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A toy calculation of string or D-particle interactions within a world-sheet approach indicates that quantum
recoil effects—reflecting the gravitational back reaction on space-time foam due to the propagation of ener-
getic particles—induces the appearance of a microscopic event horizon, or “bubble,” inside which stable
matter can exist. The scattering event causes this horizon to expand, but we expect quantum effects to cause it
to contract again, in a “bounce” solution. Within such “bubbles,” massless matter propagates with an
effective velocity that is less than the velocity of lightvacug which may lead to observable violations of
Lorentz symmetry that may be tested experimentally. The conformal invariance conditions in the interior
geometry of the bubbles select preferentially 3 for the number of the spatial dimensions, corresponding to a
consistent formulation of the interaction of D3-branes with recoiling D particles, which are allowed to fluctuate
independently only on the D3-brane hypersurface.

PACS numbe(s): 04.50:+h, 04.62:+v, 98.80.Cq

[. INTRODUCTION this horizon, while particléA escapes as Hawking radiation.
The quantum state of the partidieis apparently unobserv-

The discovery of D-brane§l] has revolutionized the able, and hence information is apparently lost. One may rep-
study of black-hole physics. Now one has quasi-realistidesent the corresponding quantum process as
string models of black holes in different dimensions, which
one can use to study profound issues concerning the recon- [A,B)+[BH)—|BH+B;) +|A). (@)
ciliation of general relativity and quantum mechanics. A keYTha observable subsét of the final state can only be rep-
breakthough was the demonstration that the entropy of a,qanteq by a density matrix
stringy black hole corresponds to the number of its distinct
guantum state$2,3]. Thus D-branes offer the prospect of pa=3ilANAY, 2
accounting exactly for the flow of information in processes
involving particles and black holes. However, it is not im- and it appears that the pure stf#eB) evolves into a mixed
mediately apparent whether an observer will perceive infordensity matrixp,, representingalmos) a thermal state.
mation to be lost in any given particle—D-brane interaction: This argument is very naive, and one would like to for-
the answer depends on whether she is able to recover all tleulate a more precise treatment of this process at the micro-
information transferred from the scattering particle to the rescopic level, suitable for describing space-time fd&inThe
coiling black hole. It is important to address this issue at bottpurpose of this paper is to take a step towards this goal using
the macroscopic and microscopic levels, where the answes stringy treatmenit6—8| of the interaction between closed-
may differ. In the case of a macroscopic black hole, it isstring particle “probes” and D-brane black holes. We have
difficult to see howin practice all the quantum information developed previously an approach capable of accommodat-
may be recovered without a complete set of observations dhg the recoil of a D-brane black hole struck by a closed-
the emitted Hawking radiatiop4]. However, even if this is string “probe,” including also quantum effects associated
possiblein principle, the problem of the microscopic “end with higher-genus contributions to the string path integral.
game” that terminates the Hawking evaporation process i8Ve have shown explicitly9,7] how the loss of information
unsolved, in our view. to the recoiling D-brangassuming that it is unobserved
It may be useful to recall one of the intuitive ways of leads to information loss, for both the scattered particle and
formulating the information loss in the process of Hawkingalso any spectator particle. This information loss can be re-
radiation from a macroscopic black hole, whose stringy analated to a change in the background metric following the
logue we study in this paper. Consider the quantumscattering event, which can be regarded as creating an
mechanical creation of a pure-state particle paiB) close  Unruh-like “thermal” state.
to the (classical black-hole horizon of such a macroscopic  In this paper, we take this line of argument a step further
black hole. One can then envisage that part&falls inside by demonstrating that closed-string particle or D-brane scat-
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tering leads in general to the formation of a microscopic € ?~In[L/a]=A, 7
event horizon, within which string particles may be trapped.
The scattering event causes an expansion of this horizoiwhere L(a) is an infrared(ultraviolet world-sheet cutoff.
which is eventually halted and reversed by Hawking radia-The recoil operator§6) are relevant, in the sense of the
tion [4]. Thus we have a microscopic stringy realization of renormalization group for the world-sheet field theory, hav-
the procesg2) discussed intuitively above. ing small conformal dimensiond,=—€?/2. Thus theo

A peculiarity of this approach is that the conformal invari- model perturbed by these operators is not conformal for
ance conditions select preferentially backgrounds with threg+0, and the theory requires Liouville dressifil,12,7.
spatial dimensions. This leads to a consistent formulation ofhe consistency of this approach is supported by the above-

the interaction of D3-branes with recoiling D particles, mentioned proof of momentum conservation during the scat-
which are allowed to fluctuate independently only on thetering proces$8].

