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We derive constraints on the form of the renormalized stress tensor for states on Kerr space-time based on
general physical principles: symmetry, the conservation equations, the trace anomaly and regulaety on
tions of) the event horizon. This is then applied to the physical vacua of interest. We introduce the concept of
past and future Boulware vacua and discuss the non-existence of a state empty af ketd 3°. By
calculating the stress tensor for the Unruh vacuum at the event horizon and at infinity, we are able to check our
earlier conditions. We also discuss the difficulties of defining a state equivalent to the Hartle-Hawking vacuum
and comment on the properties of two candidates for this state.

PACS numbegs): 04.62+v, 04.70.Dy

[. INTRODUCTION applicable to any quantum field, and any of the physical
vacua. In Sec. V we consider the properties of the physical
One of the central quantities of physical interest in a studyvacua in the asymptotic regions, at the event horizon and at
of quantum field theory in curved space-time is the renormalinfinity, again concentrating on the massless scalar field. We
ized expectation value of the stress-energy tef®8ET), calculate the differences in expectation values of the stress
since it is this quantity which couples, via the semi-classicafensor in the Unruh vacuum and other states, which can be
Einstein equations, to the background geometry and thugalculated without renormalization. These calculations are in
yie|ds the one_|oop correction dynamics of the geometry_exact agreement with our earlier anaIySiS. We also discuss
This paper is devoted to the properties of the RSET in théhe properties of the candidate Hartle-Hawking states, in par-
states of greatest physical interest on Kerr space-times. Arfjcular their symmetry and regularity on the event horizon.
assault on it by direct computation in black hole geometries We follow the space-time conventions of Misner, Thorne
is invariably a long and complex process, requiring muchand Wheelef1] and work in geometric units throughout.
algebraic dexterity and ingenuity, and usually resorting to
numerical analysis via computer. The aim in this paper is to  |1I. THE WAVE EQUATION IN KERR SPACE-TIME
present what information can be gathered from more physi- ) ) ) ) )
cal principles and general considerations. The most impor- 1he Kerr line element in Boyer-Lindquist co-ordinates
tant of these are the symmetries of the space-time and statB&s the form
together with the conservation equations. In addition, various A sirte
restrictions on the form of the RSET follow from its behav- _ ; 2 24 42 2
ior at the event horizon and far from the black hole. In a ds’= pZ(dt asin’ode)*+ p? (r*+af)d¢—ady
subsequent paper we shall present numerical results for the 2
RSET in the states appropriate to a Kerr black hole with and + p—dr2+p2 d6? 2.1)
without a bounding “box.” A
The contents of this paper are as follows. In Sec. Il we
briefly review the solution of the wave equation in Kerr where p?=r?+a®cos’9 and A=r?—2Mr+a® HereM is
space-time, concentrating for simplicity on the case of a conthe mass of the black hole ardits angular momentum per
formally coupled, massless scalar field. We also introducéinit mass as viewed from infinity.
the standard definitions of the Boulware and Unruh vacua, The metric possesses two coordinate singularities at the
and discuss the subtleties of defining the Hartle-Hawkingoots of the equatiomA=0, which we labelr=r, =M
vacuum in Kerr. In the absence of a true Hartle-Hawking+ (M?—a?)"? defining the outer event horizon ameFr
state, we define two possible candidates. Next, in Sec. IV we M —(M?2—a?)'2 defining the inner Cauchy horizon. In
investigate how much information can be gathered about thaddition, there is a curvature singularity on the ring defined
stress tensor using the conservation equations, symmetries loy the equatiop?=0 (corresponding te=0 and = /2).
the geometry, and regularity conditions on sections of the The space-time is stationary and axisymmetric, possess-
event horizon. This greatly reduces the number of unknowiing two Killing vectors,=d/ gt andn=d/ d¢. The former is
functions in the stress tensor. The analysis of this section iimelike at infinity but becomes null whem=r=M
+M?—a%cog6. This surface is known as the stationary
limit surface and between it and the event horizon is a region
*Email address: ottewill@relativity.ucd.ie called the ergosphere. Within the ergosphérés spacelike
"Email address: elizabeth.winstanley@oriel.ox.ac.uk and it is impossible for observers to remain at rest with re-
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spect to infinity. The stationary limit surface is timelike ex- ma \?2

cept on the axis of symmetr§=0, where it joins the event Voim(r)=— ( i +?\|m(aw)m
horizon and becomes null. The Killing vectdr+ Q. 7,

whereQ , =a/(r2 +a?) =a/2Mr . is the angular velocity of 2(Mr—a?)A  3a%A2

the event horizon, generates the Killing horizonratr , . + (rZ+a??3 + (rZ+a%)* 2.7

This Killing vector is null on the event horizon, and timelike
outside it up to the velocity of light surface, at which point it and the “tortoise” co-ordinate, is defined as
becomes null again. The velocity of light surface is the sur-

face at which an observer with angular velocfty, must r’+a? 1 1
move with the speed of light. It is not the same as the stal+ = | —x dr=r+ PR log|r—r.|+ PR log|r—r_|,
tionary limit surface. In addition, the space-time possesses a N - 2.9

Killing-Yano tensor which we shall discuss later.
Consider a conformally coupled massless scalar field satyith
isfying the equatiory,(g"/%g**3,)®=0 (the scalar curva-

ture R being zero in Kerr space-timeThis equation is sepa- re—r-
rable in the Kerr metri¢2] and the basis functions may be K= 2+ ad)’ (2.9
taken to be -

being the surface gravity on the inner and outer horizons.

wlm Cittime In the asymptotic regions—r, (r,——=) andr—o
Uoim(X) = (r +a2)172 Suim(COSO)Ryim(r) (r, —) the potential(2.7) reduces to

(2.2
—(w—mQ )% asr,——,
. o . V im(r)~ . (2.10
whereN_, is a normalization constantandm are integers @ [ —? asr,—o
with |m|<I. N, is determined so that our mode functions
are orthonormal with respect to the standard inner product We may thus choose as a basis of solutions to(E®), two
classes of solutions with the asymptotic forms

1- [ * * i i
<U1,U2>:§| s _g(uz,,uul_UZ uly,u) dx# (2.3 - 1) [elwr*+Awlmelwr* le——®
wlm{l

BLime' ' ry—o
whereX, is any Cauchy hypersurface. ~
S.im(€) is a spheroidal harmonic satisfying the eigen- ("~ [me e iory r,——o
wlm r

value equation Slenp AT @lons p Lo
wlm *

5 (2.11
{ -85~ T s 2man—(a0)2(1- &) .
dé dé 1-& where o=w—m{), . In the language of the Schiimger
equation analogy it is natural to speak Afand B as the
+Nim(aw) [S,im(£§)=0 (2.4) “reflection” and “transmission” coefficients, respectively.

