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Divergence of the quantum stress tensor on the Cauchy horizon in 2D dust collapse
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We prove that the quantum stress tensor for a massless scalar field in two dimensional non-self-similar
Tolman-Bondi dust collapse and Vaidya radiation collapse models diverges on the Cauchy horizon, if the latter
exists. The two dimensional model is obtained by suppressing angular coordinates in the corresponding four
dimensional spherical model.

PACS numbds): 04.62:+v, 04.70.Dy

[. INTRODUCTION A priori, it may be the case that the divergence in the 2D
model could be because of the assumption of self-similarity.
If a classical model of gravitational collapse results in theln this paper, we prove that this assumption can be relaxed,
formation of a naked singularity, quantum effects can beand that the outgoing quantum flux will diverge on the
expected to play a significant role during the final stages offauchy horizon, for all initial conditions for which a naked
the collapse. One way to study these effects is the quantizgingularity forms in the 2D Vaidya and Tolman-Bondi mod-
tion of test matter fields in the background spacetime pro€ls.
vided by the collapsing classical matter. The semiclassical The outline of the proof is as follows. Consider the col-
approximation is expected to be valid up to Planck scales. If2pse of a classical non-self-similar spherical dust cloud and
particular, one is interested in the behavior of the stress terfhoose the initial conditions to be such that the collapse re-
sor of the quantized field in the approach to the Cauchyults in a naked singularity. We now construct a new initial
horizon. The divergence of the vacuum expectation value oflistribution by replacing a spherical region by a self-similar
the quantized stress tensor on the Cauchy horizon signa|s &tiﬁtribution. The new distribution is hence a self-similar
instability of the horizon, and suggests that back reactiorspherical region surrounded by part of the original distribu-
will prevent the naked singularity from forming. tion. The free parameter of the self-similar distribution is
Two well-known examp|es of the formation of naked sin- fixed by requiring the first and second fundamental forms to
gularities are the spherical collapse of inhomogeneous duggatch at the boundary between the self-similar region and
(the Tolman-Bondi mod&land the Spherica| Co||ap5e of null the original distribution. It is then shown that if the evolution
dust(the Vaidya modal It is known for both these models of the original distribution results in a nakédovered sin-
that for certain initial data the collapse ends in a black holegularity, the evolution of the modified distribution also re-
and for other initial data it ends in a naked singulafity-3].  Sults in a nakedcovered singularity. We show that, in gen-
The Penrose diagrams in Fig. 1 exhibit the formation of a€ral, the density of the cloud will change discontinuously at
black hole and a naked singularity. the boundary, but this change will be finite, and not infinite.
The stress-tensor of a quantized scalar field on these back- We next consider the quantum stress tensor for a massless
ground spacetimes has been investigated, by specializing &alar field on the classical background dust spacetime. As
the case of 2D self-similar collapse. The restriction to 2D ishas been shown earlier, the stress tensor diverges on the
similar to the geometric optics approximation in 4D—the Cauchy horizon for a self-similar model. Consider now the
latter amounts to keeping only tHe=0 modes. The 2D modified distribution(self-similar region surrounded by non-
spacetime is obtained by suppressing the angular coordinate<,_,
in the 4D spherical model. For a two dimensional model,
explicit expressions for the vacuum expectation value of the
stress-tensor can be obtained from the trace anomaly, by im
posing conservation of the stress tensor. The assumption c
self-similarity allows double null coordinates to be con- _
structed explicitly. Using these coordinates it has been;
shown that the outgoing quantum flux diverges on thel
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self-similar region mentioned above. We show that the na-singularity. It is the singularity at=0, the central singular-
ture of the divergence in the self-similar region is such that itity, which is of interest to us, as this has been shown to be
implies a divergence in the outer non-self-similar region amaked for some initial conditions. Specifically, it has been
well. Then, by considering a family of initial distributions, shown[1] that if the initial density distributiomy(R) has a
the size of the self-similar region is shrunk to zero—for eachTaylor expansion

distribution in the family there is a divergence on the Cauchy

horizon. The limiting distribution, in which the self-similar 5
region disappears entirely, is the original distribution, and pO(R):p0+p1R+§P2R +
this also has a divergence on the Cauchy horizon.