D3-brane hypersurface. As discussed i7,9], the deformation$3) create a local
distortion of the space-time surrounding the recoiling
Il. FORMULATION OF D-BRANE RECOIL D-brane, which may also be determined using the method of

Liouville dressing. In[7,9] we concentrated on describing
the resulting space-time in the case wteD particle defect
embedded in &@-dimensional space-time recoils after the
scattering of a closed string. To leading order in the recoill
velocity u; of the D particle, the resulting space-time was
I I Iyl | found, for timest>0 long after the scattering eventtat 0,
Ce=€0X), D=X0LX), 1€{0,....3, @ to be equivalent to a Rindler wedge, with apparent “accel-
defined on the boundarg of the string world sheet. Here €ration” eu; [9], wheree is defined above Ed7). For times
X', 1e{0,...p}, obey Neumann boundary conditions on t<0. the space-time is flat Minkowski.
S. and denote the D-brane coordinates, while 0" is a This situation is easily generalized tgEbraneg13]. The
regulating parameter arfdl (X') is a regularized Heaviside folding and recoil deformations of thed>brane(6) are rel-
step function. The remaining, ie{p+1,...,9,in Eq. evant deformations, with anomalous dimensiene?/2,
(3) denote the transverse bulk directions. For reasons of cohich disturbs the conformal invariance of the world-sheet

vergence of the world-sheet path integral, we take the spac#?0del, and restoration of conformal invariance again re-
time {X',y'} to haveEuclideansignature. quires Liouville dressing11,12,7, as discussed above. To

In the case of D particle§6—8], the index| takes the determine the effect of such dressing on the space-time ge-
value 0 only, in which case the operat¢8 act as deforma- ometry, it is essential to writg7] the bOl_Jndary recoil defor-
tions of the conformal field theory on the world sheet. TheMations as bulk world-sheet deformations
operator

As discussed in Ref$6—8], the recoil of a D-brane string
soliton after interaction with a closed-string state is charac
terized by as model on the string world she&t, which is
deformed by a pair of logarithmic operatdri0]

| | o000 | algxe0ra  @®
U f XD, (@) = :
J

where theg,, denote renormalized folding and recoil cou-
describes the movement of the D-brane induced by the scagiings[8]. Such couplings are marginal on a flat world sheet,
tering, whereu; is its recoil velocity, andy; [ ;5s9,X'C. de-  and the operatoré8) are marginal also on a curved world
scribes quantum fluctuations in the initial positigrof the D sheet, providef12] one dresses th@ulk) integrand by mul-
particle. It has been shown rigorou$B] that the logarithmic  tiplying it by a factore®i®, where ¢ is the Liouville field
conformal algebra ensures energy-momentum conservatiGihd «; is the gravitational conformal dimension. This is re-

during the recoil process: lated to the flat-world-sheet anomalous dimensiog?/2 of

1,2 the recoil operator, viewed as a bulk world-sheet deforma-
ui= (ki +k)/Mp, ®  ton by [12]

wherek! (k?) is the momentum of the propagating closed Fa—

string state beforéaften the recoil, andM = 1/(1gs) is the @) =— % + % + il (9)

mass of the D-brane, wherg is the string coupling, which ' 2 4 2

is assumed here to be weak enough to ensure that the

D-brane is very massive, andis the string length. whereQ)y, is the central-charge deficit of the bulk world-sheet

The second member of the logarithmic pair @fmodel  theory. In the recoil problem at hand, as discussel®]n
deformations is

yiJ (9nxice, (6) There is hence a discontinuity &0, which leads to particle

a3 production and decoherence for a low-energy spectator field theory
observer who performs local scattering experiments long after the

where, in order to realize the logarithmic algebra between thecattering, and far away from the location of the collision of the

operatorsC and D, one uses as a regulating paramggér closed string with the D particlg9].
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Q§~e4/g§>0 (10) piecewise continuou’.In the general recoil-folding case
considered in this article, the form of the resulting patch of
for weak folding deformations,;, and hence one is con- the surrounding space-time can be determined fully if one
fronted with asupercritical Liouville theory. This implies a cOmputes the associated curvature tensors, along the lines of
Minkowskian-signaturéiouville-field kinetic term in the re- 9]. ) ) )
spectiveo model[14], which prompts one to interpret the e next study in more detail some physical aspects of the
Liouville field as a time-like target field. metric (12), restricting ourselves, for simplicity, to the case

There are two approaches which one can follow at thif @ single Dirichlet dimensioa that plays the role of a bulk
point. In the first of then{15], this time is considered as a dimension in a setup wher(_a there are Neumann coor_dmates
secondtime coordinate[16], which is independent of the X =0, ... ,3parametrizing a D4tEuclidean brane, in-
(Euclideanizesl X°. The presence of this second ‘time’ does terpreted as our four-dimensional space-time. Upon perform-
not affect physical observables, which are defined for approing the time transformationp— ¢ — 3 €9,,X'z, the line ele-
priate slices with fixed Liouville coordinate, e.gh— or  ment(12) becomes
equivalently e—0. From the expressiofil0) we conclude
[cf. Eqg. (9)] that a|;~€ to leading order in perturbation ds?= —d 2+
theory ine, to which we restrict ourselves here. In the second
approach[16], which we shall mainly follow here, the
(Minkowskian Liouville field ¢ is identified with the(ini-
tially Euclidean coordinateX®, and hence one is no longer
considering constant Liouville field slices. In this approach, ) o ] )
however, one still identifies 2 with the target time, which Where ¢ is the Liouville field which, we remind the reader,
in turn implies that the perturbative world-sheet approach i$'as Minkowskian signature in the case of supercritical
valid, provided one works with sufficiently large timed.e. ~ Strings that we are dealing with here. .
small €2, One may now make a general coordinate transformation