The eigenvalues,,, are real and hence R is a solution
of Eq. (2.6) then so too iR*. Using this and the constancy

subject to regularity af=+1. The eigenvalua,(aw) de-  of the Wronskian for solutions to E¢2.6) for various com-
pends on the integers and m and has the known value binations of the radial wave functions, it can be shown that
Am(0)=1(1+1), with Sym(£) simply an associated Leg- following relations hold 3]:
endre function. We may normalize the spheroidal harmonics
so that

—|Asml?= —IB aiml? (2.123

1
f Soim(&)Spirm(€) dé= ). (2.9 o
-1 |Aw|m| —|Bw|m| (2125

The radial equation may be written in the form of a

1-dimensional time-independent ScHimger equation wB,

olm A+Im: —(w— mQ+)BwlmAwlm

w

(2.129

wim(r)=0 (2.6) ®Bim=(0—=mQ)B . (2.129

d2
{F_lem(r) R
*
The first two of these relations show that far>0, w
where -mQ, =w<0, both|A~|? and|A*|? are greater than 1.
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ll. QUANTUM FIELD THEORY IN KERR SPACE-TIME along a given Cauchy surface, for examfileU ™. Later,

we shall address the much more difficult question of con-

structing states characterized on surfaces which do not form
We start by considering two natural complete, orthonor-a Cauchy surface, for exampig U§™.

mal sets of solutions to the Klein-Gordon equation. It is then With the understanding thai>0, we take as the “past”

straightforward to construct states with particular propertiedasis the followind4]:

A. The mode functions

. 1 S ~
U =————e"@%eM’s | (cos®)R () w>—-mQ, (3.1a
\/8172w(r7+a7)
1 S ~
Uphy=——————=0""""e'M’S,;n(CoSO)R,(I) ©>0 (3.1b
V8mlw(r?+a?)
up 1 iwty—ime - -~
ult i —m= — e'“e Suim(COSOR_ ;_n(r) 0>w>—m . (3.109
V87— ) (r2+a2)
where we have used the prope8By - (cosb) =S, (cosd). These modes are orthonormal in the sense that
(U U 1) = (@ = ") 81 Sy @>—MQ, [0>0] (3.23
(U U, ) =8(w— ') Sy ©>0 [w>mQ.] (3.2b
(U U ) =8 0= )8 Sy 0>w>-—mQ,  [mQ,>w>0] (3.20

with all other inner products vanishing. Our conventions here adhere to those of the “distant observer viewpoint” of Frolov
and Thorng 5] which we will follow consistently throughout this series of papers.
From Eq.(2.17),

- S,,1m(C0S6) exp —iwv+img) at J° Z)>_mQ+, (3.3
ulh ~—2 o~ :
M JBrlw(r’+a’) | Bamexp—iwv+ime.) at 97 [0>0],
| ApmeXp(—iwu+ime)  at 37,
[ exp—iwu+ime.,) at -,
S, im(€0s6) 0 atJ- >0,
Upim~———=XY - . (3.3b
V872w (r2+a?) A meXp—iwv+ime,) at H° [o>mQ, ],
| Bom&X( —iwu+img) at I,
exp(—i|olu—ime¢.) at$~
Swim(C0S6) 0 ati” 0>w>-mQ,,
LA - X ’ (3.30

V82| w|(r?+a?)

B, imexpiou—ime)

where

u=t— v=t+r,, ¢ =¢d—Q.t.

These modes are natural to the initial surfagésandJ ™ in

(3.9

Me s

Ao nexp—ilolv—im¢,) atH™ [mQ,>w>0],

atJt,

the sense that'™™ describes unit flux coming in from~ and

zero flux coming up from$)~, whereasu"P describes unit
flux coming up from$~ and zero incoming flux coming in

from J~. For modes withw<0 (but @>0), |A~|?>>1, so
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that they are reflected back fo" with an amplitude greater
than that they had originally a®~. This is the classical
phenomenon ofsuperradiance Of course, asw>0 and

Q. >0 itis only possible folw=w—mQ . to be negative if

PHYSICAL REVIEW D 62 084018

B. The physical vacua

We now turn to the delicate issue of defining analogs of
the standard three vacuum states in Schwarzschild space-
time (Boulware, Hartle-Hawking and Unrulin Kerr space-

m=>0, that is for co-rotating waves. Corresponding com-time.(Our discussion here concerns states on the full exterior

ments apply to in modes with<0: they are reflected back

to J* with an amplitude greater than that they had originallyConstruction of vacuum states in Kerr is a more

atJ—.

region of Kerr, in later papers we shall also talk about the
case when the black hole is contained within a “boxThe
subtle prob-
lem than for Schwarzschild black holes, for the following

Another aspect of superradiance is important to our dis;ea5ons:

cussion. From Eq(3.30, one sees that the up mod&s10

with <0 have a negative energy wave propagating to
(conservation of energy This is a consequence @ not
being a globally time-like Killing vectord, is space-like in
the ergosphere, however the combinatigr-Q4d,, where
Q=—0t4/94e, is time-like down to the horizon upon

(1) The existence of superradiant modes makes the defi-
nition of positive frequency more complicated. For example,
in Schwarzschild, an outgoing mode which has positive fre-
guency with respect to the retarded null co-ordinag the
past horizon$~ will also have positive frequency with re-
spect tou at 3%, so it does not matter if we define positive

which it becomes null. Observers following integral curvesfrequency with respect toat$)~ or at3™. This is no longer
of this time-like vector field are locally non-rotating observ- the case in Kerr: a superradiant mode can have positive fre-
ers (LNRO). A LNRO near the horizon would measure the quency with respect ta atJ* but negative frequency & .

frequency of the superradiant up modes(3119 to be |w|
—w=—w+mQ,, in particular, the LNRO would see
positive frequency waves for all modes. kg, all modes
are positive frequency &" andJ~. A LNRO near the ho-

This is why our definition of the basis of mode functions
(3.1) had to be so carefully done.

(2) As a consequence of this, it @ly straightforward to
define states with particular properties along a given Cauchy
surface, such &8~ U $~. By contrast, it has become conven-

rizon measures for the frequency and thus sees negativetional in Schwarzschild space-time to consider the Boulware

frequency modes in the superradiant regime. An up mo
having positive frequency with respectacat $~ will have

negative frequency with respect tpat 3* if w<0 but w
>0.

int
wlm

in
wlm

+a,mu

d(x)= ( fxdw(aia'],mu
I,m 0

up
—wl-m

up

_(Ul_

®min
dw(a
0

u

int

wlm

in
wlm

n

wlm

=>

I,m

u +a,mu

|

dQacuum in terms of its properties 3 UJ" and the Hartle-
Hawking vacuum in terms of its properties ¢n U§H ™.
To be explicit, we may expand the scalar figdx) in
terms of the mode functions we introduced above

)

oo

.

upt
—owl—m

inx
wlm

upt, up*

up
wimYolm

wlm

up
wlm

do(a,j.u. i +a

upx
—owl-m

+a u

)

m

in%
wlm

upt, up*

up
wlmuw|m

wlm

)+f:dz)(a ult +a (3.5

)

where wy,ip=max0,m .}, so wy,;,=0 for counter-rotating waves(<0) andw,;,=m{}, for co-rotating wavesrg>0).

