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Naked Reissner-Nordström singularities and the anomalous magnetic moment of the electron field
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We study the problem of the quantization of the massive charged Dirac field on a naked Reissner-Nordstro¨m
background. We show that the introduction of an anomalous magnetic moment for the electron field allows a
well-defined quantum theory for the one-particle Dirac Hamiltonian, because no boundary condition on the
singularity is required. This means that would-be higher order corrections can play an essential role in deter-
mining physics on the naked Reissner-Nordstro¨m background and that a nonperturbative approach is required.
Moreover, we show that bound states for the Dirac equation are allowed. Various aspects of the physical
picture emerging from our study are also discussed, such as the possibility to obtain exotic atomic systems, the
formation of black holes by electronic capture, and some interesting consistency problems involving quantum
gravity.

PACS number~s!: 04.62.1v, 04.20.Dw
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I. INTRODUCTION

The behavior of a charged massive Dirac field on a na
Reissner-Nordstro¨m background is investigated. It is know
that the Dirac Hamiltonian in the case of minimal coupli
with the Coulomb classical field of the singularity, requir
the choice of a boundary condition on the singularity@1,2#,
and so it is affected by the same problem as the free D
equation. This problem, which amounts, on a mathemat
footing, to the fact that the Hamiltonian is not essentia
self-adjoint, makes quantum physics not well-defined on
given background. Some qualitative similarities occurri
with the case of the Dirac equation in flat space-time in
presence of a strongly charged pointlike nucleus are
underlined in@2#.

Here we study the problem further on. In particular,
order to estimate the relevance of would-be higher or
quantum electrodynamics corrections, in Sec. II we introd
an anomalous magnetic moment in the Dirac equation. S
prisingly, in the case of the electron field, the presence o
anomalous magnetic moment, e.g., of the order of the u
flat space-time one, is shown to be sufficient for ensuring
essential self-adjointness of the one-particle Hamiltonian,
cause no boundary condition on the singularity is required
further analogy with the flat space-time case appears,
cause it is known that the introduction of an anomalous m
netic moment ensures the essential self-adjointness of
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Dirac Hamiltonian in the external field of a highly charge
pointlike nucleus, for any value of the atomic number
There is still a difference, associated with the existence
the naked Reissner-Nordstro¨m case, of a lower bound on th
absolute value of the anomalous magnetic moment whic
necessary for the essential self-adjointness of the Ha
tonian. In any case, this lower bound is fully satisfied by
anomalous magnetic moment order of the flat space-t
one.

Some qualitative spectral properties are studied in S
III. We show that essential spectrum contributions1 from
near the singularity are excluded and that eigenvalues e
and have to belong to the mass gap. Moreover, the pres
of an infinite number of eigenvalues is verified.

In Sec. IV the possibility to construct a ‘‘naked–Reissne
Nordström atom’’ is sketched and related consistency pro
lems are discussed. In particular, the possibility to
Reissner-Nordstro¨m black holes by electronic capture
qualitatively analyzed. Some puzzling consistency proble
are enhanced, particularly, situations are sketched in wh
one is forced to introduce a full quantum gravity formalism

The final discussion, Sec. V, takes into account also
cosmic censorship conjecture~CCC!.

In Appendixes A and B physical dimensions involved
the problem and a further comparison with the case of
space-time are found. In Appendix C, some proofs of res

1The definition of essential spectrum and the physical interes
this result are discussed in Sec. III.
©2000 The American Physical Society14-1
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presented in the main text are given; moreover, for the s
of completeness, the enunciates of some of the theor
used are found.

II. DIRAC HAMILTONIAN WITH ANOMALOUS
MAGNETIC MOMENT

In this section we check if the one-particle Hamiltonian
well-defined in the sense that no boundary conditions
required in order to obtain a self-adjoint operator. In oth
terms, we check if the Hamiltonian is essentially self-adjo
that is, if a unique self-adjoint extension and a uniquely
termined physics occur.@In order to give a qualitative idea
about the problem of defining a self-adjoint extension of
operator, we note that the one-particle Hamiltonian opera
we are going to obtain by variable separation is a differen
operator which represents a formal differential expression
a suitable Hilbert space; with this formal expression, acco
ing to a general theory~see, e.g.,@3,4#!, are associated th
minimal operator and the maximal operator.2 The minimal
operator is to be suitably extended in order to get a s
adjoint operator. It is a basic tool for defining the self-adjo
operators which can be associated with the original form
differential expression~they are the so-called self-adjoint re
alizations of the formal expression and correspond to s
adjoint extensions of the minimal operator!.3 Often, the
Hamiltonian one writes is meant to be identified with t
corresponding minimal operator. The essential s
adjointness of the minimal operator means that a unique s
adjoint operator can be associated with the original form
expression. From a physical point of view, a unique se
adjoint extension of the~minimal operator associated wit
the! Hamiltonian means that the physics is uniquely defin
In the following, for our aim, we can limit ourselves to co
sider the minimal operator associated with our redu
Hamiltonian and to study its self-adjointness properties.#

We first define the one-particle Hamiltonian for Dira
massive particles on the naked Reissner-Nordstro¨m geom-
etry. We use natural units\5c5G51 and unrationalized
electric units. The metric of the naked Reissner-Nordstr¨m
manifold „tPR;r P(0,1`);VPS2

… is

ds252 f ~r !dt21
1

f ~r !
dr21r 2dV2,

f ~r !512
2M

r
1

Q2

r 2
; ~1!