We next remarK7] that theX'-dependent field operators ON the braneX' that diagonalizes the pertinent induced-

®.(x") scale as follows withe: ®E(X')~e‘fxl®(x'), metric elements in Eq13)._Fgr instance, to leading order in

where®(X') is a Heaviside step function without any field the deformation couplings;,g,,, one may redefine th'
content, evaluated in the limié—0*. The bulk deforma- Ccoordinates by

1 .
Oy~ Zfzglngzzz) dX'dx’

1 —
+ 1+ZezgugJZX'XJ)dzz—eguzdedfﬁa (13

tions, therefore, yield the following-model terms: 2
1 3 B | X X! — §Zzg'2§| 90X,
4712 EIZO (€°gii+ €9, X) e X0 0 (X{g)) 4,3y, 2
(12) z-27| 1+ o EJ 91,95 X (14

where the subscripts (0) denote world-sheet zero modes, ancL, . .
which leaves only diagonal elements of the metric tensor on

T_
Y0i ~Yi- the (redefined hyperplaneX'. In this case, the metric be-

Upon the interpretation of the Liouville zero moggy, as to leadi der io2 and in th hereq.
a (second time-like coordinate, the deformatioii$1) yield ioines, 0 leading order 19, and In the case wherey,,z

metric deformations of the generalized space-time with two™
times. The metric components for fixed Liouville-time slices _ 2 2.2 I\ 2 2, 2
can be interpreted7] gs expressing the distortion of the ds’=—dg¢’+(1-a’2%)(dX)*+[1+a*(X)*]dZ*
space-time surrounding the recoiling D-brane soliton. _ eazzd)ddqb,

For clarity, we now drop the subscripts (0) for the rest of
this paper, and we work in a region of space-time such that
e(¢—X") is finite in the limite—0". The resulting space- a= - €g,,~ds AP,|/M (15
time distortion is therefore described by the metric elements 2

where the last expression is a reminder that one can express
the parametew (in the limit e—07") in terms of the(recoil)
momentum transfeA P, along the bulk direction.

G‘f)d’:_l’ Gij=5ij, G|J:5|J, G”:O,

Gyi= (€205 +egiX)0O(X"), i=4,...,9, 1=0,...,3
(12
2 . . . . ~ . .
where the index denotes Liouville “time,” not to be con- The important implications for non-thermal pfartlcle prodgctlon
and decoherence for a spectator low-energy field theory in such

fuse_d with the _Euglldeanlzed tlme which is grge of Kie To space-times were discussed [®,7], where the D-particle recoil
leading order ineg,;, we may ignore theszgIi term. The case was considered.

presence 00 (X') functions and the fact that we are working 3Note that general coordinate invariance is assumed to be a good
in the regiony;>0 indicate that the induced space-time is symmetry on the brane, away from the “boundan¢’=0.
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A last comment, which is important for our purposes herethe averaging procedure, one may consider slices of this
concerns the case in which the met(k5) is exact i.e., it  field, defined by¢=const, on which the physics of the ob-

holds to all orders im,,z. This is the case where there is no servable world can be studied5]. From a world-sheet
world-sheet tree-level momentum transfer. This naively corfenormalization-group view point this slicing procedure cor-
responds to the case of static intersecting branes. Howevesponds to selecting a specific point in the non-critical-
the whole philosophy of recojiB,8] implies that, even in that string theory space. Usually, the infrared fixed pabat = is
case, there are quantum fluctuations induced by the sum ov&glected. In that case one considers &g a slice for which
genera of the world sheet. The latter implies the existence of°— 0. But any other choice could do, somay be consid-

a statistical distribution of logarithmic deformation couplings ered a small but arbitrary parameter of our effective theory.
of Gaussian type about a mean-field vaﬁézo. Physi- The presence of a horizon raises the issue of how one

L= . . . could analytically continue so as to pass to the space beyond
cally, the couplinggy,, represent recoil velocities of the in-

the horizon. The simplest way, compatiplé] with the low-

tersecting branes; hence these Gaussian fluctuations repr&q—(_}rgy Einstein equations, is to take the absolute value of

sent the effects of quantum fluctuations about the zero recoily 22 the metric element15) and/or (18). However

veIouty case, wh|ch may be. considered as quanturg,, prefer the second approakt6], in which one identifies
corrections to the static intersecting-brane case. We therefoliﬁe (zero mode of theLiouville mode ¢ with the time co-

consider a statistical average---> of the line element 44160 on the initial Dp-brane. In this case, as we shall

