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Naked Reissner-Nordstran singularities and the anomalous magnetic moment of the electron field
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We study the problem of the quantization of the massive charged Dirac field on a naked Reissner4#dordstro
background. We show that the introduction of an anomalous magnetic moment for the electron field allows a
well-defined quantum theory for the one-particle Dirac Hamiltonian, because no boundary condition on the
singularity is required. This means that would-be higher order corrections can play an essential role in deter-
mining physics on the naked Reissner-Nordstisackground and that a nonperturbative approach is required.
Moreover, we show that bound states for the Dirac equation are allowed. Various aspects of the physical
picture emerging from our study are also discussed, such as the possibility to obtain exotic atomic systems, the
formation of black holes by electronic capture, and some interesting consistency problems involving quantum
gravity.

PACS numbd(is): 04.62+v, 04.20.Dw

[. INTRODUCTION Dirac Hamiltonian in the external field of a highly charged

The behavior of a charged massive Dirac field on a nakegointlike nucleus, for any value of the atomic number Z.
Reissner-Nordstra background is investigated. It is known There is still a difference, associated with the existence, in
that the Dirac Hamiltonian in the case of minimal couplingthe naked Reissner-Nordstnocase, of a lower bound on the
with the Coulomb classical field of the singularity, requiresabsolute value of the anomalous magnetic moment which is
the choice of a boundary condition on the singulafity2], necessary for the essential self-adjointness of the Hamil-
and so it is affected by the same problem as the free Diratonian. In any case, this lower bound is fully satisfied by an
equation. This problem, which amounts, on a mathematicaAnomalous magnetic moment order of the flat space-time
footing, to the fact that the Hamiltonian is not essentiallyone.
self-adjoint, makes quantum physics not well-defined on the Some qualitative spectral properties are studied in Sec.
given background. Some qualitative similarities occurring|||. We show that essential spectrum contributibrisom
with the case of the Dirac equation in flat space-time in thenear the singularity are excluded and that eigenvalues exist
presence of a strongly charged pointlike nucleus are alsgng have to belong to the mass gap. Moreover, the presence
underlined in[2]. , _ of an infinite number of eigenvalues is verified.

Here we study the problem further on. In particular, in =, sec v the possibility to construct a “naked—Reissner-

order o estimate the .relevance' of would-be hlgher Order\lordstr"cm atom” is sketched and related consistency prob-
guantum electrodynamics corrections, in Sec. |l we mtroduc?ems are discussed. In particular, the possibility to get

an anomalous magnetic moment In the Dirac equation. SurReissner-Nordsfm black holes by electronic capture is

prisingly, in the case of the electron field, the presence of an Lalitatively analvzed. Some puzzling consistency problems
anomalous magnetic moment, e.g., of the order of the usud) y yzed. P 9 yPp

flat space-time one, is shown to be sufficient for ensuring thé&'® gnhanced, parucularly, situations are ske_tched n Wh'Ch
essential self-adjointness of the one-particle Hamiltonian, be2N€ IS fo_rced Fo mtrc_>duce a full quantum gravity formalism.
cause no boundary condition on the singularity is required. A 1€ final discussion, Sec. V, takes into account also the
further analogy with the flat space-time case appears, b&0Smic censorship conjectu(€CC). . _
cause it is known that the introduction of an anomalous mag- !N Appendixes A and B physical dimensions involved in

netic moment ensures the essential self-adjointness of tH8€ Problem and a further comparison with the case of flat
space-time are found. In Appendix C, some proofs of results

*Email address: belgiorno@mi.infn.it
"Email address: martellini@mi.infn.it 1The definition of essential spectrum and the physical interest of
*Email address: baldicchi@mi.infn.it this result are discussed in Sec. lll.
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presented in the main text are given; moreover, for the saké ,=(—Q/r,0,0,0). We choos®>0. The anomalous mag-
of completeness, the enunciates of some of the theoremmetic moment contribution in the Dirac equation is propor-
used are found. tional too*"F,,, and is the covariant generalization of the
usual flat space-time terfB]. We will consider explicitly the
Il. DIRAC HAMILTONIAN WITH ANOMALOUS case of the electron fiel@charge—e). One gets
MAGNETIC MOMENT
(YD + M+ 3 a0F ) =0, 2

In this section we check if the one-particle Hamiltonian is
well-defined in the sense that no boundary conditions aravhere u, is the anomalous magnetic moment of the Dirac
required in order to obtain a self-adjoint operator. In otherfield (see Appendix A The spherical symmetry of the prob-
terms, we check if the Hamiltonian is essentially self-adjoint,lem allows us to separate the variables and to study a re-
that is, if a unique self-adjoint extension and a uniquely de-duced problem on a fixed eigenvalue sector of the angular
termined physics occufln order to give a qualitative idea momentum operator. For a complete deduction of the vari-
about the problem of defining a self-adjoint extension of arable separation see, e.g., R€f§,6]. We get the following
operator, we note that the one-particle Hamiltonian operatoreduced Hamiltonian:
we are going to obtain by variable separation is a differential

operator which represents a formal differential expression in eQ JE Q
a suitable Hilbert space; with this formal expression, accord- Vfme— o —f gtk + paf5
ing to a general theorysee, e.g.[3,4]), are associated the H eg=

minimal operator and the maximal opera’EoThe minimal \/f Q eQ
operator is to be suitably extended in order to get a self- f5r+kT+Ma\/Fr—2 —Vfmg— e

adjoint operator. It is a basic tool for defining the self-adjoint

operators which can be associated with the original formalyheref(r) is the same as in Eql), k== (j+ ) e Z—{0}
alizations of the formal expression and correspond to selfty which H,.4 is formally defined is the Hilbert space

adjoint extensions of the minimal operatdrOften, the L2[(0,+),1/f(r)dr]? of the two-dimensional vector func-
Hamiltonian one writes is meant to be identified with the_. -0
tions g=(g2) such that

corresponding minimal operator. The essential self-
adjointness of the minimal operator means that a unique self-
adjoint operator can be associated with the original formal +w£ 2 2
; . ; : . (lga(n)[*+]ga(r)[?) <.

