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Renormalized stress tensor in Kerr space-time: General results
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We derive constraints on the form of the renormalized stress tensor for states on Kerr space-time based on
general physical principles: symmetry, the conservation equations, the trace anomaly and regularity on~sec-
tions of! the event horizon. This is then applied to the physical vacua of interest. We introduce the concept of
past and future Boulware vacua and discuss the non-existence of a state empty at bothI2 and I1. By
calculating the stress tensor for the Unruh vacuum at the event horizon and at infinity, we are able to check our
earlier conditions. We also discuss the difficulties of defining a state equivalent to the Hartle-Hawking vacuum
and comment on the properties of two candidates for this state.

PACS number~s!: 04.62.1v, 04.70.Dy
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I. INTRODUCTION

One of the central quantities of physical interest in a stu
of quantum field theory in curved space-time is the renorm
ized expectation value of the stress-energy tensor~RSET!,
since it is this quantity which couples, via the semi-classi
Einstein equations, to the background geometry and t
yields the one-loop correction dynamics of the geome
This paper is devoted to the properties of the RSET in
states of greatest physical interest on Kerr space-times.
assault on it by direct computation in black hole geometr
is invariably a long and complex process, requiring mu
algebraic dexterity and ingenuity, and usually resorting
numerical analysis via computer. The aim in this paper is
present what information can be gathered from more ph
cal principles and general considerations. The most imp
tant of these are the symmetries of the space-time and s
together with the conservation equations. In addition, vari
restrictions on the form of the RSET follow from its beha
ior at the event horizon and far from the black hole. In
subsequent paper we shall present numerical results fo
RSET in the states appropriate to a Kerr black hole with a
without a bounding ‘‘box.’’

The contents of this paper are as follows. In Sec. II
briefly review the solution of the wave equation in Ke
space-time, concentrating for simplicity on the case of a c
formally coupled, massless scalar field. We also introd
the standard definitions of the Boulware and Unruh vac
and discuss the subtleties of defining the Hartle-Hawk
vacuum in Kerr. In the absence of a true Hartle-Hawki
state, we define two possible candidates. Next, in Sec. IV
investigate how much information can be gathered about
stress tensor using the conservation equations, symmetri
the geometry, and regularity conditions on sections of
event horizon. This greatly reduces the number of unkno
functions in the stress tensor. The analysis of this sectio
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applicable to any quantum field, and any of the physi
vacua. In Sec. V we consider the properties of the phys
vacua in the asymptotic regions, at the event horizon an
infinity, again concentrating on the massless scalar field.
calculate the differences in expectation values of the st
tensor in the Unruh vacuum and other states, which can
calculated without renormalization. These calculations are
exact agreement with our earlier analysis. We also disc
the properties of the candidate Hartle-Hawking states, in p
ticular their symmetry and regularity on the event horizon

We follow the space-time conventions of Misner, Thor
and Wheeler@1# and work in geometric units throughout.

II. THE WAVE EQUATION IN KERR SPACE-TIME

The Kerr line element in Boyer-Lindquist co-ordinate
has the form

ds252
D

r2 ~dt2a sin2udf!21
sin2u

r2 „~r 21a2!df2a dt…2

1
r2

D
dr21r2 du2 ~2.1!

where r25r 21a2cos2u and D5r 222Mr 1a2. Here M is
the mass of the black hole anda its angular momentum pe
unit mass as viewed from infinity.

The metric possesses two coordinate singularities at
roots of the equationD50, which we label r 5r 15M
1(M22a2)1/2, defining the outer event horizon andr 5r 2

5M2(M22a2)1/2, defining the inner Cauchy horizon. I
addition, there is a curvature singularity on the ring defin
by the equationr250 ~corresponding tor 50 andu5p/2).

The space-time is stationary and axisymmetric, poss
ing two Killing vectors,z5]/]t andh5]/]f. The former is
timelike at infinity but becomes null whenr 5r s5M
1AM22a2cos2u. This surface is known as the stationa
limit surface and between it and the event horizon is a reg
called the ergosphere. Within the ergosphere,z is spacelike
and it is impossible for observers to remain at rest with
©2000 The American Physical Society18-1
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ADRIAN C. OTTEWILL AND ELIZABETH WINSTANLEY PHYSICAL REVIEW D 62 084018
spect to infinity. The stationary limit surface is timelike e
cept on the axis of symmetryu50, where it joins the even
horizon and becomes null. The Killing vectorz1V1h,
whereV15a/(r 1

2 1a2)5a/2Mr 1 is the angular velocity of
the event horizon, generates the Killing horizon atr 5r 1 .
This Killing vector is null on the event horizon, and timelik
outside it up to the velocity of light surface, at which point
becomes null again. The velocity of light surface is the s
face at which an observer with angular velocityV1 must
move with the speed of light. It is not the same as the s
tionary limit surface. In addition, the space-time possess
Killing-Yano tensor which we shall discuss later.

Consider a conformally coupled massless scalar field
isfying the equation]m(g1/2gmn]n)F50 ~the scalar curva-
tureR being zero in Kerr space-time!. This equation is sepa
rable in the Kerr metric@2# and the basis functions may b
taken to be

uv lm~x!5
Nv lm

~r 21a2!1/2e2 ivt1 imfSv lm~cosu!Rv lm~r !

~2.2!

whereNv lm is a normalization constant,l andm are integers
with umu< l . Nv lm is determined so that our mode functio
are orthonormal with respect to the standard inner produ

^u1 ,u2&5
1

2
i E

S
A2g ~u2,m* u12u2* u1,m! dSm ~2.3!

whereS is any Cauchy hypersurface.
Sv lm(j) is a spheroidal harmonic satisfying the eige

value equation

F d

dj
~12j2!

d

dj
2

m2

12j2 12mav2~av!2~12j2!

1l lm~av!GSv lm~j!50 ~2.4!

subject to regularity atj561. The eigenvaluel lm(av) de-
pends on the integersl and m and has the known valu
l lm(0)5 l ( l 11), with S0lm(j) simply an associated Leg
endre function. We may normalize the spheroidal harmon
so that

E
21

1

Sv lm~j!Sv l 8m~j! dj5d l l 8 . ~2.5!

The radial equation may be written in the form of
1-dimensional time-independent Schro¨dinger equation

F d2

dr
*
2 2Vv lm~r !GRv lm~r !50 ~2.6!

where
08401
-

-
a
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-

s

Vv lm~r !52S v2
ma

r 21a2D 2

1l lm~av!
D

~r 21a2!2

1
2~Mr 2a2!D

~r 21a2!3 1
3a2D2

~r 21a2!4 , ~2.7!

and the ‘‘tortoise’’ co-ordinater * is defined as

r * 5E r 21a2

D
dr5r 1

1

2k1
log ur 2r 1u1

1

2k2
log ur 2r 2u,

~2.8!

with

k65
r 62r 7

2~r 6
2 1a2!

, ~2.9!

being the surface gravity on the inner and outer horizons
In the asymptotic regionsr→r 1 (r * →2`) and r→`

(r * →`) the potential~2.7! reduces to

Vv lm~r !;H 2~v2mV1!2 as r * →2`,

2v2 as r * →`
. ~2.10!

We may thus choose as a basis of solutions to Eq.~2.6!, two
classes of solutions with the asymptotic forms

Rv lm
2 ~r !;H ei ṽr

* 1Av lm
2 e2 i ṽr

* r * →2`

Bv lm
2 eivr

* r * →`

Rv lm
1 ~r !;H Bv lm

1 e2 i ṽr
* r * →2`

e2 ivr
* 1Av lm

1 eivr
* r * →`

~2.11!

where ṽ5v2mV1 . In the language of the Schro¨dinger
equation analogy it is natural to speak ofA and B as the
‘‘reflection’’ and ‘‘transmission’’ coefficients, respectively.