The plan of the paper is as follows. In Sec. Il we constructthen the singularity is at least locally naked if one of the
the modified distribution which includes a self-similar following conditions is satisfiedi) p,<0, or (i) p;=0,0,
spherical region in the interior. In Sec. Ill we obtain the <0, or(iii) p;=p,=0,03<0 andé= \3ps/4p32is less than
quantum stress tensor for a test scalar field on this modifiegy equal to—25.9904. The singularity may or may not be
distribution and prove that it diverges on the Cauchy horizorylobally naked. We are interested in showing that in either

1 3
gpsRit (B

for a non-self-similar dust cloud. case the outgoing quantum flux diverges on the Cauchy ho-
rizon.
Il. THE MODIFIED DISTRIBUTION The self-similar solution, i.e. one for which the spacetime

. . e of the collapsing cloud possesses a homothetic Killing vector
. In_th|s section, we show how the modlﬂeq initial OIIStrIbu'Jield, is a special case of the marginally bound solution. If we
tion is constructed, for the cases of marginally bound an . -
: choose the scaling in such a way thgtr) =r, then the mass
non-marginally bound dust collapse, as well as for the ; e Y
. function of the self-similar solution is of the formgg(r)
Vaidya model. = . . . >
=\r, with A a non-negative constant. All dimensionless
quantities are functions dfr. The central singularity forms
at t=0, and is known to beglobally) naked for A<\,
The collapse of a spherical dust cloud is described by the=0.1809[5]. It can also be shown that the initial density

Tolman-Bondi line-element, using comoving coordinatesdistribution for a self-similar cloud is of the form

(t,r,0,d):

A. Marginally bound dust collapse

" po(R)=po+ p3R3+ pgR®+ pgR+ - - - (6)
ds’=—dt*+ 1+1(r) dr?+R3(1)dQ?, (1) In order to construct the modified initial density distribu-
tion, we start with the original distributiopg(r) and replace
whereR(t,r) is the area radius at timteof the shell labeled a central region, up to some=r., by the self-similar solu-
r, andf(r) is a free function, satisfying> —1. The margin-  tion (with r <ry). Forr.<r<ry, the distribution continues
ally bound solution is one for which(r)=0. The only non- to be the original distributiop(r). There is only one free
zero component of the energy-momentum tensor is the emparameter in the self-similar solution, namely and this is
ergy densityp(t,r), which satisfies the Einstein equation  determined by requiring that the total mass in the self-similar
region is equal to the total mass contained in the original
F'(r) distribution, up tor=r.. That is,Ar.=F(r).
= RZR’ ) We would now like to ensure that the determined value of
\ is such that in the limitr, going to zero, the modified

whereF(r) is another free function, and has the interpreta-distribution admits a naked singularity if and only if the
tion of being the mass to the interior of the shrelThe only original distributionpy(r) admits a naked singularity. This is

p

other Einstein equation is essential because we are interested in examining properties
of the Cauchy horizon in the original distribution. Hence it is

., F(r) natural to demand that the modified distribution possess a
RP=——+f(n). (3 cauchy horizon if and only if the original distribution does.

The limiting value\y, of \, is clearlydF(r)/dr|,—o, and
Let us consider the collapse of marginally bound dustshould satisfy the condition<A\ if and only if the original
cloud, starting at a timé¢ and having an initial density dis- distribution po(r) admits a naked central singularity.
tribution po(r), for r<r,, wherer, is the boundary of the To check this, we go back to the solutiof) and assume,

star. Integrating3) gives the solution for simplicity, the scaling to be such thig{r) =r, so that the
solution can be written as

