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Black hole excision is at present the most promising approach to deal with the singularities in black hole
spacetimes. The implementation of this technique is done through carefully designed algorithms that exploit
the causal structure of the spacetime in the black hole region. Causal differencing has shown to be one of the
promising algorithms. To date, it has only been actively implemented in the Arnowitt-Deser-MAsDbf)
and Einstein-Bianchi 81 formulations of the Einstein equations. Recently, an approach closely related to the
ADM one, commonly referred to as “conformal ADMCADM) method has shown excellent results when
modeling waves on flat spacetimes and black hole spacetimes where singularity avoiding slices are used to deal
with the singularity. In these cases, the use of the CADM method has yielded longer evolutions and better outer
boundary dependence than those obtained with the ADM one. If this success translates to the case where
excision is implemented, then the CADM formulation will likely be a prime candidate for modeling generic
black hole spacetimes. In the present work we investigate the applicability of causal differencing to the CADM
method, presenting the equations in a convenient way for such a task. We investigate whether the causal
differencing implementation already developed for the ADM system can be extended to the CADM one.

PACS numbd(s): 04.25.Dm, 04.30.Db

[. INTRODUCTION sen such that the fields vary slowly in time; hence, the simu-
lations would be better behaved. Conditions to achieve such
One of the goals of numerical relativity that has proven tocoordinates have been presented in the litergt@fel astly,
be elusive(using a 3+1 splitting of the Einstein equations avenue(3) highlights the need for a more profound under-
has been that of modeling a generic single black hole fostanding of the numerical implementation of the evolution
long periods of time. Present single black hole simulations irtquations. Algorithms specifically tailored to deal with the
3D have not yet been shown to be generically stable. Ther@guations under study could pave the way to better behaved
are limited instances of stability based on the outer boundar§imulations(for instance, compare with the implementations
choice and placemerft.,2]. Most simulations run just be- hat deal with the fluid equations and their “historical evo-

yond a few hundred based on outer boundary pIacementIUtion” from crude implementations in early simulations to
and binary black hole simulations run for about-250M high resolution shock capturing schemes in present state of

before the codes either crash or the entire grid is inside thtehe art code$10]). . . )
Our present work focuses primarily on aven(ig; al-

evznt htorl(zjonléln SOTe caseti, the reasf,on_ of tre_::rash '.Z.W?Hough avenues2) and (3) also play a role since notable
understood. -or instance, the use ot singuiarity -avol Inqmprovements are achieved with specific gauge choices and

slices leads to the presence of steep gradients which eventjyr, | \se of causal differencing algorithms. We compare re-

ally can no longer be handled by the codes. A solution to thig s obtained from the use of black hole excision via causal
problem is to “excise” the singularity from the computa- gifferencing in the standard ADM and conformal ADM
tional domain 3]. Unfortunately, in most cases, it is not clear (CADM) system of equations in spherical symmetty).

what the main reasons behind the crash are and consequently The main motivation behind the comparison with the con-
addressing the problem becomes cumbersome. In attemptifgrmal ADM is the report by many groups that robust imple-
to deal with this issue there are several possible avenues taentations have been achieved in linearized gravity, gravi-
either remove or provide an understanding of the source ofational wave spacetimes, systems containing matter, etc.
problems. These avenues can be divided in the following11,7,13. However, so far, it has only been used to model
way: (1) choice of formulation of Einstein equation)  black hole spacetimes using singularity avoiding slice3.
choice of gauge(3) numerical implementations. Aven®)  As it is widely accepted, these types of slicings are useful
is motivated by the difficulties encountered in achieving longwhen the desired simulation time is rather short. In order to
term evolutions with the Arnowitt-Deser-MisnéhDM ) for- model black hole spacetimes for long periods of time, singu-
mulation, which historically has been the main tool in nu-larity excision must be employed. To study the feasibility of
merical relativity. Several formulations exist in the literature excision througtcausal differencingn this formulation and
that exhibit properties such as hyperbolicfg], the equa- to analyze its advantages and disadvantages with respect to
tions are expressed in a flux conservative f¢ghand/or try  the traditional ADM formulation(\where causal differencing

