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A toy calculation of string or D-particle interactions within a world-sheet approach indicates that quantum
recoil effects—reflecting the gravitational back reaction on space-time foam due to the propagation of ener-
getic particles—induces the appearance of a microscopic event horizon, or ‘‘bubble,’’ inside which stable
matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it
to contract again, in a ‘‘bounce’’ solution. Within such ‘‘bubbles,’’ massless matter propagates with an
effective velocity that is less than the velocity of lightin vacuo, which may lead to observable violations of
Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior
geometry of the bubbles select preferentially 3 for the number of the spatial dimensions, corresponding to a
consistent formulation of the interaction of D3-branes with recoiling D particles, which are allowed to fluctuate
independently only on the D3-brane hypersurface.

PACS number~s!: 04.50.1h, 04.62.1v, 98.80.Cq
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I. INTRODUCTION

The discovery of D-branes@1# has revolutionized the
study of black-hole physics. Now one has quasi-realis
string models of black holes in different dimensions, whi
one can use to study profound issues concerning the re
ciliation of general relativity and quantum mechanics. A k
breakthough was the demonstration that the entropy o
stringy black hole corresponds to the number of its disti
quantum states@2,3#. Thus D-branes offer the prospect
accounting exactly for the flow of information in process
involving particles and black holes. However, it is not im
mediately apparent whether an observer will perceive in
mation to be lost in any given particle–D-brane interactio
the answer depends on whether she is able to recover a
information transferred from the scattering particle to the
coiling black hole. It is important to address this issue at b
the macroscopic and microscopic levels, where the answ
may differ. In the case of a macroscopic black hole, it
difficult to see howin practiceall the quantum information
may be recovered without a complete set of observation
the emitted Hawking radiation@4#. However, even if this is
possiblein principle, the problem of the microscopic ‘‘end
game’’ that terminates the Hawking evaporation proces
unsolved, in our view.

It may be useful to recall one of the intuitive ways
formulating the information loss in the process of Hawki
radiation from a macroscopic black hole, whose stringy a
logue we study in this paper. Consider the quantu
mechanical creation of a pure-state particle pairuA,B& close
to the ~classical! black-hole horizon of such a macroscop
black hole. One can then envisage that particleB falls inside
0556-2821/2000/62~8!/084019~10!/$15.00 62 0840
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this horizon, while particleA escapes as Hawking radiation
The quantum state of the particleB is apparently unobserv
able, and hence information is apparently lost. One may r
resent the corresponding quantum process as

uA,B&1uBH&→uBH1Bi&1uAi&. ~1!

The observable subsetAi of the final state can only be rep
resented by a density matrix

rA[S i uAi&^Ai u, ~2!

and it appears that the pure stateuA,B& evolves into a mixed
density matrixrA , representing~almost! a thermal state.

This argument is very naive, and one would like to fo
mulate a more precise treatment of this process at the mi
scopic level, suitable for describing space-time foam@5#. The
purpose of this paper is to take a step towards this goal u
a stringy treatment@6–8# of the interaction between closed
string particle ‘‘probes’’ and D-brane black holes. We ha
developed previously an approach capable of accommo
ing the recoil of a D-brane black hole struck by a close
string ‘‘probe,’’ including also quantum effects associat
with higher-genus contributions to the string path integr
We have shown explicitly@9,7# how the loss of information
to the recoiling D-brane~assuming that it is unobserved!
leads to information loss, for both the scattered particle a
also any spectator particle. This information loss can be
lated to a change in the background metric following t
scattering event, which can be regarded as creating
Unruh-like ‘‘thermal’’ state.

In this paper, we take this line of argument a step furth
by demonstrating that closed-string particle or D-brane s
©2000 The American Physical Society19-1
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tering leads in general to the formation of a microsco
event horizon, within which string particles may be trapp
The scattering event causes an expansion of this hori
which is eventually halted and reversed by Hawking rad
tion @4#. Thus we have a microscopic stringy realization
the process~2! discussed intuitively above.

A peculiarity of this approach is that the conformal inva
ance conditions select preferentially backgrounds with th
spatial dimensions. This leads to a consistent formulation
the interaction of D3-branes with recoiling D particle
which are allowed to fluctuate independently only on t
D3-brane hypersurface.

II. FORMULATION OF D-BRANE RECOIL

As discussed in Refs.@6–8#, the recoil of a D-brane string
soliton after interaction with a closed-string state is char
terized by as model on the string world sheetS, which is
deformed by a pair of logarithmic operators@10#

Ce
I 5eQe~XI !, De

I 5XIQe~XI !, I P$0, . . . ,3%, ~3!

defined on the boundary]S of the string world sheet. Here
XI , I P$0, . . . ,p%, obey Neumann boundary conditions o
S, and denote the D-brane coordinates, whilee→01 is a
regulating parameter andQe(X

I) is a regularized Heaviside
step function. The remainingyi , i P$p11, . . . ,9%, in Eq.
~3! denote the transverse bulk directions. For reasons of c
vergence of the world-sheet path integral, we take the sp
time $XI ,yi% to haveEuclideansignature.

