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Causal differencing in ADM and conformal ADM formulations:
A comparison in spherical symmetry
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Black hole excision is at present the most promising approach to deal with the singularities in black hole
spacetimes. The implementation of this technique is done through carefully designed algorithms that exploit
the causal structure of the spacetime in the black hole region. Causal differencing has shown to be one of the
promising algorithms. To date, it has only been actively implemented in the Arnowitt-Deser-Misner~ADM !
and Einstein-Bianchi 311 formulations of the Einstein equations. Recently, an approach closely related to the
ADM one, commonly referred to as ‘‘conformal ADM’’~CADM! method has shown excellent results when
modeling waves on flat spacetimes and black hole spacetimes where singularity avoiding slices are used to deal
with the singularity. In these cases, the use of the CADM method has yielded longer evolutions and better outer
boundary dependence than those obtained with the ADM one. If this success translates to the case where
excision is implemented, then the CADM formulation will likely be a prime candidate for modeling generic
black hole spacetimes. In the present work we investigate the applicability of causal differencing to the CADM
method, presenting the equations in a convenient way for such a task. We investigate whether the causal
differencing implementation already developed for the ADM system can be extended to the CADM one.

PACS number~s!: 04.25.Dm, 04.30.Db
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I. INTRODUCTION

One of the goals of numerical relativity that has proven
be elusive~using a 311 splitting of the Einstein equations!
has been that of modeling a generic single black hole
long periods of time. Present single black hole simulations
3D have not yet been shown to be generically stable. Th
are limited instances of stability based on the outer bound
choice and placement@1,2#. Most simulations run just be
yond a few hundredsM based on outer boundary placeme
and binary black hole simulations run for about 20250M
before the codes either crash or the entire grid is inside
event horizon. In some cases, the reason of the crash is
understood. For instance, the use of singularity avoid
slices leads to the presence of steep gradients which eve
ally can no longer be handled by the codes. A solution to
problem is to ‘‘excise’’ the singularity from the computa
tional domain@3#. Unfortunately, in most cases, it is not cle
what the main reasons behind the crash are and consequ
addressing the problem becomes cumbersome. In attem
to deal with this issue there are several possible avenue
either remove or provide an understanding of the source
problems. These avenues can be divided in the follow
way: ~1! choice of formulation of Einstein equations;~2!
choice of gauge;~3! numerical implementations. Avenue~1!
is motivated by the difficulties encountered in achieving lo
term evolutions with the Arnowitt-Deser-Misner~ADM ! for-
mulation, which historically has been the main tool in n
merical relativity. Several formulations exist in the literatu
that exhibit properties such as hyperbolicity@4#, the equa-
tions are expressed in a flux conservative form@5# and/or try
to separate transverse modes@6–8#. Avenue~2! is based on
the fact that, in principle, a coordinate system could be c
0556-2821/2000/62~8!/084016~10!/$15.00 62 0840
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sen such that the fields vary slowly in time; hence, the sim
lations would be better behaved. Conditions to achieve s
coordinates have been presented in the literature@9#. Lastly,
avenue~3! highlights the need for a more profound unde
standing of the numerical implementation of the evoluti
equations. Algorithms specifically tailored to deal with th
equations under study could pave the way to better beha
simulations~for instance, compare with the implementatio
that deal with the fluid equations and their ‘‘historical ev
lution’’ from crude implementations in early simulations
high resolution shock capturing schemes in present stat
the art codes@10#!.

Our present work focuses primarily on avenue~1!; al-
though avenues~2! and ~3! also play a role since notabl
improvements are achieved with specific gauge choices
the use of causal differencing algorithms. We compare
sults obtained from the use of black hole excision via cau
differencing in the standard ADM and conformal ADM
~CADM! system of equations in spherical symmetry~1D!.

