ing of the spacetimes at the boundary is done by compar
not the line elements, but the affine parameter for outgo
or ingoing null geodesics. We now show that the matching
the affine parameters on the boundaryvc implies that the two
mass functions should be equal. For this purpose, it is c
venient to restrict to the 2D line element obtained from E
~10! by suppressing the angular coordinates, and to write
double null coordinatesu,v, i.e.

ds25C2~u,v ! du dv. ~11!

The functionC(u,v) satisfies the differential equation

C2,v

C4 S 12
2m~v !

R D1
2m~v !

R2C2
12

C2,v

C4
50. ~12!
1-3
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SUKRATU BARVE, T. P. SINGH, AND CENALO VAZ PHYSICAL REVIEW D62 084021
By integrating the geodesic equation for the metric~11! it is
shown that the affine parameter along ingoing and outgo
null geodesics is of the form

p5aE C2du1b, q5cE C2dv1d. ~13!

Matching of the affine parameter at the boundaryvc hence
requires thatCa

2du5Cb
2du, and the use of this equality in th

differential equation~12! gives the result that the mass fun
tions of the two regions~self-similar and non-self-similar!
must match. Further, it may be shown, as in the dust c
that the extrinsic curvatures match at the boundary betw
the two regions.

We have now completed the construction of the modifi
classical distribution, which will be used to prove the dive
gence of the outgoing quantum flux on the Cauchy horiz

III. THE QUANTUM STRESS TENSOR

We restrict attention to the two dimensional spaceti
~Tolman-Bondi or Vaidya! obtained by suppressing angul
coordinates in the four-dimensional spherical spacetime.
expectation valuê 0inuTmnu0in& of the energy-momentum
tensor of a quantized scalar field in the Minkowski vacuu
u0in& can be calculated from the trace anomaly, and Wa
axioms. The trace anomaly is equal toR/24p, whereR is
the Ricci scalar for the background spacetime@6#. The two
dimensional spacetime can be expressed in terms of gl
null coordinatesû and v̂ as

ds25C2~ û,v̂ ! dû dv̂. ~14!

These coordinates are chosen such that the initial quan
state of the scalar field, which is the standard Minkow
vacuumu0in& on I 2, is the vacuum with respect to the no
mal modes of the scalar wave equation inû,v̂ coordinates.
The components of̂Tmn& are given by

^Tûû&52
1

12p
CS 1

CD
,û,û

, ~15!

^Tv̂ v̂&52
1

12p
CS 1

CD
,v̂,v̂

, ~16!

^Tûv̂&5
RC2

96p
. ~17!

Consider a situation where two solutions for the ba
ground metric are matched across a hypersurface, like a
desic, for instance, which in fact will be the case for o
models. LetC1

2 andC2
2 be the metrics in the two regions. I

either of the regions where the solutions are given, exp
sions~15!–~17! are analytic. Now consider the hypersurfa
~boundary! where the matching has taken place. Assum
the line element on the boundary and the second fundame
form of the boundary being calculated in both of the regio
to be identical respectively, one obtainsC15C25C at the
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boundary. The difference in the quantum stress tensor c
ponents can be expressed at the boundary@e.g. from Eq.~1!#:

^T1ûû&2^T2ûû&521/12pC~1/C121/C2! ,û,û . ~18!

Since both the metrics are analytic in their respective regi
~we only require their second order partial derivatives to
finite! and if one extends each one of them smoothly acr
the boundary, one finds that the expression above is certa
finite. So, the discontinuous change in^Tûû& across the
boundary will be finite. The same can be said of the res
the components.

We next introduce double null coordinates in the vario
regions of the modified distribution under consideratio
Consider first the case of marginally bound dust. The vari
regions are the introduced self-similar region~henceforth la-
beled 2! in the coordinate range 0,r ,r c , the original dis-
tribution in the region~henceforth labeled 1! r c,r ,r b , and
the Schwarzschild region~henceforth labeled 0! r .r b . We
write the line-elements in these regions as

ds25A2~u2 ,v2!du2dv2 ~19!

in region 2, as

ds25B2~u1 ,v1!du1dv1 ~20!

in region 1, and finally, as

ds25D2~u,v !dudv ~21!

in region 0.
The relationship among these coordinates can be giv

following the procedure described in Birrel and Davies@7#.
Because of matching the first fundamental form at vario
boundaries, we have

u15a1~u!, v5b1~v1!, ~22!

and

u25a2~u1!, v15b2~v2!. ~23!

The center of the cloud being given by both

û5 v̂ ~24!

and

u25v222R0 , ~25!

in a manner similar to Birrell and Davies, we obtain a re
tion betweenû andu1

û5b1@b2„a2~u1!12R0…#, ~26!

as well as a relation betweenû andu

û5b1$b2@a2„a1~u!…12R0#%. ~27!

Starting from expressions~15!–~17! for the expectation
value of the stress-tensor, and using the coordinate relat
1-4
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DIVERGENCE OF THE QUANTUM STRESS TENSOR ON . . . PHYSICAL REVIEW D62 084021
ships given above, we obtain the following expressions
the Tmn in various regions. In region 2,

^Tu2u2
&52Fu2

~A2!1Fu2
S dû

du2
D , ~28!

^Tv2v2
&52Fv2

~A2!1Fv2
S dv̂

dv2
D , ~29!

^Tu2v2
&5

1

6pA2S dû

du2

dv̂
dv2

D 2FA,u2 ,v2

2

A2
2

A,u2

2 A,v2

2

A4 G . ~30!

The functionFx(y) is defined as

Fx~y!5
1

12p
AyS 1

Ay
D

,x,x

. ~31!