In the case of D particles@6–8#, the index I takes the
value 0 only, in which case the operators~3! act as deforma-
tions of the conformal field theory on the world sheet. T
operator

uiE
]S

]nXiDe ~4!

describes the movement of the D-brane induced by the s
tering, whereui is its recoil velocity, andyi*]S]nXiCe de-
scribes quantum fluctuations in the initial positionyi of the D
particle. It has been shown rigorously@8# that the logarithmic
conformal algebra ensures energy-momentum conserva
during the recoil process:

ui5~ki
11ki

2!/MD , ~5!

wherek1 (k2) is the momentum of the propagating clos
string state before~after! the recoil, andMD51/(l sgs) is the
mass of the D-brane, wheregs is the string coupling, which
is assumed here to be weak enough to ensure that
D-brane is very massive, andl s is the string length.

The second member of the logarithmic pair ofs-model
deformations is

yiE
]S

]nXiCe , ~6!

where, in order to realize the logarithmic algebra between
operatorsC and D, one uses as a regulating parameter@6#
08401
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e22; ln@L/a#[L, ~7!

where L(a) is an infrared~ultraviolet! world-sheet cutoff.
The recoil operators~6! are relevant, in the sense of th
renormalization group for the world-sheet field theory, ha
ing small conformal dimensionsDe52e2/2. Thus thes
model perturbed by these operators is not conformal
e5” 0, and the theory requires Liouville dressing@11,12,7#.
The consistency of this approach is supported by the abo
mentioned proof of momentum conservation during the sc
tering process@8#.

As discussed in@7,9#, the deformations~3! create a local
distortion of the space-time surrounding the recoili
D-brane, which may also be determined using the metho
Liouville dressing. In@7,9# we concentrated on describin
the resulting space-time in the case when a D particle defect
embedded in aD-dimensional space-time recoils after th
scattering of a closed string. To leading order in the rec
velocity ui of the D particle, the resulting space-time w
found, for timest@0 long after the scattering event att50,
to be equivalent to a Rindler wedge, with apparent ‘‘acc
eration’’ eui @9#, wheree is defined above Eq.~7!. For times
t,0, the space-time is flat Minkowski.1

This situation is easily generalized to Dp-branes@13#. The
folding and recoil deformations of the Dp-brane~6! are rel-
evant deformations, with anomalous dimension2e2/2,
which disturbs the conformal invariance of the world-shees
model, and restoration of conformal invariance again
quires Liouville dressing@11,12,7#, as discussed above. T
determine the effect of such dressing on the space-time
ometry, it is essential to write@7# the boundary recoil defor-
mations as bulk world-sheet deformations

E
]S

ḡIzxQe~x!]nz5E
S
]a@ ḡIzxQe~x!]az#, ~8!

where theḡIz denote renormalized folding and recoil co
plings @8#. Such couplings are marginal on a flat world she
and the operators~8! are marginal also on a curved worl
sheet, provided@12# one dresses the~bulk! integrand by mul-
tiplying it by a factorea I i f, wheref is the Liouville field
anda I i is the gravitational conformal dimension. This is r
lated to the flat-world-sheet anomalous dimension2e2/2 of
the recoil operator, viewed as a bulk world-sheet deform
tion by @12#

a I i 52
Qb

2
1AQb

2

4
1

e2

2
~9!

whereQb is the central-charge deficit of the bulk world-she
theory. In the recoil problem at hand, as discussed in@9#,

1There is hence a discontinuity att50, which leads to particle
production and decoherence for a low-energy spectator field th
observer who performs local scattering experiments long after
scattering, and far away from the location of the collision of t
closed string with the D particle@9#.
9-2
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Qb
2;e4/gs

2.0 ~10!

for weak folding deformationsgIi , and hence one is con
fronted with asupercriticalLiouville theory. This implies a
Minkowskian-signatureLiouville-field kinetic term in the re-
spectives model @14#, which prompts one to interpret th
Liouville field as a time-like target field.

There are two approaches which one can follow at t
point. In the first of them@15#, this time is considered as
secondtime coordinate@16#, which is independent of the
~Euclideanized! X0. The presence of this second ‘time’ do
not affect physical observables, which are defined for app
priate slices with fixed Liouville coordinate, e.g.,f→` or
equivalentlye→0. From the expression~10! we conclude
@cf. Eq. ~9!# that a I i ;e to leading order in perturbation
theory ine, to which we restrict ourselves here. In the seco
approach @16#, which we shall mainly follow here, the
~Minkowskian! Liouville field f is identified with the~ini-
tially Euclidean! coordinateX0, and hence one is no longe
considering constant Liouville field slices. In this approa
however, one still identifiese22 with the target time, which
in turn implies that the perturbative world-sheet approach
valid, provided one works with sufficiently large timest, i.e.
small e2.