M is the mass andQ is the charge, andQ2.M2. The vector
potential associated with the Reissner-Nordstro¨m solution is

2The maximal operator is defined on the largest possible dom
in the Hilbert space which is mapped into the Hilbert space its
The minimal operator is defined as the restriction of the maxim
one, such that the adjoint of the minimal operator is equal to
maximal operator@3#. See also Ref.@4#.

3They are formally obtained as self-adjoint restrictions of t
maximal operator.
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Am5(2Q/r ,0,0,0). We chooseQ.0. The anomalous mag
netic moment contribution in the Dirac equation is propo
tional to smnFmn , and is the covariant generalization of th
usual flat space-time term@5#. We will consider explicitly the
case of the electron field~charge2e). One gets

~gmDm1me1 1
2 masmnFmn!c50, ~2!

wherema is the anomalous magnetic moment of the Dir
field ~see Appendix A!. The spherical symmetry of the prob
lem allows us to separate the variables and to study a
duced problem on a fixed eigenvalue sector of the ang
momentum operator. For a complete deduction of the v
able separation see, e.g., Refs.@1,6#. We get the following
reduced Hamiltonian:

Hred5F Af me2
eQ

r
2 f ] r1k

Af

r
1maAf

Q

r 2

f ] r1k
Af

r
1maAf

Q

r 2
2Af me2

eQ

r

G
where f (r ) is the same as in Eq.~1!, k56( j 1 1

2 )PZ2$0%
is the angular momentum eigenvalue. The Hilbert sp
in which Hred is formally defined is the Hilbert spac
L2@(0,1`),1/f (r )dr#2 of the two-dimensional vector func
tions gW [( g2

g1) such that

E
0

1` dr

f ~r !
„ug1~r !u21ug2~r !u2…,`.

As a domain for the minimal operator associated w
Hred we can choose the following subset ofL2@(0,1`),
1/f (r )dr#2: the setC0

`(0,1`)2 of the two-dimensional vec-
tor functionsgW whose components are smooth and of co
pact support@3#. It is useful to define a new variablex as in
@2#

dx

dr
5

1

f ~r !

x5r 1M logS r 222Mr 1Q2

Q2 D
1~2M22Q2!

1

AQ22M2
arctanS r 2M

AQ22M2D 1C

and to choose the arbitrary integration constantC in such a
way thatxP(0,1`). The reduced Hamiltonian becomes

Hred5D01V~x! ~3!

where

D05F 0 2]x

]x 0 G
and

in
f.
l
e

4-2
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V@r ~x!#5F Af me2
eQ

r
1k

Af

r
1maAf

Q

r 2

1k
Af

r
1maAf

Q

r 2
2Af me2

eQ

r

G .

The Hilbert space of interest for the Hamiltonian~3! is
L2@(0,1`),dx#2. We have to check if the reduced Ham
tonian is essentially self-adjoint; with this aim, we check
the solutions of the equation

Hredg5l g ~4!

are square integrable in a right neighborhood ofx50 and in
a left neighborhood ofx51`. The so-called Weyl alterna
tive generalized to a system of first order ordinary differe
tial equations~Ref. @3#, theorem 5.6! states that, if the inte-
grability condition in a right neighborhood ofx50 is
verified for all the solutions corresponding to a fixed value
lPC, then it is verified for everylPC and the so-called
limit circle case~LCC! is said to occur. This occurrence o
LCC implies the necessity to introduce boundary conditio
in order to obtain a self-adjoint operator. If at least one
lution not square integrable exists for everylPC, then no
boundary condition is required and the limit point ca
~LPC! is said to be verified. The same reasoning is to
applied forx51`. The Hamiltonian operator is essential
self-adjoint if the LPC is verified both atx50 and at infinity
~cf., Ref. @3#, theorem 5.7!. It is known @1,2# that, if ma
50, the reduced Hamiltonian is not essentially self-adjo
on the setC0

`(0,1`)2. In fact, the limit circle case~LCC! at
x50 occurs, whereas the limit point case~LPC! is verified at
infinity.

We show that the introduction of the anomalous magn
moment allows us to get the LPC also atx50 for suitable
values ofma ~the LPC is trivially verified at infinity!. In our
case one gets the following system of first order equation
the variabler:

] rg11S k

Af r
1ma

1

Af

Q

r 2D g11F2
me

Af
1

1

f S 2
eQ

r
2l D Gg2

50

2] rg21S k

Af r
1ma

1

Af

Q

r 2D g21Fme

Af
1

1

f S 2
eQ

r
2l D Gg1

50.

For r→0⇔x→0 we get the following asymptotic expansio
for the eigenvalue equation~4!:

] rg11
ma

r
g11S k

Q
1ma

M

Q2D g15O~r !

] rg22
ma

r
g22S k

Q
1ma

M

Q2D g25O~r !.
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The anomalous magnetic moment contribution is such
the coefficients of the asymptotic expansion are no m
regular nearr 50. The solutions in a right neighborhood o
r 50 behave as

g1~r !;a1 r 2ma,

g2~r !;a2 r 1ma. ~5!