(13), see, the situation becomes much more interesting, at least in
1 certain regions of the bulk space-time, where one can calcu-
1— Zez<glzgjz>zz)dx'dxJ late reliably in a world-sheet perturbative approach. Indeed,

<ds’>=—-d¢?+
far away from the horizon dtz|=1/a, i.e., for a’z><1, the

1 o line element corresponding to the space-tifh8) becomes,
+{ 1+ Zez<glngZ>X'XJ)dzz after the identificationp=X°,
— 3
—e<g,,>zdXdg, (16) d$?=— a?Z%(dX%)2+dZ2+ >, (dX)? (19
i=1

where

implying that X° plays now the role of aMinkowskian

signature temporal variable, despite its original Euclidean

nature. This is a result of the identificatiab=X° and the

fact that¢ appeared with Minkowskian signature due to the

and the widthl" has been calculated [8] and is found after ~supercriticality (10) of the Liouville string under consider-

summation over world-sheet genera to be proportional to thation.

string couplinggs. In fact, it can be showf8] thatI" scales Notice that although the space-tirtiE9) is flat asymptoti-

as eI, wherel is independent ok. This will be important  c@lly @s one would expect, and hence satisfies Einstein’s

later on, when we consider the identification ofvith the ~ €guations formally, nevertheless it hasanical singularity

target timet. when one compactifies the time variat® on a circle of
We see from Eq(17), assuming thag,,=|u;| whereu, finite radius corresponding to an inverse “temperatu@”

. . . . 0 . 0
=gsAP; /M is the recoil velocity{6,8], that the average line Formally, this requires a Wick rotatioX"—iX" and then
elementds? becomes compactificationiX°=ge'?,  #e(0,27]. The space-time

then becomes aonical space-time of the Rindler type,

<= [ dguEr) e ) an

<ds’>=—d¢?+(1-a?2%)(dX")?+[1+a*(X'")?]dZ, 5

1 )
donica=—— a?B2Z2(d6)?+d 2+ D, (dX)?, (20)
1 - 4772 =

= —¢T.
2@6

@ (18)
with deficit angle 6=27—«aB. We recall that there is a
‘thermalization theorem’ for this space-tind7], in the

The definition of « comes from evaluating the quantity S .
— . . . sense that the deficit disappears and the space-time becomes
<gy,> using the statistical distributiof17). Thus the aver- regular, when the temperature is fixed to be

age over quantum fluctuations leads to a metric of the form

(15), but with a parametexr determined by the widttun- T=al27m. (21)

certainty of the pertinent quantum fluctuatiof®]. The met-

ric (18) is exact, in contrast to the metr{d5 which was  The result(21) may be understood physically by the fact that

derived forz<1/a. However, for our purposes below we « is essentially related to recoil. As discussed[®], the

shall treat both metrics as exact solutions of some stringproblem of considering a suddenly fluctuatitay recoiling

theory associated with the reci5,16. brane atx°=0, as in our case above, becomes equivalent to
An important feature of the line elemefit8) is the exis- that of an observer in énon-uniformly accelerated frame.

tence of ahorizonat z=1/a for EuclideanNeumann coor- At times long after the collision the acceleration becomes

dinatesX'. Since the Liouville field¢ has decoupled after uniform and equals:. This implies the appearance of a non-
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2
9s 285 Ekin
"2_— _ 2 6

‘ — where E,;, is the kinetic energy scale of the fluctuating
(heavy D particle,Mp=g,/ls is the D-particle mass scale,
D-particle andl; is the string length. Note the dependence of the vari-

anceb’ on the string couplingys, which arises because
quantum corrections come from the summation over world-

(embedded

)
u _ sheet topologiefl6,8|, andgs is a string-loop counting pa-
> rameter.
/ For the region of space-timiaside the horizorone ob-
D<brane tains the following metric on the D3-brane, as a result of
recoil of the D particle embedded in it:
b'2r? 3 . >
d?W=——(d)?= >, (dX)2, r?=2 x*<t%b'2
FIG. 1. The world as a D3-brane “punctured” by D particles t i=1 i=1

(DO-branes The scattering on the DO-brane of string states, either (23

closed (gravitong or open(matter field$ that reside on the D3- hat th | di h .
brane, cause the DO-brane to recoil, leading to stochastic effects i'NOte that the scalar curvature corresponding to the metric

_ 2 : :
the propagation of the low-energy states, as well as to non-zer623)_hfa.5 the fo_rnR— —4/r?, and as _SUCh has a singularity at
“vacuum” energy on the D3-brane. the initial locationr =0 of the D-particle defect, as expected.