We next remark@7# that theXI-dependent field operator
Qe(X

I) scale as follows withe: Qe(X
I);e2eXI

Q(XI),
whereQ(XI) is a Heaviside step function without any fie
content, evaluated in the limite→01. The bulk deforma-
tions, therefore, yield the followings-model terms:

1

4p l s
2E

S
(
I 50

3

~e2ḡIi
C1eḡIi X

I !ee(f(0)2X(0)
I )Q~X(0)

I !]af]ayi

~11!

where the subscripts (0) denote world-sheet zero modes
ḡ0i

C 5yi .
Upon the interpretation of the Liouville zero modef (0) as

a ~second! time-like coordinate, the deformations~11! yield
metric deformations of the generalized space-time with t
times. The metric components for fixed Liouville-time slic
can be interpreted@7# as expressing the distortion of th
space-time surrounding the recoiling D-brane soliton.

For clarity, we now drop the subscripts (0) for the rest
this paper, and we work in a region of space-time such
e(f2XI) is finite in the limit e→01. The resulting space
time distortion is therefore described by the metric eleme

Gff521, Gi j 5d i j , GIJ5d IJ , GiI 50,

Gf i5~e2ḡIi
C1eḡIi X

I !Q~XI !, i 54, . . . ,9, I 50, . . . ,3
~12!

where the indexf denotes Liouville ‘‘time,’’ not to be con-
fused with the Euclideanized time which is one of theXI . To
leading order ineḡIi , we may ignore thee2ḡIi

C term. The
presence ofQ(XI) functions and the fact that we are workin
in the regionyi.0 indicate that the induced space-time
08401
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piecewise continuous.2 In the general recoil-folding cas
considered in this article, the form of the resulting patch
the surrounding space-time can be determined fully if o
computes the associated curvature tensors, along the lin
@9#.

We next study in more detail some physical aspects of
metric ~12!, restricting ourselves, for simplicity, to the cas
of a single Dirichlet dimensionz that plays the role of a bulk
dimension in a setup where there are Neumann coordin
XI , I 50, . . . ,3parametrizing a D4-~Euclidean! brane, in-
terpreted as our four-dimensional space-time. Upon perfo
ing the time transformationf→f2 1

2 eḡIzX
Iz, the line ele-

ment ~12! becomes

ds252df21S d IJ2
1

4
e2ḡIzḡJzz

2DdXIdXJ

1S 11
1

4
e2ḡIzḡJzX

IXJDdz22eḡIzzdXIdf, ~13!

wheref is the Liouville field which, we remind the reade
has Minkowskian signature in the case of supercriti
strings that we are dealing with here.

One may now make a general coordinate transforma
on the braneXI that diagonalizes the pertinent induce
metric elements in Eq.~13!.3 For instance, to leading order i
the deformation couplingsḡIzḡJz , one may redefine theXI

coordinates by

XI→XI2
e2

8
z2ḡIz(

J5” I
ḡJzX

J,

z→zS 11
e2

8 (
I 5” J

ḡIzḡJzX
IXJD ~14!

which leaves only diagonal elements of the metric tensor
the ~redefined! hyperplaneXI . In this case, the metric be
comes, to leading order ingIz

2 and in the case whereeḡIzz
!1,

ds252df21~12a2z2!~dXI !21@11a2~XI !2#dz2

2eḡIzzdXIdf,

a5
1

2
eḡIz;gsuDPzu/Ms ~15!

where the last expression is a reminder that one can exp
the parametera ~in the limit e→01) in terms of the~recoil!
momentum transferDPz along the bulk direction.

2The important implications for non-thermal particle producti
and decoherence for a spectator low-energy field theory in s
space-times were discussed in@9,7#, where the D-particle recoil
case was considered.

3Note that general coordinate invariance is assumed to be a g
symmetry on the brane, away from the ‘‘boundary’’XI50.
9-3
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A last comment, which is important for our purposes he
concerns the case in which the metric~15! is exact; i.e., it
holds to all orders inḡIzz. This is the case where there is n
world-sheet tree-level momentum transfer. This naively c
responds to the case of static intersecting branes. Howe
the whole philosophy of recoil@6,8# implies that, even in tha
case, there are quantum fluctuations induced by the sum
genera of the world sheet. The latter implies the existenc
a statistical distribution of logarithmic deformation couplin
of Gaussian type about a mean-field valueḡIz

C 50. Physi-

cally, the couplingsḡIz represent recoil velocities of the in
tersecting branes; hence these Gaussian fluctuations r
sent the effects of quantum fluctuations about the zero rec
velocity case, which may be considered as quant
corrections to the static intersecting-brane case. We there
consider a statistical average!•••@ of the line element
~13!,

!ds2@52df21S 12
1

4
e2!ḡIzḡJz@z2DdXIdXJ

1S 11
1

4
e2!ḡIzḡJz@XIXJDdz2

2e!ḡIz@zdXIdf, ~16!

where

!•••@5E
2`

1`

dḡIz~ApG!21e2ḡIz
2 /G2

~••• ! ~17!

and the widthG has been calculated in@8# and is found after
summation over world-sheet genera to be proportional to
string couplinggs . In fact, it can be shown@8# thatG scales
aseḠ, whereḠ is independent ofe. This will be important
later on, when we consider the identification ofe with the
target timet.