to separate transverse modés-8|. Avenue(2) is based on has been used for several years alrefddi;15]), we present

the fact that, in principle, a coordinate system could be choa 1D study and compare results obtained with both ap-
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proaches. We start with a brief review of the formulations in
Sec. Il. In Sec. lll, we rewrite the system of equations in a
way convenient for causal differencing and describe how this
technique is implemented. In Sec. IV we compare simula- d

tions of a Schwarzschild black hole and show how the ADM  —A =e %[ —D,D;a+aR;]" + a(KA; — 2A;A)),
formulation yields longer term evolutionnlessthe trace of dt

the extrinsic curvature is frozen in time, in which case (2.6d
CADM yields better behaved evolutions than the ADM for- o6 the Hamiltonian constraint was used to eliminate the

mulation, we also show how causal differencing indeed give??icci scalar in equatiof2.69. Note that with the conformal

the expe_cted re_sult_s In terms of .Stab'“ty'_ We concludg Ir‘decomposition of the three-metric, the Ricci tensor now has
Sec. V with a brief discussion and include in the Appendix wo pieces, which are written as

study of how a choice of interpolating stencils can indee
affect the overall stability of an evolution algorithm. =

K=—yijDiDja+a

Sle

A A 1 2
AR+ K2, (2.60

Il. FORMULATION The “conformal-factor” part R? is given directly by

The standard ADM equations corresponding to theStraightforward computation of derivatives &t
vacuum case, in the form most commonly used in humerical

relativity, are[16] Ry=-2D,D;¢—27,;D'D ¢ (2.8
d DD . db— 4D b
O - —2aKy, (2.13 +4D,¢D;p—47,D'¢D ¢, (2.9

while the “conformal” part~Rij can be computed in the stan-

aK” =—DiDja+ a(Rj;+ KK; —2KikK'<j), (2.1p  dard way frqm the conforr_nal three-metrig; . ' .
To this point, the equations have been written by a trivial
ith algebraic manipulation of the ADM equations in terms of the

wi new variables. The non-trivial part comes into play by intro-
d ducing what Ref[7] calls the “conformal connection func-
a=8t—ﬁﬁ, (2.2  tions”

where L is the Lie derivative along the shift vect@; R;; [l=y* ==, (210

is the Ricci tensor anD; the covariant derivative associated ) ) )

with the three-dimensional metrig; . where the last equality holds since the determinant of the

The conformal ADM equation$6,7] are obtained from conformal thr_ee—metri@ is unity. Using the conformal con-
the ADM ones by(l) making use of a conformal decompo- nection functions, the Ricci tensor is written as
sition of the three-metric as

~ 1. - ~ ~ e~
~ L= I mT 9ATK+TKy, . .
Yi :e—4¢,yij with e%¢= ,yl/3E det ,yij)l/3 2.3 Ru 27 YijimT '}’k(l‘;])r +T I Yk
[hence detf)=1]. (Il) Decomposing the extrinsic curvature P =TTy — T Tk (2.11)
into its trace and trace-free components. The trace-free part
of the extrinsic curvaturé;; , defined by wherel" are to be considered independent variables whose
1 evolution equations are obtained by a simple commutation of
A=K — 3% K, (2.4)  derivatives
— ; o 0~ J —_— 2. .
and K= y"Kj; is the trace of the extrinsic curvaturéll) —Ti=— —|2aAll -25mig) 4+ 5iigh 4 g5
Nty ot j m"3 | Yol
Further conformally decomposing; as X
~ (2.12
Aij :e_4¢Aij . (25)

Finally, as shown in Refd.7,17,13, it is crucial to re-
In terms of these variables, Einstein equations in vacuum argjace the divergence @ with the help of the momentum

[6,7] constraint to obtain
d- = —24A 26 0~. _ ~ . 2e _ ~
guYi= T 2aA;, (2.63 = 2Rl +2a| T)AI-Z5IK +6ATg |+ AT
d 1 1~mi j ~mjpi m pi 2Ni |
a(ﬁ:—gaK, (2.6b +§y ,B’mj+'y B’mj—l“ ,B’m+§l“ B,I- (2.13
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With this reformulation, in addition to the evolution equa- .—‘>.<’—.—<>‘<>—. - el
tions for the conformal three-metriaqj (2.6a and the ) ) g '

conformal-traceless extrinsic curvature variab$e§ (2.60),

there are evolution equations for the conformal facior

(2.6b), the trace of the extrinsic curvatuke (2.69 and the

conformal connection functiorg' (2.13. ; ; ;