Solutions of Eq.~4! belong toL2@(0,R),1/f (r )dr#2 for R
.0 if

E
0

R

dr
1

f ~r !
~ ug1~r !u21ug2~r !u2!,` ~6!

which means in our case

E
0

R

dr r 262ma,`. ~7!

The above condition impliesumau, 3
2 . For an explicit evalu-

ation it is necessary to resort all the physical dimensions;
Appendix A herein. If the anomalous magnetic mome
value is assumed to be the same as in flat space-time
umau in Eq. ~7! one gets 0.00058•e* /me* ;1018, wheree*
andme* are the lengths associated with the electron charge
and the electron massme , respectively; then the LPC hold
and the reduced Hamiltonian is essentially self-adjoint. It c
be noted that the essential self-adjointness property of
reduced Hamiltonian does not depend on the chargeQ and
on the massM of the singularity.

There is a preliminary problem. A perturbative evaluati
of the anomalous magnetic moment is not available, the
and also the minimally coupled Dirac equation on the nak
Reissner-Nordstro¨m background being not well-defined
Nevertheless, it is legitimate to consider the anomalous m
netic moment as a parameter modeled on the standard Q
theory. If it is not at least eighteen magnitude orders sma
than the standard flat space-time anomalous magnetic
ment, then the interacting theory becomes well-defined.
possibility to have a uniquely defined physicsonly for the
interacting theory is nontrivial and, to some extent, une
pected. We interpret the fact that a well-defined physics
the free theory is not available, but the interacting theory c
avoid this pathologic behavior, as the breakdown of
‘‘perturbative approach’’ to the physics. In other word
would-be higher order dynamical effects in perturbati
theory actually play a fundamental role in determining ph
ics; they determine indeed a unique self-adjoint extension
the Hamiltonian.

According to our proposal, the problem of uniqueness
the quantum evolution on a naked Reissner-Nordstro¨m mani-
fold becomes a nontrivial dynamical problem in a nonpert
bative domain. A nonperturbative approach is still proble
atic, because one should also verify that no physica
relevant term has been neglected in the truncation of
effective action which gives rise to Eq.~2!. Nevertheless, no
matter how limited our exploration of such a domain may b
our result opens up a new interesting level in the discuss
4-3
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of physics on nonglobally hyperbolic manifolds. A furth
discussion is found in the conclusions.

It is remarkable that, to some extent, there can be fo
an analogy with the standard flat space-time Dirac equa
in the Coulomb external field of a highly charged pointli
nucleus. In fact, it is known that in flat space-time t
anomalous magnetic moment solves self-adjointness p
lems even in the case of a heavily charged pointlike nucl
@7#. In flat space-time the free Dirac Hamiltonian is,
course, essentially self-adjoint and the Dirac Hamiltonian
an external Coulomb field and is essentially self-adjoint
as far asZ<118. For biggerZ, the essential self-adjointnes
can be restored by introducing the anomalous magnetic
ment @7#.4 In the naked Reissner-Nordstro¨m case, instead
neither the free Dirac Hamiltonian nor the one which is mi
mally coupled with the external Coulomb field of the sing
larity is essentially self-adjoint.

Moreover, in the case of the Dirac equation in the field
a charged pointlike nucleus it is evident that, as far as
effective coupling of a pointlike particleZae5Z/137 ap-
proaches one, the perturbative approach loses its validity
a nonperturbative approach is necessary.

In the following, some physical properties of our on
particle Hamiltonian are discussed.

III. SPECTRAL PROPERTIES

We now study some qualitative spectral properties of
reduced Hamiltonian~3!. It will be found that the essentia
spectrum se(Hred) ~defined below! coincides with the
complement of the interval (2me ,me), and that an infinite
number of eigenvalues is confined in the mass gap.

A. Essential spectrum

The essential spectrumse(B) of a self-adjoint operatorB
consists of all points of the spectrum except for isolated
genvalues of finite multiplicity. It corresponds to the unio
of the continuous spectrum, of the eigenvalues embedde
the continuous spectrum, or at the edges of the continu
spectrum, of the limit points for the eigenvalues, and of
eigenvalues having infinite multiplicity@8,9# ~the latter case
cannot occur for ordinary differential operators@3#!. The
physical interest is associated with the possibility to find,
means of qualitative spectral methods, a set which is
complement in the spectrum of the set composed by isol
eigenvalues~‘‘bound states’’!. In fact, for any self-adjoint
operatorB the spectrum can be decomposed into the union
two disjoint sets:s(B)5se(B)øsd(B), wheresd(B) is the
discrete spectrum, i.e., the set containing all the isolated
genvalues of finite multiplicity.