The eigenvaluesl lm are real and hence ifR is a solution
of Eq. ~2.6! then so too isR* . Using this and the constanc
of the Wronskian for solutions to Eq.~2.6! for various com-
binations of the radial wave functions, it can be shown t
following relations hold@3#:

12uAv lm
1 u25

v2mV1

v
uBv lm

1 u2 ~2.12a!

12uAv lm
2 u25

v

v2mV1
uBv lm

2 u2 ~2.12b!

vBv lm
2 * Av lm

1 52~v2mV1!Bv lm
1 Av lm

2 *
~2.12c!

vBv lm
2 5~v2mV1!Bv lm

1 . ~2.12d!

The first two of these relations show that forv.0, v

2mV15ṽ,0, bothuA2u2 and uA1u2 are greater than 1.
8-2
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III. QUANTUM FIELD THEORY IN KERR SPACE-TIME

A. The mode functions

We start by considering two natural complete, orthon
mal sets of solutions to the Klein-Gordon equation. It is th
straightforward to construct states with particular proper
08401
-
n
s

along a given Cauchy surface, for exampleI2øH2. Later,
we shall address the much more difficult question of co
structing states characterized on surfaces which do not f
a Cauchy surface, for exampleH2øH1.

With the understanding thatv.0, we take as the ‘‘past’’
basis the following@4#:
Frolov
uv lm
in 5

1

A8p2v~r 21a2!
e2 ivteimfSv lm~cosu!Rv lm

1 ~r ! ṽ.2mV1 ~3.1a!

uv lm
up 5

1

A8p2ṽ~r 21a2!
e2 ivteimfSv lm~cosu!Rv lm

2 ~r ! ṽ.0 ~3.1b!

u2v l 2m
up 5

1

A8p2~2ṽ !~r 21a2!
eivte2 imfSv lm~cosu!R2v l 2m

2 ~r ! 0.ṽ.2mV1 ~3.1c!

where we have used the propertyS2v l 2m(cosu)5Svlm(cosu). These modes are orthonormal in the sense that

~uv lm
in ,uv8 l 8m8

in
!5d~v2v8!d l l 8dmm8 ṽ.2mV1 @v.0# ~3.2a!

~uv lm
up ,uv8 l 8m8

up
!5d~v2v8!d l l 8dmm8 ṽ.0 @v.mV1# ~3.2b!

~u2v l 2m
up ,u2v8 l 82m8

up
!5d~v2v8!d l l 8dmm8 0.ṽ.2mV1 @mV1.v.0# ~3.2c!

with all other inner products vanishing. Our conventions here adhere to those of the ‘‘distant observer viewpoint’’ of
and Thorne@5# which we will follow consistently throughout this series of papers.

From Eq.~2.11!,

uv lm
in ;

Sv lm~cosu!

A8p2v~r 21a2!
35

0 at H2,

exp~2 ivv1 imf! at I2

Bv lm
1 exp~2 i ṽv1 imf1! at H1

Av lm
1 exp~2 ivu1 imf! at I1,

ṽ.2mV1 ,

@v.0#,
~3.3a!

uv lm
up ;

Sv lm~cosu!

A8p2ṽ~r 21a2!
35

exp~2 i ṽu1 imf1! at H2,

0 at I2

Av lm
2 exp~2 i ṽv1 imf1! at H1

Bv lm
2 exp~2 ivu1 imf! at I1,

ṽ.0,

@v.mV1#,
~3.3b!

u2v l 2m
up ;

Sv lm~cosu!

A8p2uṽu~r 21a2!
35

exp~2 i uṽuu2 imf1! atH2

0 atI2

Av lm
2 exp~2 i uṽuv2 imf1! atH1

Bv lm
2 exp~ ivu2 imf! atI1,

0.ṽ.2mV1 ,

@mV1.v.0#,
~3.3c!
where

u5t2r * , v5t1r * , f15f2V1t. ~3.4!

These modes are natural to the initial surfacesH2 andI2 in
the sense thatuin describes unit flux coming in fromI2 and
zero flux coming up fromH2, whereasuup describes unit
flux coming up fromH2 and zero incoming flux coming in
from I2. For modes withṽ,0 ~but v.0), uA2u2.1, so
8-3
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ADRIAN C. OTTEWILL AND ELIZABETH WINSTANLEY PHYSICAL REVIEW D 62 084018
that they are reflected back toH1 with an amplitude greate
than that they had originally atH2. This is the classica
phenomenon ofsuperradiance. Of course, asv.0 and
V1.0 it is only possible forṽ5v2mV1 to be negative if
m.0, that is for co-rotating waves. Corresponding co
ments apply to in modes withṽ,0: they are reflected bac
to I1 with an amplitude greater than that they had origina
at I2.

Another aspect of superradiance is important to our d
cussion. From Eq.~3.3c!, one sees that the up modes~3.1c!
with ṽ,0 have a negative energy wave propagating toI1

~conservation of energy!. This is a consequence of] t not
being a globally time-like Killing vector.] t is space-like in
the ergosphere, however the combination] t1V]f , where
V52gtf /gff , is time-like down to the horizon upon
which it becomes null. Observers following integral curv
of this time-like vector field are locally non-rotating obser
ers ~LNRO!. A LNRO near the horizon would measure th
frequency of the superradiant up modes in~3.1c! to be uṽu
52ṽ52v1mV1 , in particular, the LNRO would see
positive frequency waves for all modes. Foruv lm

in all modes
are positive frequency atI1 andI2. A LNRO near the ho-
rizon measuresṽ for the frequency and thus sees negat
frequency modes in the superradiant regime. An up m
having positive frequency with respect tou at H2 will have
negative frequency with respect tou at I1 if ṽ,0 but v
.0.
08401
-

-

e

B. The physical vacua

We now turn to the delicate issue of defining analogs
the standard three vacuum states in Schwarzschild sp
time ~Boulware, Hartle-Hawking and Unruh! in Kerr space-
time. ~Our discussion here concerns states on the full exte
region of Kerr, in later papers we shall also talk about t
case when the black hole is contained within a ‘‘box.’’! The
construction of vacuum states in Kerr is a more subtle pr
lem than for Schwarzschild black holes, for the followin
reasons:

~1! The existence of superradiant modes makes the d
nition of positive frequency more complicated. For examp
in Schwarzschild, an outgoing mode which has positive f
quency with respect to the retarded null co-ordinateu at the
past horizonH2 will also have positive frequency with re
spect tou at I1, so it does not matter if we define positiv
frequency with respect tou at H2 or atI1. This is no longer
the case in Kerr: a superradiant mode can have positive
quency with respect tou at I1 but negative frequency atH2.
This is why our definition of the basis of mode function
~3.1! had to be so carefully done.

~2! As a consequence of this, it isonly straightforward to
define states with particular properties along a given Cau
surface, such asI2øH2. By contrast, it has become conve
tional in Schwarzschild space-time to consider the Boulw
vacuum in terms of its properties onI2øI1 and the Hartle-
Hawking vacuum in terms of its properties onH2øH1.

To be explicit, we may expand the scalar fieldF(x) in
terms of the mode functions we introduced above
commu-

ll,
F~x!5(
l ,m

S E
0

`

dv~av lm
in uv lm

in 1av lm
in† uv lm

in* !1E
vmin

`

dv~av lm
up uv lm

up 1av lm
up† uv lm

up* ! D
1(

l ,m
E

0

vmin
dv~a2v l 2m

up u2v l 2m
up 1a2v l 2m

up† u2v l 2m
up* !