The main motivation behind the comparison with the co
formal ADM is the report by many groups that robust impl
mentations have been achieved in linearized gravity, gra
tational wave spacetimes, systems containing matter,
@11,7,12#. However, so far, it has only been used to mod
black hole spacetimes using singularity avoiding slices@13#.
As it is widely accepted, these types of slicings are use
when the desired simulation time is rather short. In order
model black hole spacetimes for long periods of time, sin
larity excision must be employed. To study the feasibility
excision throughcausal differencingin this formulation and
to analyze its advantages and disadvantages with respe
the traditional ADM formulation~where causal differencing
has been used for several years already@14,15#!, we present
a 1D study and compare results obtained with both
©2000 The American Physical Society16-1
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proaches. We start with a brief review of the formulations
Sec. II. In Sec. III, we rewrite the system of equations in
way convenient for causal differencing and describe how
technique is implemented. In Sec. IV we compare simu
tions of a Schwarzschild black hole and show how the AD
formulation yields longer term evolutionunlessthe trace of
the extrinsic curvature is frozen in time, in which ca
CADM yields better behaved evolutions than the ADM fo
mulation, we also show how causal differencing indeed gi
the expected results in terms of stability. We conclude
Sec. V with a brief discussion and include in the Appendi
study of how a choice of interpolating stencils can inde
affect the overall stability of an evolution algorithm.

II. FORMULATION

The standard ADM equations corresponding to
vacuum case, in the form most commonly used in numer
relativity, are@16#

d

dt
g i j 522aKi j , ~2.1a!

d

dt
Ki j 52DiD ja1a~Ri j 1KKi j 22KikKk

j !, ~2.1b!

with

d

dt
5] t2Lb , ~2.2!

whereLb is the Lie derivative along the shift vectorb i ; Ri j
is the Ricci tensor andDi the covariant derivative associate
with the three-dimensional metricg i j .

The conformal ADM equations@6,7# are obtained from
the ADM ones by~I! making use of a conformal decompo
sition of the three-metric as

g̃ i j 5e24fg i j with e4f5g1/3[ det~g i j !
1/3 ~2.3!

@hence det(g̃)51#. ~II ! Decomposing the extrinsic curvatur
into its trace and trace-free components. The trace-free
of the extrinsic curvatureKi j , defined by

Ai j 5Ki j 2
1

3
g i j K, ~2.4!

and K5g i j Ki j is the trace of the extrinsic curvature.~III !
Further conformally decomposingAi j as

Ãi j 5e24fAi j . ~2.5!

In terms of these variables, Einstein equations in vacuum
@6,7#

d

dt
g̃ i j 522aÃi j , ~2.6a!

d

dt
f52

1

6
aK, ~2.6b!
08401
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d

dt
K52g i j DiD ja1aF Ãi j Ã

i j 1
1

3
K2G , ~2.6c!

d

dt
Ãi j 5e24f@2DiD ja1aRi j #

TF1a~KÃi j 22Ãil Ã j
l !,

~2.6d!

where the Hamiltonian constraint was used to eliminate
Ricci scalar in equation~2.6c!. Note that with the conforma
decomposition of the three-metric, the Ricci tensor now h
two pieces, which are written as

Ri j 5R̃i j 1Ri j
f . ~2.7!

The ‘‘conformal-factor’’ part Ri j
f is given directly by

straightforward computation of derivatives off:

Ri j
f522D̃ i D̃ jf22g̃ i j D̃

l D̃ lf ~2.8!

14D̃ ifD̃ jf24g̃ i j D̃
lfD̃ lf, ~2.9!

while the ‘‘conformal’’ partR̃i j can be computed in the stan
dard way from the conformal three-metricg̃ i j .

To this point, the equations have been written by a triv
algebraic manipulation of the ADM equations in terms of t
new variables. The non-trivial part comes into play by intr
ducing what Ref.@7# calls the ‘‘conformal connection func
tions’’

G̃ i
ªg̃ jkG̃ jk

i 52g̃ , j
i j , ~2.10!

where the last equality holds since the determinant of
conformal three-metricg̃ is unity. Using the conformal con
nection functions, the Ricci tensor is written as

R̃i j 52
1

2
g̃ lmg̃ i j ,lm1g̃k( i] j )G̃

k1G̃k]̃ ( j g̃ i )k

2g̃ (, j
kl g̃ i ) l ,k2G̃ l G̃ i j l 2Gk j

l G l i
k . ~2.11!

whereG̃ i are to be considered independent variables wh
evolution equations are obtained by a simple commutation
derivatives

]

]t
G̃ i52

]

]xj S 2aÃi j 22g̃m( jb ,m
i ) 1

2

3
g̃ i j b ,l

l 1b l g̃ ,l
i j D .

~2.12!