Let us consider the operatorsH0 and H` which are de-
fined as the restrictions ofHred to the intervals (0,c# and
@c,`), wherec.0 is arbitrary. By using the so-called de

4For 119<Z,137 a privileged self-adjoint extension can be s
lected on physical grounds, so that the nontrivial part of the pr
lem from a physical point of view arises forZ>137.
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composition method~Ref. @3#, p. 165!, the essential spectrum
of our Hamiltonian operator can be decomposed into
union of the essential spectra of the operatorsH0 andH` , in
the sense thatse(Hred)5se(H0)øse(H`) ~see also Ref.
@2#!. The restrictionH` of Hred gives the same essentia
spectrum contribution as the one calculated in@2#:

se~H`!5~2`,2me#ø@me ,1`!, ~8!

as it can be easily verified by using theorems 16.5 and 1
of Ref. @3# ~see Appendix C both for the enunciates and
their application to our case and cf., Ref.@10# for an appli-
cation to Kerr-Newman black holes!. The case ofH0, which
is the restriction to the right neighborhood of the singulari
is a little more involved than in Ref.@2#, because the LPC a
the singularity is verified. Nevertheless, a careful applicat
of theorem 2 appearing in Ref.@11# allows us to obtain the
following result: The essential spectrum of the Dirac Ham
tonian restricted to a right neighborhood of the singular
r 50 is empty. We first discuss the physical meaning of t
result; then we give some more detail. The absence of
essential spectrum contribution coming from nearr 50 can
be interpreted by means of an analogy with standard sca
ing centers. In fact, avoiding essential spectrum contribut
from near the center amounts to verifying that the on
particle scattering problem is well-defined, in the sense t
particles are not ‘‘captured’’ for long periods of time near t
centers and the scattering matrix is unitary. In our case
can analogously say that Dirac particles do not spend
infinite amount of time near the singularity when scatteri
takes place. See also Ref.@12# for the case of other timelike
singularities.

Giving all the details about the cited theorem would r
quire a long digression. We limit ourselves to underline th
according to the aforementioned theorem, if the LPC is ve
fied at r 50, in order that in (0,R# there can be only a dis
crete spectrum contribution it is sufficient to verify that f
an arbitraryR.0 it holds

E
0

R

dr
1

f Uk Af

r
1maAf

Q

r 2U5`. ~9!

In our case the above integral diverges because the ano
lous magnetic moment gives rise to a term which is n
integrable in a right neighborhood ofr 50. We refer the
interested reader to Ref.@11# for more details. Actually, a
more naive argument can also be used. In the case
Schrödinger-like second order operatort in (0,R#, if the
LPC is verified inr 50, the absence of continuous spectru
for reallP(l1 ,l2) is obtained if the asymptotic behavior o
the solutions of the differential equation (t2l) f 50 near the
origin is such that one is always square-integrable. In
case of the separated Dirac operatorHred the analogous ar-
gument is found in Ref.@3# ~theorem 11.7!, and in our case
there is always a square-integrable solution of (Hred2l)g
50 for eachlPR, as Eq.~5! shows.

Finally, note that, as for the analogous equation in
space-time, the interval (2me ,me) represents a gap in th
Hamiltonian spectrum between the continuum positive

-
-

4-4
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ergy states and the negative energy ones, and the dis
spectrum ~isolated eigenvalues! can be located only in
(2me ,me).

B. Discrete spectrum

Here we are interested in the discrete spectrum of
one-particle Hamiltonian. In the gap (2me ,me) there is an
infinite number of discrete eigenvalues. The interested rea
is referred to Appendix C for a proof, which is based
theorems given in Ref.@13#. The presence of an infinite num
ber of eigenvalues can be considered as a nontrivial re
~note that the proof contained in Appendix C for the ex
tence of an infinite number of eigenvalues holds also w
there is no anomalous magnetic moment for the elec
field!. In fact, in the case of Reissner-Nordstro¨m black holes,
no isolated eigenvalue is allowed, as it is shown in Re
@1,2# and in Ref.@10# ~in Ref. @1# a stronger result is given
no eigenvalue exists, no matter if isolated or embedded in
continuous spectrum!. In fact, the presence of the black ho
horizon does not allow a gap in the essential spectrum of
one-particle Dirac Hamiltonian operator@10#. Then, also
from this point of view, naked singularities differ with re
spect to black holes.

C. Purely absolutely continuous spectrum

We are interested in determining if there are eigenval
embedded into the continuous spectrum. Naively, it could
expected that eigenvalues are allowed to dive into the c
tinuum asZ increases. A careful application of theorem 16
of Ref. @3# ~theorem 16.7 of Ref.@3# and its application to
our case are found herein in Appendix C! shows that the
complement of the closed interval (2me ,me) belongs to the
purely absolutely continuous spectrum. This means that
states with energy in (2`,2me)ø(me ,1`) are scattering
states with no eigenvalue embedded. The physical co
quences of this result are very interesting. The eigenva
have to be confined in the mass gap. So, contrary to the n
expectation, by increasingZ (Z finite!, the bound-state en
ergy cannot increase arbitrarily. The repulsive nature of
anomalous magnetic moment term should be the reason
such a behavior.

IV. A NAKED –REISSNER-NORDSTRÖM ATOM?

The existence of stationary states5 we have shown in the
previous section allows us to speculate naively about
possibility to dress a naked Reissner-Nordstro¨m singularity
by means of a cloud of electrons, and to obtain, as a co
quence, a quantum-mechanical object~atomic system!. In
fact, onea priori can fill the bound state energy levels b
means of electrons and, by pursuing this dressing proc
the charged singularity can also be neutralized. Moreo
one can introduce a sort of ‘‘quantum radius’’ of the sing

5For the case of absence of anomalous magnetic moment, see
@1#.
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larity, a length scale which appears only at the quantum le
and corresponds to the Bohr radius for standard atoms.6

In the following, we limit ourselves to a qualitative analy
sis of the ‘‘dressing’’ of a naked singularity. Quantitativ
evaluations imply very subtle numerical computations, b
cause of the nontrivial form of Dirac equation~2! in our case.