3
Rs’z(t,r)=EVF(r)(to(r)—t) (4) 9
R3=ZF(r)(t—r)2. (7)

for the evolution of the area radius of the shelty(r) is a

function of integration, to be determined by choosing an ini-We substitute this in Eq2) and assuming the collapse to
tial scaling,R(t;,r), at the start of collapse. The area shrinksbegin att=t;,, find the initial densitypo(r) near the center,
to zero att=ty(r), resulting in the formation of a curvature to be
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Thus, given the original non-marginal distribution

. (8) [po(r),f(r)] we construct the modified distribution as fol-

lows. Replace the original model by a self-similar one, as
] ] o ) before, forr<r.. For somer,<ry, introduce a non-
We compare this Wlth the fo'rn(15) for the |.n|t|al denslty, marginal dust distributiofipo(r),f<(r)] in the regionr <r
after using Eq(7) with t=t;, in Eq. (5). This comparison .~ which has the property thab(r) [and henceé=(r)] is
allows us to deduce the form &i(r) nearr =0, from which  {he" same as in the original distributiorix(r.)=0 and
the limiting value\ o= dF(r)/dr|; o can be worked out. We f(r,)="1(r,). As before, the self-similar model is chosen
find that for two of the naked case$) p1<0, and(ii) p1  guch thatnr,=F(r,). The introduction of this sandwiched
=0,0,<0, we getho=0, which is a special case of the yegion ensures that the first and second fundamental forms
naked self-ygular mo/czjel. For the casi) p1=p>=0.,3  are matched at the boundariesandr . The limiting value
<0 we get\3?= —8pg¥/3ps, which implies that the cho- of \, as r, goes to zero, is again given by,
sen self-similar distribution is naked if and only if the origi- =dF(r)/dr|,_o, and is calculated by letting both andr,
nall dis_tribution of typeiii) is naked. F.or.thg _covergd case, go to zero, while always keeping >t . By carrying out an
which is p;=p,=p3=0, we get thah, is infinite, which is  analysis similar to the marginal case, it can be shownxpat

modified distribution admits a naked singularity if and only on|y if the original distribution is naked.

if the original distribution does.
. l\_lext, we discuss the question. of the matching of the self- C. The Vaidya model

similar region and the non-self-similar region, at the bound- ) )

ary r.. By comparing the metrics of the two spacetimes at The collapse of a null dust cloud is described by the

this boundary we find that the area radii in the self-similarVaidya metric

metric and in the non-self-similar one will be equal if the two

mass functions are equal. Since the masses have been chosen  §g2— _ ( 1—

to be equal, that ensures the matching of the first fundamen-

tal form (i.e. the line element on the boundarfhe second ] ]
fundamental formi.e., the extrinsic curvatuyés defined to ~ Where the mass functian(v) depends on the advanced time
be coordinatev. The mass function is zero fer<0, and con-

stant forv>uv,. Thus the cloud is bounded in the region 0
1 <v<vy, and its exterior is Schwarzschild spacetime. A cur-
Kuv==5Eaipt {g)hohs, (9)  vature singularity forms when the inner boundary of the
cloud hitsR=0. This singularity is known to be naked for
dm(v)/dv|,-,=<1/16 [3] and covered fordm(v)/dv|,—g
>1/16. The special case of a self-similar model is described

2F(r)

WL P
rN=— -
pol F (1)t

3t2,

2m(v)

R dv?+2dvdR+r2dQ?,  (10)

where &, is a unit normal to the boundary, art;= 5

— £%¢, is the projection tensor. The only non-zero compo- . i

hent of the extrinsic curvature i j=K$=—1/R, which byéhe linear masshfur)ct_llomn(v)d—e,;]w, 0<v<vb't f th

matches for the two metrics, since the mass functions havr(?1 d;;{:g gisr;ﬁg;ﬁ) n_SlI)r;Iraerplr;];ng t(r?e),ovr\ilgirfac}n;g:icel b; a

been chosen to be equal. Hence we are assured that the firs f-similar one in the region Qv < with < The

and second fundamental forms match on the boundary. fse rew in th glf . lfl Ve del .va. vgl.b ]
We note that the derivativ&’(r) will in general not ree parametep In e seft-simiiar model Is fixed by de-