We see from Eq.~17!, assuming thatgIz5uui u whereui
5gsDPi /Ms is the recoil velocity@6,8#, that the average line
elementds2 becomes

!ds2@52df21~12a2z2!~dXI !21@11a2~XI !2#dz2,

a5
1

2A2
e2Ḡ. ~18!

The definition of a comes from evaluating the quantit
!ḡIz

2 @ using the statistical distribution~17!. Thus the aver-
age over quantum fluctuations leads to a metric of the fo
~15!, but with a parametera determined by the width~un-
certainty! of the pertinent quantum fluctuations@8#. The met-
ric ~18! is exact, in contrast to the metric~15! which was
derived for z!1/a. However, for our purposes below w
shall treat both metrics as exact solutions of some st
theory associated with the recoil@15,16#.

An important feature of the line element~18! is the exis-
tence of ahorizon at z51/a for EuclideanNeumann coor-
dinatesXI . Since the Liouville fieldf has decoupled afte
08401
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the averaging procedure, one may consider slices of
field, defined byf5const, on which the physics of the ob
servable world can be studied@15#. From a world-sheet
renormalization-group view point this slicing procedure co
responds to selecting a specific point in the non-critic
string theory space. Usually, the infrared fixed pointf→` is
selected. In that case one considers Eq.~7! a slice for which
e2→0. But any other choice could do, soa may be consid-
ered a small but arbitrary parameter of our effective theo

The presence of a horizon raises the issue of how
could analytically continue so as to pass to the space bey
the horizon. The simplest way, compatible@15# with the low-
energy Einstein equations, is to take the absolute value
12a2z2 in the metric element~15! and/or ~18!. However,
we prefer the second approach@16#, in which one identifies
the ~zero mode of the! Liouville mode f with the time co-
ordinateX0 on the initial Dp-brane. In this case, as we sha
see, the situation becomes much more interesting, at lea
certain regions of the bulk space-time, where one can ca
late reliably in a world-sheet perturbative approach. Inde
far away from the horizon atuzu51/a, i.e., for a2z2!1, the
line element corresponding to the space-time~18! becomes,
after the identificationf5X0,

ds2.2a2z2~dX0!21dz21(
i 51

3

~dXi !2, ~19!

implying that X0 plays now the role of aMinkowskian-
signature temporal variable, despite its original Euclide
nature. This is a result of the identificationf5X0 and the
fact thatf appeared with Minkowskian signature due to t
supercriticality~10! of the Liouville string under consider
ation.

Notice that although the space-time~19! is flat asymptoti-
cally as one would expect, and hence satisfies Einste
equations formally, nevertheless it has aconical singularity
when one compactifies the time variableX0 on a circle of
finite radius corresponding to an inverse ‘‘temperature’’b.
Formally, this requires a Wick rotationX0→ iX0 and then
compactification,iX05beiu, uP(0,2p#. The space-time
then becomes aconical space-time of the Rindler type,

dsconical
2 5

1

4p2
a2b2z2~du!21dz21(

i 51

3

~dXi !2, ~20!

with deficit angled[2p2ab. We recall that there is a
‘thermalization theorem’ for this space-time@17#, in the
sense that the deficit disappears and the space-time bec
regular, when the temperature is fixed to be

T5a/2p. ~21!

The result~21! may be understood physically by the fact th
a is essentially related to recoil. As discussed in@9#, the
problem of considering a suddenly fluctuating~or recoiling!
brane atX050, as in our case above, becomes equivalen
that of an observer in a~non-uniformly! accelerated frame
At times long after the collision the acceleration becom
uniform and equalsa. This implies the appearance of a no
9-4
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DYNAMICAL FORMATION OF HORIZONS IN . . . PHYSICAL REVIEW D62 084019
trivial vacuum @17#, characterized by thermal properties
the form ~21!. At such a temperature the vacuum becom
just the Minkowski vacuum, while the Unruh vacuum@17#
corresponds tob→`. Here we have derived this result in
different way than in@9#, but the essential physics is th
same.

III. D-PARTICLE RECOIL AND THE DIMENSIONALITY
OF THE BRANE WORLD

In the picture envisaged above, where our world is view
as a fluctuating D-brane, one may consider more complica
configurations of intersecting branes. The simplest of
cases is the one depicted in Fig. 1, in which a D particle is
embedded in a Euclidean D4-brane, which is itself embed
in a higher-dimensional~bulk! space-time.