Finally, as shown in Refs.@7,17,12#, it is crucial to re-
place the divergence ofÃi j with the help of the momentum
constraint to obtain

]

]t
G̃ i522Ãi j a , j12aS G̃ jk

i Ãk j2
2

3
g̃ i j K , j16Ãi j f , j D1b l G̃ ,l

i

1
1

3
g̃mib ,m j

j 1g̃m jb ,m j
i 2G̃mb ,m

i 1
2

3
G̃ ib ,l

l . ~2.13!
6-2
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CAUSAL DIFFERENCING IN ADM AND CONFORMAL . . . PHYSICAL REVIEW D 62 084016
With this reformulation, in addition to the evolution equ
tions for the conformal three-metricg̃ i j ~2.6a! and the
conformal-traceless extrinsic curvature variablesÃi j ~2.6d!,
there are evolution equations for the conformal factorf
~2.6b!, the trace of the extrinsic curvatureK ~2.6c! and the

conformal connection functionsG̃ i ~2.13!.

III. CAUSAL DIFFERENCING IMPLEMENTATION

Causal differencing, as explained in Refs.@18–22#, pro-
vides a straightforward way to integrate the evolution eq
tions while preserving~and taking advantage of! the causal
structure of the spacetime under consideration. In the
proach used in the present work we follow the strategy
scribed in Refs.@21,22#. First, the Lie derivative alongb i is
split and terms containing derivatives ofb i are moved to the
right hand side. Then, the ADM system of equations is re
pressed as

]og i j 522ag i j 12g l ( ib , j )
l , ~3.1a!

]oKi j 5DiD ja1a~Ri j 1KKi j 22KikKk
j2

(4)Ri j !

12Kl ( ib , j )
l ~3.1b!

and the CADM system of equations then reduces to

]og̃ i j 522aÃi j 12g̃ l ( ib , j )
l , ~3.2a!

]of52
1

6
aK1

1

6
b ,i

i , ~3.2b!

]oK52g i j DiD ja1aF Ãi j Ã
i j 1

1

3
K2G , ~3.2c!

]oÃi j 5e24f@2DiD ja1aRi j #
TF1a~KÃi j 22Ãil Ã j

l !

12Ãk( jb ,i )
k 2

2

3
Ãi j b ,k

k , ~3.2d!

]oG̃ i522Ãi j a , j12aS G̃ jk
i Ãk j2

2

3
g̃ i j K , j16Ãi j f , j D

1
1

3
g̃mib ,m j

j 1g̃m jb ,m j
i 2G̃mb ,m

i 1
2

3
G̃ ib ,l

l , ~3.2e!

where]o[] t2b i] i .
Finally the numerical implementation of the equations

split into two steps. First, the equations are evolved along
normal to the hypersurface~at constantt! na5] t

a2b i] i
a . In

the second step, an interpolation is carried over to ob
values on grid coordinate locations~see Fig. 1!. Note that the
two systems of equations have in this form the same b
structure; hence, simple modifications to an ADM code w
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excision~such asAGAVE @23#! will enable the use of already
developed excision modules with the CADM equations in
straightforward manner.1

Numerical implementation.A second order finite differ-
ence code has been written to implement both the ADM a
CADM formulations.2 We discretize the radial coordinater
as r 5r min1( i 21)Dr @for i 51, . . . ,Nr and Dr 5(r max
2r min)/(Nr21)] and fix Dt5aDr ~with a51/4). We dis-
cretize the equations by standard second order centered
differences~except at the boundaries where sided second
der accurate approximations are implemented in the stan
way!. As stated in the previous section, the integration
divided in two steps. The first one actually advances fi
values from leveln to n11 through the use of an ‘‘iterative
Crank Nicholson’’ algorithm@24,12# ~with two iterations!
while the second one involves an interpolation for every g
point. Near an excision boundary the choice of interpolat
order and stencil becomes important. We allow a choice
second, third and fourth order interpolations in order to stu
possible practical approaches.~The Appendix includes a sta
bility analysis of these options.!

Finally, in the numerical implementation of the CADM
is convenient to introduce an intermediate variableF such
that f[1/4 ln(F) and evolveF instead off. This choice
avoids unnecessary handling of exponential and logarith
functions thus preventing loss of accuracy; hence, the eq
tion for F is

]oF52
2

3
aFK1

2

3
Fb ,i

i . ~3.3!