expression. From a physical point of view, a unique self- f(r)
adjoint extension of théminimal operator associated with
the) Hamiltonian means that the physics is uniquely definedAs a domain for the minimal operator associated with
In the following, for our aim, we can limit ourselves to con- Hreq We can choose the following subset bf[(0,+),
sider the minimal operator associated with our reduced/f(r)dr]?: the setC(0,+«)? of the two-dimensional vec-
Hamiltonian and to study its self-adjointness properties.  tor functionsg whose components are smooth and of com-

We first define the one-particle Hamiltonian for Dirac pact supporf3]. It is useful to define a new variableas in
massive particles on the naked Reissner-Nordstgeom- [2]
etry. We use natural unitt=c=G=1 and unrationalized
electric units. The metric of the naked Reissner-Norastro d_X_ 1

manifold (te R;r € (0,+%);Q e S?) is dr_ f(r)
ds’=—f(r)dt*+ idr2+r2d92 r2—2Mr+Q?
f(r) ’ x=r+Mlogl ————
Q. 1 r—M
== @ +(2M2—Q2)—*Q2_M—2 arCta’(—Qg_Mz)-i-C

H : 2 2
M is the mass anQ is the charge, an@“>M®. The vector  anq to choose the arbitrary integration constarin such a
potential associated with the Reissner-Nordstisnlution is way thatx e (0,4 ). The reduced Hamiltonian becomes

Hrea=Do+ V(X) )
>The maximal operator is defined on the largest possible domain
in the Hilbert space which is mapped into the Hilbert space itself.Where
The minimal operator is defined as the restriction of the maximal 0
one, such that the adjoint of the minimal operator is equal to the D.= _ax}
maximal operatof3]. See also Ref4]. 0 dy O

3They are formally obtained as self-adjoint restrictions of the
maximal operator. and
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eQ NG Q The anomalous magnetic moment contribution is such that
\/?me—— +k—+,ua\/?—2 the coefficients of the asymptotic expansion are no more
V[r(x)]= r r r regular near =0. The solutions in a right neighborhood of
NG Q eQ r=0 behave as
+k—+#a\ﬁ_2 _\/?me__ _
' r ' gi(r)~ayr*a,
The Hilbert space of interest for the HamiltonidB) is go(r)~a,rtHa, (5)

L2[(0,+=),dx]2. We have to check if the reduced Hamil-

tonian is essentially self-adjoint; with this aim, we check if Solutions of Eq.(4) belong toL?[(O,R),1/f(r)dr]? for R
the solutions of the equation >0 if

Head=AQ (4)

are square integrable in a right neighborhoocsf0 and in
a left neighborhood ok= +. The so-called Weyl alterna- . .
tive generalized to a system of first order ordinary diﬁ‘eren—whICh means In our case
tial equations(Ref. [3], theorem 5.p states that, if the inte- R
grability condition in a right neighborhood ok=0 is J drr2*2ra<oo, (7)
verified for all the solutions corresponding to a fixed value of 0
N eC, then it is verified for every\ e C and the so-called L 3 .
limit circle case(LCC) is said to occur. This occurrence of 1he above condition implielge,| < 3. For an explicit evalu-
LCC implies the necessity to introduce boundary conditiongtion it is necessary to resort all the physical dimensions; see
in order to obtain a self-adjoint operator. If at least one so/APPendix A herein. If the anomalous magnetic moment
lution not square integrable exists for evexy: C, then no  Value is assumed to be the same as flaé space-time, for
boundary condition is required and the limit point casel#al In Eq. (7) one gets 0.0005&*/m; ~10'°, where e*
(LPC) is said to be verified. The same reasoning is to beandmg are the lengths associated with the electron charge
applied forx=+. The Hamiltonian operator is essentially and the electron mass,, respectively; then the LPC holds
self-adjoint if the LPC is verified both at=0 and at infinity ~ and the reduced Hamiltonian is essentially self-adjoint. It can
(cf., Ref.[3], theorem 5.7 It is known [1,2] that, if u, be noted that the essential self-adjointness property of the
=0, the reduced Hamiltonian is not essentially self-adjoint€duced Hamiltonian does not depend on the ch@gnd
on the seCZ(0,+)2. In fact, the limit circle caséLCC) at ~ On the mass/ of the singularity. ' '
x=0 occurs, whereas the limit point cadéPC) is verified at There is a preliminary problem. A perturbatl\_/e evaluation
infinity. of the anomalo_us_ magnetic moment is not a_\va|lable, the free
We show that the introduction of the anomalous magneti@nd also the minimally coupled Dirac equation on the naked
moment allows us to get the LPC alsoxat 0 for suitable ~€issner-Nordstra background being not well-defined.
values ofu, (the LPC is trivially verified at infinity. In our Neyertheless, it is legitimate to consider the anomalous mag-
case one gets the following system of first order equations iff€tic moment as a parameter modeled on the standard QED

R 1 , ,
JO dl’m(|gl(r)| +]ga(r)|?) <o ©)

the variabler: theory. If it is not at least eightgen magnitude orders sr_naller
than the standard flat space-time anomalous magnetic mo-
K 10Q m. 1 eQ 1 ment, then the interacting theory becomes well-defined. The
01+ =+ ma—= —2) g1t ——=+ —( -—— ) P possibility to have a uniquely defined physiosly for the
Vir Vir Jio f r interacting theory is nontrivial and, to some extent, unex-

—0 pected. We interpret the fact that a well-defined physics for
the free theory is not available, but the interacting theory can
avoid this pathologic behavior, as the breakdown of the

—gat LJF ig gt “perturbative approach” to the physics. In other words,

rv2 Jir 'ua\/f 2] %2 would-be higher order dynamical effects in perturbation

theory actually play a fundamental role in determining phys-

=0. ics; they determine indeed a unique self-adjoint extension of
) . ~ the Hamiltonian.