We can now check whether this metric is a solution of

trivial vacuum([17], characterized by thermal properties of Einstein’s equations in a four-dimensional space-t{met},
the form (21). At such a temperature the vacuum becomedVhich in our metric and signature conventions the Einstein’s
just the Minkowski vacuum, while the Unruh vaculi7] ~ €duations read

corresponds t@—oo. Here we have derived this result in a
different way than in[9], but the essential physics is the
same.

5,4“/: _T,uv (24)
whereT ,, is the stress-energy tensor. This is indeed the case
provided there exists a four-dimensional dilaton field of the
I1l. D-PARTICLE RECOIL AND THE DIMENSIONALITY form
OF THE BRANE WORLD
¢=Inr+b"Int (25

In the picture envisaged above, where our world is viewed
as a fluctuating D-brane, one may consider more complicateathich has non-trivial potentia/(¢) such that, when com-
configurations of intersecting branes. The simplest of albined with field-independent contributions from the vacuum
cases is the one depicted in Fig. 1, in whig D particle is energy— A, one has
embedded in a Euclidean D4-brane, which is itself embedded
in a higher-dimensionabulk) space-time.

In this case, any low-energy string state residing on the A+V(e)= r_2 (26)
D3-brane which scatters off the emebedded DO-brane will
cause a recoil of the latter and hence a distortion of spacq is important to check that the field satisfies its classical
time, according to the above discussion. The distortion i quations of motion in the space-tin@3):
such as to induce non-trivial contributions to the vacuum
energy on the D3-brane, as discussed in detdil$19. To . V(o)
see this, we recall that the four-dimensional space-time, in 9°Vodoe+9"Vidje= oo i=1...d. (@7
which the defect is embedded, is to be viewed as a bulk
space-time from the point of view of the world-sheet ap-From Egs.(27),(26) one obtains the condition
proach to the recoil of the D particle. Following the same
approach as that leading to Ed.9), involving the identifi- V(o)
cation of the Liouville field with the target time, one ob- 5—|¢:¢C=
serves again that there exists(@spanding horizon, located ¢
at r’=x2+x3+x5=t?/b’? where {x;},i=1, .. .,3, consti-
tute the bulk dimentions, obeying Dirichlet boundary condi-
tions on the world sheet, ard is related to the momentum
uncertainty of the fluctuating D particle. The variaicewas
computed 8] using a world-sheet formalism resummed over 1
pinched annuli, which has been argued to be the leading- V(pe)= A=— (29)
order effect for weak string couplings: r

2
—S=[A+V(ed] (29
r

whereg. denotes the configuratid5). From the constraint
(28) one then determineé( o) as well as the contributions to
the field-independent part of the vacuum energx:
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in the D3 case considered so far. In the above, we have b’2r2 3 _
ignored the fluctuations of the D3-brane in the bulk direc- dsz(“):( 2— )(dt)z—z (dx)?, r2>t?/b'2,
tions. When these are taken into account, there may be ad- t? i=1
ditional contributiong16,20 to the vacuum and excitation (32)
energies on the D3-brane, which in fact are time dependen
relaxing to zero asymptotically.

It is interesting to examine whether the met(&3) and R=—4b'?(—3t2+b'2r?)/(— 2t2+b'%r2)2,
the above analysis for the metric equations can be formally
extended tod>3 bulk (spatia) dimensions. The non-zero Npotice that there is @urvature singularity at 22=b’?r2,
components of the Einstein tenséf,=R,,,—29,,R read,  which is precisely the point where there is a signature change
in this general case, in the metric(32).

Notice also that, in order to ensure a Minkowskian signa-
ture in the space-time32), one should impose the restriction

ﬁ’he induced scalar curvature is easily found to be

b/2 2
(30 2> '
t2

>1. (33
We observe from Egs(23),(30) that the metric equations
(24) are satisfied for the simple case of a free scaldaton
field ¢ of the form(25), provided d=3, independent of the
value ofb’. It seems therefore that restoration of the confor-

mal invariance in the case of recoiling D particles embedde(ﬁme_ Notice that, in such a region, one can formally pass to
in a Dp-brane or, equivalently, the satisfction of the COIre- 5 Minkowskian %our—dimensional 'space-time by making a
sponding equations of motion in the Liouville-dressed probWiCk rotation of the Euclidean time coordina¥’. In this

lem constrains the number of longitudinal dimensions on th&yi_rotated framework, the space-time inside the bubbles

Dp-brane to 3. In other wordenly a D3-brane can intersect  o45ing jts Minkowskian signature due to the specific form of
with recoiling (fluctuating) D particlesn a way consistent the metric(23)

with the restoration of conformal invariance in the manner
explored here.