IV. APPLICATIONS

To compare evolutions with the above formulations w
pick as a particular example the Schwarzschild spacet
~and linear perturbations of it!. In order to implement exci-
sion, a slicing must be chosen such that surfaces of cons

1These modifications are in place in theAGAVE code and currently
being tested in 3D.

2This code is publicly available and can be requested from
authors.

FIG. 1. Illustration of the causal differencing strategy. First t
integration proceeds along the dashed lines to obtain values in
n11 level ~at filled square points!. Then, an interpolation is carried
out to obtain values on the grid points~filled circles!. In the graph,
as an example, a second order interpolation~indicated with arrows!
provides values on thei th grid point.
6-3
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LEHNER, HUQ, AND GARRISON PHYSICAL REVIEW D62 084016
time ‘‘penetrate’’ the horizon. The ingoing Eddington
Finkelstein coordinates@25# define hypersurfaces satisfyin
this condition; in terms of them, the line element reads

ds252S 12
2M

r Ddt21
4M

r
dtdr1S 11

2M

r Ddr21r 2dV2,

~4.1!

wheredV25du21sin2udf2. The lapse and shift vector ar
therefore

a5A r

r 12M
; b i5

2M

r 12M
d r

i . ~4.2!

The basic ADM variables read

g rr 5112
M

r
,

guu5r 25
gff

sin2u
,

~4.3!

Krr 52
2M

r 3
~r 1M !a,

Kuu52Ma5
Kff

sin2u

and the CADM variables

f5
1

4
ln$@~r 12M !r 3 sin2u#1/3%,

K5
2Ma

r 2

~r 13M !

~r 12M !
,

g̃ rr 5
r 12M

r 2@~r 12M !sin2u#1/3
,

g̃uu5
r

@~r 12M !sin2u#1/3
5

g̃ff

sin2u
,

Ãrr 52
4M

3

a~2r 13M !

r 4@~r 12M !sin2u#1/3
, ~4.4!

Ãuu5
2M

3

a~2r 13M !

r ~r 12M !@~r 12M !sin2u#1/3
5

Ãff

sin2u
,

G̃ r52
4

3

r 3~r 13M !sin2u

r 2~r 12M !5/3
,

G̃u52
2

3

r ~r 12M !cosu

r 2~r 12M !2/3sin2/3u
,

G̃f50.
08401
Our slicing condition is thus provided by the analytical va
ues of a and b @Eqs. ~4.2!# and we choose to keep thes
fixed throughout the evolution unless otherwise specified

Note that some of the quantities are functions ofu. In our
spherically symmetric implementation of these equations
have explicitly expressed each variable as a function or
times the exact function of the angleu. For instance, we
write

g̃uu5huu~r !/sin2u. ~4.5!

Proceeding this way allows for the explicit appearance ou
to drop out of the equations, providing at the end of the d
a truly 1D system of equations corresponding to spheri
symmetry.

A. Comparison

Extended tests were performed with both codes~under the
same conditions! to understand the robustness of each f
mulation with excision. As has been observed in previo
work @7,12#, CADM gives long term evolutions when th
evolution of K is ‘‘frozen;’’ i.e., the equation forK is not
evolved or the value ofK is fixed by the choice of a slicing
that leavesK fixed ~for instance, maximal slicing that fixe
K50.!. On the other hand, longer term evolutions have a
been achieved with an ‘‘area locking gauge’’ in the AD
formulation @26#. We then perform three basic tests.

Fully free evolution: All equations corresponding to eac
system are integrated without imposing any further con
tion.

‘‘Locked’’ evolution: Conditions on some of the field
variables are enforced~see below!.

‘‘Perturbed’’ evolution: Same as the ‘‘locked’’ case bu
considering linear perturbations of Schwarzschild spacet
as initial data.

In all these tests, we study the dependence of the obta
solution under discretization size and location of the ou
boundary. The inner boundary is placed atr 5M and the
outer boundary is varied~placed atr 5nM) while keeping
Dr 5const. Outer boundary data are provided by ‘‘blendin
@27# the numerical solution to the analytical one. This cho
reduces gradients and second derivatives at the boundar
lowing for a clean evolution without much reflection from
the outer boundary.