A qualitative picture involves substantially two cases.
the case of a complete dressing of the singularity the sp
time metric for a distant observer outside the outermost e
tronic shell~characterized by a radius we will call o-radiu!
is the Schwarzschild one, at least as far as multi-pole e
tromagnetic field contributions associated with the electro
shells can be neglected. The ‘‘dressed singularity’’ is ch
acterized by a mass order of the original naked singula
one ~if the total mass of the surrounding electrons is neg
gible; see the discussion below!. Naively, to this neutral sys-
tem an effective Schwarzschild radius~s-radius in the fol-
lowing! can also be assigned. If the dressing is only part
then the external metric becomes a Reissner-Nordstro¨m one
but with a reduced charge-to-mass ratio with respect to
original naked solution. For an exotic atomic system who
‘‘nucleus’’ is represented by a naked Reissner-Nordstr¨m
singularity and whose orbitals are filled with standard el
trons, an electromagnetic spectrum associated with allo
transitions between atomic levels is also expected.

We will also verify that a too naive marriage betwee
general relativity ~Reissner-Nordstro¨m singularity playing
the role of ‘‘nucleus’’! and quantum mechanical orbits~elec-
tron states surrounding the singularity! is not free from am-
biguities and possible inconsistencies.

We start by making some estimates. With this aim,
restore the physical dimensions and write the charge-to-m
ratio as

Q*

M*
5

Aae

Q

e

M

mpl

5AaeZ
mpl

M
.9.35310240Z

Ms

M
, ~10!

whereQ* andM* are the lengths associated withQ andM
respectively~see also Appendix A!; Ms is the Sun mass. A
naked Reissner-Nordstro¨m singularity is characterized b
Q* /M* [11d2.1, that is

Z51.0731039
M

Ms
~11d2!. ~11!

The parameterd.0 points out ‘‘how naked’’ the singularity
is, i.e., how much bigger than one the charge-to-mass r
is. The mass of the singularity being equal, the amount
electrons neutralizing the naked singularity is lowest wh
d2!1. Below we make some estimates forZ in the case of
small d:

M5Ms ⇒ Z;1039,

M510216Ms ⇒ Z;1023,

M5mpl ⇒ Z;12.

ef.
6The authors are indebted to A. Treves for this suggestion.
4-5
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Then, in order to neutralize a naked Reissner-Nordstro¨m sin-
gularity with a mass order of the Sun mass and with
charge-to-mass ratio only slightly bigger than one, at le
order of 1039 electrons would be required. We see also tha
value of Z order of the standard atomic values is possi
only if the mass of the singularity is order of the Plan
mass. For smalld, it is consistent to neglect the electro
contribution to the total mass of the exotic atomic system
fact, from Eq.~11! one deduces that there are about 21 ord
of magnitude between the massM and the total electron
mass contribution (Ms;1060me), and this means that elec
tron contribution to the mass starts being non-negligible o
if d2;1020. It is then straightforward to estimate the s-radi
of the neutralized system by means of the massM:

M5Ms ⇒ r s;3 km,

M510216Ms ⇒ r s;300 fm,

M5mpl ⇒ r s52l pl .

A. Dressing and black hole formation problem

Herein we check if a Reissner-Nordstro¨m naked singular-
ity could become a Reissner-Nordstro¨m black hole by means
of the capture ofN,Z electrons; particularly, the radius o
the electronic shells is compared with the Reissn
Nordström black hole radiusr 1 associated with the dresse
solution. ~See Fig. 1.! A discussion of related consistenc

FIG. 1. Possible dressings of a naked singularity neutralized
electron capture~naive classical picture!. ~a! An effective black
hole solution is generated, because the electronic shells are w
the s-radius.~b! An electronic cloud available for external observe
is displayed.

FIG. 2. A plot of the ratio N/Z as a function ofd2 is shown. For
d259 the ratio is already order of 0.9.
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problems follows.
In general, we writeM[ympl , where yP(0,1`) is a

real positive number. Then

Q*

M*
5

Z e*

y lpl
511d2.1; ~12!

the second equality above fixes the value ofy as follows:

y5
Z e*

~11d2!l pl

. ~13!

WhenN electrons are captured, from the point of view of
observer which is far from the outermost electronic shell,
effective charge isQeff5(Z2N)e, and the effective mass i
Meff5y mpl1N me , so that

R[
Qeff*

Meff*
5

~Z2N!~11d2!

Z1N~11d2!
me*

e*

. ~14!

A necessary condition in order to get a horizon isR<1,
which can be obtained for

N>Z
d2

~11d2!S 11
me*

e*
D ~15!

~see Fig. 2 for a plot ofN/Z!. Correspondingly, the black
hole radius would be

r 15Meff* ~11A12R2!. ~16!

We choose again to work in the limit ofd!1, and, in par-
ticular, as a sample estimate, we impose the conditionZd2

51. Then one finds thatN51 is enough to obtainR,1;
moreover, one findsy;8.5431022Z, r 1;ylpl .

Then we consider two cases~a! and ~b! which appear
meaningful.

Case~a!. For Z5100 the radius isr 1;8.5l pl ~the mass is
M58.5mpl) and it is plausible thatr 1 is smaller than the
Bohr radius.