Outside this region, the metric becomgsclidean which
matches our formal initial construction with a static Euclid-
an D4-brane embedded in a higher-dimensional bulk space-

The above metri¢32) does not satisfy simple Einstein’s
equations, but this was to be expected, since the formation of
such space-times is not necessarily a classical phenontenon.
IV. ENERGY CONDITIONS AND HORIZONS IN RECOIL- Below, we link this fact with the failure of the energy con-

INDUCED SPACE-TIMES ditions in this exterior geometry.
It is interesting to look at the energy conditions of such It can easily be shown that the weaker energy condition

space times, which would determine whether ordinary matte{f?’l) can be satisfied for imessuch that
can exist within the horizon region displayed above. There 12,2
are various forms of energy conditiofi21], which may be b""r
expressed as follows: t2

=~1+g, e—0T, (34)

i.e., on the initial horizon. To see this, it suffices to notice

1
strongi T, = 559w Ta| 646720, that the weaker energy condition reads, in this case,

/2r2

b 3 2
(4t2_b12r2)(2_ t2 )(50)2$b/2(.21)(i§i) (35)

dominantT ,,§*7"=0,

weakT ,,§#£"=0,
, where we used the fact thgt is a null vector. Choosing
weakerT,,{#{"=0 B ;,#0, =0, =23, itcan be shown that the right-hand

. , i . side of the above inequality can be bounded from above by
whereg,,, is the metric,T,, is the stress-energy tensor in a

D-dimensional space-time, including vacuum-energy contri- 3 12,2
butions,&* and »* are arbitrary future-directed time-like or b'2r2Y, (gi)2=b’2r2( 2—— )(g0)2,
null vectors, and/* is an arbitrary null vector. The condi- =1 t

tions (31) have been listed in decreasing strength, in the
sense that each condition is implied by all its preceding ones.

It can be easily seen from Elngt(gln’sz equations for the 4op, the other hand, the satisfaction of conformal invariance con-
metric (23) that inside the horizoib’ “r<t* the conditions gjtions on a resummed world sheet, as a result of Liouville dressing,
are satisfied, which implies that stable matter can exgtle  implies general “Liouville equations” in which thg functions and
such regions of the recoil space-time. On the other handhe central charge defict) incorporate higher-genus world-sheet
outside the horizorthe recoil-induced metric assumes the (resummeyl effects. Unfortunately, general expressions for these
form objects are currently beyond our calculational reach.
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servation has been proved rigorously in the world-sheet ap-
proach to D-brane recojB], and survives the resummation
over higher genera.

We observe from Eq(36) that the overall scale factor
may be absorbed into a redefinition of the spatial part of the
dilaton (25), implying that stable matter experiences an
energy-dependent “light velocity”

(E)=b’'c=2 1 26%;E " (37
Ci =b'c=2c -
int gS 18MDCZ
[ ]
° in the space-timé23), whereMy=M/g; is the D-particle

mass scale. The energy-independent factgy ay in fact

FIG. 2. A schematic representation of scaltering in D-foamR absorbed into the normalization of the FRW time coordi-

background. The dashed boxes represent events just before, duri . . .
and after the scattering of a closed-string probe on one particuleﬂ te t_FRW’ t_here_by maklng a S”_”OF’_”‘ connection Wlth2 the
D-brane defect. The scattering results in the formation of a shade\ﬁeloc'ty (?f light in vacuoin the limiting case OfE/M_D_C

bubble, expanding as indicated by the dotted line, inside whictr~0- Itis important to note that, because of the specific form

matter can be trapped and there is an energy-dependent refractifl- (22) of the variance b, the resulting effective velocity
index. (37) in the interior of the bubble is subluminf22]. On the

other hand, we see from E(B2) that matter propagates at
the normalin vacuolight velocity c in the exterior part of the
geometry.

If one considers pulses containing many photons of dif-
ferent energie$23,24), then the various photons will expe-
rience, as a result of the dynamical formation of horizons,
changes in their mean effective velocities corresponding on

verage to aefractive indexAc(E), where the effective
ight velocity

which, on account of the requiremefB5), would imply
(2t2—b'2r?%)=<0. This is in contradiction with the range of
validity of Eg. (32), unless one lies on the initial horizon
(34). Notice that in this region of space-time there is a
smooth matching between the interi@3) and the exterior
(32) geometries. In such regions of space-time, surroundin
the recoiling defect, matter can exist irstable form

The above considerations suggest that matter can be
trapped inside such horizon regions around a fluctuating
D-particle defect. This sort of trapping is interesting for our _
space-time-foam picture, as it implies that sunitroscopic C(E)_C( 1-¢
D-brane horizons act in a similar way as the intuitive de-

scription of a macroscopic black-hole horizon discussed injgre ¢ js a quantity that depends on the actual details of the
the Introduction, Eq. (1)as illustrated in Fig. 2. _scenario for quantum space-time foam, in particular on the
. TQ reinforce the interpretation that matter is trapped in thedensity of the D-brane defects in space. In a dilute-gas ap-
interior of a region descr!beq by the metrﬂ23), we now proximation,& might plausibly be assumed to be of order 1,
show that a matter probe inside the horizon “bubble” expe-,< -an be seen as follows. Consider a Hatbf a photon

riences an energy-dependent velocity of light. First rewrite, hich encounters\ fluctuating D-particle defects. Each de-
the metric in a Friedmann-Robertson WalkERW) form fect creates a bubble which is expected to be close to the