® ® ® n
i

I1l. CAUSAL DIFFERENCING IMPLEMENTATION
) ) ) ) FIG. 1. lllustration of the causal differencing strategy. First the
~ Causal differencing, as explained in Reff$8—-22, pro-  jntegration proceeds along the dashed lines to obtain values in the
vides a straightforward way to integrate the evolution equan+ 1 |evel(at filled square poinis Then, an interpolation is carried
tions while preservingand taking advantage Jothe causal oyt to obtain values on the grid poiniled circles. In the graph,
structure of the spacetime under consideration. In the apss an example, a second order interpolatindicated with arrows
proach used in the present work we follow the strategy deprovides values on thigh grid point.
scribed in Refs[21,22. First, the Lie derivative along' is
split and terms containing derivatives 8f are moved to the excision(such assGAVE [23]) will enable the use of already
right hand side. Then, the ADM system of equations is reexdeveloped excision modules with the CADM equations in a
pressed as straightforward manne.
Numerical implementationA second order finite differ-
(3.13 ence code has been written to implement both the ADM and
CADM formulations? We discretize the radial coordinate
as r=rpnt+(i—21)Ar [for i=1,... N, and Ar=(ryax
9oKij=D;iDja+ a(Rj+ KK — 2K KX — WR;) — o)/ (N;—1)] and fix At=Ar (with a=1/4). We dis-

|
doYij= —2aviit2viB ),

+2K,i 8" (3.10 cretize the equations by standard .second ordgr centered finite
120 differencegexcept at the boundaries where sided second or-
der accurate approximations are implemented in the standard
and the CADM system of equations then reduces to way). As stated in the previous section, the integration is
divided in two steps. The first one actually advances field
30;,” = —Zaﬁij +2;,|(i3|’j), (3.29  Values from leveh to n+1 through the use of an “iterative

Crank Nicholson” algorithm[24,12 (with two iteration$
while the second one involves an interpolation for every grid
Jodb=— EaK+ Elgi. (3.2b point. Near an excision boundary the choice of interpolation
° 6 6" ' order and stencil becomes important. We allow a choice of
second, third and fourth order interpolations in order to study
possible practical approaché$he Appendix includes a sta-
} (3.29 bility analysis of these options.
Finally, in the numerical implementation of the CADM it
is convenient to introduce an intermediate variaBlsuch
aoz\ij:e—4¢[_DiDja+aRij]TFJra(Kz\ij_zK“;}) that ¢=1/4In(F) and evolveF instead of¢. This choice
avoids unnecessary handling of exponential and logarithmic

R, K+ 2 K2
ij §

(70K=—yijDiDja+a

~ e 2+ functions thus preventing loss of accuracy; hence, the equa-
+2AqiBh~ A Bk (320  tion for Fis
2 2
- o 2 o aOF:—§aFK+§Fﬁ[i. (3.3
dol''=—-2Ala j+2a 1“;kAkJ—§y'J|<,J-+6A'J¢>,j

1~mi j ~mial fm : Zfi | - IV. APPLICATIONS

T3 Bt Y B Bt 3B (3.29 To compare evolutions with the above formulations we

pick as a particular example the Schwarzschild spacetime

whered,=d,— B'd; . (and linear perturbations of)itin order to implement exci-
Finally the numerical implementation of the equations isSion, a slicing must be chosen such that surfaces of constant

split into two steps. First, the equations are evolved along the

normal to the hypersurfad@t constant) n®=g2— g4, In

the second step, an interpolation is carried over to obtain These modifications are in place in theave code and currently

values on grid coordinate locatiofsee Fig. 1 Note that the being tested in 3D.