In this case, any low-energy string state residing on
D3-brane which scatters off the emebedded D0-brane
cause a recoil of the latter and hence a distortion of spa
time, according to the above discussion. The distortion
such as to induce non-trivial contributions to the vacu
energy on the D3-brane, as discussed in detail in@18,19#. To
see this, we recall that the four-dimensional space-time
which the defect is embedded, is to be viewed as a b
space-time from the point of view of the world-sheet a
proach to the recoil of the D particle. Following the sam
approach as that leading to Eq.~19!, involving the identifi-
cation of the Liouville field with the target time,t, one ob-
serves again that there exists an~expanding! horizon, located
at r 2[x1

21x2
21x3

25t2/b82 where $xi%,i 51, . . . ,3, consti-
tute the bulk dimentions, obeying Dirichlet boundary con
tions on the world sheet, andb8 is related to the momentum
uncertainty of the fluctuating D particle. The varianceb8 was
computed@8# using a world-sheet formalism resummed ov
pinched annuli, which has been argued to be the lead
order effect for weak string couplinggs :

FIG. 1. The world as a D3-brane ‘‘punctured’’ by D particle
~D0-branes!. The scattering on the D0-brane of string states, eit
closed ~gravitons! or open ~matter fields! that reside on the D3-
brane, cause the D0-brane to recoil, leading to stochastic effec
the propagation of the low-energy states, as well as to non-
‘‘vacuum’’ energy on the D3-brane.
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gs

2

l s
2 S 12

285

18
gs

2 Ekin

MDc2D 1O~gs
6! ~22!

where Ekin is the kinetic energy scale of the fluctuatin
~heavy! D particle,MD5gs / l s is the D-particle mass scale
and l s is the string length. Note the dependence of the va
ance b8 on the string couplinggs , which arises becaus
quantum corrections come from the summation over wo
sheet topologies@16,8#, andgs is a string-loop counting pa
rameter.

For the region of space-timeinside the horizonone ob-
tains the following metric on the D3-brane, as a result
recoil of the D particle embedded in it:

ds2(4).
b82r 2

t2
~dt!22(

i 51

3

~dxi !2, r 25(
i 51

3

xi
2,t2/b82.

~23!

Note that the scalar curvature corresponding to the me
~23! has the formR524/r 2, and as such has a singularity
the initial locationr 50 of the D-particle defect, as expecte

We can now check whether this metric is a solution
Einstein’s equations in a four-dimensional space-time$xi ,t%,
which in our metric and signature conventions the Einstei
equations read

Emn52Tmn ~24!

whereTmn is the stress-energy tensor. This is indeed the c
provided there exists a four-dimensional dilaton field of t
form

w5 ln r 1b8 ln t ~25!

which has non-trivial potentialV(w) such that, when com-
bined with field-independent contributions from the vacuu
energy2L, one has

L1V~w!5
2

r 2
. ~26!

It is important to check that the fieldw satisfies its classica
equations of motion in the space-time~23!:

g00¹0]0w1gi j ¹ i] jw5
dV~w!

dw
, i 51, . . . ,d. ~27!

From Eqs.~27!,~26! one obtains the condition

dV~w!

dw
uw5wc

52
2

r 2
52@L1V~wc!# ~28!

wherewc denotes the configuration~25!. From the constraint
~28! one then determinesV(w) as well as the contributions to
the field-independent part of the vacuum energy2L:

V~wc!5
1

r 2
, L5

1

r 2
~29!
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in the D3 case considered so far. In the above, we h
ignored the fluctuations of the D3-brane in the bulk dire
tions. When these are taken into account, there may be
ditional contributions@16,20# to the vacuum and excitatio
energies on the D3-brane, which in fact are time depend
relaxing to zero asymptotically.

It is interesting to examine whether the metric~23! and
the above analysis for the metric equations can be form
extended tod.3 bulk ~spatial! dimensions. The non-zer
components of the Einstein tensorEmn5Rmn2 1

2 gmnR read,
in this general case,

E0050, Ei j 52
d i j ~d22!

r 2
2

xixj

r 4
, i , j 51, . . . ,d.

~30!

We observe from Eqs.~23!,~30! that the metric equation
~24! are satisfied for the simple case of a free scalar~dilaton!
field w of the form ~25!, provided d53, independent of the
value ofb8. It seems therefore that restoration of the conf
mal invariance in the case of recoiling D particles embed
in a Dp-brane or, equivalently, the satisfction of the corr
sponding equations of motion in the Liouville-dressed pro
lem constrains the number of longitudinal dimensions on
Dp-brane to 3. In other words,only a D3-brane can intersec
with recoiling (fluctuating) D particlesin a way consistent
with the restoration of conformal invariance in the mann
explored here.