Planckian sizd, for any reasonable model of space-time
foam. Inside each bubble, the photon propagates with veloc-

9sE
: 38
| @

S

1 3 ity (37), whereas outside it propagates with the velocity of
dg?=e?"""| b'2dt2,,— - > (dx)? (36) light in vacuoc. The total time of flight for this probe will
rei=1 therefore be given by

where we were careful when performing coordinate redefi- L— M | og5 E | 12
nitions not to absorb in them the factdr’, which, depends tiota=———— +N_S< 1-92— (39)
Eq. (22) on the energy scale of the matter probe. We are c c 18 Mmpc?

interested in matter at various energies propagatinulta-

neouslyin such a space-time, and performing a coordinatdn a “dilute gas approximation” for the description of space-
transformation could not absorb an energy-dependent factdime foam, it is natural to assume that a photon encounters,
such asb’. When we consider the encounter of a matteron average, arO(1) D-particle defect in each Planckian
probe, such as a photon, with a fluctuating D-particle defectlength |, so that\~¢£L/lg, where é<1. From Eq.(39),

the kinetic-energy scalg,;, may be identified with the en- then, one obtains a delay in the arrival time of a photon of
ergy scaleE of the matter probe. We recall that energy con-order
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'ﬁ (World—sheet ‘bounce’ ]
uv . iR
/; : < ~ ultra- ,
\L > S violet e~
IR "~ O -
PR N
FIG. 3. Contour of integration appearing in the analytically con- ’ ~
tinued (regularized version of world-sheet Liouville string correla- P -~ ~

tors. The quantityA denotes thécomplex world-sheet area. This is

known in the literature as the Saalschutz contour, and has been used

in conventional quantum field theory to relate dimensional regular- infrared infrared

ization to the Bogoliubov-Parasiuk-Hepp-Zimmermann renormal-

ization method. Upon the identification of the Liouville field with FIG. 4. The evolution of the world sheet of the Liouville string,
target time[16], this curve resembles closed-time paths in non-when the Liouville mode lies on thiglashedl curve of Fig. 3. Upon
equilibrium field theorie$26). interpreting thezero-mode of theLiouville field as time, the above
“bounce” evolution suggests a ‘breathing mode’ for the Liouville
universe, which from our point of view represents a formal descrip-

~ 2285 LE tion of a space-time foam “bubble.”
At~£gs =5 MDC3+..., (40) p
trated in Fig. 3. When one inteprets tfero mode of the
corresponding to the effective velocitg8).> Liouville field ¢ as time[16], t« logA; therefore, the con-
tour of Fig. 3 represents evolution in time, as seen in Fig. 4,
V. BREATHING HORIZONS IN LIOUVILLE STRING in both directions between fixed points of the world-sheet
THEORY renormalization group: infrared fixed point

— ultraviolet fixed point — infrared fixed point.

The tendency of the horizof84) to expand is a classical ~ When one integrates over the Saalschultz contour in Fig.
feature. Upon quantization, which corresponds in our pictures the integration around the simple pole/at 0 yields an
to a proper resummation over world-sheet topologies, ongnaginary par{25,16, associated with the instability of the
expects a phenomenon similar to Hawking radiation. Such gjouville vacuum. We note, on the other hand, that the inte-
phenomenon would decelerate and stop the expansion, leagral around the dashed contour shown in Fig. 3, which does
ing eventually to the shrinking of the horizon. This would be not encircle the pole ah=0, is well defined. This can be
a dynamical picture of space-time foam, which unfortunatelyintepreted as a well-define®matrix element, which is not,
at present is not fully available, given that at microscopichowever, factorizable into a product 6f and S'-matrix el-
distances the world-sheet perturbative analysis breaks dowaments, due to the dependence acquired after the identifi-
However, we believe that this picture is quite plausible, anctationt= —logA.® The absence of factorization is linked to
we can support these considerations formally by recallinghe evolution(1) from a pure statéA,B) to a mixed density
that timet is the Liouville field in our formalism. matrix (2), which cannot be described by a conventio8al