5(
l ,m

S E
0

`

dv~av lm
in uv lm

in 1av lm
in† uv lm

in* !1E
0

`

dṽ~av lm
up uv lm

up 1av lm
up† uv lm

up* ! D ~3.5!

wherevmin5max$0,mV1%, sovmin50 for counter-rotating waves (m<0) andvmin5mV1 for co-rotating waves (m.0).
Given this expansion, the natural way to quantize the field is for the coefficients to become operators satisfying the
tation relations

@ âv lm
in ,âv8 l 8m8

in†
#5d~v2v8!d l l 8dmm8 ṽ.2mV1 ~3.6a!

@ âv lm
up ,âv8 l 8m8

up†
#5d~v2v8!d l l 8dmm8 ṽ.0 ~3.6b!

@ â2v l 2m
up ,â2v8 l 82m8

up†
#5d~v2v8!d l l 8dmm8 0.ṽ.2mV1 ~3.6c!

with all other commutators vanishing. From Eq.~3.3!, the operatorsâin† andâup† have the natural interpretation that they wi
respectively, create particles incident fromI2 andH2. With this in mind, we define a ‘‘past Boulware’’ vacuum state by

âv lm
in uB2&50 ṽ.2mV1 ~3.7a!

âv lm
up uB2&50 ṽ.0 ~3.7b!

â2v l 2m
up uB2&50 0.ṽ.2mV1 ~3.7c!

corresponding to an absence of particles fromH2 andI2.
8-4



st empty
inskii

is empty
ory by
-

s

RENORMALIZED STRESS TENSOR IN KERR SPACE- . . . PHYSICAL REVIEW D 62 084018
This state does not precisely correspond to the idea of a Boulware state in Schwarzschild as that state which is mo
at infinity. The stateuB2& contains, atI1, an outward flux of particles in the superradiant modes; this is the Unruh-Starob
effect @6#.

One might suppose that a more appropriate definition for the Boulware vacuum would be to define a state which
at I2 andI1. However, it is straightforward to see that such a state cannot exist within conventional quantum field the
introducing the mode functions natural for defining the ‘‘future Boulware’’ vacuum.~We shall discuss later the non
conventional ‘‘h-formalism’’ construction proposed by Frolov and Thorne@5#.!

The mode functions relevant to the ‘‘future Boulware’’ vacuum are those representing a unit~locally-positive frequency!
flux out toI1 and downH1. From the asymptotic forms for the radial functions Eq.~2.11!, it is clear that we should take a
our ‘‘future’’ basis @4#:

uv lm
out 5

1

A8p2v~r 21a2!
e2 ivteimfSv lm~cosu!Rv lm

1* ~r ! ṽ.2mV1 , ~3.8a!

uv lm
down5

1

A8p2ṽ~r 21a2!
e2 ivteimfSv lm~cosu!Rv lm

2* ~r ! ṽ.0, ~3.8b!

u2v l 2m
down 5

1

A8p2uṽu~r 21a2!
eivte2 imfSv lm~cosu!R2v l 2m

2* ~r ! 0.ṽ.2mV1 . ~3.8c!

These modes are orthonormal in the sense that

~uv lm
out ,uv8 l 8m8

out
!5d~v2v8!d l l 8dmm8 ṽ.2mV1 @v.0# ~3.9a!

~uv lm
down,uv8 l 8m8

down
!5d~v2v8!d l l 8dmm8 ṽ.0 @v.mV1# ~3.9b!

~u2v l 2m
down ,u2v8 l 82m8

down
!5d~v2v8!d l l 8dmm8 0.ṽ.2mV1 @mV1.v.0# ~3.9c!

with all other inner products vanishing. Their asymptotic properties are given by

uv lm
out ;

Sv lm~cosu!

A8p2v~r 21a2!
35

Bv lm
1* exp~2 i ṽu1 imf1! atH2

Av lm
1* exp~2 ivv1 imf! atI2

0 atH1

exp~2 ivu1 imf! atI1

ṽ.2mV1

@v.0#
~3.10a!

uv lm
down;

Sv lm~cosu!

A8p2ṽ~r 21a2!
35

Av lm
2* exp~2 i ṽu1 imf1! atH2

Bv lm
2* exp~2 ivv1 imf! atI2

exp~2 i ṽv1 imf1! atH1

0 atI1

ṽ.0

@v.mV1#
~3.10b!

u2v l 2m
down ;

Sv lm~cosu!

A8p2uṽu~r 21a2!
35

A2v l 2m
2* exp~2 i uṽuu2 imf1! atH2

B2v l 2m
2* exp~ ivv2 imf! atI2

exp~2 i uṽuv2 imf1! atH1

0 atI1

0.ṽ.2mV1

@mV1.v.0#

~3.10c!

We may expand the scalar fieldF(x) in terms of these mode functions we introduced above
084018-5
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F~x!5(
l ,m

S E
0

`

dv~av lm
out uv lm

out 1av lm
out†uv lm

out* !1E
vmin

`

dv~av lm
downuv lm

down1av lm
down†uv lm

down* ! D
1(

l ,m
E

0

vmin
dv~a2v l 2m

down u2v l 2m
down 1a2v l 2m

down† u2v l 2m
down* !

5(
l ,m

S E
0

`

dv~av lm
out uv lm

out 1av lm
out†uv lm

out* !1E
0

`

dṽ~av lm
downuv lm

down1av lm
down†uv lm

down* ! D ~3.11!

wherevmin5max$0,mV1%, as before. Given this expansion, the natural way to quantize the field is for the coefficie
become operators satisfying the commutation relations

@ âv lm
out ,âv8 l 8m8

out†
#5d~v2v8!d l l 8dmm8 ṽ.2mV1 ~3.12a!

@ âv lm
down,âv8 l 8m8

down†
#5d~v2v8!d l l 8dmm8 ṽ.0 ~3.12b!

@ â2v l 2m
down ,â2v8 l 82m8

down†
#5d~v2v8!d l l 8dmm8 0.ṽ.2mV1 ~3.12c!

with all other commutators vanishing. From Eq.~3.10!, the operatorsâout† andâdown† have the natural interpretation that the
will, respectively, create particles incident fromI1 andH1. Thus, we define the ‘‘future Boulware’’ vacuum state by

âv lm
out uB1&50 ṽ.2mV1 ~3.13a!

âv lm
downuB1&50 ṽ.0 ~3.13b!

â2v l 2m
down uB1&50 0.ṽ.2mV1 ~3.13c!

corresponding to an absence of particles fromH1 andI1. In this language, the Unruh-Starobinskii effect is a statement a
the behavior of

^B2uT̂mnuB2&2^B1uT̂mnuB1& ~3.14!

as r→`.
A vacuum state empty atI2 andI1 must be constructed from modesuv lm

in anduv lm
out up to a trivial Bogoliubov transfor-

mation~i.e., one with allb-coefficients vanishing!. However,uv lm
in anduv lm

out are not orthogonal and the fact that they cann
be made so by any trivial Bogoliubov transformation is seen most easily by writinguv lm

out in terms of the basis given byuv lm
in

anduv lm
up . For non-superradiant modes the transformation does correspond to a trivial Bogoliubov transformation:

uv lm
out 5Av lm

1* uv lm
in 1Aṽ

v
Bv lm

1* uv lm
up , ṽ.0, ~3.15a!

uv lm
down5Av

ṽ
Bv lm

2* uv lm
in 1Av lm

2* uv lm
up , @v.mV1#, ~3.15b!

but for superradiant modes

uv lm
out 5Av lm

1* uv lm
in 2A2ṽ

v
Bv lm

1* u2v l 2m
up* , 0.ṽ.2mV1@mV1.v.0#, ~3.16a!

u2v l 2m
down 5A v

2ṽ
B2v l 2m

2* uv lm
in* 1A2v l 2m

2* uv lm
up , 0.ṽ.2mV1@mV1.v.0#. ~3.16b!