IV. ENERGY CONDITIONS AND HORIZONS IN RECOIL-
INDUCED SPACE-TIMES

It is interesting to look at the energy conditions of su
space times, which would determine whether ordinary ma
can exist within the horizon region displayed above. Th
are various forms of energy conditions@21#, which may be
expressed as follows:

strong:S Tmn2
1

D22
gmnTa

aD jmjn>0,

dominant:Tmnjmhn>0,

weak:Tmnjmjn>0,

weaker:Tmnzmzn>0 ~31!

wheregmn is the metric,Tmn is the stress-energy tensor in
D-dimensional space-time, including vacuum-energy con
butions,jm andhm are arbitrary future-directed time-like o
null vectors, andzm is an arbitrary null vector. The condi
tions ~31! have been listed in decreasing strength, in
sense that each condition is implied by all its preceding on

It can be easily seen from Einstein’s equations for
metric ~23! that inside the horizonb82r 2<t2 the conditions
are satisfied, which implies that stable matter can existinside
such regions of the recoil space-time. On the other ha
outside the horizonthe recoil-induced metric assumes t
form
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ds2(4).S 22
b82r 2

t2 D ~dt!22(
i 51

3

~dxi !2, r 2.t2/b82.

~32!

The induced scalar curvature is easily found to be

R524b82~23t21b82r 2!/~22t21b82r 2!2.

Notice that there is acurvature singularity at 2t25b82r 2,
which is precisely the point where there is a signature cha
in the metric~32!.

Notice also that, in order to ensure a Minkowskian sign
ture in the space-time~32!, one should impose the restrictio

2.
b82r 2

t2
.1. ~33!

Outside this region, the metric becomesEuclidean, which
matches our formal initial construction with a static Eucli
ean D4-brane embedded in a higher-dimensional bulk sp
time. Notice that, in such a region, one can formally pass
a Minkowskian four-dimensional space-time by making
Wick rotation of the Euclidean time coordinateX0. In this
Wick-rotated framework, the space-time inside the bubb
retains its Minkowskian signature due to the specific form
the metric~23!.

The above metric~32! does not satisfy simple Einstein’
equations, but this was to be expected, since the formatio
such space-times is not necessarily a classical phenome4

Below, we link this fact with the failure of the energy con
ditions in this exterior geometry.

It can easily be shown that the weaker energy condit
~31! can be satisfied for timest such that

b82r 2

t2
.11«, «→01, ~34!

i.e., on the initial horizon. To see this, it suffices to noti
that the weaker energy condition reads, in this case,

~4t22b82r 2!S 22
b82r 2

t2 D ~z0!2<b82S (
i 51

3

xiz i D 2

~35!

where we used the fact thatzm is a null vector. Choosing
z15” 0, z i50, i 52,3, it can be shown that the right-han
side of the above inequality can be bounded from above

b82r 2(
i 51

3

~z i !25b82r 2S 22
b82r 2

t2 D ~z0!2,

4On the other hand, the satisfaction of conformal invariance c
ditions on a resummed world sheet, as a result of Liouville dress
implies general ‘‘Liouville equations’’ in which theb functions and
the central charge deficitQ incorporate higher-genus world-she
~resummed! effects. Unfortunately, general expressions for the
objects are currently beyond our calculational reach.
9-6
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which, on account of the requirement~35!, would imply
(2t22b82r 2)<0. This is in contradiction with the range o
validity of Eq. ~32!, unless one lies on the initial horizo
~34!. Notice that in this region of space-time there is
smooth matching between the interior~23! and the exterior
~32! geometries. In such regions of space-time, surround
the recoiling defect, matter can exist in astable form.

The above considerations suggest that matter can
trapped inside such horizon regions around a fluctuatin
D-particle defect. This sort of trapping is interesting for o
space-time-foam picture, as it implies that suchmicroscopic
D-brane horizons act in a similar way as the intuitive d
scription of a macroscopic black-hole horizon discussed
the Introduction, Eq. (1), as illustrated in Fig. 2.

To reinforce the interpretation that matter is trapped in
interior of a region described by the metric~23!, we now
show that a matter probe inside the horizon ‘‘bubble’’ exp
riences an energy-dependent velocity of light. First rew
the metric in a Friedmann-Robertson Walker~FRW! form

ds25e2 ln rS b82dtFRW
2 2

1

r 2 (
i 51

3

~dxi !
2D ~36!

where we were careful when performing coordinate red
nitions not to absorb in them the factorb8, which, depends
Eq. ~22! on the energy scale of the matter probe. We
interested in matter at various energies propagatingsimulta-
neouslyin such a space-time, and performing a coordin
transformation could not absorb an energy-dependent fa
such asb8. When we consider the encounter of a mat
probe, such as a photon, with a fluctuating D-particle def
the kinetic-energy scaleEkin may be identified with the en
ergy scaleE of the matter probe. We recall that energy co

FIG. 2. A schematic representation of scattering in D-fo
background. The dashed boxes represent events just before, d
and after the scattering of a closed-string probe on one partic
D-brane defect. The scattering results in the formation of a sha
bubble, expanding as indicated by the dotted line, inside wh
matter can be trapped and there is an energy-dependent refra
index.
08401
g

be

r

n

e

-
e

-

e

e
or
r
t,

-

servation has been proved rigorously in the world-sheet
proach to D-brane recoil@8#, and survives the resummatio
over higher genera.