Given this expansion, the natural way to quantize the field is for the coefficients to become operators satisfying the commu-

tation relations

~ ~int
WY

au aupt
[@ufm @y

~upt

-
(&%, 2",

ml=0(w—o'
1=8(w— o’

J=0(w— o’

VS Sy @>—mMEQ (3.68
YO\ Oy ©>0 (3.6
)8\ Sy 0> @>—mQ (3.60

with all other commutators vanishing. From E333), the operator{ai"’r anda'P" have the natural interpretation that they will,
respectively, create particles incident fram and $~. With this in mind, we define a “past Boulware” vacuum state by

Ain
awlm

|B7)=0
aufm/B7)=0
élipwl—mlB_>:o

corresponding to an absence of particles fromandJ~.

®>-—mQ, (3.7a
®>0 (3.7b
0>0>-mQ, (3.70
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This state does not precisely correspond to the idea of a Boulware state in Schwarzschild as that state which is most empty
at infinity. The statéB ™) contains, afi*, an outward flux of particles in the superradiant modes; this is the Unruh-Starobinskii
effect[6].

One might suppose that a more appropriate definition for the Boulware vacuum would be to define a state which is empty
atJ~ andJ*. However, it is straightforward to see that such a state cannot exist within conventional quantum field theory by
introducing the mode functions natural for defining the “future Boulware” vacu@wie shall discuss later the non-
conventional “y-formalism” construction proposed by Frolov and Thofa.)

The mode functions relevant to the “future Boulware” vacuum are those representing @ogaity-positive frequency
flux out to 3" and downs$y™. From the asymptotic forms for the radial functions E2}11), it is clear that we should take as
our “future” basis[4]:

1 o ~
Ul =—————— e ToleiM?s | (cosORIE(r) w>-mQ,, (3.89
Im \/m Im( ) Im( ) +
1 N ~
Ui "= ——————=e""""e"’S,(COSOR (1) ®>0, (3.8b
V8mlw(r?+a?)
1 ) ) ~
udo = = e'le”M’S,im(COSORTY _n(r) 0> w>-mQ, . (3.89
V87| w|(r?+a?)
These modes are orthonormal in the sense that
(U U )= (0= 0") 8 Sy @>—MQ, [0>0] (3.99
(udorn I Y= S(w— ') 8/ Oy ®>0 [0>mQ. ] (3.9H
(udenn u® ) =8(w—w') 8 Sp 0> @>-mQ,  [MQ,>w>0] (3.90

with all other inner products vanishing. Their asymptotic properties are given by

Bl * exp—iwu+ime¢,) atH-

wlm
Suim(€0s0) Al exp—iwv+im atJ” w>-mQ
L Y S ! ' (3.108
V8mw(r?+a?) 0 at9  [w>0]
exp—iou+ime) aty*
A fexp—iou+ime,) atH”
S, im(c0sH) B rexp—iwv+img)  atd ©>0
ui?r\gnw m < Im _ . (3.10h
V872w(r2+a?) exp—iwv+imeg.,) atH" [o>ma, ]
0 atJ”*
X mexp—i|lolu—im¢,) atH”
doun S.im(COSH) y BZ* _expliwv—ime) aty” 0>w>-mQ,
udonn o~ ~
o Ver?w|(r2+a?) | expl—ilolv—img,) athH* [m,>w>0]
0 atJ”*
(3.100

We may expand the scalar fiedpl(x) in terms of these mode functions we introduced above
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wimYolm wlmYolm wlm Ywlm oim  Yolm

q)(x):z (f dw(aout out+aoutT out*)_l_f dw(adow down+adownT down*))
I,m 0 %)

min

—ol — ol —wl-mY—=wl-m

®min
+ E dw(adowgmudowgm_}_ adOWT LIdowmc )
Ibm JO

= out out outT outk dow down down‘r downx
_Em (f do(agmUeimtayimU wlm)‘*’f do (aw,m oim T3uim  Upim )) (3.11)

where w,i,=max0,m( .}, as before. Given this expansion, the natural way to quantize the field is for the coefficients to
become operators satisfying the commutation relations

(a2, a2 1=8(w—w') 8/ Spmy  @>—MQ, (3.123
[ag‘mn, d?:l\fm.] 5((1) w )5”/ mm’ Z)>0 (3lzb
[adonn A% 1= 8(w—w') 8 S 0> @>—mQ, (3.129

with all other commutators vanishing. From Eg.10), the operatora®“t" anda®®"™ have the natural interpretation that they
will, respectively, create particles incident frdii and $*. Thus, we define the “future Boulware” vacuum state by

ainB")=0 w>-mQ, (3.133
g?rwnlB+> 0 >0 (3.13b
alo"" IBY)=0 0>w>-mQ, (3.130

corresponding to an absence of particles frdmandJ ™. In this language, the Unruh-Starobinskii effect is a statement about
the behavior of

<Bi|:rp.v|Bi>_<B+|:rp.v|B+> (3.14

asr—o,

A vacuum state empty &~ andJ" must be constructed from moda$),, andug,;, up to a trivial Bogoliubov transfor-
mation (i.e., one with allB-coefficients vanishing However,u", . andu®j: are not orthogonal and the fact that they cannot
be made so by any trivial Bogoliubov transformation is seen most easily by wuijﬁgm terms of the basis given nyw,m

andulP . For non-superradiant modes the transformation does correspond to a trivial Bogoliubov transformation:

out

USim=AuimUiim+ \walm Usfn,  @>0, (3.153
udown— \/nglm ul L AEU L [e0>mQ ], (3.15h
but for superradiant modes
U =AU — \/75w|m P me 0>0>-mO.[mQ,>we>0], (3.163
u‘i?jlvim:\/_zz) TE UM L ATE  gUP 00> —mQ L [mQ, > we>0]. (3.16h

As no trivial Bogoliubov transformation can affect the total number of “particles” produéeqlﬁirF, it is impossible to
define a vacuum state empty with respect to in modes aand out modes &i*.