Forr—0+x—0 we get the following asymptotic expansion  According to our proposal, the problem of uniqueness of

for the eigenvalue equatioi): the quantum evolution on a naked Reissner-Nordstnani-
fold becomes a nontrivial dynamical problem in a nonpertur-

01

P HMa n £+ M -0 bative domain. A nonperturbative approach is still problem-
Gt 0T 5T Ha Q? 9:=0(r) atic, because one should also verify that no physically
relevant term has been neglected in the truncation of the

K effective action which gives rise to E). Nevertheless, no
9,0o— ﬁgz_ =+ pta— | 92=0(1). matter how limited our exploration of such a domain may be,
r Q Q our result opens up a new interesting level in the discussion
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of physics on nonglobally hyperbolic manifolds. A further composition metho@Ref.[3], p. 165, the essential spectrum

discussion is found in the conclusions. of our Hamiltonian operator can be decomposed into the
It is remarkable that, to some extent, there can be foundnion of the essential spectra of the operatdgsandH.,, in

an analogy with the standard flat space-time Dirac equatiothe sense thatro(H,cq) = 0o(Hg)Uo(H..) (see also Ref.

in the Coulomb external field of a highly charged pointlike [2]). The restrictionH,, of H,.4 gives the same essential

nucleus. In fact, it is known that in flat space-time thespectrum contribution as the one calculatedi2h

anomalous magnetic moment solves self-adjointness prob-

lems even in the case of a heavily charged pointlike nucleus Te(He) = (=, —mg]U[ Mg, + ), (8

[7]. In flat space-time the free Dirac Hamiltonian is, of ) ) - )
course, essentially self-adjoint and the Dirac Hamiltonian in@S It can be easily verified by using theorems 16.5 and 16.6

an external Coulomb field and is essentially self-adjoint tod®f Ref. [3] (see Appendix C both for the enunciates and for
as far aZ<118. For biggeZ, the essential self-adjointness their application to our case and cf., RE20] for an appli-
can be restored by introducing the anomalous magnetic m@2tion to Kerr-Newman black holesThe case oH,, which
ment[7]4 In the naked Reissner-Nordstnocase, instead, IS thg restriction to the right n_e|ghborhood of the singularity,
neither the free Dirac Hamiltonian nor the one which is mini-IS @ little more involved than in Ref2], because the LPC at
mally coupled with the external Coulomb field of the singu- the singularity is verified. Nevertheless, a careful application
larity is essentially self-adjoint. of theorem 2 appearing in Refl1] allows us to obtain the
Moreover, in the case of the Dirac equation in the field offollowing result: The essential spectrum of the Dirac Hamil-
a charged pointlike nucleus it is evident that, as far as thé&Pnian restricted to a right neighborhood of the singularity
effective coupling of a pointlike particl&w,=2/137 ap- r=0 is empty. Wg first discuss the physmal meaning of this
proaches one, the perturbative approach loses its validity ad@Sult; then we give some more detail. The absence of an

a nonperturbative approach is necessary. essential spectrum contribution coming from near0 can
In the following, some physical properties of our one- b€ interpreted by means of an analogy with standard scatter-
particle Hamiltonian are discussed. ing centers. In fact, avoiding essential spectrum contribution

from near the center amounts to verifying that the one-
particle scattering problem is well-defined, in the sense that
lll. SPECTRAL PROPERTIES particles are not “captured” for long periods of time near the

We now study some qualitative spectral properties of th&enters and the scattering m_atrix is u_nitary. In our case we
reduced Hamiltoniari3). It will be found that the essential can analogously say that Dirac particles do not spend an

. o ; infinite amount of time near the singularity when scattering
spectrum o(H,eq) (defined below coincides with the e
complement of the interval{m,,m,), and that an infinite takes place. See also RE12] for the case of other timelike

number of eigenvalues is confined in the mass gap. Si”Q‘J'?”“eS- . .
9 gap Giving all the details about the cited theorem would re-

_ quire a long digression. We limit ourselves to underline that,
A. Essential spectrum according to the aforementioned theorem, if the LPC is veri-

The essential spectrum,(B) of a self-adjoint operatog ~ fied atr=0, in order that in (&] there can be only a dis-
consists of all points of the spectrum except for isolated eicréte spectrum contribution it is sufficient to verify that for
genvalues of finite multiplicity. It corresponds to the union @n arbitraryR>0 it holds
of the continuous spectrum, of the eigenvalues embedded in
the continuous spectrum, or at the edges of the continuous R 1
spectrum, of the limit points for the eigenvalues, and of the fo dr?
eigenvalues having infinite multiplicit{8,9] (the latter case
cannot occur for ordinary differential operatoi8]). The |y our case the above integral diverges because the anoma-
physical interest is associated with the possibility to find, by|gys magnetic moment gives rise to a term which is not
means of qualitative spectral methods, a set which is thﬁnegrable in a right neighborhood of=0. We refer the
complement in the spectrum of the set composed by isolategerested reader to Ref11] for more details. Actually, a
eigenvalues“bound states’). In fact, for any self-adjoint more naive argument can also be used. In the case of a
opera_tc_)rBthe spectrum can be decomposed into th_e union Oéchr"cdinger-like second order operaterin (OR], if the
two disjoint setsur(B) = 0¢(B) U o4(B), whereoy(B) isthe | pc js verified inr =0, the absence of continuous spectrum
discrete spectrum, i.e., .thg set containing all the isolated ey real) e (A1,\,) is obtained if the asymptotic behavior of
genvalues of finite multiplicity. _ the solutions of the differential equation€ \)f=0 near the