Case ~b!. For Z51024, one getsM;1015 Kg and r 1

;103 fm, and an almost ‘‘atomic’’ scale appears to b
available, to be compared with a huge value of the atom
number which would make plausible that the Bohr radius
smaller than the estimatedr 1 .7

At first sight, the second example can allow a picture
transformation of the naked singularity into a black hole
means of the capture of a single electron, but this conclus

7It is also plausible that it is not necessary to approachZ51024 in
order to getr 1.r Bohr.
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is puzzling. A single electron in case~b! could be enough to
induce the appearance of a black hole horizon, in spite of
fact that its backreaction is negligible~one hasme!M , e
!Q, which should allow for a safe external field approxim
tion in the Dirac equation!. Moreover, in case~a!, where the
backreaction effect of one electron is more significant,
electronic capture is not able to transform the naked sin
larity into a black hole. A qualitative reason for this par
doxical behavior could be that in case~b! the naked solution
is much closer to the extremal limitQ* /M* 51 than in case
~a! (d2510224 againstd250.01), so that it should be af
fected by a much bigger instability with respect to electro
capture. Even assuming the plausibility of such a picture,
mechanism of the generation of the black hole remains
clear. However, note that, at the classical level, the trans
mation of naked Reissner-Nordstro¨m singularities into
Reissner-Nordstro¨m black holes by means of bombardme
with charged test particles is allowed in Ref.@14#. A further
remark is that, after the generation of a black hole, the dr
ing mechanism by means of electronic orbits would st
because no discrete eigenvalue is allowed for a Reiss
Nordström black hole~cf., Ref.@10#; an anomalous magneti
moment contribution does not affect the absence of disc
spectrum for the electron field on a Reissner-Nordstr¨m
black hole manifold!.

For a quantum object like ours, the notion of ‘‘orbit’’ i
probabilistic and a comparison of the expectation value or
~Bohr radius! with the classical black hole radius runs th
risk of being too naive. In fact, qualitatively, the electro
field is distributed with radial probability densityPe(r )
around the ‘‘naked nucleus.’’ As a consequence, even in
case thatr 1,r Bohr there can be a significant nonzero pro
ability that the electron is within the black hole radiusr 1 .
This implies that there can be a significant nonzero proba
ity P that the solution is a black hole:

P~black hole!5P~electron between 0 andr 1!P~0,1!.
~17!

In other words, the metric seems to be necessarily assoc
with a probabilityP to be a black hole and 12P to be a
naked singularity surrounded by an electron. Then, ser
self-consistency problems can arise if the parameters of
effective dressed solution correspond to a black hole s
tion. WhenP(black hole) is significantly different from 0~or
1!, the above picture turns out to associate with the metr
probabilistic interpretation, and a consistent treatment of
problem requires a quantum gravity approach.

B. Further consistency considerations

Concerning the radius of the innermost electronic orb
we make some qualitative considerations which involve
actual availability of the external field approximation for th
gravitational background. For highZ the Coulomb field in-
teraction could give rise to extremely small innermost orb
and for, say,Z>Z0 one could find an orbit radius smalle
than the Planck length, in evident conflict with the bound
the minimal lengthl pl imposed by quantum gravity. In orde
to be more explicit, let us assume, on a purely heuristic fo
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ing, that the innermost electronic radius scales as 1/Z and
satisfies the same law as the Bohr radius of a hydrogen
atom:8 r Bohr5(0.529/Z)310210 m. Then, forZ.1025 the
problem we are discussing surely takes place, becauser Bohr

, l pl ~for Z;1039 one finds, e.g.,r Bohr;10250 m). If the
full problem~i.e., naked singularity geometry and anomalo
magnetic moment contribution! displays an analogous be
havior at least forZ>Z0, then consistency problems of th
semiclassical approach forZ>Z0 arise. As a consequence
overcoming the problem for boundary conditions on the s
gularity could be insufficient to ensure a full self-consisten
of physics at least under suitable conditions~e.g., for Z
>Z0), due to a possible breakdown of the external fie
approximation for the gravitational part of the path integr
See on this topic also the discussion in Ref.@15#.

On the other hand, if one introducesab initio a box with
radius; l pl around the singularity@15#, the problem of im-
posing a boundary condition near the origin becomes ag
unavoidable even in presence of an anomalous magnetic
ment. A more naive approach consists in assuming that
problem is well-posed only when the would-be Bohr rad
starts being bigger than the Planck length, that is only
Z<Z0.

Solving the problem of constructing explicitly the exot
naked–Reissner-Nordstro¨m atom is beyond the aim of ou
work. We limit ourselves to note that our naive picture
‘‘dressing’’ looks like the one in Ref.@15# but there are
fundamental differences. The charged particles which dr
the singularity are not related to the Klein paradox and
not in principle due to vacuum instability, whose presence
the given background cannot be revealed by means o
static approach~see also Ref.@2#!. In our picture the elec-
trons are captured from the space region around the sin
larity. Moreover, in our work, no boundary condition on th
singularity is required for the quantized field and a disc
sion about a possible black hole formation appears.