The non-existence of a “true Boulware” state is intimately linked with the non-existence of a “true Hartle-Hawking” state
(defined as being a Hadamard state which respects the symmetries of the space-time and is regular everywhere, in particular,
on both future and past event horizpes Kerr space-timg7]. In the former case, one wishes to define the statgd adJ*,
in the latter ony~ U $H*. Indeed, one can make the analogy quite precise by, in the language of Frolov and Thorne, switching
from a “distant” to a “near horizon” viewpoint.
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The (past Unruh statgU ~) is easily defined as that state emptyJat but with the “up” modes(natural modes o )
thermally populated. For a proof that this is equivalent to using modes which are positive frequency with respect to a
future-increasing affine parameter 9n see Ref[5]. As before, we use the notatidd ~) in order to emphasize that this state
is naturally defined by considerations ¢ UJ~. One can, of course also define a stife’) empty atJ™ but with the
“down” modes (natural modes o ™) thermally populated. Indeed, one can also make such a distinction in the Schwarzs-
child case for the Unruh vacuum. However, one rarely considérs as it is|U ™) that mimics the state arising at late times
from the collapse of a star to a black hole. For this reason we shall usually drop the term “past” but we will retain the
terminology|U ) to make clear that this state is naturally defined in terms of “in” and “up” modes. In this language, the
(Kruskal space-time model of thélawking effect is a statement about the behavior of

(UTIT,,JUT)—(B*[T,.IB") (3.17)

asr—oo,
With these definitions, it is straightforward to write down mode sum expressions for the two-point functions of the field in
the past and future Boulware afplas) Unruh vacuum states:

Ge-(x,X')=(B~ [P () D(x")|B7)
(J’ dwu“P (x)ulP* (x’ )+J dwuw,m(x)uLT|ﬁ1(x’)) (3.183
Gg+(x,x")=(B*|®(x)D(x")|B")
=> ( f " daudom ugow™ (') + f " Aot (x)uos (x' >) (3.18
I,m 0 0
Gy-(x,x")=(U~[d)d(x")|U7)
:Em (f:dz, cot)‘(w—:)) (XU gf,;(x)Jrf dwuw,m(x)uwlfn(x')). (3.180

The corresponding expressions for the unrenormalized expectation values of the stress tensor in the past and future
Boulware andpas) Unruh vacuum states are

(B [,.0B)=-3 U AT, [ A1+ [ QT [0 0 ';jlfn]> (3.19a
@ 1Tl =3 | [ domrutsr s 1+ [ dom, et wci ) (8.1

. ® Tw
<U7|TMV|U7>:% (fo dwCOt)’( K ) ;/,v[uwlm' (Lj)lljrf'l]—’—f dwT,uv[uwlm’ Ia?l’l’fn )
(3.190

where the contribution to the stress-energy tensor, for zlbo define a thermal state with mao&tut not al) of the prop-

massless scalar field mode in Ricci-flat Kerr space-time, aserties of the Hartle-Hawking state.

suming conformal coupling, is The first state is that introduced by Candelas, Chrza-
nowski and Howard8], which is constructed by thermaliz-
ing the “in” and “up” modes with respect to their natural

1 1
T,[u,u* ]— (u., u +u u,,) ( M,,u*+ufwu) energy, so
1 _ GecH(X,x')=(CCH|®(x)d(x")|CCH)
—ngu;fu*”. (3.20

= o
3 ([t oo
Kay and Wald[7] have shown that there does not exist a mAe
Hadamard state which respects the symmetries of the space- o Tw
time and is regular everywhere in Kerr space-time. In the +J do CO“‘( p ) wlm(X)Uﬂﬁq(X’))-
absence of such a “true Hartle-Hawking” vacuum we con-
sider the following states, which are attempts in the literature (3.21)

0
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and IV. CONSTRAINTS ON THE STRESS TENSOR

- We now investigate how much information can be gath-

(CCH|? |CCH)=E ( fwd?l) cot%( ﬂ) ered about the stress-energy tensor in Kerr space-time from
wy m\ Jo K general physical principles. We shall have in mind the physi-
cal vacua which have been defined in the previous section.

up upx
X T/Lv[uwlm 'uwlm

In this section, we consider the solution of the conserva-
tion equations/,T,"=0. To avoid the calculation of Christ-
(3.22 offel symbols, sinceT ,, is a symmetric tensor, the conser-
vation equations may be written in the alternative fg@h
As such, it might naturally be described as the “past Hartle- 1
Hawking” vacuum, however, given the discussion above it v [T oy— aB
is not surprising that as we shall show in detail below, this I T V-0) 2\/_9(&”9“5)1— “.D
definition gives a state which does not respect the simulta-
neoust-¢ reversal invariance of Kerr space-time. where g is the determinant of the matrix of metric coeffi-
The second state we shall consider is that introduced bgients given byg= — p“sinfé. Since we are interested in the
Frolov and Thorng5] who used the % formalism” to treat ~ renormalized stress tensor for states which respect the sym-
the quantization of the superradiant modes. They derived th@etries of the space-time, we assume that the stress-energy
following expressions in the state, denoted here|By),  tensor, like the metric, is independenttadnd ¢. The u=t
which they claim defined the Hartle-Hawking vacuuat ~ andu= ¢ equations then become, respectively,
least close to the horizon

) A. Solution of the conservation equations

* TW in in%
+ 0 dw cot T TMV[Uw|m,Uw|m

9, (p?sin T, )+ d,(p?sin6T,?) =0

Grr(x,x") =(FT|n®(x) nd(x') 7|FT) Or(p?SiNOT 41) + 3, p?Sin T ,) =0. 4.2
:Z ( f:d; Cot}—( ?) uP (x)uuP* (x") These may be integrated immediately oveo yield [10]
m
o o\ . _ Ttr:&a)—;.&g(sin@fr der’)
+f0 do cot?-( w;)u'o[‘,m(x)ug‘l’fn(x’)) A Asing ry
(323 T¢,=¥— ﬁ&e( sin ﬁﬁr+T¢0dr’
and (4.3
. g whereK(60) andL(6) are arbitrary functions ob alone.
<FT|-’I\-MV|FT>:|’2m ( fo do Cot}-( T) T, LUl ulk ] The u=r and u= 6 equations are, respectively,
5 F(r,0)=0,(p?T," )+ A~ tcsada (p2sin 6T, ) —rT,?
+ J?dw cotr( 77%) T LUl Ul ) — A" Y(ra%sing—A)T,"
(3.24 G(r,0)=0,(p°T,")+cstd,p?sin 0T ,7)

2ai r 2ai 0
Thus, the Frolov-Thorne state differs in its choice of the +a’sing cosdT, +a’sind cosdT, (4.4

appropriate “energy” for the thermal factor corresponding
Wi - : : . where
to the “in” modes. This state is formally invariant under

simultaneous-¢ reversal. Frolov and Thorne claim that the =20 AT ; to

state defined by Eq3.24) is regular out to the speed-of-light F(r.0)=p "~ AT +2aA sin’ 6T

surface and is ill-defined outside. However, the Kay-Wald +sir?(— Aasin?0+rpH) T4¢]

result is essentially local and the Frolov-Thorne state appears

to violate the spirit if not the letter of the result proved by a’(r’+a’-A)