Let us consider the operatok, andH.. which are de-  origin is such that one is always square-integrable. In the
fined as the restrictions dfl,o4 to the intervals (&] and  gse of the separated Dirac operathgy the analogous ar-
[c,), wherec>0 is arbitrary. By using the so-called de- gyment is found in Ref3] (theorem 11.7, and in our case

there is always a square-integrable solution ldf.4—\)g
=0 for each\ e R, as Eq.(5) shows.
4For 119<7< 137 a privileged self-adjoint extension can be se- Finally, note that, as for the analogous equation in flat
lected on physical grounds, so that the nontrivial part of the probspace-time, the interval{m,,m,) represents a gap in the
lem from a physical point of view arises f@=137. Hamiltonian spectrum between the continuum positive en-

f
k7f+ﬂaﬁ9 =o0, (9)

r2
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ergy states and the negative energy ones, and the discrdgity, a length scale which appears only at the quantum level
spectrum (isolated eigenvalugscan be located only in and corresponds to the Bohr radius for standard afoms.
(—mg,my). In the following, we limit ourselves to a qualitative analy-
sis of the “dressing” of a naked singularity. Quantitative
evaluations imply very subtle numerical computations, be-
B. Discrete spectrum cause of the nontrivial form of Dirac equati¢®) in our case.

Here we are interested in the discrete spectrum of the A quallt?tlve plctlurte 'QVOIV_eS sm;ta{itant]allyltw:) iﬁses. In
one-particle Hamiltonian. In the gap-(n,,m,) there is an € case of a complete dressing of the singularity Ine space-

infinite number of discrete eigenvalues. The interested readd"'€ Metic for a distant observer outside the outermost elec-
. . L ronic shell(characterized by a radius we will call o-radius
is referred to Appendix C for a proof, which is based on

th . in Ref13]. Th £ an infinit is the Schwarzschild one, at least as far as multi-pole elec-
€oréms given in Ref.Ls. The presence ot an infinite num- omagnetic field contributions associated with the electronic

; ) - r
ber of eigenvalues can be considered as a nontrivial re,sui‘.thells can be neglected. The “dressed singularity” is char-
(note that the proof contained in Appendix C for the exis-acterized by a mass order of the original naked singularity
tence of an infinite number of eigenvalues holds also whepyne (jf the total mass of the surrounding electrons is negli-
there is no anomalous magnetic moment for the electrogiple; see the discussion belpvNaively, to this neutral sys-
field). In fact, in the case of Reissner-Nordstrdlack holes, tem an effective Schwarzschild radigs-radius in the fol-
no isolated eigenvalue is allowed, as it is shown in Refsjowing) can also be assigned. If the dressing is only partial,
[1,2] and in Ref.[10] (in Ref.[1] a stronger result is given: then the external metric becomes a Reissner-Nonstioe
no eigenvalue exists, no matter if isolated or embedded in thbut with a reduced charge-to-mass ratio with respect to the
continuous spectrumin fact, the presence of the black hole original naked solution. For an exotic atomic system whose
horizon does not allow a gap in the essential spectrum of thénucleus” is represented by a naked Reissner-Norastro
one-particle Dirac Hamiltonian operatddQ]. Then, also singularity and whose orbitals are filled with standard elec-
from this point of view, naked singularities differ with re- trons, an electromagnetic spectrum associated with allowed
spect to black holes. transitions between atomic levels is also expected.

We will also verify that a too naive marriage between
general relativity (Reissner-Nordstr singularity playing
the role of “nucleus’) and quantum mechanical orbielec-

We are interested in determining if there are eigenvaluegon states surrounding the singulayitg not free from am-
embedded into the continuous spectrum. Naively, it could bgjguities and possible inconsistencies.
expected that Eigenvalues are allowed to dive into the con- We start by making some estimates. With this aim, we
tinuum asZ increases. A careful application of theorem 16.7estore the physical dimensions and write the charge-to-mass
of Ref.[3] (theorem 16.7 of Ref(3] and its application to ratio as
our case are found herein in Appendi¥ €hows that the

C. Purely absolutely continuous spectrum

complement of the closed intervat-(m.,m,) belongs to the Jo 9
purely absolutely continuous spectrum. This means that the Q* %e g My 40 R
states with energy in<,—mg)U(m,,+=) are scattering N VaeZ ™ 9351072 (10

states with no eigenvalue embedded. The physical conse- —
guences of this result are very interesting. The eigenvalues Mpi

have to be confined in the mass gap. So, contrary to the nai\ghereQ* andM* are the lengths associated withand M
expectation, by increasing (Z finite), the bound-state en- yegpectively(see also Appendix A M, is the Sun mass. A

ergy cannot increase arbitrarily. The repulsive nature of th¢yaked Reissner-Nordstro singularity is characterized by
anomalous magnetic moment term should be the reason f@§*/\* =1+ d2>1, that is

such a behavior.
. Z=1.07x 10”9M(1+d2) (11)

IV. A NAKED —REISSNER-NORDSTROM ATOM? ' Mg ‘
The parameted>0 points out “how naked” the singularity
'és, i.e., how much bigger than one the charge-to-mass ratio
is. The mass of the singularity being equal, the amount of
glectrons neutralizing the naked singularity is lowest when
t%<1. Below we make some estimates #in the case of
small d:

The existence of stationary statese have shown in the
previous section allows us to speculate naively about th
possibility to dress a naked Reissner-Nordstrsingularity
by means of a cloud of electrons, and to obtain, as a cons
guence, a quantum-mechanical objéatomic system In
fact, onea priori can fill the bound state energy levels by
means of electrons and, by pursuing this dressing process, M=M, = Z~10%
the charged singularity can also be neutralized. Moreover, M=10"16M. = 7 107
one can introduce a sort of “quantum radius” of the singu- - s '

M= mp| =7~12.