As no trivial Bogoliubov transformation can affect the total number of ‘‘particles’’ produced,( i ,r ub ir u2, it is impossible to
define a vacuum state empty with respect to in modes atI2 and out modes atI1.

The non-existence of a ‘‘true Boulware’’ state is intimately linked with the non-existence of a ‘‘true Hartle-Hawking’’
~defined as being a Hadamard state which respects the symmetries of the space-time and is regular everywhere, in
on both future and past event horizons! on Kerr space-time@7#. In the former case, one wishes to define the state onI2øI1,
in the latter onH2øH1. Indeed, one can make the analogy quite precise by, in the language of Frolov and Thorne, sw
from a ‘‘distant’’ to a ‘‘near horizon’’ viewpoint.
084018-6
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The ~past! Unruh stateuU2& is easily defined as that state empty atI2 but with the ‘‘up’’ modes~natural modes onH2)
thermally populated. For a proof that this is equivalent to using modes which are positive frequency with respe
future-increasing affine parameter onH2 see Ref.@5#. As before, we use the notationuU2& in order to emphasize that this sta
is naturally defined by considerations onH2øI2. One can, of course also define a stateuU1& empty atI1 but with the
‘‘down’’ modes ~natural modes onH1) thermally populated. Indeed, one can also make such a distinction in the Schw
child case for the Unruh vacuum. However, one rarely considersuU1& as it isuU2& that mimics the state arising at late time
from the collapse of a star to a black hole. For this reason we shall usually drop the term ‘‘past’’ but we will reta
terminologyuU2& to make clear that this state is naturally defined in terms of ‘‘in’’ and ‘‘up’’ modes. In this language
~Kruskal space-time model of the! Hawking effect is a statement about the behavior of

^U2uT̂mnuU2&2^B1uT̂mnuB1& ~3.17!

as r→`.
With these definitions, it is straightforward to write down mode sum expressions for the two-point functions of the fi

the past and future Boulware and~past! Unruh vacuum states:

GB2~x,x8!5^B2uF̂~x!F̂~x8!uB2&

5(
l ,m

S E
0

`

dṽuv lm
up ~x!uv lm

up* ~x8!1E
0

`

dvuv lm
in ~x!uv lm

in* ~x8! D ~3.18a!

GB1~x,x8!5^B1uF̂~x!F̂~x8!uB1&

5(
l ,m

S E
0

`

dṽuv lm
down~x!uv lm

down* ~x8!1E
0

`

dvuv lm
out ~x!uv lm

out* ~x8! D ~3.18b!

GU2~x,x8!5^U2uF̂~x!F̂~x8!uU2&

5(
l ,m

S E
0

`

dṽ cothS pṽ

k
D uv lm

up ~x!uv lm
up* ~x!1E

0

`

dvuv lm
in ~x!uv lm

in* ~x8!D . ~3.18c!

The corresponding expressions for the unrenormalized expectation values of the stress tensor in the past a
Boulware and~past! Unruh vacuum states are

^B2uT̂mnuB2&5(
l ,m

S E
0

`

dṽTmn@uv lm
up ,uv lm

up* #1E
0

`

dvTmn@uv lm
in ,uv lm

in* # D ~3.19a!

^B1uT̂mnuB1&5(
l ,m

S E
0

`

dṽTmn@uv lm
down,uv lm

down* #1E
0

`

dvTmn@uv lm
out ,uv lm

out* # D ~3.19b!

^U2uT̂mnuU2&5(
l ,m

S E
0

`

dṽ cothS pṽ

k
DTmn@uv lm

up ,uv lm
up* #1E

0

`

dvTmn@uv lm
in ,uv lm

in* # D
~3.19c!
r
a

t a
a
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n
ur
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where the contribution to the stress-energy tensor, fo
massless scalar field mode in Ricci-flat Kerr space-time,
suming conformal coupling, is

Tmn@u,u* #5
1

3
~u;mu;n* 1u;m* u;n!2

1

6
~u;mnu* 1u;mn* u!

2
1

6
gmnu;tu* ;t. ~3.20!

Kay and Wald@7# have shown that there does not exis
Hadamard state which respects the symmetries of the sp
time and is regular everywhere in Kerr space-time. In
absence of such a ‘‘true Hartle-Hawking’’ vacuum we co
sider the following states, which are attempts in the literat
08401
a
s-

ce-
e
-
e

to define a thermal state with most~but not all! of the prop-
erties of the Hartle-Hawking state.

The first state is that introduced by Candelas, Chr
nowski and Howard@8#, which is constructed by thermaliz
ing the ‘‘in’’ and ‘‘up’’ modes with respect to their natura
energy, so

GCCH~x,x8!5^CCHuF̂~x!F̂~x8!uCCH&

5(
l ,m

S E
0

`

dṽ cothS pṽ

k
D uv lm

up ~x!uv lm
up* ~x8!

1E
0

`

dv cothS pv

k Duv lm
in ~x!uv lm

in* ~x8!D .

~3.21!
8-7
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and

^CCHuT̂mnuCCH&5(
l ,m

S E
0

`

dṽ cothS pṽ

k
D

3Tmn@uv lm
up ,uv lm

up* #

1E
0

`

dv cothS pv

k DTmn@uv lm
in ,uv lm

in* # D .

~3.22!

As such, it might naturally be described as the ‘‘past Har
Hawking’’ vacuum, however, given the discussion above
is not surprising that as we shall show in detail below, t
definition gives a state which does not respect the simu
neoust-f reversal invariance of Kerr space-time.

The second state we shall consider is that introduced
Frolov and Thorne@5# who used the ‘‘h formalism’’ to treat
the quantization of the superradiant modes. They derived
following expressions in the state, denoted here byuFT&,
which they claim defined the Hartle-Hawking vacuum~at
least close to the horizon!:

GFT~x,x8!5^FTuhF̂~x!hF̂~x8!huFT&

5(
l ,m

S E
0

`

dṽ cothS pṽ

k
D uv lm

up ~x!uv lm
up* ~x8!

1E
0

`

dv cothS p
ṽ

k
D uv lm

in ~x!uv lm
in* ~x8!D

~3.23!

and

^FTuT̂mnuFT&5(
l ,m

S E
0

`

dṽ cothS pṽ

k
DTmn@uv lm

up ,uv lm
up* #

1E
0

`

dv cothS p
ṽ

k
DTmn@uv lm

in ,uv lm
in* # D .

~3.24!

Thus, the Frolov-Thorne state differs in its choice of t
appropriate ‘‘energy’’ for the thermal factor correspondi
to the ‘‘in’’ modes. This state is formally invariant unde
simultaneoust-f reversal. Frolov and Thorne claim that th
state defined by Eq.~3.24! is regular out to the speed-of-ligh
surface and is ill-defined outside. However, the Kay-W
result is essentially local and the Frolov-Thorne state app
to violate the spirit if not the letter of the result proved b
Kay and Wald.