Kay and Wald. G(r,0) = A2y a?) on 0 cosf[ (r?+a?)*Ty
Below and in subsequent papers in this series where we P

address the issues numerically, we shall show that the +2a(r?+a®) Ty +aT )

Frolov-Thorne state is fundamentally flawed while the )

Candelas-Chrzanowski-Howard state is workable but cannot L P cos¢ 4.5

claim to represent an equilibrium state. (r’+a?sinrg  *¢ '
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with A=M(r?—a’cog¥). Here we have two equations in it arises from the renormalization procedure, the trace
six unknowns each of which is a function of two variabtes anomaly is a geometrical scalar, depending only on the ge-

and 6. ometry and the nature of the quantum field under consider-
One other symmetry immediately apparent from the formation, not on the actual quantum state. All methods of regu-
of the metric is invariance under the transformation larization agree that it has the form
60— 0=m— 0. (4.6

R 1
(Tg>ren: klcaﬁy(sCQB75+ k2 RaﬂRaﬁ_g R2 + k3V aVaR
The components of the stress-energy tensor will also possess (4.9
this symmetry, so in particular
in four dimensions. Her&,, k,, k3 are constants which are
d9(T,,)=0 when 6= m/2. (4.7 independent of the space-time geometry and depend only on

. . . the quantum field. For example, for a massless scalar field,
Thls_ does not |rr_1ply that any componentsTof, vanish, so. k,=k,=ks=(288072) 1. Although all methods of regular-
T is non-zero in general. However, from the conservation, iion agree on the values kf, ks, ks for scalar and neu-
equations(4.4), it follows that trino fields, and ork; andk, for the electromagnetic field,

T,,=0 when 6=m/2. (4.9 the;re i_s disa}greement on 'ghe valuekgf pimensional regu-
larization giveskz=0 whilst both point separation and

The other symmetry of the geometry which should be{-function renormalization givés=—(967%) 1. This dis-
mentioned here is invariance under simultanebysrever-  crepancy is unimportant for us &= 0 for a Kerr black hole.
sal, that ist— —t and ¢— — ¢. The stress tensor for a state For a Kerr black hole of massl and angular momentum
satisfying this invariance must havé,=T.,=T,=T,, Ma,
=0 and correspondinglyK(8)=L(6)=0. It might be N B
thought that this simple symmetry of the space-time should CapysCHP70=48p {M?r®—15M*r*a’cos’g
be mirrored by the stress tensor for the physical vacua in +15M2r2a‘cod 6— M2a’co$ 0}
which we are interested. However, as discussed above this is
not the case, because of the superradiant modes. Neither the (4.10

Boulware vacuuni ™) nor the Unruh vacuuril)”) defined where, as beforgy?=r?+a%cog6. The trace anomaly is, of

in Sec. Il B is invariant under simultaneous¢ reversal. . . .
This in contrast to the situation for Schwarzschild black oL >¢" finite except at a curvature singularity of the space

holes, where the Boulware vacuum is time-reversal invariant, "\, may now replace one of the stress tensor components
although the Unruh vacuum is not, due to the Hawking flux.

In Schwarzschild space-time, the Hartle-Hawking state isby the trace. Hence we may substitute

also time—revgrsal iqvarignt. Of the two Hartle-Hawking-like T/=T, =T =T, —T,? (4.11)
states|CCH) is not invariant under simultaneotisp rever-
sal but|FT) is. In Sec. V we shall consider further the sym- to yield

metry and other properties of these states. _
F(r,0)=0,(p?T," )+ A tcsda (p2sinOT )+ T,"

B. The trace anomaly —A’l(razsinZG—A)T r
r
As is well known, conformally invariant field theories on
a curved backgroundy,, possess a conformal anomaly G(r,0)= 3, (p®T /) —cshd( p2sin T,") (4.12

which means that the renormalized stress tensor has a trace
even though the classical stress tensor must be trace-free. adere

F(r,0)=F(r,0)+rT “—rT!=rT ¢

M=) 5 20 24 A2 2 2r oo
=rTa"+—AZ—[(r +a%)Tyt+2a(r*+a”)T,+a T¢¢]+X[(r +a%)Ty+aTy,l (4.13a

G(r,0)=G(r,0)—a®sin g cost(T,*— T =T, — sy (p?sin [ T, — T,'— T 4*1)

1 H 2 2\2 2 2 2 H
=—Asinea(,(sma[(r +a?)?Ty+2a(r’+a?) Ty +a’T,4])+2acoto(asi gTy+ Tyy)

+a2sin 00, Ty+2ad,Tys+CSC0d,T 44— p2d,T ,*+cosO(a%sind—p) 2T, “ (4.13b
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Equations(4.12 can be written in the alternative form: From Eq.(4.17), it can be seen th&f, and7, must vanish on
the axis§=0,7 provided thatT," and T, are well-defined
I (AY?pSiNOT,") + 34(A~Y2p?sin 0T ,/)=AYF(r,0)sin6  there. Therefore this reduces the number of boundary func-
_ tions which are unknown.

ar(p®sinOT ") — dy(p?sin6T,")=G(r, 6)sin 6. Although it looks like7; vanishes on the event horizon,

(4.14  the analysis of Sec. IV D will show that even for a quantum
state which is regular on the event horizdn! diverges as
A~Ytasr—r,, giving a divergent value fof; on the hori-
zon. This means that the Green’s function method is not

These equations can now be integrated over give

,
Trr:ARl(,f)z +A1’2 12 - ef (AYE(r',0)sin6 directly applicable to Eq4.193. However, the second equa-
P pSINGJr, tion can be solved uniquely using a Green'’s function, and the
—AY29,(p2sin T, ))dr’ solution then fed into E_c(.4.1_3 to give the behavior of,".
Note that our calculations in Sec. V confirm that, for the
S(6) P Unruh and(past and futureBoulware vacua, the functiof,
Tyf=—%+—=—1] (G(r',6)sin6 vanishes sufficiently quickly at infinity that the Green'’s func-
p pesind e, tion method gives a unique solution.
+d,(p?sindT,"))dr’ (4.15

C. The Killing-Yano tensor
whereR(6), S(0) are arbitrary functions of alone. Choice

of a particular vacuum state will place restrictions on the fourS rﬁr%l;i:i:ansogfr 3}?&’25 Wgohni\e/(tar e);gl?—;:i;?s fr:gltn?h\éegttr%rss
arbitrary functionsK(#6), L(6), R(#) andS(6) and also on y 9 y

~ ~ ; tensor is a function only of and §. The Kerr geometry also
F(r,0) andG(r,0) é_Wh'fi_h dep:ja_rll_d on_lfrr:ree T”knog’(vglsg)resspossesses a Killing-Yano tensgt1], which is a skew-
tensor components;;;, T, an . The solutiong4. ; iafyi
are particularly useful for¢finding¢fhe behavior of the stresssymmetrlc tensof,, satisfying
tensor close to the event horizon, but we still have the cou- Vrfrh=q, (4.20
pling betweenT," andT,'.