SFor the case of absence of anomalous magnetic moment, see Ref.
[1]. 5The authors are indebted to A. Treves for this suggestion.

084014-5



F. BELGIORNO, M. MARTELLINI, AND M. BALDICCHI PHYSICAL REVIEW D 62 084014

problems follows.

In general, we writetM=ym,;, whereye (0,+=) is a
real positive number. Then
naked

o-radius

Q* _Ze*
M* ylpl

s-radius

s-radius

=1+d2>1; (12)

the second equality above fixes the valugyafs follows:

(a) (bY

FIG. 1. Possible dressings of a naked singularity neutralized by 7 e*
electron capturgnaive classical pictude (a) An effective black y=—5>—"- (13
hole solution is generated, because the electronic shells are within (1+d )lpl
the s-radius(b) An electronic cloud available for external observers
is displayed. WhenN electrons are captured, from the point of view of an

observer which is far from the outermost electronic shell, the
Then, in order to neutralize a naked Reissner-Nordssin-  effective charge iQ.s=(Z—N)e, and the effective mass is
gularity with a mass order of the Sun mass and with aM =y m,+N m,, so that
charge-to-mass ratio only slightly bigger than one, at least

order of 1G° electrons would be required. We see also that a Q* (Z—N)(1+d?)
value of Z order of the standard atomic values is possible R= eff _ - - (14)
only if the mass of the singularity is order of the Planck M & 5 ma
mass. For smalll, it is consistent to neglect the electron Z+N(1+d )e_*

contribution to the total mass of the exotic atomic system. In
fact, from Eq.(11) one deduces that there are about 21 order
of magnitude between the mas4 and the total electron
mass contribution M ~10°m,), and this means that elec-
tron contribution to the mass starts being non-negligible only

if d>~ 107 It is then straightforward to estimate the s-radius d?
of the neutralized system by means of the midss N=Z

%\ necessary condition in order to get a horizonRs<1,
which can be obtained for

(15

*

m
(1+d?)| 1+ —
e*

M=Mg =rg~3 km,

M=10"'M = r,~300 fm,

M= =2l (see Fig. 2 for a plot oN/Z). Correspondingly, the black
= Mp Fs=2lpl- hole radius would be

A. Dressing and black hole formation problem r.= M*ff(1+ m) (16)
+ 7 Wle .

Herein we check if a Reissner-Nordstitsmaked singular-
ity could become a Reissner-Nordstrdlack hole by means e choose again to work in the limit af<1, and, in par-
of the capture oN<Z electrons; particularly, the radius of ticular, as a Samp]e estimate, we impose the condifidfh
the electronic shells is compared with the Reissner—=1. Then one finds tha=1 is enough to obtaifR<1;
Nordstran black hole radius , associated with the dressed moreover, one findg~ 8.54x 102, e~y

solution. (See Fig. 1. A discussion of related consistency  Then we consider two casdg) and (b) which appear

meaningful.
! Case(a). ForZ=100 the radius is , ~8.9, (the mass is
M=8.5m,) and it is plausible that , is smaller than the

onf Bohr radius.

Case(b). For Z=10?* one getsM~10' Kg andr
~10® fm, and an almost “atomic” scale appears to be
available, to be compared with a huge value of the atomic
number which would make plausible that the Bohr radius is

o4 smaller than the estimated. .’
At first sight, the second example can allow a picture of
02) transformation of the naked singularity into a black hole by

means of the capture of a single electron, but this conclusion

2 4 6 8 10

FIG. 2. A plot of the ratio N/Z as a function @ is shown. For "It is also plausible that it is not necessary to appraaetilC?*in
d?=9 the ratio is already order of 0.9. order to getr . >rgop-
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is puzzling. A single electron in cagb) could be enough to ing, that the innermost electronic radius scales & dlid
induce the appearance of a black hole horizon, in spite of theatisfies the same law as the Bohr radius of a hydrogenlike
fact that its backreaction is negligiblene hasm,<M, e  atom® rg,,=(0.5297) <10 1° m. Then, forZ>10? the
<Q, which should allow for a safe external field approxima- problem we are discussing surely takes place, becayge
tion in the Dirac equation Moreover, in caséa), where the <ly (for Z~10% one finds, €.9.fgon~10"%° m). If the
backreaction effect of one electron is more significant, theyil problem (i.e., naked singularity geometry and anomalous
electronic Capture is not able to transform the naked SlngUmagnetiC moment Contributi@misp|ays an ana|ogous be-
larity into a black hole. A qualitative reason for this para- havior at least foZ=Z,, then consistency problems of the
doxical behavior could be that in cad® the naked solution  semijclassical approach fa=Z, arise. As a consequence,
is mu%h clo_szeAr to the ex;rema| lim@*/M* =1 than in case  gvercoming the problem for boundary conditions on the sin-
(@) (d°=10""" againstd®=0.01), so that it should be af- gularity could be insufficient to ensure a full self-consistency
fected by a much bigger instability with respect to electroniCof physics at least under suitable conditiofesg., for Z
capture. Even assuming thg plausibility of such a picture, the-7.), due to a possible breakdown of the external field
mechanism of the generation of the black hole remains unapproximation for the gravitational part of the path integral.
clear. However, note that, at the classical level, the transforsee on this topic also the discussion in Has).