Below and in subsequent papers in this series where
address the issues numerically, we shall show that
Frolov-Thorne state is fundamentally flawed while t
Candelas-Chrzanowski-Howard state is workable but can
claim to represent an equilibrium state.
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IV. CONSTRAINTS ON THE STRESS TENSOR

We now investigate how much information can be ga
ered about the stress-energy tensor in Kerr space-time f
general physical principles. We shall have in mind the phy
cal vacua which have been defined in the previous secti

A. Solution of the conservation equations

In this section, we consider the solution of the conser
tion equations¹nTm

n50. To avoid the calculation of Christ
offel symbols, sinceTmn is a symmetric tensor, the conse
vation equations may be written in the alternative form@9#

]n~Tm
nA2g!5

1

2
A2g~]mgab!Tab ~4.1!

where g is the determinant of the matrix of metric coeffi
cients given byg52r4sin2u. Since we are interested in th
renormalized stress tensor for states which respect the s
metries of the space-time, we assume that the stress-en
tensor, like the metric, is independent oft andf. The m5t
andm5f equations then become, respectively,

] r~r2sinuTt
r !1]u~r2sinuTt

u!50

] r~r2sinuTf
r !1]u~r2sinuTf

u!50. ~4.2!

These may be integrated immediately overr to yield @10#

Ttr5
K~u!

D
2

1

D sinu
]uS sinuE

r 1

r

Ttudr8D
Tfr5

L~u!

D
2

1

D sinu
]uS sinuE

r 1

r

Tfudr8D
~4.3!

whereK(u) andL(u) are arbitrary functions ofu alone.
The m5r andm5u equations are, respectively,

F~r ,u!5] r~r2Tr
r !1D21cscu]u~r2sinuTu

r !2rTu
u

2D21~ra2sinu2L!Tr
r

G~r ,u!5] r~r2Tu
r !1cscu]u~r2sinuTu

u!

1a2sinu cosuTr
r1a2sinu cosuTu

u ~4.4!

where

F~r ,u!5r22@2LTtt12aL sin2uTtf

1sin2u~2La2sin2u1rr4!Tff#

G~r ,u!5
a2~r 21a22D!

r2D~r 21a2!
sinu cosu@~r 21a2!2Ttt

12a~r 21a2!Ttf1a2Tff#

1
r2cosu

~r 21a2!sin3u
Tff ~4.5!
8-8
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with L5M (r 22a2cos2u). Here we have two equations i
six unknowns each of which is a function of two variablesr
andu.

One other symmetry immediately apparent from the fo
of the metric is invariance under the transformation

u→ ũ5p2u. ~4.6!

The components of the stress-energy tensor will also pos
this symmetry, so in particular

]u~Tmn!50 when u5p/2. ~4.7!

This does not imply that any components ofTmn vanish, so
Tru is non-zero in general. However, from the conservat
equations~4.4!, it follows that

Tru50 when u5p/2. ~4.8!

The other symmetry of the geometry which should
mentioned here is invariance under simultaneoust-f rever-
sal, that is,t→2t andf→2f. The stress tensor for a sta
satisfying this invariance must haveTtr5Ttu5Tfr5Tfu
50 and correspondinglyK(u)5L(u)50. It might be
thought that this simple symmetry of the space-time sho
be mirrored by the stress tensor for the physical vacua
which we are interested. However, as discussed above th
not the case, because of the superradiant modes. Neithe
Boulware vacuumuB2& nor the Unruh vacuumuU2& defined
in Sec. III B is invariant under simultaneoust-f reversal.
This in contrast to the situation for Schwarzschild bla
holes, where the Boulware vacuum is time-reversal invari
although the Unruh vacuum is not, due to the Hawking fl
In Schwarzschild space-time, the Hartle-Hawking state
also time-reversal invariant. Of the two Hartle-Hawking-lik
states,uCCH& is not invariant under simultaneoust-f rever-
sal butuFT& is. In Sec. V we shall consider further the sym
metry and other properties of these states.

B. The trace anomaly

As is well known, conformally invariant field theories o
a curved backgroundgmn possess a conformal anoma
which means that the renormalized stress tensor has a
even though the classical stress tensor must be trace-fre
08401
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it arises from the renormalization procedure, the tra
anomaly is a geometrical scalar, depending only on the
ometry and the nature of the quantum field under consid
ation, not on the actual quantum state. All methods of re
larization agree that it has the form

^T̂a
a& ren5k1CabgdCabgd1k2S RabRab2

1

3
R2D1k3¹a¹aR

~4.9!

in four dimensions. Herek1 , k2 , k3 are constants which ar
independent of the space-time geometry and depend onl
the quantum field. For example, for a massless scalar fi
k15k25k35(2880p2)21. Although all methods of regular
ization agree on the values ofk1 , k2 , k3 for scalar and neu-
trino fields, and onk1 and k2 for the electromagnetic field
there is disagreement on the value ofk3. Dimensional regu-
larization gives k350 whilst both point separation an
z-function renormalization givek352(96p2)21. This dis-
crepancy is unimportant for us asR50 for a Kerr black hole.
For a Kerr black hole of massM and angular momentum
Ma,

CabgdCabgd548r212$M2r 8215M2r 4a2cos2u

115M2r 2a4cos4u2M2a6cos6u%

~4.10!

where, as before,r25r 21a2cos2u. The trace anomaly is, o
course, finite except at a curvature singularity of the spa
time.

We may now replace one of the stress tensor compon
by the trace. Hence we may substitute

Tu
u5Ta

a2Tt
t2Tr

r2Tf
f ~4.11!

to yield

F̃~r ,u!5] r~r2Tr
r !1D21cscu]u~r2sinuTu

r !1Tr
r

2D21~ra2sin2u2L!Tr
r

G̃~r ,u!5] r~r2Tu
r !2cscu]u~r2sinuTr

r ! ~4.12!

where
F̃~r ,u!5F~r ,u!1rTa
a2rTt

t2rTf
f

5rTa
a1

~M2r !

D2 @~r 21a2!2Ttt12a~r 21a2!Ttf1a2Tff#1
2r

D
@~r 21a2!Ttt1aTtf# ~4.13a!

G̃~r ,u!5G~r ,u!2a2sinu cosu~Ta
a2Tt

t2Tf
f!2cscu]u~r2sinu@Ta

a2Tt
t2Tf

f#!

52
1

D sinu
]u„sinu@~r 21a2!2Ttt12a~r 21a2!Ttf1a2Tff#…12a cotu~a sin2uTtt1Ttf!

1a2sinu]uTtt12a]uTtf1csc2u]uTff2r2]uTa
a1cosu~a2sinu2r!2Ta

a. ~4.13b!
8-9
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Equations~4.12! can be written in the alternative form:

] r~D1/2r2sinuTr
r !1]u~D21/2r2sinuTu

r !5D1/2F̃~r ,u!sinu

] r~r2sinuTu
r !2]u~r2sinuTr

r !5G̃~r ,u!sinu.
~4.14!

These equations can now be integrated overr to give

Tr
r5

R~u!

D1/2r2 1
1

D1/2r2sinuEr 1

r

„D1/2F̃~r 8,u!sinu

2D21/2]u~r2sinuTu
r !…dr8

Tu
r5

S~u!

r2 1
1

r2sinuEr 1

r

„G̃~r 8,u!sinu

1]u~r2sinuTr
r !…dr8 ~4.15!

whereR(u), S(u) are arbitrary functions ofu alone. Choice
of a particular vacuum state will place restrictions on the fo
arbitrary functionsK(u), L(u), R(u) andS(u) and also on
F̃(r ,u) andG̃(r ,u), which depend on three unknown stre
tensor components,Ttt , Ttf andTff . The solutions~4.15!
are particularly useful for finding the behavior of the stre
tensor close to the event horizon, but we still have the c
pling betweenTr

r andTu
r .

Uncoupled equations forTr
r and Tu

r can be obtained
from Eq. ~4.14! in the form

D1/2] r@D1/2] rT1#1]u
2T15D1/2] r~F!2]u~G!

D1/2] r@D1/2] r~T2!#1]u
2~T2!5D1/2] r~G!1]u~F!