match at the boundary, when calculated for the self-similaga::r'ggi’;g?n: m%c)|. Thealrllrglit;rzg ;aluaereorfl';‘,’[hzstlf[ﬁg?ﬁ?o_
region, and for the non-self-similar region. As a result, the ’ (v)/dv], o, PP

density functionp(t,r), given by Eq.(2), will in general be d“.C?d sglf-;imilgr distripution is naked if and only if the
discontinuous at the boundary. However, it is important foror'g'.nal distributionm(v) s naked.
Since the boundary.. is a null hypersurface, the match-

gil;rcggt??)s?i”tgenfci):liethat this discontinuity will be finite, ing of the spacetimes at the boundary is done by comparing,

not the line elements, but the affine parameter for outgoing
) or ingoing null geodesics. We now show that the matching of
B. Non-marginally bound dust collapse the affine parameters on the boundagjimplies that the two
The metric functiorf(r) which appears in Eq1) is now  mass functions should be equal. For this purpose, it is con-
non-zero. Equatio3) can be solved exactly, for gives(r) venient to restrict to the 2D line element obtained from Eq.
andf(r). Whereas=(r) is determined from the initial den- (10) by suppressing the angular coordinates, and to write it in
sity distribution,f(r) gets determined from the velocity dis- double null coordinates,v, i.e.

tribution R at the onset of collapse. 0

Given an initial distribution o?density and velocity which ds*=C*(uv) du dv. (11
is hon-marginal, one cannot straightaway match it to a self:l.he functionC(u,v) satisfies the differential equation
similar region at a boundany,, because for the former dis- '
tribution we havef(r)#0, and for the latter we havi(r)
=0. Matching of the line-elements requires that bbtfr)
andf(r) match on the boundary between the two regions. c*

C%v L 2m(v) 2m@)+2c%u_0 15
R rRc2 T ct 12
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By integrating the geodesic equation for the mettit) it is boundary. The difference in the quantum stress tensor com-
shown that the affine parameter along ingoing and outgoingonents can be expressed at the bounflary. from Eq(1)]:

null geodesics is of the form
(Toow) —(Taui) = —1127C(1C,— 1/Cy) ;- (18)

p=af C2du+b, q:Cf C?dv +d. (13)  Since both the metrics are analytic in their respective regions
(we only require their second order partial derivatives to be

requires thaCﬁdu= Cﬁdu, and the use of this equality in the the boundary, one finds that the expression above is certainly

differential equatior(12) gives the result that the mass func- finite. So, the discontinuous change ;) across the
tions of the two regiongself-similar and non-self-similar boundary will be finite. The same can be said of the rest of
must match. Further, it may be shown, as in the dust cas&® components. _ _ _
that the extrinsic curvatures match at the boundary between W€ nextintroduce double null coordinates in the various
the two regions. regions of the modified distribution under consideration.

We have now completed the construction of the modifiedconsider first the case of marginally bound dust. The various
classical distribution, which will be used to prove the diver-€gions are the introduced self-similar regigrenceforth la-

gence of the outgoing quantum flux on the Cauchy horizonP€l€d 2 in the coordinate range<0r <r, the original dis-
tribution in the regionthenceforth labeled)Ir .<r<ry, and

the Schwarzschild regiothenceforth labeled)or >r,. We
write the line-elements in these regions as

We restrict attention to the two dimensional spacetime
(Tolman-Bondi or Vaidyaobtained by suppressing angular
coordinates in the four-dimensional spherical spacetime. The .