1. Fully free evolution

In this case, all equations corresponding to syste
~3.1!,~3.2! are evolved and the obtained solutions are co
pared. We use the Hamiltonian and momentum constrain
monitors of the quality of the evolution. Our results can
summarized as follows. For the ADM formulation we o
served that stable evolutions are obtained ifn&6 while for
larger n*6 the solution exhibits exponentially growin
modes. It is worth emphasizing that the evolution is not u
stable in the strict sense~i.e., the solution can be bounde
from above by an exponential@28#.!. However, the presenc
6-4
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FIG. 2. TheL2 norm of the Hamiltonian and momentum constraints vs time for both formulations~discretization sizeDr 5M /10) for the
case where the domain of integration is@M ,4M # ~A! and @M ,9M # ~B!. In A, the evolution obtained with the ADM formulation does n
show the presence of an exponentially growing mode such as the one obtained with the CADM approach. However, for the large
~B!, solutions obtained with both formulations are exponentially growing.
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of this exponential mode will likely spoil any long term
simulation. For the CADM system, irrespective of the val
of n exponential modes are clearly present in the solutio

These results are illustrated in Fig. 2, which shows theL2
norm of the Hamiltonian and momentum constraints of
solutions obtained with both formulations whenn54.
Clearly, the solution obtained with the ADM is better tha
that obtained with the CADM. Figure 2 also displays theL2
norm of the Hamiltonian constraint for the casen59, al-
though the solution obtained with the ADM formulation ca
be considered better than that from the CADM, both gr
exponentially.

2. Locked evolution

It has been observed in the literature@12# that in the case
whereK is fixed in time very long term evolutions can b
obtained with the CADM system. KeepingK fixed in time
can be achieved by either choosing to not evolve Eq.~2.6c!
~what we call‘‘forced locking’’!, as is done in Ref.@12# or
by judiciously taking advantage of the gauge freedom~what
we calldynamical locking!. We next examine both possibili
ties.

Forced-locking. In this case, we fix the value o
K(t,r )5K(t50,r ) throughout the evolution. Note that und
this choice,f also remains unchanged in the present c
~sinceb andK are then fixed to their analytic values!. There-
fore the determinant of the three metricg i j will remain in-
dependent of time. This could be regarded as an evolu
that ‘‘locks’’ the volume which bears some similarity wit
the so-called ‘‘area-locking’’ gauge@18,26#. Under this con-
dition, stable evolutions can be obtained withn&16. Forn
*16 long term evolutions (*100M ) display at late times a
clear exponentially growing mode.

A somehow related strategy can be implemented in
ADM case as it has been shown in Ref.@26#. In this work,
one chooses not to evolve Eq.~2.1a! for i 5 j 5u and stable
08401
.

e

e

n

e

evolutions are obtained in domains withn&11. For n*11
instabilities appear at considerable later times (*100M )
than the case whereguu is not fixed in time.

Figure 3 shows theL2 norm of the Hamiltonian and mo
mentum constraints corresponding to solutions obtained w
both formulations for the choicen54 and n59. In both
cases the simulations can be performed for unlimited ti
without observing exponential modes. Again, the solut
obtained with the ADM formulation is slightly more accura
than that provided by the CADM formulation.

As an aside, let us comment on an additional observa

in @12# on the behavior of theg̃ i j Ãi j . AlthoughÃi j is defined
to be trace-free, the numerical evolution does not necess
preserve such condition and the trace drifts away from ze
By controlling this drift ~by appropriately subtracting th
trace at each time step! better behaved evolutions are o
tained by Alcubierreet al. in Ref. @12#. In our present work,
we indeed observe such a drift but it remains under con
unless the evolution becomes unstable. We also tried s
tracting the trace as proposed in Ref.@12# but its implemen-
tation did not significantly change the outcome. This may
explained by the fact that our studies have been carried ou
a spherically symmetric setting~1D! while those in Ref.@12#
have been carried out in 3D~without black hole excision!.