In region 1,

^Tu1u1
&52Fu1

~B2!1Fu1
S dû

du1
D , ~32!

^Tv1v1
&52Fv1

~B2!1Fv1
S dv̂

dv1
D , ~33!

^Tu1v1
&5

1

6pB2S dû

du1

dv̂
dv1

D 2FB,u1 ,v1

2

B2
2

B,u1

2 B,v1

2

B4 G . ~34!

Similarly in region 0,

^Tuu&5Fu~D2!1a8Fu2
~b8!1Fu~a8!, ~35!

^Tvv&52Fv~D2!, ~36!

^Tuv&521/24p„ln~D2!…,u,v , ~37!

where 8 indicates the first derivative with respect to the a
gument, and

a~u!5a2„a1~u!…, b~v2!5b1„b2~v2!…. ~38!

Let us first consider region 2; we have the self-simi
metric there according to the procedure adopted. Consid
parameter valuel for which the collapse results in a nake
central singularity. From Barveet al. @4# we know that the
component̂ Tu2u2

& diverges on the entire Cauchy horizon
the region~the other components remaining finite!. It is ob-
vious that ^Tûû& will also diverge there. As pointed ou
above, it is important now to note that the discontinuity
the quantum stress tensor, at the boundaryr c , is finite at the
boundary between regions 2 and 1. This is because the
ous expectation values are determined by the trace ano
and derivatives~up to second derivative! of the metric. The
metric derivatives are finite on the Cauchy horizon, forr
08402
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.0. Hence the quantum stress tensor component^Tu1u1
& at

the boundary, in the limit of approach from region 1, will b
divergent.

We now examine the expression for^Tu1u1
&, i.e., Eq.~32!.

The first term in this expression is finite, because we dem
the metric component to be at leastC2. This term is finite not
only at the event on the boundary but all over the null r
~Cauchy horizon! emanating from that event~in fact, all over
the region 1!.

Now, the second statement above implies that the sec
term in Eq.~32! diverges at the intersection of the bounda
with the null ray~Cauchy horizon!. This term is a function of
only the retarded null coordinateu1. Since it diverges at one
event ~on the boundary!, it diverges all along the outgoing
null ray (u15const). The first term, as mentioned before,
finite there. Hence the tensor component^Tu1u1

& diverges all
along the Cauchy horizon in region 1 as well.

Finally, we consider a family of modified distributions
each with a successively smaller value of the boundary
ordinater c , so that in the limiting case,r c tends to zero. For
each family in the distribution, there is a divergence of t
outgoing flux, in region 1. In the limit thatr c tends to zero,
we recover the original non-self-similar distributionr0(r )
which admits a naked singularity, and by virtue of the co
struction given here, has a divergence of^Tu1u1

& on the
Cauchy horizon.

We can make a similar argument at the second bound
between region 1 and the Schwarzschild region 0. Thus,
divergence occurs all over the Cauchy horizon, to whiche
extent it exists. In particular, if we have a globally nak
singularity, there is a divergence at the intersection of
Cauchy horizon withI 1.

Also, we note that this argument works for any number
regions with different metric solutions matched at the bou
aries. This is important from the point of view of the ext
shell we needed to introduce in the non-marginally bou
Tolman-Bondi case. The finiteness of the rest of the ten
components can be argued on similar lines.

As regards the Vaidya metric, the entire argument is
same except for the fact that the boundaries between
regions are ingoing null geodesics. In fact,b( ) being the
identity function @2#, the calculation is simplified consider
ably.

IV. CONCLUSIONS

We have shown that the quantum stress tensor dive
on the Cauchy horizon, if it exists, in non-self-simila
Tolman-Bondi dust and Vaidya radiation collapse in two
mensions. There is no direct way of deducing this by a
lytical calculations of the expressions in the general ca
However, we employ a limiting process of approaching t
required spacetime metric via patching up tractable so
tions. From this technique, it appears that the diverge
technically results from the metric rendered non-invertible
the Cauchy horizon in the self-similar portion. This does n
seem to be the ultimate reason for the divergence, for we
that the divergence persists even after the limit to the ac
1-5
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metric is taken. Needless to say, the divergence does
seem to be ultimately a result of the self-similar nature
though that does help in making the divergence eviden
the calculations.

Finally, we would like to comment on two related issue
One is the ‘‘infinite blueshift’’ effect and the other is the ro
of the boundary conditions in the occurrence of the div
gence. It is known, for instance, in the case of a char
spherical dust shell collapsing to form a Reissner-Nordstr¨m
black hole, that infalling classical waves suffer an infin
blueshift on the Cauchy horizon. Also, the quantum str
tensor for a test scalar field in this spacetime diverges on
Cauchy horizon@7#. One might be led to ask if the quantu
divergence on the horizon is necessarily correlated with
infinite blueshift of classical waves. However, this does
appear to be the case. In our present analysis, infalling c
sical scalar waves do not necessarily suffer an infinite b
shift on the Cauchy horizon, yet the quantum stress ten
diverges there. The difference from the Reissner-Nordst¨m
case probably results from the two spacetimes having dif
ent conformal geometries.
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As regards boundary conditions, we note that express
~15!–~17! for the quantum stress tensor are derived by i
posing boundary conditions on the center and onI 2. This is
sufficient, because we are physically interested in the ten
only in the region before the Cauchy horizon. No bounda
conditions have been imposed to the future of the Cau
horizon. It is true though that the boundary condition im
posed at the center is assumed to continue to hold at
intersection of the center with the Cauchy horizon and
first point of the naked singularity~see Fig. 1!. This however
is not expected to affect the occurrence of the divergen
since it is clear that the outgoing quantum flux grows in
unbounded way in the approach to the Cauchy horizon.
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