Uncoupled equations foll," and T, can be obtained We shall now show that the consequence of the existence of

from Eq. (4.14) in the form the Killing-Yano tensor is thal,,=0, whenx=t or x= ¢,
s " 5 i for the quantum states we are interested in.
A9 A0, Ty ]+ 9gTy= A0 (F) = dy(9) For any quantum state, the renormalized expectation
) value of the quantum stress tensor can be calculated using
AYZ5 [AYZ9.(To) ]+ 95(Tp) = AY29,(G) + d4(F) the technique of point splitting:
(4.16 _
(Tundrer= M [T, (xx) = TEh(xx)] (4.2
where oy
_ 2, 2qi _ ; . .
T,=T,"AYp?sing  T,=T, p’sin6 whereT,,(x,x") is the point-separated stress tensor for our
- e particular quantum state ardl,,(x,x’) are the divergent
F=AFsing G=AYGsine. (417 subtraction terms. The unrenormalized stress tensor compo-

nents for the quantum states in which we are interested are
given as mode sum$.193—(3.24), the mode sum contribu-

x=2AY212r —2M. 4.19 tion to T, for A=t or A= ¢ being

We now define a new variabbeby

in terms of which the equation@.16 now have the usual

1 1
*]= 96| = (U AUY T+ UMpU ) — = (U pgU + U ) |
polar form of the Laplacian: Taglu,u*]=%Re 3(U'Au19 Uzal: o) 6(U'Mu U*A"u)}

(4.22
XX T+ 5T, =Xy F— 9,G (4.193
The existence of the Killing-Yano tensor has the result that
xax[xaxz]+a§7’2:xaxg+ 9 F. the wave equation for a massless scalar field on the Kerr

(4.19p  geometry is separab[@], with the mode solutions given by

Eq. (2.2). In addition, we have
The domain of these equations js= ((r2—a?)¥?«), 6

e (0,m), that is the punctured half-plane. By constructing a U.ag=U pp— FZeU,t_FﬁaU,w 4.23
Green'’s function for this domain, a unique solution far

and 7, can be found if they are specified on the boundaryFrom the mode functions) ,=iku wherek=—o if A=t
provided we knowF andg throughout the region. Therefore, andk=m if A= ¢; also '

we need to knowl," and T, on the event horizofiwhere

x=(r?—a??%?, and the three components of the stress ten- u ,x—(r?+a?)~Y2g let+iméR = (r)S!  (cosh)sing;
sor, Ty, Tiy @andT 4, everywhere outside the event horizon. (4.29
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and u ,,=iku ,. Since the spheroidal harmoni&;,,, are
real, the quantities appearing in E@.22 are all purely
imaginary and hencf,, u,u* |=0. Therefore the point-
separated stress tensor componditgx,x") vanish for all

of the states under consideration. In addition, it is shown in
[5] that the subtraction term‘E‘,{';(x,x’) are also zero, so that
(Tyo)ren Vanishes for all the states we are considering here.
This property was proved by Frolov and Thofi%é for |FT)

but we have shown here that this is a quite general result.

D. Behavior on the event and Cauchy horizons

Next we shall investigate the behavior of the stress tensor
at the future and past event and Cauchy horizons. It is con-
venient to introduce co-ordinate systems that are regular at
the horizons. We first introduce two double-null co-ordinate
systemsu, v, 0, ¢ by

u=t—r,, v=t+r,,

b= t=¢-Q.t,

(4.295

where the last equation defin€s, and()_ which are the
angular velocity of the event and Cauchy horizons respec-
tively, andr, is the “tortoise” co-ordinate given by Eq.
(2.8). The two sets of Kruskal co-ordinatek. , V.. are then
defined by

r’+a’

Ui:_eiKtu, Vt:eKtv.

(4.26

From the definition oU., V. andr, ,

PHYSICAL REVIEW D 62 084018

Tu v =V Tyt 20T+ —02T
V.V, K+ =14 tt 2 +ltg 4°°* foxe)

AZ
+ 2(r2+a2) TTI+ 4(r2+a2)2TI’r
A0 L 4.28
T27ra?) (4289
TUtH:K;lU;lmTrg (4.280
—1y,—1 A
TVtﬁzKi Vi 2(r2+a2) ré (4289
41 1
Tuid’t:_Ki Ut ETt¢+ EQiTQS(ﬁ
- T 4.28
207rad) (4.280
o1 1
T\/iqgt:Kt Vi ETt¢+ EQde)qg
- T 4.28
el (4289

With Tyy=Tgg, Tgy. =0 andTy_,, =T44, where we have

set Tyy=Ty,s=0. It follows immediately that regularity of

U1V+:—62Kir*:—ezKir(l’—rt)|r—ri|Ki/KI.

- 4.2

The exterior region corresponds lth, <0, V, >0 with the

past event horizon af , =0 and the future event horizon at
U, =0. These coordinates may be extended to cover the
event horizons in a regular fashion but are singular at the

Cauchy horizons. Correspondingly, the coordindfes and

V_ may be extended to cover the Cauchy horizobk_ (
=0 andV_=0) in a regular fashion but are singular at the

event horizons.

the stress tensor on any horizon requires Thgt, T,, and
T, be finite as the horizon is approached.

For a general stress tensor withy=T,,=0, we have by
Egs. (4.3

KO L)

Ty = Ty= (4.29
In this case, consideration of ”TQJM: andTth;t compo-

nents shows that regularity requires

The stress tensor components in these Kruskal co-ordinate

systems are

1

1 1,
4Ttt+ EQiTtd’—'_ ZQde)d)

Ty u+:K+2U+2[

AZ
T 2021 a?) Tt 4(r2+a2)2Trr

AQ.
REGETIMC

(4.283

1

1 1 5
4Ttt+ EQiTW)—’_ ZQtTdNﬁ

Tu+v+:_K;2U;1V;1[

A2

- m-r”} (4.28[:)

L(0)

Tis(r,0) =
(1 6) r? +a?

Q. Tyu(r+,0)+0(r—r-)

as r—r., (4.30

where the positive sign is taken for regularity on the future
horizon U.=0) and the negative sign on the past horizon
(V.=0). Note that ifL(8) is non-zero, only one of these
conditions can be met on either the future or past event ho-
rizon. Regularity of theTy, _, Ty, v, andTy v, compo-
nents implies that

K(0)—Q.L(6)

Ty==
r’+a?