As we have pointed out previously, the dynamics of thematrix.
Liouville field exhibits a “bounce” behavior, when consid- In our approach, the logarithmic algebra of the recoil op-
ered from a world-sheet view poifi25,16], as illustrated i erators forces the regularizing parameterEq. (7), to be
Figs. 3 and 4. This is a general feature of non-critical stringsjdentified with the logarithm of the world-sheet area scale
whenever the Liouville field is viewed as a local A=|L/al? and, hence, with the target time. In the bounce
renormalization-group scale of the world sheet. As emphapictyre outlined above, there will be a ‘breathing mode’ in
sized in[19], the bounce picture is necessitated by the deyne recoil-induced space-timeharacterized by two direc-
CompOSition Of the LiOUVi”e WOfld-Sheet COI’I’e|atOI’S as Ordi'tions of Ume Corresponding to the processes Of expansion'
nary scattering-matrix elements in target space. Specificalligtasis and shrinking of the horizon in the recoil-induced
these correlators diverge with the world-sheet area @l gpace-timg23), all within a few Planckian times. This is the

the infrared limitA—0". One may regularize such diveg- | jouville-string description of Hawking radiation.
ences by defining the world-sheet path integral over the

Liouville mode on the analytically continued curve illus- VI. OUTLOOK

We have discussed in this article a microscopic mecha-

®In conventional string theoryg2/2~1/20, and the overall nu- nism for the dynamical formation of horizons by the colli-

merical factor in Eq.(40) is of order 4.4. However, g, should

rather be considered an arbitrary parameter of the model, which

may then be constrained by phenomenological observafipls 5This formalism is similar to the closed-time-pat@TP) formal-
through limits on Eq(40). ism used in non-equilibrium quantum field theor[@§)].
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sions of closed-string particle “probes” with recoiling proach thatonly D3-branes can intersect consistently with

D-particle defects embedded inpadimensional space time, fluctuating D particles. The result is surprising, as it seems to
which may in turn be viewed as apDbrane domain wall in  provide a mathematical reason for the fact that we live in
a higher-dimensional target space. As we have argued béour dimensions only. However, the model is oversimplified,

fore, the correct incorporation of recoil effects, which arein the sense that only dilaton and graviton fields have been
unavoidable in any quantum theory of gravity that repro_con&dered so_far in modelling the dynamlcs of the Q|stort|qn
duces the conceptual framework of general relativity in the®f the space-time due to the fluctuating defect. This may in

classical limit, necessitates a Liouville string approach in the*°Me sense be analogous to the way the critical dimension of
context of a(perturbativé world-sheet framework. conventional string theories was revealed in the context of a

iw-model approach, when only the conformal anomaly con-
tributions in a flat target space were considered. However,

the demonstration of the dynamical formation of breathingth h b d dent firmati fthe crti
horizons, which follows directly from the restoration of con- eré have been many independent confirmations ot the criti-

formal invariance by means of Liouville dressing. The hori—Cal dlmensmnr:n Tltsh tradltlonald st’r[:mglcase, C?Tr']ngl'_e'g"t
zon regions were discovered using the positive-energy theJ[Orn € no-gnost theorems and the closure ot the Lorentz
rems for the recoil-induced space-time. We have been able t%lgebra. In the present_ case, we currently Ia_ck further support
show that such regions form bubbles with a non-trivial re-o.f our result from an mdepgnden_t ca_lculatlon, but we con-
fractive index, with light propagation that is always sublumi- sider it as worthy of further investigation.

nal[22], because of the specific properties of the space-time Ij[.ea\llmg gs:d_e thés '.‘i‘fud? of thg: cnucgl ?:mefgsgon, our the-
induced by our treatment of D-particle recoil. The breathingOre Ical model IS admitiedly crude, and should by no means

nature of the horizons, which follows from specific proper- be considered as complete. However, we believe that it pro-

ties of the Liouville dynamics, is the best candidate we havé/Ides a concrete example how space-time foam might arise

in this framework for a quantum space-time foam, generalln the context of modern string—D-brane theory. Certainly

izing appropriately the Hawking radiation of conventional !’”“Ch more work, both theoretical and “phenomenological,”

macroscopic black holes to the microscopic D-brane case. is necessary before even tentative conclusions are reached on

The non-trivial optical properties induced by the propaga-these important matters. But it is our firm belief that the
tion of light in such a fluctuating space-time may be subjectmOOIeI presented here contains the seeds for an eventual un-
to experimental verification in the foreseeable future, and argerstanQ|ng of many important issues assqmated with the
already constrained by existing dd28,24]. The fact that the space-time foam structure of quantum gravity, a_nd for th|s_
refractive index in the bubbles of space-time foam is subY€aSOn it deserves further and more detailed studies before it
luminal implies the absence of birefringence in light propa-can be excluded.
gation, which is, however, possible in other approaches to
space-time foam27].

One curiosity of our analysis has been that the require- The work of N.E.M. is partially supported by PPARC
ment of restoring conformal invariance by means of the(UK). That of D.V.N. is partially supported by DOE grant
Liouville field, which in our approach is identified with the DE-F-G03-95-ER-40917. N.E.M. and D.V.N. also thank H.
target time, is quite restrictive. It implies within this ap- Hofer for his interest and support.
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