) Ih region 2, as

expectation vaIue(OianW|Oin> of the energy-momentum
tensor of a quantized scalar field in the Minkowski vacuum ds2= Bz(ul,vl)duldvl (20)
|0;,) can be calculated from the trace anomaly, and Wald's
axioms. The trace anomaly is equal ®24+, whereR is in region 1, and finally, as
the Ricci scalar for the background spacetiffg The two
dimensional spacetime can be expressed in terms of global ds?=D?(u,v)dudy (21)

null coordinatesi ando as

Ill. THE QUANTUM STRESS TENSOR

dSzZAZ(Uz,Uz)dUZdUZ (19)

in region 0.
The relationship among these coordinates can be given,
following the procedure described in Birrel and Davj&$

These coordinates are chosen such that the initial quantuEﬁecause of matching the first fundamental form at various

state of the scalar field, which is the standard Minkowski oundaries, we have

ds?=C2(u,0) dudo. (14)

vacuum|0;,) onZ ", is the vacuum WIFh rgs:pect to_the nor- U=y (W), v=B4vy), 22
mal modes of the scalar wave equationuip coordinates.
The components ofT,,) are given by and
1 1 Up=az(Uy), v1=pBs(v2). (23
(Ti=-13-Clg| . > (15)
,u,u The center of the cloud being given by both
e L A1 U=0 (24)
<Tvv>__mc<6) e (16)
vy and
RC? P
N 2=v— 2Ry, (29

in a manner similar to Birrell and Davies, we obtain a rela-

Consider a situation where two solutions for the back-tion betweerny and Uyg
ground metric are matched across a hypersurface, like a geo-
desic, for instance, which in fact will be the case for our U= B4[ Bolas(Uy) +2Rp)], (26)
models. LetC andC3 be the metrics in the two regions. In
either of the regions where the solutions are given, expresas well as a relation betweenandu
sions(15)—(17) are analytic. Now consider the hypersurface
(boundary where the matching has taken place. Assuming U= B{Bal as(ai(u))+2Ro]}. (27)
the line element on the boundary and the second fundamental
form of the boundary being calculated in both of the regions Starting from expression&l5)—(17) for the expectation
to be identical respectively, one obtai@s=C,=C at the value of the stress-tensor, and using the coordinate relation-
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ships given above, we obtain the following expressions for>0. Hence the quantum stress tensor compo(fémltul) at

theT,, in various regions. In region 2, the boundary, in the limit of approach from region 1, will be
. divergent.
(Tuud=—Fu (A +F, d_u) ’ (28) Wg now exfalmin.e the expr.ess.ion. (Q?ulul), i.e., Eq.(32).
2t2 2 2\ du, The first term in this expression is finite, because we demand
the metric component to be at le&@t. This term is finite not
" only at the event on the boundary but all over the null ray
<TU2U2> =— FUZ(AZ) +F,, E) , (29 (Cauchy horizonemanating from that evefin fact, all over
2 the region 1L

Now, the second statement above implies that the second

1 [ du do \Y AL, ALAL, term in Eq.(32) diverges at the intersection of the boundary
(Tuw)=g—az du,dv,) | a2 Al (30 with the null ray(Cauchy horizon This term is a function of

only the retarded null coordinatg . Since it diverges at one
event(on the boundary it diverges all along the outgoing
null ray (u;=const). The first term, as mentioned before, is
1 ( 1 ) finite there. Hence the tensor compon{e‘l’l,;lul) diverges all

X, X

The functionF,(y) is defined as

Fyy)= F\/y — (31)  along the Cauchy horizon in region 1 as well.
7y X, Finally, we consider a family of modified distributions,
each with a successively smaller value of the boundary co-
In region 1, ordinater ., so that in the limiting case,. tends to zero. For
each family in the distribution, there is a divergence of the