V. CONCLUSIONS

We have shown that at least in the case of the Dirac fie
a uniquely defined physics can be retrieved on a na
Reissner-Nordstro¨m background in four dimensions, b
means of the introduction of an anomalous magnetic mom
which can also be much smaller than in flat space-time
substantial breakdown of the perturbative approach to ph
ics is the suggestion we propose for interpreting our resul
is remarkable, as a consequence, that the problem of a w
posed physics on a naked Reissner-Nordstro¨m background
can involve nontrivially would-be higher order terms. This
verified for the charged massive Dirac field, and it would
interesting to investigate if any higher order correctio
could restore the essential self-adjointness also in the cas
other fundamental fields~e.g., the electromagnetic field o

8For high Z, of course, a relativistic approach is necessary fo
hydrogenlike atom and the nonrelativistic formula loses its me
ing. Herein, the formula is used well beyond its validity range, b
in the frame of a purely heuristic reasoning.
4-7
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the uncharged Dirac particles like the neutrino!.
We can also discuss the relation of our result with

CCC. The CCC was formulated with the aim to avoid t
indefiniteness of physics on nonglobally hyperbolic ma
folds associated with naked curvature singularities. Stud
involving quantum fields, on the other hand, have shown
a well-behaved physics can be recovered for free quan
fields on the manifold of a class of naked singularities@12#.
This allows us to relax the need for the CCC for the afo
mentioned class. We have shown that there is a possibilit
relax this need even in the case of a Dirac field on a na
Reissner-Nordstro¨m manifold. We have yet to underline tha
our test in a nonperturbative domain is interesting but
definitive, just because of the substantial lack of a criter
allowing us to justify approximations for the effective actio
calculation in a nonperturbative domain, and because of
lack of tools allowing us to treat a full quantum calculatio
for all the fields~which would avoid problems with the ex
ternal field approximation!. Nevertheless, our analysis show
that a further level of discussion has to be introduced.

In the second part of our work, we have analyzed so
aspects of the physics associated with our Hamiltonian
spectral analysis of the reduced Hamiltonian has been
formed and it has been verified that an infinite set of eig
values is present, contrary to what happens in the cas
black hole Reissner-Nordstro¨m solutions. Then the dressin
of the singularity by means of the formation of an ‘‘exotic
atomic system and related problems have been discusse
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APPENDIX A: DIMENSIONS

We here resort all physical dimensions. The functi
f (r )5122M* /r 1(Q* )2/r 2 is characterized by the length
which are associated with the massM and the chargeQ of
the Reissner-Nordstro¨m solution, respectively:

M* [
G

c2
M5 l pl

M

mpl
,

Q* [AG

c4
Q5A l pl

mplc
2

Q5 l plAae

Q

e
.

By posingQ5Z•e one getsQ* 5 l plAae Z and

Q*

M*
5

Aae

Q

e

M

mpl

5Aae Z
mpl

M
. ~A1!

It is useful to recall that in the case of the electron one h
08401
e
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e* 58.5431022l pl ,

me* 54.18310223l pl ,

ae5S e*

l pl
D 2

.

The anomalous magnetic moment of the electron is given

ma[2a mBohr ~A2!

wherea is a dimensionless constant9 and mBohr is the stan-
dard Bohr magneton:

mBohr5
e\

2mec
. ~A3!

We also write the reduced Hamiltonian as follows

Hred5FA C2

C1 B G ,
where the physical dimensions in each entry are resorte

A51Af ~mec
2!2Z~ae\c!

1

r
,

B52Af ~mec
2!2Z~ae\c!

1

r
,

C151~\c! f ] r1k~\c!Af
1

r
2a

~\c!2

2mec
2
~Zae!Af

1

r 2
,

C252~\c! f ] r1k~\c!Af
1

r
2a

~\c!2

2mec
2
~Zae!Af

1

r 2
.

The asymptotic expansion of the eigenvalue equation for
→0 is @each term is divided by (\c) so that it has dimen-
sions of the inverse of a length#

] rg11
maQ

Q* \c

1

r
g15O~1!,

] rg22
maQ

Q* \c

1

r
g25O~1!.

We are interested in the dimensionless ratioumauQ/Q* \c
which corresponds to the absolute value of thema appearing
in Eq. ~7!

umauQ

Q* \c
5

amBohre

e* \c
, ~A4!

9The first perturbative order in QED in flat space-time givesa
5ae /(2p).
4-8
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then

ae2

e* 2mec
2

5
a\ae

e* 2mec
5

alplmplae

e* 2me

5
ample* 2

e* 2mel pl

5
a

2

e*

me*
51.1831018.

So one gets thatae* /me* @1 if the value ofa is not much
smaller than the flat space-time one.

We list below the values of some factors appearing in
equation~for the anomalous magnetic moment the flat spa
time value is assumed!:

mec
250.510999 MeV,

ae51/137.035989,

\c5197.327053 MeV fm,

~\c!2

2mec
2
ae5278.02803 MeV~ fm!2,

Q* 51.38050219310221Z fm,

a50.001159.

APPENDIX B: COMPARISON WITH FLAT SPACE-TIME

The asymptotic expansions of the potentialV@r (x)# asx
→0 andx→1` are useful for a comparison with the Dira
equation in flat space-timef 51. We note that

x5
r 3

3Q2
1O~r 4! for r→0

and

x5r 12M log~r !1O~1! for r→1`

in such a way thatr;(3Q2)1/3x1/3 and r;x respectively.
Near the singularity one gets~only the leading order of eac
entry is displayed!