~4.16!

where

T15Tr
rD1/2r2sinu T25Tu

rr2sinu

F5DF̃sinu G5D1/2G̃sinu. ~4.17!

We now define a new variablex by

x52D1/212r 22M , ~4.18!

in terms of which the equations~4.16! now have the usua
polar form of the Laplacian:

x]x@x]xT1#1]u
2T15x]xF2]uG ~4.19a!

x]x@x]xT2#1]u
2T25x]xG1]uF.

~4.19b!

The domain of these equations isxP„(r 22a2)1/2,`…, u
P(0,p), that is the punctured half-plane. By constructing
Green’s function for this domain, a unique solution forT1
and T2 can be found if they are specified on the bounda
provided we knowF andG throughout the region. Therefore
we need to knowTr

r and Tu
r on the event horizon@where

x5(r 22a2)1/2], and the three components of the stress t
sor,Ttt , Ttf andTff everywhere outside the event horizo
08401
r

s
-

,

-

From Eq.~4.17!, it can be seen thatT1 andT2 must vanish on
the axisu50,p provided thatTr

r and Tu
r are well-defined

there. Therefore this reduces the number of boundary fu
tions which are unknown.

Although it looks likeT1 vanishes on the event horizon
the analysis of Sec. IV D will show that even for a quantu
state which is regular on the event horizon,Tr

r diverges as
D21 as r→r 1 , giving a divergent value forT1 on the hori-
zon. This means that the Green’s function method is
directly applicable to Eq.~4.19a!. However, the second equa
tion can be solved uniquely using a Green’s function, and
solution then fed into Eq.~4.15! to give the behavior ofTr

r .
Note that our calculations in Sec. V confirm that, for t
Unruh and~past and future! Boulware vacua, the functionT2
vanishes sufficiently quickly at infinity that the Green’s fun
tion method gives a unique solution.

C. The Killing-Yano tensor

So far in our analysis we have exploited the Killing vect
symmetries of the Kerr geometry to assume that the st
tensor is a function only ofr andu. The Kerr geometry also
possesses a Killing-Yano tensor@11#, which is a skew-
symmetric tensorf mn satisfying

¹ (m f n)l50. ~4.20!

We shall now show that the consequence of the existenc
the Killing-Yano tensor is thatTxu50, whenx5t or x5f,
for the quantum states we are interested in.

For any quantum state, the renormalized expecta
value of the quantum stress tensor can be calculated u
the technique of point splitting:

^Tmn& ren5 lim
x→x8

@Tmn~x,x8!2Tmn
div~x,x8!# ~4.21!

whereTmn(x,x8) is the point-separated stress tensor for o
particular quantum state andTmn

div(x,x8) are the divergent
subtraction terms. The unrenormalized stress tensor com
nents for the quantum states in which we are interested
given as mode sums~3.19a!–~3.24!, the mode sum contribu
tion to TAu for A5t or A5f being

TAu@u,u* #5ReF1

3
~u;Au;u* 1u;A* u;u!2

1

6
~u;Auu* 1u;Au* u!G .

~4.22!

The existence of the Killing-Yano tensor has the result t
the wave equation for a massless scalar field on the K
geometry is separable@2#, with the mode solutions given by
Eq. ~2.2!. In addition, we have

u;Au5u,Au2GAu
t u,t2GAu

f u,f . ~4.23!

From the mode functions,u,A5 iku wherek52v if A5t
andk5m if A5f; also

u,u}2~r 21a2!21/2e2 ivt1 imfRv lm~r !Sv lm8 ~cosu!sinu;
~4.24!
8-10
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and u,xu5 iku,u . Since the spheroidal harmonicsSv lm are
real, the quantities appearing in Eq.~4.22! are all purely
imaginary and henceTxu@u,u* #50. Therefore the point-
separated stress tensor componentsTAu(x,x8) vanish for all
of the states under consideration. In addition, it is shown
@5# that the subtraction termsTAu

div(x,x8) are also zero, so tha
^Txu& ren vanishes for all the states we are considering he
This property was proved by Frolov and Thorne@5# for uFT&
but we have shown here that this is a quite general resu

D. Behavior on the event and Cauchy horizons

Next we shall investigate the behavior of the stress ten
at the future and past event and Cauchy horizons. It is c
venient to introduce co-ordinate systems that are regula
the horizons. We first introduce two double-null co-ordina
systemsu, v, u, f6 by

u5t2r * , v5t1r * , f65f2
a

r 6
2 1a2 t5f2V6t,

~4.25!

where the last equation definesV1 and V2 which are the
angular velocity of the event and Cauchy horizons resp
tively, and r * is the ‘‘tortoise’’ co-ordinate given by Eq
~2.8!. The two sets of Kruskal co-ordinatesU6 , V6 are then
defined by

U652e2k6u, V65ek6v. ~4.26!

From the definition ofU6 , V6 and r * ,

U6V652e2k6r
* 52e2k6r~r 2r 6!ur 2r 7uk6 /k7.

~4.27!

The exterior region corresponds toU1,0, V1.0 with the
past event horizon atV150 and the future event horizon a
U150. These coordinates may be extended to cover
event horizons in a regular fashion but are singular at
Cauchy horizons. Correspondingly, the coordinatesU2 and
V2 may be extended to cover the Cauchy horizons (U2

50 andV250) in a regular fashion but are singular at t
event horizons.

The stress tensor components in these Kruskal co-ordi
systems are

TU6U6
5k6

22U6
22F1

4
Ttt1

1

2
V6Ttf1

1

4
V6

2 Tff

2
D

2~r 21a2!
Trt1

D2

4~r 21a2!2 Trr

2
DV6

2~r 21a2!
TrfG ~4.28a!

TU6V6
52k6

22U6
21V6

21F1

4
Ttt1

1

2
V6Ttf1

1

4
V6

2 Tff

2
D2

4~r 21a2!
Trr G ~4.28b!
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TV6V6
5k6

22V6
22F1

4
Ttt1

1

2
V6Ttf1

1

4
V6

2 Tff

1
D

2~r 21a2!
Trt1

D2

4~r 21a2!2 Trr

1
DV6

2~r 21a2!
TrfG ~4.28c!

TU6u5k6
21U6

21 D

2~r 21a2!
Tru ~4.28d!

TV6u5k6
21V6

21 D

2~r 21a2!
Tru ~4.28e!

TU6f6
52k6

21U6
21F1

2
Ttf1

1

2
V6Tff

2
D

2~r 21a2!
TrfG ~4.28f!

TV6f6
5k6

21V6
21F1

2
Ttf1

1

2
V6Tff

1
D

2~r 21a2!
TrfG ~4.28g!

with Tuu5Tuu , Tuf6
50 andTf6f6

5Tff , where we have

set Ttu5Tuf50. It follows immediately that regularity of
the stress tensor on any horizon requires thatTuu , Tff and
Tru be finite as the horizon is approached.

For a general stress tensor withTtu5Tuf50, we have by
Eqs.~4.3!

Ttr5
K~u!

D
, Tfr5

L~u!

D
. ~4.29!

In this case, consideration of theTU6f6
andTV6f6

compo-
nents shows that regularity requires

Ttf~r ,u!56
L~u!

r 6
2 1a22V6Tff~r 6 ,u!1O~r 2r 6!

as r→r 6 , ~4.30!

where the positive sign is taken for regularity on the futu
horizon (U650) and the negative sign on the past horiz
(V650). Note that ifL(u) is non-zero, only one of thes
conditions can be met on either the future or past event
rizon. Regularity of theTU6U6

, TV6V6
andTU6V6

compo-
nents implies that

Ttt56
K~u!2V6L~u!

r 21a2
1V6

2 Tff1O~r 2r 6!

~4.31a!
8-11
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Trr 56@K~u!1V6L~u!#
r 21a2

D2
1O~r 2r 6!21

~4.31b!

asr→r 6 , with the positive sign for regularity on the futur
horizon, and the negative sign for the past horizon, as bef
Finiteness ofTru as the horizon is approached implies th
the functionS(u) in Eq. ~4.15! vanishes, whilst the form
~4.31b! of Trr near the horizon tells us thatR(u) in Eq.
~4.15! is also identically zero. It should be stressed that
forms ~4.30!–~4.31b! are compatible with the solution of th
conservation equations~4.15! with R andS identically zero.