) du outgoing flux, in region 1. In the limit that. tends to zero,
<Tu1u1>:_Ful(B )+Fu1 d_ul ) (32) we recover the original non-self-similar distributigry(r)
which admits a naked singularity, and by virtue of the con-
~ struction given here, has a divergence (dTulul) on the
(Tyw)=—F, (B)+F,, d_) : (33)  Cauchy horizon.
U1 We can make a similar argument at the second boundary,
between region 1 and the Schwarzschild region 0. Thus, the
1 {du do\? B,Zul,v1 B?ulB?U1 divergence occurs all over the Cauchy horizon, to whichever
(Tup,)= W(d_uld_vl 52 gt (34 extent it exists. In particular, if we have a globally naked
singularity, there is a divergence at the intersection of the
. ) . Cauchy horizon withZ *.
Similarly in region O, Also, we note that this argument works for any number of
, , , regions with different metric solutions matched at the bound-
(Tw)=Fu(D?)+a'Fu,(B)+Fy(a’), (39 aries. This is important from the point of view of the extra
shell we needed to introduce in the non-marginally bound
(T,,)=—F,(D?), (36)  Tolman-Bondi case. The finiteness of the rest of the tensor
components can be argued on similar lines.
(Tuw)=—2124m7(In(D?)) ., , (37 As regards the Vaidya metric, the entire argument is the

same except for the fact that the boundaries between the
where ' indicates the first derivative with respect to the ar-regions are ingoing null geodesics. In fag() being the
gument, and identity function[2], the calculation is simplified consider-
ably.
a(u)=ax(ay(u)), B(va)=p1(B2(v2). (39

Let us first consider region 2; we have the self-similar IV. CONCLUSIONS

metric there according to the procedure adopted. Consider a \yje have shown that the guantum stress tensor diverges
parameter valua for which the collapse results in a naked g the Cauchy horizon, if it exists, in non-self-similar
central singularity. From Barvet al. [4] we know that the  Tolman-Bondi dust and Vaidya radiation collapse in two di-
componen(T,,,,) diverges on the entire Cauchy horizon in mensions. There is no direct way of deducing this by ana-
the region(the other components remaining finité is ob-  lytical calculations of the expressions in the general case.
vious that(T;;) will also diverge there. As pointed out However, we employ a limiting process of approaching the
above, it is important now to note that the discontinuity inrequired spacetime metric via patching up tractable solu-
the quantum stress tensor, at the boundaryis finite at the  tions. From this technique, it appears that the divergence
boundary between regions 2 and 1. This is because the vatechnically results from the metric rendered non-invertible at
ous expectation values are determined by the trace anomatllge Cauchy horizon in the self-similar portion. This does not
and derivativegup to second derivativeof the metric. The seem to be the ultimate reason for the divergence, for we see
metric derivatives are finite on the Cauchy horizon, for that the divergence persists even after the limit to the actual

084021-5



SUKRATU BARVE, T. P. SINGH, AND CENALO VAZ PHYSICAL REVIEW D62 084021

metric is taken. Needless to say, the divergence does not As regards boundary conditions, we note that expressions
seem to be ultimately a result of the self-similar nature al{15)—(17) for the quantum stress tensor are derived by im-
though that does help in making the divergence evident iposing boundary conditions on the center and’on This is
the calculations. _ _ sufficient, because we are physically interested in the tensor
Finally, we would like to comment on two related issues.only in the region before the Cauchy horizon. No boundary
One is the “infinite blueshift” effect and the other is the role ¢gnditions have been imposed to the future of the Cauchy
of the boundary conditions in the occurrence of the divernorizon. It is true though that the boundary condition im-
gence. It is known, for instance, in the case of a chargeg),seq at the center is assumed to continue to hold at the
spherical dust shell collapsing to form a Reissner-Nordstro jniosection of the center with the Cauchy horizon and the
black hole, that infalling classical waves suffer an 'nf'n'tefirst point of the naked singularitisee Fig. 1 This however

blueshift on the Cauchy ho_rlzor_l. Also, t_he quantum Stres?s not expected to affect the occurrence of the divergence,
tensor for a test scalar field in this spacetime diverges on the

Cauchy horizori7]. One might be led to ask if the quantum since it is clear that the outgoing quantum flux grows inan
divergence on the horizon is necessarily correlated with aHnbounded way in the approach to the Cauchy horizon.
infinite blueshift of classical waves. However, this does not

appear to be the case. In our present analysis, infalling clas-

sical scalar waves do not necessarily suffer an infinite blue- ACKNOWLEDGMENT

shift on the Cauchy horizon, yet the quantum stress tensor 5
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