mation of naked Reissner-Nordstro singularities  into On the other hand, if one introduceb initio a box with
Reissner-Nordstro black holes by means of bombardment radius ~1 , around the singularity15], the problem of im-
with charged test particles is allowed in REE4]. A further posing a boundary condition near the origin becomes again
remark is that, after the generation of a black hole, the dresginayoidable even in presence of an anomalous magnetic mo-
ing mechanism by means of electronic orbits would stopment. A more naive approach consists in assuming that the
because no discrete eigenvalue is allowed for a Reissneb-romem is well-posed only when the would-be Bohr radius
Nordstran black hole(cf., Ref.[10]; an anomalous magnetic starts being bigger than the Planck length, that is only for
moment contribution does not affect the absence of discrete<z
spectrum for the electron field on a Reissner-Nordstro  goving the problem of constructing explicitly the exotic
black hole manifoldd _ _ naked—Reissner-Nordstroatom is beyond the aim of our
For a quantum object like ours, the notion of “orbit” is \york. We limit ourselves to note that our naive picture of
probabilis?ic an_d a comparis_on of the expectat!on value of “dressing” looks like the one in Ref[15] but there are
(Bohr radiug with the classical black hole radius runs the fyndamental differences. The charged particles which dress
risk of being too naive. In fact, qualitatively, the electron the singularity are not related to the Klein paradox and are
field is distributed with radial probability densit¥e(r)  notin principle due to vacuum instability, whose presence on
around the “naked nucleus.” As a consequence, even in theye given background cannot be revealed by means of a
case thar . <rgop, there can be a significant nonzero prob- static approactisee also Ref[2]). In our picture the elec-
a.b|||ty that the electron is within the black hole radiu_s. trons are Captured from the space region around the Singu_
This implies that there can be a significant nonzero probabilarity. Moreover, in our work, no boundary condition on the
ity P that the solution is a black hole: singularity is required for the quantized field and a discus-

i ible black hole f i :
P(black hola = P(electron between 0 and, )  (0.1). sion about a possible black hole formation appears

7

In other words, the metric seems to be necessarily associated
with a probability’? to be a black hole and-1P to be a

V. CONCLUSIONS

We have shown that at least in the case of the Dirac field,

. ) . a uniquely defined physics can be retrieved on a naked
naked singularity surrounded by an electron. Then, Ser'ouﬁeissﬂer—Klords't'm bF;CBI/(ground in four dimensions, by

self-cpnsistency problems can arise if the parameters of thﬁ]eans of the introduction of an anomalous magnetic moment
effective dressed solution correspond to a black hole SOIL\?\/hich can also be much smaller than in flat space-time. A
tllont.hWhtta)nP(blgctk hoie) IS S|gtnt|f|cantly Q|f[fere!2;]ftrﬁm @th . substantial breakdown of the perturbative approach to phys-
), the above piciure turns out to associate wi € MEerC &< is the suggestion we propose for interpreting our result. It
probabilistic interpretation, and a consistent treatment of thc?s remarkable, as a consequence, that the problem of a well-
problem requires a quantum gravity approach. posed physics on a naked Reissner-Norastimackground
_ _ _ can involve nontrivially would-be higher order terms. This is
B. Further consistency considerations verified for the charged massive Dirac field, and it would be
Concerning the radius of the innermost electronic orbitsinteresting to investigate if any higher order corrections
we make some qualitative considerations which involve the&ould restore the essential self-adjointness also in the case of
actual availability of the external field approximation for the Other fundamental field¢e.g., the electromagnetic field or
gravitational background. For high the Coulomb field in-
teraction could give rise to extremely small innermost orbits,
and for, say,Z=Z7, one_coulq find an c_)rbit_radius smaller  8eor high z, of course, a relativistic approach is necessary for a
than the Planck length, in evident conflict with the bound onhydrogenlike atom and the nonrelativistic formula loses its mean-
the minimal lengtH ;,; imposed by quantum gravity. In order ing. Herein, the formula is used well beyond its validity range, but
to be more explicit, let us assume, on a purely heuristic footin the frame of a purely heuristic reasoning.

084014-7



F. BELGIORNO, M. MARTELLINI, AND M. BALDICCHI PHYSICAL REVIEW D 62 084014

the uncharged Dirac particles like the neutjino e* =8.54% 10_2|p|1
We can also discuss the relation of our result with the
CCC. The CCC was formulated with the aim to avoid the mi=4.18<10" % ol

indefiniteness of physics on nonglobally hyperbolic mani-

folds associated with naked curvature singularities. Studies

involving quantum fields, on the other hand, have shown that A=

a well-behaved physics can be recovered for free quantum

fields on the manifold of a class of naked singularifi#g].  The anomalous magnetic moment of the electron is given by

This allows us to relax the need for the CCC for the afore-

mentioned class. We have shown that there is a possibility to Ha=—a Upohr (A2)

relax this need even in the case of a Dirac field on a naked

Reissner-Nordstra manifold. We have yet to underline that Wherea is a dimensionless constarand g, is the stan-

our test in a nonperturbative domain is interesting but noglard Bohr magneton:

definitive, just because of the substantial lack of a criterion

allowing us to justify approximations for the effective action

calculation in a nonperturbative domain, and because of the

lack of tools allowing us to treat a full quantum calculation ] o

for all the fields(which would avoid problems with the ex- ~ We also write the reduced Hamiltonian as follows

ternal field approximation Nevertheless, our analysis shows

that a further level of discussion has to be introduced. A Co
In the second part of our work, we have analyzed some C, B

aspects of the physics associated with our Hamiltonian. A

spectral analysis of the reduced Hamiltonian has been pewhere the physical dimensions in each entry are resorted:

formed and it has been verified that an infinite set of eigen- 1

values is present, contrary to what happens in the case of _ 2y _ =

black hole Reissner-Nordstrosolutions. Then the dressing A=+ VT(mee?) ~Z(aghe) r’

of the singularity by means of the formation of an “exotic”

atomic system and related problems have been discussed.