Dynamical-locking. The results from the previous sec
tion are certainly encouraging as the forced locking ofK ~for
the CADM formulation! or guu ~for the ADM system! enable
much longer evolutions. However, choosing to do so is
physical in generic situations. One would like to have a p
scription where a similar condition can be enforced witho
having to not evolve one or more equations. For the AD
system, several suggestions have been made to mainta
ther guu or the determinant of the angular part ofg i j fixed
via a careful choice of coordinate conditions@18,15,26#. For
the CADM system one can also use the coordinate freed
to demand that] tK50. For instance, the use of a maxim
6-5
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FIG. 3. TheL2 norm of the Hamiltonian and momentum constraints vs time for both formulations~with Dr 5M /10) for the case where
the domain of integration is@M ,4M # ~A!. Neither formulation displays exponential modes in this domain and the ADM one yields
accurate results. In~B!, the L2 norm of the Hamiltonian and momentum constraints of the solution obtained with the CADM an
‘‘area-locked’’ ADM evolution ~in the @M ,9M # domain! is shown, a transient oscillatory behavior is present at earlier stages an
solutions then settle to a constant value.
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slicing of the spacetime@29# i.e., K50 will trivially satisfy
this condition. However, in practical numerical applicatio
K[0 might not be the most convenient slicing choice@30#
~for instance, the Schwarzschild spacetime in Eddingt
Finkelstein coordinates does not haveK50); thus, one
would like to avoid such a strong requirement while s
controlling the evolution ofK.

A practical way of choosing such a coordinate conditi
is to define the shift vector from Eq.~3.2c!,

b i] iK5g i j DiD ja2aF Ãi j Ã
i j 1

1

3
K2G , ~4.6!

which clearly keeps] tK50 but allowsK to vary in space.
This condition is straightforward to implement in 1D but
certainly more complicated in 3D. Additionally, there is
great deal of ambiguity as it is only one equation for thr
variablesb i . Therefore two supplementary conditions mu
be chosen so that Eq.~4.6! can be used to ‘‘freeze’’ the
evolution ofK. In our present implementation we have sim
ply chosenbA50 @with A5(u,f)# and obtainedb r with Eq.
~4.6! as

b r5
1

] rK
S g i j DiD ja2aF Ãi j Ã

i j 1
1

3
K2G D . ~4.7!

A straightforward way to obtainb r is by a first order ap-
proximation of the right-hand side of Eq. 4.7~i.e., evaluating
each term at the old level!. By using this condition, instead
of choosing not to evolveK, we were able to obtain evolu
tions not displaying exponential modes for times larger th
250M ~with resolutions ofDr 5M /10 and finer!. Figure 4
illustrates what is obtained in a simulation with compu
tional domain defined by@M ,11M # ~with Dr 5M /10). The
values of theL2 norms of the Hamiltonian, the functionF
2Ft50 and value ofK2Kt50 are shown as a function o
08401
-

e
t

n

-

time. Sinceb r is obtained only as a first order approxim
tion, K andF are expected to vary during the evolution. A
can be seen in Fig. 4, both grow linearly but stay fairly clo
to zero and the evolution proceeds without displaying
exponential growth.

3. Perturbed evolution

In this case, we test the evolutions under perturbati
~using a locked evolution in the CADM case but not in t
ADM one!. The initial data corresponds to the analytic val
of g rr ~or g̃ rr ) plus some arbitrary pulse of compact suppo
Of course, this data is unphysical but we use it to probe
stability of the implementations in a nontrivial scenario. T

FIG. 4. TheL2 norms of the Hamiltonian constraint and th
differencesF2Ft50 andK2Kt50 vs time. The evolution proceed
without displaying exponential modes and the value
uuK2Kt50uu2 stays close to zero.
6-6
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amplitude of the pulse is chosen such that it can be con
ered a linear perturbation of a Schwarzschild spacetime.
results obtained with both codes agree with those of the
vious section. Figure 5 corresponds to the evolution o
pulse with compact support in@3M ,5M # being evolved in a
computational domain of@M ,6M #. The L2 norm of the
Hamiltonian constraint, after some initial transient behav
settles into a stationary regime.

B. Causal differencing and domain of dependencies

As a last point, it is interesting to see how causal diff
encing is indeed providing a correct way to discretize
equations taking advantage of the causal properties of
spacetime. The fact that the null cones~or the causal domain
of dependence! are tilted inside the horizon, allows for
stable numerical implementation where inner boundary d
need not be provided if the inner boundary is inside the bl
hole ~see Fig. 6!. This is possible because the numerical d
main of dependence naturally contains the causal domai
dependence of the inner boundary point. The condition of
numerical domain of dependence containing the causal
main of dependence is a necessary condition for stability
is known as the Courant-Friedrichs-Levy~CFL! condition
@28#.