We observe from Eq.~36! that the overall scale facto
may be absorbed into a redefinition of the spatial part of
dilaton ~25!, implying that stable matter experiences
energy-dependent ‘‘light velocity’’

cint~E!5b8c52cgsS 12
285gs

2E

18MDc2D 1/2

~37!

in the space-time~23!, whereMD5Ms /gs is the D-particle
mass scale. The energy-independent factor 2gs may in fact
be absorbed into the normalization of the FRW time coor
nate tFRW, thereby making a smooth connection with th
velocity of light in vacuo in the limiting case ofE/MDc2

→0. It is important to note that, because of the specific fo
Eq. ~22! of the variance b8, the resulting effective velocity
~37! in the interior of the bubble is subluminal@22#. On the
other hand, we see from Eq.~32! that matter propagates a
the normalin vacuolight velocity c in the exterior part of the
geometry.

If one considers pulses containing many photons of d
ferent energies@23,24#, then the various photons will expe
rience, as a result of the dynamical formation of horizo
changes in their mean effective velocities corresponding
average to arefractive indexDc(E), where the effective
light velocity

c~E!5cS 12j
gsE

Msc
2D . ~38!

Herej is a quantity that depends on the actual details of
scenario for quantum space-time foam, in particular on
density of the D-brane defects in space. In a dilute-gas
proximation,j might plausibly be assumed to be of order
as can be seen as follows. Consider a pathL of a photon,
which encountersN fluctuating D-particle defects. Each de
fect creates a bubble which is expected to be close to
Planckian sizel s , for any reasonable model of space-tim
foam. Inside each bubble, the photon propagates with ve
ity ~37!, whereas outside it propagates with the velocity
light in vacuoc. The total time of flight for this probe will
therefore be given by

t total5
L2Nl s

c
1Nl s

c S 12gs
2 285

18

E

MDc2D 21/2

. ~39!

In a ‘‘dilute gas approximation’’ for the description of spac
time foam, it is natural to assume that a photon encount
on average, anO(1) D-particle defect in each Planckia
length l s , so thatN;jL/ l s , wherej<1. From Eq.~39!,
then, one obtains a delay in the arrival time of a photon
order
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Dt;jgs
2 285

36

LE

MDc3
1•••, ~40!

corresponding to the effective velocity~38!.5

V. BREATHING HORIZONS IN LIOUVILLE STRING
THEORY

The tendency of the horizon~34! to expand is a classica
feature. Upon quantization, which corresponds in our pict
to a proper resummation over world-sheet topologies,
expects a phenomenon similar to Hawking radiation. Suc
phenomenon would decelerate and stop the expansion,
ing eventually to the shrinking of the horizon. This would
a dynamical picture of space-time foam, which unfortunat
at present is not fully available, given that at microsco
distances the world-sheet perturbative analysis breaks do
However, we believe that this picture is quite plausible, a
we can support these considerations formally by recal
that timet is the Liouville field in our formalism.

As we have pointed out previously, the dynamics of t
Liouville field exhibits a ‘‘bounce’’ behavior, when consid
ered from a world-sheet view point@25,16#, as illustrated in
Figs. 3 and 4. This is a general feature of non-critical strin
whenever the Liouville field is viewed as a loc
renormalization-group scale of the world sheet. As emp
sized in @19#, the bounce picture is necessitated by the
composition of the Liouville world-sheet correlators as or
nary scattering-matrix elements in target space. Specific
these correlators diverge with the world-sheet area scaleA in
the infrared limitA→01. One may regularize such diveg
ences by defining the world-sheet path integral over
Liouville mode on the analytically continued curve illu

5In conventional string theory,gs
2/2p;1/20, and the overall nu-

merical factor in Eq.~40! is of order 4.4j. However,gs should
rather be considered an arbitrary parameter of the model, w
may then be constrained by phenomenological observations@24#
through limits on Eq.~40!.

FIG. 3. Contour of integration appearing in the analytically co
tinued~regularized! version of world-sheet Liouville string correla
tors. The quantityA denotes the~complex! world-sheet area. This is
known in the literature as the Saalschutz contour, and has been
in conventional quantum field theory to relate dimensional regu
ization to the Bogoliubov-Parasiuk-Hepp-Zimmermann renorm
ization method. Upon the identification of the Liouville field wit
target time@16#, this curve resembles closed-time paths in no
equilibrium field theories@26#.
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trated in Fig. 3. When one inteprets the~zero mode of the!
Liouville field f as time@16#, t} logA; therefore, the con-
tour of Fig. 3 represents evolution in time, as seen in Fig
in both directions between fixed points of the world-she
renormalization group: infrared fixed point
→ ultraviolet fixed point → infrared fixed point.