two systems of equations have in this form the same basic?This code is publicly available and can be requested from the

structure; hence, simple modifications to an ADM code withauthors.
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time “penetrate” the horizon. The ingoing Eddington- Our slicing condition is thus provided by the analytical val-
Finkelstein coordinatef25]| define hypersurfaces satisfying ues of @ and g8 [Egs. (4.2)] and we choose to keep these
this condition; in terms of them, the line element reads

2M 4M 2M
ds’=— l—T dt2+Tdtdr+ 1+T

wheredQ?=d#?+ sirfad¢?. The lapse and shift vector are

B ro P 2M 5
“=VNiiowm P riam o

therefore

The basic ADM variables read

M
7rr:1+271

K
K60:2Ma:ﬂ

N
and the CADM variables

b= %In{[(r+2M)r3sin20]1’3},

_ 2Ma (r+3M)

2 (r+2M)’

r+2Mm
r2[(r+2M)sir?6]"%’

Yrr =

r _ Yoo
[(r+2M)sirt0]*®  sirtg’

Yoo—

~  4AM  a(2r+3M)

3 r*(r+2M)sir?g]*’

a(2r+3M)

dr2+r2dQ?,

4.9

4.2

4.3

(4.9

~ Age

© 3 r(r+2M)[(r+2M)sirg]¥  sirtg’

Fr_ 4 r3(r+3M)sirfé
3 rq(r+2Mm)%B
2 r(r+2M)cosé
3 r2(r+2M)2si?3p’

fixed throughout the evolution unless otherwise specified.

Note that some of the quantities are functiong®ofn our
spherically symmetric implementation of these equations we
have explicitly expressed each variable as a functiom of
times the exact function of the angke For instance, we
write

Yoo=hpe(r)/sir? 6. (4.5

Proceeding this way allows for the explicit appearancé of
to drop out of the equations, providing at the end of the day,
a truly 1D system of equations corresponding to spherical
symmetry.

A. Comparison

Extended tests were performed with both codexler the
same conditionsto understand the robustness of each for-
mulation with excision. As has been observed in previous
work [7,12], CADM gives long term evolutions when the
evolution ofK is “frozen;” i.e., the equation forK is not
evolved or the value oK is fixed by the choice of a slicing
that leaveK fixed (for instance, maximal slicing that fixes
K=0.). On the other hand, longer term evolutions have also
been achieved with an “area locking gauge” in the ADM
formulation[26]. We then perform three basic tests.

Fully free evolution All equations corresponding to each
system are integrated without imposing any further condi-
tion.

“Locked” evolution Conditions on some of the field
variables are enforce@ee below.

“Perturbed” evolution Same as the “locked” case but
considering linear perturbations of Schwarzschild spacetime
as initial data.

In all these tests, we study the dependence of the obtained
solution under discretization size and location of the outer
boundary. The inner boundary is placedratM and the
outer boundary is varie@placed atr =nM) while keeping
Ar =const. Outer boundary data are provided by “blending”
[27] the numerical solution to the analytical one. This choice
reduces gradients and second derivatives at the boundary al-
lowing for a clean evolution without much reflection from
the outer boundary.

1. Fully free evolution

In this case, all equations corresponding to systems
(3.1),(3.2 are evolved and the obtained solutions are com-
pared. We use the Hamiltonian and momentum constraint as
monitors of the quality of the evolution. Our results can be
summarized as follows. For the ADM formulation we ob-
served that stable evolutions are obtained=#6 while for
larger n=6 the solution exhibits exponentially growing
modes. It is worth emphasizing that the evolution is not un-
stable in the strict sensg.e., the solution can be bounded
from above by an exponentif28].). However, the presence
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FIG. 2. TheL, norm of the Hamiltonian and momentum constraints vs time for both formulatibssretization sizé.\r = M/10) for the
case where the domain of integration[ ,4M] (A) and[M,9M] (B). In A, the evolution obtained with the ADM formulation does not
show the presence of an exponentially growing mode such as the one obtained with the CADM approach. However, for the larger domain
(B), solutions obtained with both formulations are exponentially growing.

of this exponential mode will likely spoil any long term evolutions are obtained in domains withs11. Forn=11
simulation. For the CADM system, irrespective of the valueinstabilities appear at considerable later times100M)
of n exponential modes are clearly present in the solutionsthan the case wherg,, is not fixed in time.