This condition cannot be fulfilled if the innermost point
outside the event horizon. In order to illustrate this fact
compare two cases where the innermost point is placed
side or just outside the event horizon and use the ADM s
tem to obtain the solution. As illustrated in Fig. 7, while th
solution obtained with the inner boundary inside the bla
hole is stable, the other, as expected is unstable.

V. CONCLUSIONS

The results presented in this work show that excis
techniques can be straightforwardly used in the CADM f

FIG. 5. TheL2 norm of the Hamiltonian constraint vs time fo
the perturbed evolutions~whereK has been frozen in the CADM
evolution while all fields are evolved in the ADM one, with com
putational domain in@M ,6M #). After some initial transient behav
ior both settle into an stationary solution.
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mulation directly from the structures developed for the AD
formulation. The ADM formulation is superior to the CADM
both in accuracy and total time evolution when the evolut
of K is not locked in CADM. When locking is implemented
then CADM is better than ADM as the solution obtaine
with the CADM formulation does not display exponenti
modes with the outer boundary placed as far as 16M . On the
other hand, evolutions with the ADM formulation displa
exponential modes with the outer boundary placed at 1M
and beyond. Additionally, for the case where outer bou
aries are placed ‘‘very’’ far, although exponentially growin
solutions are present in solutions obtained with both form
lations, ADM simulations crash at earlier times than tho
obtained with the CADM system.

It is worth remarking again that in both formulation
implementing a gauge that minimizes the changes in som

FIG. 6. Domains of dependence of points inside and outside
event horizon~EH!. Inside the EH, the past null cone ofp is tilted,
therefore the evolution algorithm does not need the value of
fields atp on the old level.

FIG. 7. TheL2 norm of the Hamiltonian constraint vs time fo
the cases where the inner boundary is inside~at r 51.5M denoted
with a solid line! and outside~at r 52.2M denoted with a dashed
line! the event horizon~using the ADM formulation!. Since the
latter does not respect the CFL condition, the obtained solutio
unstable.~The values shown correspond to a discretization of s
Dr 5M /10 and no qualitative difference is observed with finer re
lutions.!
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the fields ~like guu in the ADM formulation or K in the
CADM one! dramatically improves the evolutions in 1D. I
the 3D case, the use of ‘‘area or circumference locking’’3 is
indeed more complicated than lockingK, simply by the fact
that in the former case one is trying to control a tensor co
ponent while in the latter a scalar. Thus, lockingK is likely
to have an easier and probably more general implementa
than area locking~although in cases where the final bla
hole is close to a nonspinning one, this implementation
rather straightforward!. Controlling the evolution ofK de-
mands a condition such as that given by Eq.~4.6!, and two
extra conditions onb i will be required. An option that mim-
ics the 1D implementation is to foliate the 3D hypersurfac
with a sequence of two-surfaces defined byQ5const~with
Q the expansion of outgoing null rays!. Once this foliation is
obtained, the shift vectorb i could be decomposed as

b i5b u
i1b'

i ~5.1!

with b u
i (b'

i ) parallel ~perpendicular! to the normal of the
two-surfaces. Thus, the two further conditions can be cho
such thatb'

i 5const, thus minimizing changes in transvers
directions. Of course, this is just one possible approach
further studies will be required to obtain aK fixing condition
that leads to a practical implementation.

In conclusion, implementing singularity excision v
causal differencing techniques in the CADM formulation
straightforward. Its usefulness depends on enforcing a ga
controlling the behavior ofK. Assuming this can be
achieved, CADM appears to be capable of providing m
robust simulations than ADM when the outer boundary
placed farther than 11M from the final black hole of massM,
if the outer boundary is closer, then the ADM formulatio
provides evolutions as stable as the CADM one but w
better accuracy.

Lastly we would like to add two remarks. First, we wa
to stress that we have only applied the causal differenc
algorithm described in Refs.@22,21# since at present is th
only one fully implemented in 3D. Other alternatives have
been proposed@19,20,31#; due to the restriction to spherica
symmetry it is likely that the application of these will yiel
similar results to those presented in this work. Second,
present work has compared the use of causal differencin
two formulations of Einstein field equations. Althoug
causal differencing has been the method that has so fa
ceived the most attention, other techniques are being
plored in 3D. For instance, in Ref.@32# the use of up-wind
type algorithms has been shown to be a viable alterna
when the resolution is aboutM /40 or finer. To present imple
mentations this resolution is fairly costly; however, tec
niques such as adaptive mesh refinement, domain decom
sition, etc., should allow researchers to explore a
implement a wider range of options.