We note that our analysis is in agreement with that
@10#, in that unless bothK(u) and L(u) vanish identically,
the stress tensor must diverge at one of the event horiz
and at least one of the Cauchy horizons. The past and fu
Boulware vacua are not expected to be regular on ei
event horizon. For the Unruh vacuum state, it is expec
that the divergences occur on the past event horizon
future Cauchy horizon@10#. For uFT& simultaneoust-f in-
variance required thatK(u) andL(u) vanish consistent with
regularity. On the other hand, foruCCH& there was no re-
quirement thatK(u) andL(u) vanish and so one expects th
there will be divergences on the past event horizon in l
with the Unruh vacuum. We shall return to this issue in S
V.

At this stage, we need to step back and see how m
information about the stress tensor we have managed to
tain from our approach. We began with ten stress ten
components, each a function of the two variablesr and u.
The Killing-Yano symmetry revealed that two of these co
ponentsTtu and Tuf vanished identically, whilst anothe
component could be eliminated by using the known tra
anomaly, leaving seven unknown functions ofr andu. Using
the conservation equations, we need to know three funct
of r and u ~corresponding toTtt , Ttf and Tff), and four
functions of u (K, L, Trr and Tru on the event horizon!.
Finally, for a state which is regular on one of the eve
horizons, this reduces to three functions ofu since the be-
havior of Trr is given in terms ofK and L. In addition, we
know the behavior of the three unknown components,Ttt ,
Ttf andTff on the event horizon, in terms ofK, L andTff .
Thus our analysis has significantly reduced the numbe
degrees of freedom of the stress tensor in Kerr space-t
Of course, this reduction is rather less significant than
corresponding analysis for Schwarzschild black holes@12#,
but this was to be expected due to the fact that Kerr
fewer symmetries than Schwarzschild.

V. ASYMPTOTIC BEHAVIOR OF THE PHYSICAL
VACUA

In this section we shall consider the asymptotic behav
of the physical states of interest near the event horizon an
infinity. This will provide a consistency check on the ana
sis of the previous section. We shall also use the prope
of the Unruh and Boulware vacua~whose asymptotic behav
iors are well understood! to reveal information about the
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statesuCCH& anduFT&. It is known that the divergent term
which have to be subtracted from the unrenormalized exp
tation value of the stress tensor are independent of the q
tum state under consideration. Therefore we shall cons
the differences in expectation values of the stress tenso
two different states, since these can be calculated with
renormalization. Such differences in expectation values w
be traceless tensors since the trace anomaly is the sam
all quantum states.

We shall begin by concentrating on the Unruh vacuu
since its stress tensor has been calculated in the asymp
regimes by Punsley@13# using an equivalence principle ap
proach. This will provide a useful check of our calculation
First, we consider the behavior at infinity, and calculate

^U2uT̂mnuU2& ren2^B2uT̂mnuB2& ren

5^U2uT̂mnuU2&2^B2uT̂mnuB2&

5(
l ,m

E
0

` 2dṽ

e2pṽ/k21
Tmn@uv lm

up ,uv lm
up* #. ~5.1!

Using the asymptotic form of the mode functions~2.11!, we
have, asr→`,

^U2uT̂m
n uU2& ren2^B2uT̂m

n uB2& ren

;
1

4p2r 2 (
l ,m

E
0

` v dṽ

ṽ~e2pṽ/k21!
uBv lm

2 u2uSv lm~cosu!u2

3S 2v v 0 m

2v v 0 m

0 0 0 0

0 0 0 0

D . ~5.2!

In order to obtain the behavior of the Unruh vacuum at futu
null infinity, we need to consider the ‘‘past’’ Boulwar
vacuum at infinity. The ‘‘past’’ Boulware vacuum contain
at future null infinity an outward flux of particles due to th
Unruh-Starobinskii effect@6#, so that, as we approachI1,

^B2uT̂m
n uB2& ren;^B2uT̂m

n uB2&2^B1uT̂m
n uB1&

;
1

4p2r 2 (
l ,m

E
0

vmin vdv

ṽ~e2pṽ/k21!
uBv lm

2 u2

3uSv lm~cosu!u2S v 2v 0 2m

v 2v 0 2m

0 0 0 0

0 0 0 0

D .

~5.3!

Adding these two tensors gives the asymptotic behavio
the Unruh vacuum at future null infinity as
8-12
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^UuT̂m
n uU& ren;

1

4p2r 2 (
l ,m

E
0

` vdv

ṽ~e2pṽ/k21!
uBv lm

2 u2

3uSv lm~cosu!u2S 2v v 0 m

2v v 0 m

0 0 0 0

0 0 0 0
D .

~5.4!

This is in agreement with the form obtained in@13#, and
represents the expected thermal flux at infinity. It should
noted that, despite initial appearances, the integrands
regular whenṽ50 due to the Wronskian relations~2.12d!
which ensure thatuBv lm

2 u25O(ṽ2) asṽ→0. From Eq.~5.4!
we can read off the forms of the functionsK andL ~4.29! for
the Unruh vacuum:

KU2~u!5
1

4p2 (
l ,m

E
0

` 2v2dv

ṽ~e2pṽ/k21!
uBv lm

2 u2uSv lm~cosu!u2

LU2~u!5
1

4p2 (
l ,m

E
0

` 2mvdv

ṽ~e2pṽ/k21!

3uBv lm
2 u2uSv lm~cosu!u2. ~5.5!
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We now turn to the behavior of the Unruh vacuum at t
event horizon. In Schwarzschild, the Hartle-Hawking state
regular on both event horizons, and so the behavior of
Unruh vacuum asr→r 1 is found from

^U2uT̂mnuU2& ren;^U2uT̂mnuU2& ren2^HuT̂mnuH& ren

5^U2uT̂mnuU2&2^HuT̂mnuH&. ~5.6!

In the absence of a Hartle-Hawking state for Kerr, we sh
instead consider the differences of the stress tensors in
Unruh vacuum and the statesuFT& and uCCH&. These are
given by

^U2uT̂mnuU2&2^FTuT̂mnuFT&

5(
l ,m

E
0

` 22dv

e2pṽ/k21
Tmn@uv lm

in ,uv lm
in* #, ~5.7a!

^U2uT̂mnuU2&2^CCHuT̂mnuCCH&

5(
l ,m

E
0

` 22dv

e2pv/k21
Tmn@uv lm

in ,uv lm
in* #. ~5.7b!