(4.313
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12432 state§ CCH) and|FT). It is known that the divergent terms
T =2[K(0)+Q.L(0)]— +0(r—r.) ! which have to be subtracted from the unrenormalized expec-
A tation value of the stress tensor are independent of the quan-

(4.31b tum state under consideration. Therefore we shall consider
the differences in expectation values of the stress tensor in
asr—r ., with the positive sign for regularity on the future two different states, since these can be calculated without
horizon, and the negative sign for the past horizon, as beforgenormalization. Such differences in expectation values will
Finiteness ofT,, as the horizon is approached implies thatbe traceless tensors since the trace anomaly is the same for
the functionS(6) in Eq. (4.195 vanishes, whilst the form all quantum states.
(4.31bh of T,, near the horizon tells us th&(#) in Eq. We shall begin by concentrating on the Unruh vacuum,
(4.19 is also identically zero. It should be stressed that thesince its stress tensor has been calculated in the asymptotic
forms (4.30—(4.31b are compatible with the solution of the regimes by Punslej13] using an equivalence principle ap-
conservation equatior(@.15 with R and Sidentically zero.  proach. This will provide a useful check of our calculations.
We note that our analysis is in agreement with that ofFirst, we consider the behavior at infinity, and calculate

[10], in that unless bothK(#) andL(#) vanish identically,
the stress tensor must diverge at one of the event horizons,

and at least one of the Cauchy horizons. The past and future (UTITU ren= (B IT,00/B ren

Boulware vacua are not expected to be regular on either =<U*|'AI' |U*)—<B*|'Ar IB)

event horizon. For the Unruh vacuum state, it is expected mr my

that the divergences occur on the past event horizon and © 2dw

future Cauchy horizof10]. For |FT) simultaneoug-¢ in- & JO WTW[UWWU&?@ . (5.

variance required tha€(6) andL(6) vanish consistent with
regularity. On the other hand, f¢€ CH) there was no re-
quirement thak (#) andL () vanish and so one expects that Using the asymptotic form of the mode functiofzs11), we
there will be divergences on the past event horizon in lindhave, ag —,
with the Unruh vacuum. We shall return to this issue in Sec.
V.

At this stage, we need to step back and see how much
information about the stress tensor we have managed to ob- 1 J»w o do

<U_|:|—;|U_>ren_<B_|:rZ|B_>ren

tain from our approach. We began with ten stress tensor ~— IB_iml?|Swim(cosh)|?
components, each a function of the two variablesnd 6. 4more Lm
The Killing-Yano symmetry revealed that two of these com-
ponentsT;, and T,, vanished identically, whilst another
component could be eliminated by using the known trace % T
anomaly, leaving seven unknown functions @nd 0. Using 0
the conservation equations, we need to know three functions 0
of r and ¢ (corresponding tdl, Ty, andT,,), and four
functions of # (K, L, T,, and T,, on the event horizon )
Finally, for a state which is regular on one of the event!n order to obtain the behavior of the Unruh vacuum at future
horizons, this reduces to three functions@since the be- null infinity, we need to consider the “past” Boulware
havior of T,, is given in terms oK andL. In addition, we Vacuum at infinity. The “past” Boulware vacuum contains
Tty andT,, on the event horizon, in terms &f L andT 4, . Unruh-Starobinskii effecf6], so that, as we approach’,

Thus our analysis has significantly reduced the number of

degrees of freedom of the stress tensor in Kerr space-time<B—|-“|-V|B—>ren~<B—|-“|-V|B—>_<B+|?V|B+>

Of course, this reduction is rather less significant than the a a a

0 Z)(eZW(I)/K_ 1)

0

—w

(5.2

o o & €
o o o
o o 3 3

corresponding analysis for Schwarzschild black h¢lE3, 1 ®min wdw o,
but this was to be expected due to the fact that Kerr has T am?r2 % o mew
fewer symmetries than Schwarzschild. ' w(e )
o —o 0 —m
V. ASYMPTOTIC BEHAVIOR OF THE PHYSICAL |0 —o 0 —m
X|S,m(cosd
VACUA [Sum(cosO*| o 5
In this section we shall consider the asymptotic behavior O 0O O o

of the physical states of interest near the event horizon and at

infinity. This will provide a consistency check on the analy- (5.3

sis of the previous section. We shall also use the properties

of the Unruh and Boulware vacywhose asymptotic behav- Adding these two tensors gives the asymptotic behavior of
iors are well understogdto reveal information about the the Unruh vacuum at future null infinity as
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. 1 o wdo We now turn to the behavior of the Unruh vacuum at the
(U|T2 U )ren~ = IBoiml? event horizon. In Schwarzschild, the Hartle-Hawking state is
" ren 471_21.2 i o 27”"/"—1 wlm N <
m w(e ) regular on both event horizons, and so the behavior of the
Unruh vacuum as—r . is found from

—w
—w

Ui-’l\—vui NUf-Al—,,Uf —H-’[\-VH
><|Sw|m(COSl9)|2 0 ( | M| Yren~ ¢ | ,u| ren— ¢ | ,u| Yren

o o & ¢
o o © o
o o 3 3

0 :<U_|-,I\-/.LV|U_>_<H|-’I\-}LV|H> (56)

In the absence of a Hartle-Hawking state for Kerr, we shall
(5.4 instead consider the differences of the stress tensors in the

This is in agreement with the form obtained fit3], and ~ Ynruh vacuum and the stat¢BT) and |CCH). These are

represents the expected thermal flux at infinity. It should béVen by

noted that, despite initial appearances, the integrands are

regular whenw=0 due to the Wronskian relation@.129 (UTIT,, U =(FTT,,IFT)

which ensure thgB_,,|>=O(w?) asw—0. From Eq.(5.4) g a

we can read off the forms of the functioksandL (4.29 for » —2dw N ins

the Unruh vacuum: &, m-ﬂw[“wlm Uoim)  (5.78

1 »  —w’dw B
Ky-(0)=— > f =B iml*|Suim(cosd)|?

472 Th Jo w(e?™/x—1) (U™|T,,JU")—(CCH|T,,|CCH)

1 » —mode jm —2dw in o ink
()= _—Mmedo = — =2 Ut ™ (5.7h

X|B iml*| Suim(cos6) 2. (5.9  Asr—r,, one finds

1 o dow
————— B} I3S cosb)|?
a2 5 |y o BlnlSun(coso)

(UTTLUT) = (FT[TL[FT)~

A Yr2+ad)ww -0 0 A laww
A7%(ri+a?)2w? —ATYri+a?)w? O(1) —A"Za(r}+a?)w? 5.8

0 O(A) 0(1) 0 '
A Yr2 +ad)mo ) 0 — A" tamw

The expression fo(rU‘l'AI'Z|U‘)—(CCH|'AI';]CCH> isiden- IV D. There is exact agreement, usin_g the functiehs-(6)
tical to Eq.(5.8), with the denominatoe?™/*— 1 replaced and Luf(a).folu'nd f.rom the expectation value of the stress
by €2"/*— 1. In both cases the integrand is regular for al|tensor _at |nf|n|f[y in the Unruh vacuun5.5), and the
values ofw, by virtue of the Wronskian relation@.129. ~ Wronskian relations.