These results are illustrated in Fig. 2, which showslthe Figure 3 shows thé, norm of the Hamiltonian and mo-
norm of the Hamiltonian and momentum constraints of thementum constraints corresponding to solutions obtained with
Clearly, the solution obtained with the ADM is better than cases the simulations can be performed for unlimited time
that obtained with the CADM. Figure 2 also displays the  ithout observing exponential modes. Again, the solution

nhorm r?fk]the I—“amiltor;)iar] Cg”SFfﬁ“”; for thef Caﬂei 93 al- optained with the ADM formulation is slightly more accurate
though the solution obtained with the ADM formulation can than that provided by the CADM formulation.

be considered better than that from the CADM, both grow As an aside, let us comment on an additional observation

exponentially. ) ] ~ ~ . i
in [12] on the behavior of the'!A;; . AlthoughA; is defined

to be trace-free, the numerical evolution does not necessarily
preserve such condition and the trace drifts away from zero.

It has been observed in the literatde?] that in the case By controlling this drift (by appropriately subtracting the
whereK is fixed in time very long term evolutions can be trace at each time stgfetter behaved evolutions are ob-
obtained with the CADM system. Keepirlg fixed in time  tained by Alcubierreet al. in Ref.[12]. In our present work,
can be achieved by either choosing to not evolve B9  we indeed observe such a drift but it remains under control
(what we call“forced locking™), as is done in Refl12] or  unless the evolution becomes unstable. We also tried sub-
by judiciously taking advantage of the gauge freedavhat tracting the trace as proposed in Rf2] but its implemen-
we calldynamical lockingg We next examine both possibili- tation did not significantly change the outcome. This may be
ties. explained by the fact that our studies have been carried out in

Forced-locking In this case, we fix the value of a spherically symmetric settindD) while those in Ref[12]
K(t,r)=K(t=0,) throughout the evolution. Note that under have been carried out in 3Qvithout black hole excision
this choice,¢ also remains unchanged in the present case Dynamical-locking The results from the previous sec-
(sinceB andK are then fixed to their analytic valyeIhere-  tion are certainly encouraging as the forced lockindg{dfor
fore the determinant of the three metrg will remain in-  the CADM formulation or vy, (for the ADM system enable
dependent of time. This could be regarded as an evolutiomuch longer evolutions. However, choosing to do so is un-
that “locks” the volume which bears some similarity with physical in generic situations. One would like to have a pre-
the so-called “area-locking” gaugel8,26. Under this con-  scription where a similar condition can be enforced without
dition, stable evolutions can be obtained witks 16. Forn having to not evolve one or more equations. For the ADM
=16 long term evolutions£100M) display at late times a system, several suggestions have been made to maintain ei-
clear exponentially growing mode. ther y,, or the determinant of the angular part gf fixed

A somehow related strategy can be implemented in theia a careful choice of coordinate conditiofis,15,26. For
ADM case as it has been shown in REZ6]. In this work, the CADM system one can also use the coordinate freedom
one chooses not to evolve E@.13 for i=j= 6 and stable to demand that,K=0. For instance, the use of a maximal

2. Locked evolution
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FIG. 3. TheL, norm of the Hamiltonian and momentum constraints vs time for both formulatwitis Ar=M/10) for the case where
the domain of integration igM,4M] (A). Neither formulation displays exponential modes in this domain and the ADM one yields more
accurate results. 1iB), the L, norm of the Hamiltonian and momentum constraints of the solution obtained with the CADM and an
“area-locked” ADM evolution (in the [M,9M] domain is shown, a transient oscillatory behavior is present at earlier stages and the
solutions then settle to a constant value.

slicing of the spacetimg29] i.e., K=0 will trivially satisfy  time. SinceB" is obtained only as a first order approxima-
this condition. However, in practical numerical applicationstion, K andF are expected to vary during the evolution. As
K=0 might not be the most convenient slicing choj8®]  can be seen in Fig. 4, both grow linearly but stay fairly close
(for instance, the Schwarzschild spacetime in Eddingtonto zero and the evolution proceeds without displaying an
Finkelstein coordinates does not ha¥e=0); thus, one exponential growth.
would like to avoid such a strong requirement while still
controlling the evolution oK.