As r→r 1 , one finds
^U2uT̂m
n uU2&2^FTuT̂m

n uFT&;
1

4p2r2 (
l ,m

E
0

` dv

v~e2pṽ/k21!
uBv lm

1 u2uSv lm~cosu!u2

3S D21~r 1
2 1a2!vṽ 2vṽ 0 D21avṽ

D22~r 1
2 1a2!2ṽ2 2D21~r 1

2 1a2!2ṽ2 O~1! 2D22a~r 1
2 1a2!ṽ2

0 O~D! O~1! 0

D21~r 1
2 1a2!mṽ mṽ 0 2D21amṽ

D . ~5.8!
ss

the
t

t
he
The expression for̂U2uT̂m
n uU2&2^CCHuT̂m

n uCCH& is iden-
tical to Eq. ~5.8!, with the denominatore2pṽ/k21 replaced
by e2pv/k21. In both cases the integrand is regular for
values ofv, by virtue of the Wronskian relations~2.12d!.
The difference in expectation values of the stress tenso
the Unruh and Frolov-Thorne states~5.8! agrees with the
stress tensor for the Unruh vacuum found in@13#, whereas
when we have the stateuCCH& instead ofuFT& the thermal
terms in the denominator do not agree. Furthermore, the
sor ~5.8! is regular on the future event horizon but not on t
past event horizon, the same behavior that we would ex
for the Unruh vacuum. Therefore we can compare the ten
~5.8! with the behavior near the event horizon derived in S
l

in

n-

ct
or
.

IV D. There is exact agreement, using the functionsKU2(u)
and LU2(u) found from the expectation value of the stre
tensor at infinity in the Unruh vacuum~5.5!, and the
Wronskian relations.

From the regularity of the tensor~5.8! on the future event
horizon, we can conclude that the expectation value of
stress tensor in the stateuFT& is regular on at least one even
horizon ~and, since it is invariant under simultaneoust, f
reversal, it will be regular on both event horizons!. Thus, it
may appear that the stateuFT& in fact has the properties tha
we require of the Hartle-Hawking state. However, whilst t
expectation value of the stress tensor in the stateuFT& is
regular on the event horizon, the expectation value ofF̂2 is
8-13
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not. We calculate, asr→r 1 ,

^U2uF̂2uU2&2^FTuF̂2uFT&

;
1

4p2~r 1
2 1a2!

(
l ,m

E
0

` 22dv

v~e2pṽ/k21!

3uBv lm
1 u2uSv lm~cosu!u2. ~5.9!

The integrand in the above expression is regular atv50
because of the Wronskian relations~2.12d!, but has a pole a
ṽ50, giving a divergent integral. If we attempt to calcula
the difference in expectation values~5.7a! anywhere outside
is

v
a

cu
er
a
in

08401
the event horizon, then the integral overv also has a pole a
ṽ50, leading to a divergent result. Therefore it seems t
the regularity of the difference in expectation values of t
stress tensor~5.8! at the event horizon does not reflect th
true nature ofthe stateuFT&, and that this statein fact fails to
be regular almost everywhere, both on or outside the even
horizon, although it formally has attractive symmetry pro
erties.

There is one exception to the regularity of the stateuFT&
which is that on the axis the terms withmÞ0 ~and, in par-
ticular, all superradiant modes! do not contribute. Thus, if
one point is on the axis theuFT& anduCCH& two-point func-
tions agree:
GFT/CCH~ t,r ,u,f;t8,r 8,0,f8!5(
l
E

0

` dv coth~pv/k!

vA~r 21a2!~r 821a2!
@Rv l0

1 ~r !Rv l0
1* ~r 8!1Rv l0

2 ~r !Rv l0
2* ~r 8!#Sv l0~cosu!Sv l0~1!.

~5.10!

In the asymptotic regions, the integrals are dominated by the contribution from nearv50. In this limit the spheroidal
functions reduce to Legendre polynomials

S0lm5
1

A4p
Pl~cosu!, l~0!5 l ~ l 11!. ~5.11!

In addition,Tlm(r )5R0lm(r )/Ar 21a2 satisfies the equation

d

dh
~h221!

dTlm

dh
2F l ~ l 11!1

m2a2

~M22a2!~h221!GTlm50 ~5.12!

where

h5
2r 2~r 11r 2!

~r 12r 2!
5

r 2M

AM22a2
, ~5.13!

with solutionsPl
ma/AM22a2

(h) andQl
ma/AM22a2

(h). In particular, a steepest descent analysis of Eq.~5.10! as r 8→r 1 yields

GFT/CCH~ t,r ,u,f;t8,r 1,0,f8!5
k1

16p2AM22a2 (
l

~2l 11!QlS r 2M

AM22a2D Pl~cosu!

5
k1

8p2

1

r 2M2AM22a2cosu
, ~5.14!
sor
t

we
where the second line follows from Heine’s formula. Th
result was first given by Frolov@14# and enabled him to
calculate the renormalized value of the expectation value

F̂2 on the pole of the event horizon. Later with Zel’niko
@15# he extended this calculation to calculate the renorm

ized value of the expectation value ofT̂mn on the pole of the
event horizon. Our point is that, unfortunately, these cal
lations were only possible because the troublesome sup
diant modes do not contribute on the axis and have actu
led to a false confidence concerning the Hartle-Hawk
vacuum.

Finally we return the properties of the stateuCCH&. This
has a different thermal factor fromuFT& ~3.22! which means
of

l-

-
ra-
lly
g

that the difference in expectation values of the stress ten
in uU2& and uCCH& at the event horizon is rather differen
from simply the stress tensor in the stateuU2&. The differ-
ence in thermal factors also means that the stateuCCH& is
not invariant under simultaneoust-f reversal.

However, the quantitŷ U2uT̂m
n uU2&2^CCHuT̂m

n uCCH&
is regular on the future event horizon~but not on the past!,
so, using the expected regularity of the Unruh vacuum,
can conclude that̂CCHuT̂m

n uCCH& is also regular on the
future event horizon~but not on the past!. If we consider the
difference in expectation values ofF̂2 at the event horizon,
the answer is the same as Eq.~5.9!, but with e2pṽ/k replaced
by e2pv/k. Using the Wronskian relations~2.12d!, this gives
8-14
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a finite answer, further strengthening our argument t
uCCH& is a regular state on the future event horizon.

VI. CONCLUSIONS

In this paper we have considered the renormalized st
energy tensor on Kerr space-time, and used the anticip
physical properties of this tensor~symmetry, conservation
equations, and regularity conditions! in order to derive as
much information as possible. As expected, the analysi
considerably more complex than the corresponding prob
in Schwarzschild@12#, and the solution gives us less info
mation, although we are able to reduce the number of
knowns to three functions ofr andu and three functions o
u.

Our results are in agreement with the known form of t
Unruh vacuum at the event horizon and at infinity. We a
considered two candidates for the state analogous to
Hartle-Hawking state in Schwarzschild. From the Kay-Wa
theorem@7#, we know that there is no state in Kerr which
regular at the event horizon and everywhere outside, inv
ant under simultaneoust, f reversal and thermal in nature
Of our two candidate states, one is invariant undert, f re-
versal, but fails to be regular on the event horizon, whilst
other is regular on the event horizon but not invariant un
simultaneoust, f reversal. We should add that our concl
sions are based on amode by modeanalysis and it is pos
sible, though in our opinion unlikely, that subtle cancel
tions could rescue the Frolov-Thorne state.
D

.

08401
t

ss
ed

is
m

n-

o
he

ri-

e
r

-

A detailed numerical investigation would be necessary
elucidate further details of the properties of these states
side the event horizon. This paper has laid the foundation
such an investigation which we will present in followin
papers in this series.

It is possible to draw some conclusions on the basis of
analysis without resorting to a numerical investigation. F
example, one can show that any state which is isotropic
tetrad which co-rotates with the event horizon must beco
divergent on the velocity of light surface@16#. This implies
that even if we could construct a state which is regular on
event horizon and has the desired thermal properties,
that state may well turn out not to be regular on the veloc
of light surface, in agreement with the Kay-Wald theore
that the state must fail to be regular somewhere.

This paper has shown that while quantum field theory
Kerr space-time is more complex than in Schwarzschild,
plication of the same physical principles which have prov
to be so valuable in Schwarzschild also makes the pic
much clearer and more simple in Kerr.
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