When one integrates over the Saalschultz contour in F
3, the integration around the simple pole atA50 yields an
imaginary part@25,16#, associated with the instability of th
Liouville vacuum. We note, on the other hand, that the in
gral around the dashed contour shown in Fig. 3, which d
not encircle the pole atA50, is well defined. This can be
intepreted as a well-definedS-matrix element, which is not
however, factorizable into a product ofS- andS†-matrix el-
ements, due to thet dependence acquired after the identi
cation t52 logA.6 The absence of factorization is linked t
the evolution~1! from a pure stateuA,B& to a mixed density
matrix ~2!, which cannot be described by a conventionaS
matrix.

In our approach, the logarithmic algebra of the recoil o
erators forces the regularizing parametere, Eq. ~7!, to be
identified with the logarithm of the world-sheet area sc
A5uL/au2 and, hence, with the target time. In the boun
picture outlined above, there will be a ‘breathing mode’
the recoil-induced space-time,characterized by two direc-
tions of time, corresponding to the processes of expansi
stasis and shrinking of the horizon in the recoil-induc
space-time~23!, all within a few Planckian times. This is th
Liouville-string description of Hawking radiation.

VI. OUTLOOK

We have discussed in this article a microscopic mec
nism for the dynamical formation of horizons by the col

ch
6This formalism is similar to the closed-time-path~CTP! formal-

ism used in non-equilibrium quantum field theories@26#.

-

sed
r-
l-

-
FIG. 4. The evolution of the world sheet of the Liouville strin

when the Liouville mode lies on the~dashed! curve of Fig. 3. Upon
interpreting the~zero-mode of the! Liouville field as time, the above
‘‘bounce’’ evolution suggests a ‘breathing mode’ for the Liouvil
universe, which from our point of view represents a formal desc
tion of a space-time foam ‘‘bubble.’’
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sions of closed-string particle ‘‘probes’’ with recoilin
D-particle defects embedded in ap-dimensional space time
which may in turn be viewed as a Dp brane domain wall in
a higher-dimensional target space. As we have argued
fore, the correct incorporation of recoil effects, which a
unavoidable in any quantum theory of gravity that rep
duces the conceptual framework of general relativity in
classical limit, necessitates a Liouville string approach in
context of a~perturbative! world-sheet framework.

The most important result of our approach in this pape
the demonstration of the dynamical formation of breath
horizons, which follows directly from the restoration of co
formal invariance by means of Liouville dressing. The ho
zon regions were discovered using the positive-energy th
rems for the recoil-induced space-time. We have been ab
show that such regions form bubbles with a non-trivial
fractive index, with light propagation that is always sublum
nal @22#, because of the specific properties of the space-t
induced by our treatment of D-particle recoil. The breath
nature of the horizons, which follows from specific prope
ties of the Liouville dynamics, is the best candidate we ha
in this framework for a quantum space-time foam, gene
izing appropriately the Hawking radiation of convention
macroscopic black holes to the microscopic D-brane cas

The non-trivial optical properties induced by the propag
tion of light in such a fluctuating space-time may be subj
to experimental verification in the foreseeable future, and
already constrained by existing data@23,24#. The fact that the
refractive index in the bubbles of space-time foam is s
luminal implies the absence of birefringence in light prop
gation, which is, however, possible in other approaches
space-time foam@27#.

One curiosity of our analysis has been that the requ
ment of restoring conformal invariance by means of
Liouville field, which in our approach is identified with th
target time, is quite restrictive. It implies within this ap
tt

on
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et
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proach thatonly D3-branes can intersect consistently wi
fluctuating D particles. The result is surprising, as it seem
provide a mathematical reason for the fact that we live
four dimensions only. However, the model is oversimplifie
in the sense that only dilaton and graviton fields have b
considered so far in modelling the dynamics of the distort
of the space-time due to the fluctuating defect. This may
some sense be analogous to the way the critical dimensio
conventional string theories was revealed in the context o
s-model approach, when only the conformal anomaly co
tributions in a flat target space were considered. Howe
there have been many independent confirmations of the c
cal dimension in this ‘‘traditional’’ string case, coming, e.g
from the no-ghost theorems and the closure of the Lore
algebra. In the present case, we currently lack further sup
of our result from an independent calculation, but we co
sider it as worthy of further investigation.

Leaving aside this issue of the critical dimension, our th
oretical model is admittedly crude, and should by no me
be considered as complete. However, we believe that it p
vides a concrete example how space-time foam might a
in the context of modern string–D-brane theory. Certain
much more work, both theoretical and ‘‘phenomenologica
is necessary before even tentative conclusions are reache
these important matters. But it is our firm belief that t
model presented here contains the seeds for an eventua
derstanding of many important issues associated with
space-time foam structure of quantum gravity, and for t
reason it deserves further and more detailed studies befo
can be excluded.
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