A practical way of choosing such a coordinate condition In this case, we test the evolutions under perturbations
is to define the shift vector from E3.20), (using a locked evolution in the CADM case but not in the

ADM one). The initial data corresponds to the analytic value

of y,, (ory,,) plus some arbitrary pulse of compact support.
Of course, this data is unphysical but we use it to probe for
stability of the implementations in a nontrivial scenario. The

3. Perturbed evolution

A y - 1
B'9K=y'DDja—a AijA”+§K2 : (4.6)

which clearly keeps,K=0 but allowsK to vary in space.
This condition is straightforward to implement in 1D but is , , .
certainly more complicated in 3D. Additionally, there is a
great deal of ambiguity as it is only one equation for three
variables'. Therefore two supplementary conditions must

be chosen so that Eq4.6) can be used to “freeze” the _y5
evolution ofK. In our present implementation we have sim-

ply chosens”=0 [with A= (6, ¢)] and obtainegd" with Eq.

(4.6) as

- -~ 1
,BrzﬁrK(y"DiDja—a A”-A'J+§K2D. (4.7 1o
A straightforward way to obtaig" is by a first order ap-
proximation of the right-hand side of Eq. 4(i7e., evaluating
each term at the old levelBy using this condition, instead
of choosing not to evolvd, we were able to obtain evolu-
tions not displaying exponential modes for times larger than-2.2 ' ' .
250M (with resolutions ofAr=M/10 and finey. Figure 4 0.0 15.0 30.0 45.0
illustrates what is obtained in a simulation with computa-  F|G. 4. TheL, norms of the Hamiltonian constraint and the
tional domain defined byM,1IM] (with Ar=M/10). The differencesF —F,_, andK —K,_, vs time. The evolution proceeds
values of thelL, norms of the Hamiltonian, the functiof  without displaying exponential modes and the value of

—F—o and value ofK—K;_, are shown as a function of ||[K—K,_||, stays close to zero.
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@
p

EH

FIG. 6. Domains of dependence of points inside and outside the
event horizonEH). Inside the EH, the past null cone pfis tilted,
therefore the evolution algorithm does not need the value of the
fields atp on the old level.

0.0 100.0 200.0 300.0 400.0
t[M] mulation directly from the structures developed for the ADM

o . . formulation. The ADM formulation is superior to the CADM
FIG. 5. Thel, norm of the Hamiltonian constraint vs time for poth jn accuracy and total time evolution when the evolution
the pe_rturbet_:l evolu_tlonéwhereK has _been frozen in the _CADM of K is not locked in CADM. When locking is implemented,
evolu_tlon while QII _flelds are evolved in th_e _ADM on(_e, with com- then CADM is better than ADM as the solution obtained
putational domain ifM,6M]). After some initial transient behav- \ith the CADM formulation does not display exponential
lor both settle into an stationary solution. modes with the outer boundary placed as far dg 16n the

amplitude of the pulse is chosen such that it can be consid’ther hand, evolutions with the ADM formulation display
ered a linear perturbation of a Schwarzschild spacetime. Thexponential modes with the outer boundary placed afl 11
results obtained with both codes agree with those of the preand beyond. Additionally, for the case where outer bound-
vious section. Figure 5 corresponds to the evolution of aaries are placed “very” far, although exponentially growing
pulse with compact support {fBM,5M] being evolved in a solutions are present in solutions obtained with both formu-
computational domain of M,6M]. The L, norm of the lations, ADM simulations crash at earlier times than those
Hamiltonian constraint, after some initial transient behavior obtained with the CADM system.
settles into a stationary regime. It is worth remarking again that in both formulations,
_ _ _ _ implementing a gauge that minimizes the changes in some of
B. Causal differencing and domain of dependencies
As a last point, it is interesting to see how causal differ- .50 . .
encing is indeed providing a correct way to discretize the
equations taking advantage of the causal properties of the |
spacetime. The fact that the null cor(es the causal domain 4 44 | :
of dependenceare tilted inside the horizon, allows for a |
stable numerical implementation where inner boundary date :
need not be provided if the inner boundary is inside the black |
hole (see Fig. §. This is possible because the numerical do- ™ :
main of dependence naturally contains the causal domain o |
l
|
|
|
|
|
|