3i.e., controlling the determinant of the angular part of the me
~area locking! or guu ~circumference locking!.
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APPENDIX: STABILITY ANALYSIS OF THE
INTERPOLATION PHASE

As described in Sec. III, the evolution is carried over
two steps. The first one~A!, provides field values at the new
level while the second~B! interpolates these values to obta
the fields at grid points. It is important to notice that
‘‘stable’’ implementation of the first step~A! does not guar-
antee that the overall integration algorithm~steps A1B! will
be stable. This fact unfortunately appears to have been o
looked in the literature. We find thus important to rema
which options for B will not spoil the overall stability of the
evolution algorithm. Our analysis will beindependenton
how step A is performed; rather, we will assume that
have a solution at the new level and concentrate on wh
interpolation stencil will yield a procedure that does not sp
the scheme’s overall stability. We proceed by performing
straightforward von Neumann stability analysis. We start
assuming that the solutionu at the new level can be decom
posed in eigenmodes of the form

uj
n5jneik j Dr . ~A1!

Then, we obtain the value ofu at the point of interestr j by
an interpolation, i.e.,

un~r j !5 (
s5 j 2 l

j 1r

us
nW~r ,r s!, ~A2!

where j 2 l and j 1r define the left and right limits of the
interpolating stencil andW(r ,r s) denotes the weight ofuj

n in
the interpolating procedure. Replacing Eq.~A1! in Eq. ~A2!,

un~r j !5uj
n (

s52 l

r

eiksDrW~r ,r j 1s!. ~A3!

Let us assume that step A has been carried in a stable m
ner, henceuuj

nu<1. A necessary condition for the combina
tion of steps A and B to be stable is

uSu[U (
s52 l

r

eiksDrW~r ,r j 1s!U<1, ~A4!

which depends solely on the interpolation stencil. We n
show what the results are for a choice of second, third
fourth order accurate stencils obtained using a Lagrang
interpolating polynomial.

c
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1. Second order

Assuming the point we are interested in is atr 5r j
1bDr , with bP(0,1). The interpolating polynomial in
volves values atr j and r j 11; after a straightforward evalua
tion,

uSu5A112b~b21!@12cos~kDr !#. ~A5!

Clearly, uSu<1;bP(0,1), thus a second order accurate
terpolation cannot, by itself, render the evolution unstabl

2. Third order

Again, we assume the location of interest isr 5r j1bDr
@with bP(0,1)#. In this case, one has two options to obtain

FIG. 8. Contour plots corresponding to the amplification fact
for Sl andSr as a function ofb andK[kDr . The contours display
the region where the amplification results larger than 1. In b
cases, the outermost curve corresponds to a value of 1.001
determines a region whose interior has amplification larger tha
The sequence of curves correspond to values given by 1
10.027s (s50 –7!.
g

nd

r-
s

av

in
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-

third order accurate value by either using the pointsr j 21
throughr j 11 or r j throughr j 12 in the interpolating stencil.
We denote the values ofS with eitherSl for the former case
andSr for the latter. After rearranging terms one obtains

uSl u5A11b~b22!~b21!2~cos~kDr !21!2, ~A6!

uSr u5A11b2~b221!~cos~kDr !21!2. ~A7!

From these,uSr u<1 anduSl u<1;bP(0,1). As in the second
order case, the interpolation cannot render the whole inte
tion unstable.

3. Fourth order

In this case, we have three stencil options: left-sid
when usingr j 22 through r j 11; centered, when usingr j 21
throughr j 12 ; and right-sided, when usingr j throughr j 13.
We denote the amplification factors for these three ca
with Sl , Sc , andSr , respectively. The expressions for the
are rather lengthy and analyzing their values is not as di
as in the previous cases. It turns out to be more convenie
simply plot their values as a function of bothb and K
[kDr ~for all possible values ofb andK). Figure 8 displays
the regions whereSl andSr have values be larger than 1~the
centered scheme hasuScu<1 and we do not include it in the
contour plot figures!. As can be seen in Fig. 8, the interpo
lation procedure can induce instabilities forbP(0,1) even
for low frequency modes. Thus, unless the point under c
sideration lies at the center cell of the stencil, a fourth or
interpolation scheme, can by itself render the whole evo
tion scheme unstable.
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