The difference in expectation values of the stress tensor in From the regularity of the tensg§.8) on the future event
the Unruh and Frolov-Thorne statés.8) agrees with the horizon, we can conclude t'hat the expectation value of the
stress tensor for the Unruh vacuum found[i18], whereas ~SUess tensor in the stdteT) is regular on at least one event
when we have the stal€ CH) instead off FT) the thermal horizon (a_nd,. since it is invariant under S|m.ultanedus¢?
terms in the denominator do not agree. Furthermore, the tef€versal, it will be regular on both event horizanghus, it
sor(5.8) is regular on the future event horizon but not on theMay appear that the stateT) in fact has the properties that
past event horizon, the same behavior that we would expe®(® require of the Hartle-Hawking state. However, whilst the
for the Unruh vacuum. Therefore we can compare the tensdiXPectation value of the stress tensor in the Sf&fE) is
(5.8) with the behavior near the event horizon derived in Secregular on the event horizon, the expectation valuébfis
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not. We calculate, as—r , , the event horizon, then the integral overalso has a pole at
. . ©=0, leading to a divergent result. Therefore it seems that
(UT|®?U™)—(FTI®?FT) the regularity of the difference in expectation values of the
stress tenso(5.8) at the event horizon does not reflect the
_ 1 f *  —2de true nature ofhe statd FT), and that this stati fact fails to
4m2(r2 +a?)fm Jo w(e?™/x—1) be regular almost everywheréoth on or outside the event
horizon, although it formally has attractive symmetry prop-
X B ml?| Suim(cos6)|?. (5.9 erties.

There is one exception to the regularity of the s{&&)
The integrand in the above expression is regulawatO  which is that on the axis the terms with#0 (and, in par-
because of the Wronskian relatiof&s12d, but has a pole at  ticular, all superradiant modgsio not contribute. Thus, if
»=0, giving a divergent integral. If we attempt to calculate one point is on the axis th& T) and|CCH) two-point func-
the difference in expectation valu€s.7a@ anywhere outside tions agree:

GFT/CCH(t,r,9,¢;t’,r’,0,¢’)=2

| [RE (MR +Ryo(NRE(r)1S,10(c080) S, 0(1).

(5.10

In the asymptotic regions, the integrals are dominated by the contribution fromare@r. In this limit the spheroidal
functions reduce to Legendre polynomials

fw dw coth mw/ k)
0 wy(r’+a?)(r'?+a?)

smm:\/%m(cosﬂ), A(0)=1(1+1). (519
In addition, Ty, (r) = Roim(r)/r?+a? satisfies the equation
d , _dTiy m?a?®
a7 Vg~ 104 D+ e g Tin=0 (5.12
where
_2r—(r++r,)_ r—Mm (5.13

T BN VS
ma/ VM

2_42 M2_,2
with solutionsP] ~3%(y) andQ"¥ M =%y In particular, a steepest descent analysis of (B0 asr’ —r . yields

. M
GFT/CCH(I,I’,0,¢;t’,r+,0,¢’):16 K _ zl: (2| +1)Q|(r—) P|(C050)

M7= w—a?
K 1

872 r—M—M2—aZcosf’

(5.19

where the second line follows from Heine’s formula. Thisthat the difference in expectation values of the stress tensor
result was first given by Froloy14] and enabled him to in IU’} and|CCH) at the event horizon is rather different
calculate the renormalized value of the expectation value offom simply the stress tensor in the staté™). The differ-

&2 on the pole of the event horizon. Later with Zel'nikov ence in 'ghermal fact(_)rs also means that the di@@eH) is

[15] he extended this calculation to calculate the renormal-nOt'nv"’mamt under simultaneous¢ reversal.

ized value of the expectation value Bf, on the pole of the . However, the quantit{U |TM|L.J ) <CCH|T#|CCH>
. S is regular on the future event horizghut not on the pagt

event horizon. Our point is that, unfortunately, these calcu- ! .
. . s0, using the expected regularity of the Unruh vacuum, we
lations were only possible because the troublesome superra-

diant modes do not contribute on the axis and have actuall§@" conclude tha(CCH|T/|CCH) is also regular on the
led to a false confidence concerning the Hartle-HawkingUture event horizortbut not on the pastif we consider the

vacuum. difference in expectation values df2 at the event horizon,

Finally we return the properties of the sta@CH). This  the answer is the same as E§.9), but with 2ol replaced
has a different thermal factor frofF T) (3.22 which means by €7/, Using the Wronskian relation@.12d, this gives
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a finite answer, further strengthening our argument that A detailed numerical investigation would be necessary to

|CCH) is a regular state on the future event horizon. elucidate further details of the properties of these states out-
side the event horizon. This paper has laid the foundation for
VI. CONCLUSIONS such an investigation which we will present in following

In this paper we have considered the renormalized streéjs"jlperS in this series,
pap ) - It is possible to draw some conclusions on the basis of our
energy tensor on Kerr space-time, and used the anticipated

physical properties of this tensgsymmetry, conservation a)r:a%sns wihout rrlesrc]) revn?ht? annuT?m\:/s:limr:/ ?stilga}[trloni. '?r?r
equations, and regularity conditions order to derive as example, one can sho at any state which 1S isotropic in a

much information as possible. As expected, the analysis i trad which co-rotates with the event horizon must become

considerably more complex than the corresponding problerfliVérgent on the velocity of light surfadé6]. This implies
in Schwarzschild12], and the solution gives us less infor- that even if we could construct a state which is regular on the

mation, although we are able to reduce the number of un€vent horizon and has the desired thermal properties, then

knowns to three functions afand ¢ and three functions of that state may well turn out not to be regular on the velocity

0. of light surface, in agreement with the Kay-Wald theorem
Our results are in agreement with the known form of thethat the state must fail to be regular somewhere.

Unruh vacuum at the event horizon and at infinity. We also  This paper has shown that while quantum field theory in

considered two candidates for the state analogous to théerr space-time is more complex than in Schwarzschild, ap-

Hartle-Hawking state in Schwarzschild. From the Kay-Waldplication of the same physical principles which have proved

theorem[7], we know that there is no state in Kerr which is to be so valuable in Schwarzschild also makes the picture

regular at the event horizon and everywhere outside, invarimuch clearer and more simple in Kerr.

ant under simultaneous ¢ reversal and thermal in nature.

Of our two candidate states, one is invariant unigep re-

versal, but fails to be regular on the event horizon, whilst the ACKNOWLEDGMENTS
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