——-H

' out

dependence of the inner boundary point. The condition of the

numerical domain of dependence containing the causal do®20 |

main of dependence is a necessary condition for stability anc

is known as the Courant-Friedrichs-Le¥ZFL) condition

[28]. 0.10 |
This condition cannot be fulfilled if the innermost point is

outside the event horizon. In order to illustrate this fact we J

compare two cases where the innermost point is placed in0.00 == 10'00 20'00 300.0

side or just outside the event horizon and use the ADM sys- ) ) ’

tem to obtain the solution. As illustrated in Fig. 7, while the  FIG. 7. TheL, norm of the Hamiltonian constraint vs time for
solution obtained with the inner boundary inside the blackthe cases where the inner boundary is ingaler =1.5M denoted

hole is stable, the other, as expected is unstable. with a solid lin@ and outsideglat r=2.2M denoted with a dashed
line) the event horizonusing the ADM formulation Since the
V. CONCLUSIONS latter does not respect the CFL condition, the obtained solution is

unstable.(The values shown correspond to a discretization of size
The results presented in this work show that excisionAr=M/10 and no qualitative difference is observed with finer reso-
techniques can be straightforwardly used in the CADM for-lutions)
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the fields (like 4, in the ADM formulation orK in the ACKNOWLEDGMENTS

CADM one) dramatically improves the evolutions in 1D. In Thjs work was supported by NSF PHY 9800725 to the
the 3D case, the use of “area or circumference lockih’  University of Texas at Austin and NSF 9800970 and NSF
indeed more complicated than lockikg simply by the fact 9800973 to the Pennsylvania State University. We thank D.
that in the former case one is trying to control a tensor comygijlsen, P. Marronetti, R. Matzner, P. Laguna, and J. Pullin

ponent while in the latter a scalar. Thus, lockikgs likely  for helpful comments and suggestions. D.G. thanks the Al-
to have an easier and probably more general implementatiopeq p. Sloan Foundation for support.

than area lockingalthough in cases where the final black

hole is close to a nonspinning one, this implementation is

rather straightforwand Controlling the evolution o de- APPENDIX: STABILITY ANALYSIS OF THE
mands a condition such as that given by E6), and two INTERPOLATION PHASE

extra conditions org' will be required. An option that mim- As described in Sec. lll, the evolution is carried over in

ics the 1D implementation is to foliate the 3D hypersurfaces,, o steps. The first ong), provides field values at the new

with a sequence of two-surfaces defined@y-const(with  |gye| while the secon@B) interpolates these values to obtain
the expansion of outgoing null raydnce this foliationis  the fields at grid points. It is important to notice that a

obtained, the shift vectg' could be decomposed as “stable” implementation of the first stepA) does not guar-
antee that the overall integration algorittisteps A+-B) will
Bi= ﬁ? + ﬁl (5.1) be stable. This fact unfortunately appears to have been over-

looked in the literature. We find thus important to remark

which options for B will not spoil the overall stability of the
with Bi (ﬁl) para”e' (perpendicu'a)rto the normal of the evolution algonthm Our ana|ySiS will biﬂdependenton
two-surfaces. Thus, the two further conditions can be choseOW step A is performed; rather, we will assume that we
such thatg! = const, thus minimizing changes in transversal@ve a solution at the new level and concentrate on which
directions. Of course, this is just one possible approach antpterpolation stencil will yield a procedure that does not spoil

further studies will be required to obtairkafixing condition ~ the scheme’s overall stability. We proceed by performing a
that leads to a practical implementation. straightforward von Neumann stability analysis. We start by

In conclusion, implementing singularity excision via SSuming that the solutiamat the new level can be decom-

causal differencing techniques in the CADM formulation is PoS€d in eigenmodes of the form

straightforward. Its usefulness depends on enforcing a gauge .