e*)Z

i

eh

I (A3)

MBohr—

Hieq=

B=— ﬁ(mecz)—Z(aeﬁC)%,
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C = hoyia+ kT - al"? (zay i L
_=—(hc oVf ——a—— —.
APPENDIX A: DIMENSIONS ' r2myc? TN 2

We here resort all physical dimensions. The functionthe asymptotic expansion of the eigenvalue equatior for
f(r)=1-2M"/r+(Q*)/r” is characterized by the lengths _ ¢ is [each term is divided by#(c) so that it has dimen-
which are associated with the magisand the charg® of  ¢ions of the inverse of a length

the Reissner-Nordstno solution, respectively:

HaQ 1
g1+ ———0;=0(1),
M*EEM=||M, rd1 Q*hcrgl (1)

maQ 1

92— ——— —9,=0(1).
e S J e o —Q Q*fc T
Q =\/;Q— mp|CZQ_Ip| aeg.

We are interested in the dimensionless rdfig|Q/Q*#c
which corresponds to the absolute value of theappearing

By posingQ=2Z-e one getsQ* =1 ,\/a, Z and in Eq. (7)
Q a
¢ e m, a2t )
- = Mol c e*hc
NN Jao.Z Vil (A1)
My

The first perturbative order in QED in flat space-time giees
It is useful to recall that in the case of the electron one has=a./(27).
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then The difference with respect to the flat space-time Hamil-
tonian is mostly evident near the origin, but also near infinity
ae? afiae  alymyae amye*? there are subleading corrections to the behavior of the Dirac
= = Hamiltonian in flat space-time.

e*2m,c® e*2me  e*2m,  e*2mgl,

a e* APPENDIX C: THEOREMS ON DIRAC SYSTEMS
=— —=1.18x 10" AND SOME PROOFS
2 m?
We list below the enunciates of some theorems we refer

So one gets thate*/m}>1 if the value ofa is not much  to in our paper. A Dirac operator of the form
smaller than the flat space-time one.

We list below the values of some factors appearing in our
equation(for the anomalous magnetic moment the flat space-
time value is assumed

Ix

H=
—9, O

+P(x)

defined onl =(a,b) will be considered; the potential
mc?=0.510999 MeV,

P(X)= P1(X)  P1AX)
a.=1/137.035989, P1AX)  PaAX)
fic=197.327053 MeV fm, is real symmetric, |P(x)| is locally integrable,
p1(x), p2(x), and p;y(x) are real functions locally inte-
(fic)? ) grable[16]. |- | stays for a norm ir2*2 (e.g., the Euclidean
5 @®=278.02803 MeVfm), norm for matrices; see below

2mec In order to work with an operator having the form re-

quired by theorems appearing in RE3], we introduce the

_ - 21
Q*=1.3805021% 10 “*Z fm, unitary matrix

a=0.001159. 0 1
T‘[l o}
APPENDIX B: COMPARISON WITH FLAT SPACE-TIME

and an operatoH, =TH,.4T" which is unitarily equivalent

to H,eq (so it has the same spectrum and the same spectral
properties a$d,.q) and matches the required form. In par-
ticular, we have

The asymptotic expansions of the potentl (x)] asx
—0 andx— +o are useful for a comparison with the Dirac
equation in flat space-time=1. We note that

r3 0 o
x=——+0(r%) for r—0 H :[ 1+ P(x)
3Q? * -0, O
and where
x=r+2Mlog(r)+O(1) for r—+o P(X)=TV[r()]T"
in such a way that ~(3Q?)¥*3 and r~x respectively. _ _eQ \/_? Q
: . . ﬁme +k +Ma\/?
Near the singularity one getenly the leading order of each r r r2

entry is displayefl =
Nai e
+|(T+/.La\/f9 ﬁme——Q

VIr(x)] 2 -
Q|3 u - 10
(me—e)(—> x 13 a1 Theorem 16.5 of Ref. [3JAssume thaH is regular aia
3 3 and thato= +oo. If P(X)— Py for x— 4+ andu_<u, are
Ma 4 13 s '’ the eigenvalues oP,, then for every self-adjoint extension
3 X (—me—e)| 5| X H, of Hit holds oo(H) N (et )=3.

This theorem is applied tdH..T'. In our casea=c and
and near infinity the above operator is regular @t moreover, it is easy to
VIr(x)]

10« ” : - :
_ _ 1 1 Regular ata” (wherea is finite) means that the assumptions
. Me+(—MeM—eQ)x kx _ on the coefficients of the differential expressidnare satisfied in
kx 1 —mg+(MM—eQ)x ! [a,b) instead of in @,b) [3].
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show, by taking the limit limp_. , ., P(x), thatu_=—mcand  P(x) e BV([c,+=)) [note that the anomalous term could as
wi=ms. As a consequence of the above theoremwell belong toP,(x)]. This follows from the fact that, in
go(Ho) N (—me,mg) =. general, if a functiorf is, e.g., continuously differentiable

Theorem 16.6 of Ref. [3JAssume thab=+ and let and its derivativef’ belongs toL([c,+=)), then
u_<pu, be the eigenvalues d?, defined as above. If for
somed e (a, + =)

> Fx)—f(xe_p)|= > U dtf’(1)
k=0 k=0 | Jx_1

1 (x
lim ;J' dt|P(t)—Pg|=0 n .
ove XJd => [* air o)

k=0 Jx._
then for every self-adjoint extensiokl; of H it holds !