controlling the behavior ofK. Assuming this can be uj'= gnelkiar, (A1)
achieved, CADM appears to be capable of providing more

robust simulations than ADM when the outer boundary isThen, we obtain the value of at the point of interest; by
placed farther than M from the final black hole of madd, an interpolation, i.e.,

if the outer boundary is closer, then the ADM formulation

provides evolutions as stable as the CADM one but with j+r
better accuracy. ' . u'(rj) = 2 ulW(r,rg), (A2)
Lastly we would like to add two remarks. First, we want s=j-I

to stress that we have only applied the causal differencing
algorithm described in Ref$22,21] since at present is the wherej—| andj+r define the left and right limits of the

Only one fu”y implemented in B. Other alternatives have interpo'ating stencil anW(r,rS) denotes the We|ght Q_f? in

been proposefil9,20,31; due to the restriction to spherical he interpolating procedure. Replacing E41) in Eq. (A2),
symmetry it is likely that the application of these will yield

similar results to those presented in this work. Second, our r
present work has compared the use of causal differencing in u(r)=ul elksAMA/(T - A3
two formulations of Einstein field equations. Although (ry) 's;—| (). *3)

causal differencing has been the method that has so far re-

ceived the most attention, other techniques are being eX-et ys assume that step A has been carried in a stable man-
plored in 3D. For instance, in Reff32] the use of up-wind o hencdu|<1. A necessary condition for the combina-
type algorithms has been shown to be a viable alternatNﬁOn of steps A and B to be stable is

when the resolution is abot/40 or finer. To present imple-
mentations this resolution is fairly costly; however, tech-
nigues such as adaptive mesh refinement, domain decompo-
sition, etc., should allow researchers to explore and
implement a wider range of options.

r

|S|= SZ e SAW(r,r, o) <1, (A4)

which depends solely on the interpolation stencil. We next

show what the results are for a choice of second, third and

3i.e., controlling the determinant of the angular part of the metricfourth order accurate stencils obtained using a Lagrangian
(area locking or gy, (circumference locking interpolating polynomial.
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15 I5:1 third order accurate value by either using the points;
T throughr; ., or r; throughr;,, in the interpolating stencil.
/ C(( We denote the values &with eitherS, for the former case
” | | ‘(% - (\ andS; for the latter. After rearranging terms one obtains
k\ \/ == S| =+1+b(b=2)(b—1)’(coskAr)~1)?,  (A6)

I | 1 1 l e 4l | T I T I e aln

FIG. 8. Contour plots corresponding to the amplification factorsFrom theseLSr|§1 and|S|.|<1Vb €(0,1). As in the Seqond
for S andS, as a function ob andK=kAr. The contours display order case, the interpolation cannot render the whole integra-

the region where the amplification results larger than 1. In botH!ON unstable.

cases, the outermost curve corresponds to a value of 1.001 and

determines a region whose interior has amplification larger than 1. 3. Fourth order
The sequence of curves correspond to values given by 1.001

+0.02% (s=0-7. In this case, we have three stencil options: left-sided,

when usingr;_, throughr;, ;; centered, when using; ,
throughr; . ,; and right-sided, when using throughr;, .

We denote the amplification factors for these three cases
Assuming the point we are interested in is @r;  with §, S;, andS,, respectively. The expressions for them
+bAr, with be(0,1). The interpolating polynomial in- are rather lengthy and analyzing their values is not as direct
volves values at; andr; . ,; after a straightforward evalua- as in the previous cases. It turns out to be more convenient to

tion, simply plot their values as a function of both and K
=KkAr (for all possible values db andK). Figure 8 displays
|Sl=V1+2b(b—1)[1—cogkAr)]. (AS)  the regions wher& andS, have values be larger than(the
centered scheme h&S;|<1 and we do not include it in the
contour plot figures As can be seen in Fig. 8, the interpo-
lation procedure can induce instabilities foe (0,1) even
for low frequency modes. Thus, unless the point under con-
sideration lies at the center cell of the stencil, a fourth order
Again, we assume the location of interestisrj+bAr interpolation scheme, can by itself render the whole evolu-
[with b e (0,1)]. In this case, one has two options to obtain ation scheme unstable.

1. Second order

Clearly, |S|<1Vbe (0,1), thus a second order accurate in-
terpolation cannot, by itself, render the evolution unstable.

2. Third order
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