b

oo(H;)Dcomplement of fo_ ,u.). :f dt| ' (1)|

This theorem is again applied ®H..T". We can choose c ’
d=c. The Euclidean norm foP(x) is defined as
and the conditiorf” e L([c,+)) allows us to get the de-

[P()| = VIp1 007+ [p2(x)[*+2[p1A X) %, sired result. Moreover,
In our case|P(x)— Py| is order of (1k) asx— +«; then . -me O
[%dt|P(t)— P,| diverges and, by applying L’Hospital’s rule im POO= o |
X— 400 €

to 1k S dt|P(t) — Po| one finds that the above limit is zero.
Theorem 16.6 allows us to conclude that(H..) D (—o°,
—me]U[ Mg, +020). This result and the above one imply that
Te(Hx) = (=2, —me]U[ Mg, +).

Theorem 16.7 of [3]see also Ref.17]): ConsiderH sat-
isfying the LPC atbb= +« (LPC or LCC ata). Assume that
P(x) can be decomposed for soroe (a,+«) as follows:

Then our operatoH,.q has a purely absolutely continuous
spectrum in the complement of the closed interval
[_ Me, me]-

Note also that this holds also for the flat space-time case
[where the anomalous contribution is monotone and bounded
in[c,+),c>0 (then it is of bounded variatiorand is also
a term which can belong tB,(x)].

In order to verify that an infinite number of eigenvalues is
contained in the mass gap of our one-particle Hamiltonian,
we use theorem 2.3 of Ref13]. Some preliminary defini-
tions are given below.

One considers fox e (0,+ =) an operatot. of the form

P(x)=P1(X)+P(x),
[P1(x)] € La(c, +0),

Pa(x) eBV([c, +)),

me O =3y —
lim Py(x)=| " Ly=3(y'=Sy) (€D
X— + o0 0 M2
where
with u1<u,. Then, each self-adjoint extension bif has 0o -1
purely absolutely continuous spectrum in the complement of J:( ) ’
[w1,1,]. Cf., also Ref[5], theorem 4.18. 1 0

In the theorem aboveBV([c,+x)) represents the
space of the functions of bounded variation on the intervafnd
[c,+). We recall thatf eBV([c,+)) means that, for
any partition I1:c=xy<x;<---<x,=b of the interval
[c,b], wherec<b< +«, the variation

( p(x) 01+V1(X))
Co—Va(X) —-p(x) )’

) " wherec; andc, are positive numbers am{x), V,(x), and

Vc(f)ESUka | (xi) = F (X 1) V,(x) are real, locally integrable functioni43].
I k=0 We introduce also a nontrivial linear function@l .] de-

fined on real X2 matricesB by G[B]=(Bu,u), whereu is
a non-null two-vector and(,) is the inner product in

lim VO(f)=VI=(f) R2. G[B] so defined is a positive functional according to
bt ¢ the definition of Ref[13]. Let| be the identity matrix and let

P be the matrix

is finite, and, moreover,

exists and is finite.

We apply this theorem tdH,.4T'. This Dirac operator P— s —CtVa(X) p(x)
satisfies the hypotheses of the cited theorem. In fact, in the B p(x) c,+Vi(x)/)”
interval [ ¢, + =), wherec>0, each component d?(x) is

smooth and has derivative belongingltg([ c, +)), so that Theorem 2.3 of Ref{13] is:

084014-10
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Let h>0, G be a nontrivial positive linear functional and

PHYSICAL REVIEW D62 084014

genvalues in £ mg,m,) it is sufficient to verify that the

assumeP locally absolutely continuous. Then, for any self- following scalar differential equation

adjoint extensiorL; of L the seto(L;) N (—h,h) is infinite
if the scalar differential equation,

—G[1]2"+G[P?—h2l+(P'J—JP")/2]z=0

is oscillatoryeither at 0 or att .

We verify that our Hamiltonian implements the condi-

tions given in theorem 2.3 of Ref13]. In our case we have

C]_:Cz:me,

Vi =(fF- pmer 52,

eQ

Vo)== (- Dme+ ==,

kyf
p<x>=—(7f+uaﬁr92).

As a consequence, in order to verify if the spectrum of th

self-adjoint extensiorh.; of L has an infinite number of ei-

1«Oscillatory at infinity” means that in a left neighborhoodb (

—G[112"+G[P?—m2l +(P'J—JP")/2]z=0 (C2

(whereP=J9S) has an oscillatory behavior either at 0 or at
+o, Note that in our case the self-adjoint extension of the
reduced Hamiltonian is unique. We choase=(1,0)" and
alsou_=(0,1)". Then one obtains a scalar equation in the
form

-Z'+I'.(x)z=0 (C3
wherel . is relative to the choice of the vectar. . One has
T (%) =V3(x) = 2MeV5(x) + p2(x) +p' (X),
I () =V3(x) +2meV; (x) + p2(x) = p' (),
and asymptotically fox— +< it holds

—2mg(mM = eQ)

.(x)~ X

(C4

€ne can use corollary 37, p. 1463, of RELE] for the

scalar equation (C3). If the limit lim,_ . x°TI'.(x)
=lim,_ ... r’I'.(r)<—3%, then the equation is oscillatory
near +%. In our case Q>0 and x’I',(xX)——x as

x— + [if Q<0 thenx?T'_(x)— — ], that is, the behavior

+), with b>0, of + all the solutions of the above second order is oscillatory. Cf., also the examples in REt3]. Then

scalar differential equation admit infinitely many zeroes tn (
+00) [13]. An analogous definition holds for “oscillatory at 0.”

o(Heq) N (— Mg, me) =infinite set. (C5)
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