V@r ~x!#

;F ~me2e!S Q

3 D 1/3

x21/3
ma

3
x21

ma

3
x21 ~2me2e!S Q

3 D 1/3

x21/3
G ,

and near infinity

V@r ~x!#

;Fme1~2meM2eQ!x21 kx21

kx21 2me1~meM2eQ!x21G .

08401
r
-

The difference with respect to the flat space-time Ham
tonian is mostly evident near the origin, but also near infin
there are subleading corrections to the behavior of the D
Hamiltonian in flat space-time.

APPENDIX C: THEOREMS ON DIRAC SYSTEMS
AND SOME PROOFS

We list below the enunciates of some theorems we re
to in our paper. A Dirac operator of the form

H5F 0 ]x

2]x 0 G1P~x!

defined onI 5(a,b) will be considered; the potential

P~x![F p1~x! p12~x!

p12~x! p2~x!
G

is real symmetric, uP(x)u is locally integrable,
p1(x), p2(x), and p12(x) are real functions locally inte-
grable@16#. u•u stays for a norm inC232 ~e.g., the Euclidean
norm for matrices; see below!.

In order to work with an operator having the form r
quired by theorems appearing in Ref.@3#, we introduce the
unitary matrix

T[F0 1

1 0G
and an operatorH* [THredT

† which is unitarily equivalent
to Hred ~so it has the same spectrum and the same spe
properties asHred) and matches the required form. In pa
ticular, we have

H* 5F 0 ]x

2]x 0 G1P~x!

where

P~x![TV@r ~x!#T†

5F 2Af me2
eQ

r
1k

Af

r
1maAf

Q

r 2

1k
Af

r
1maAf

Q

r 2
Af me2

eQ

r

G .

Theorem 16.5 of Ref. [3]: Assume thatH is regular ata10

and thatb51`. If P(x)→P0 for x→1` andm2<m1 are
the eigenvalues ofP0, then for every self-adjoint extensio
H1 of H it holds se(H1)ù(m2 ,m1)5B.

This theorem is applied toTH`T†. In our case,a5c and
the above operator is regular atc, moreover, it is easy to

10‘‘Regular ata’’ ~wherea is finite! means that the assumption
on the coefficients of the differential expressionH are satisfied in
@a,b) instead of in (a,b) @3#.
4-9
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show, by taking the limit limx→1` P(x), thatm252me and
m15me . As a consequence of the above theore
se(H`)ù(2me ,me)5B.

Theorem 16.6 of Ref. [3]: Assume thatb51` and let
m2<m1 be the eigenvalues ofP0 defined as above. If for
somedP(a,1`)

lim
x→1`

1

xEd

x

dtuP~ t !2P0u50

then for every self-adjoint extensionH1 of H it holds
se(H1).complement of (m2 ,m1).

This theorem is again applied toTH`T†. We can choose
d5c. The Euclidean norm forP(x) is defined as

uP~x!u5Aup1~x!u21up2~x!u212up12~x!u2.

In our case,uP(x)2P0u is order of (1/x) as x→1`; then
*d

x dtuP(t)2P0u diverges and, by applying L’Hospital’s rul
to 1/x*d

x dtuP(t)2P0u one finds that the above limit is zero
Theorem 16.6 allows us to conclude thatse(H`).(2`,
2me#ø@me ,1`). This result and the above one imply th
se(H`)5(2`,2me#ø@me ,1`).

Theorem 16.7 of [3]~see also Ref.@17#!: ConsiderH sat-
isfying the LPC atb51` ~LPC or LCC ata). Assume that
P(x) can be decomposed for somecP(a,1`) as follows:

P~x!5P1~x!1P2~x!,

uP1~x!uPL1~c,1`!,

P2~x!PBV~@c,1`!!,

lim
x→1`

P2~x!5Fm1 0

0 m2
G

with m1,m2. Then, each self-adjoint extension ofH has
purely absolutely continuous spectrum in the complemen
@m1 ,m2#. Cf., also Ref.@5#, theorem 4.18.

In the theorem above,BV(@c,1`)) represents the
space of the functions of bounded variation on the inter
@c,1`). We recall thatf PBV(@c,1`)) means that, for
any partition P:c5x0,x1,•••,xn5b of the interval
@c,b#, wherec,b,1`, the variation

Vc
b~ f ![sup

P
(
k50

n

u f ~xk!2 f ~xk21!u

is finite, and, moreover,

lim
b→1`

Vc
b~ f ![Vc

1`~ f !

exists and is finite.
We apply this theorem toTHredT

†. This Dirac operator
satisfies the hypotheses of the cited theorem. In fact, in
interval @c,1`), wherec.0, each component ofP(x) is
smooth and has derivative belonging toL1(@c,1`)), so that
08401
,

f

l

e

P(x)PBV(@c,1`)) @note that the anomalous term could
well belong toP1(x)#. This follows from the fact that, in
general, if a functionf is, e.g., continuously differentiable
and its derivativef 8 belongs toL1(@c,1`)), then

(
k50

n

u f ~xk!2 f ~xk21!u5 (
k50

n U E
xk21

xk
dt f8~ t !U

<(
k50

n E
xk21

xk
dtu f 8~ t !u

5E
c

b

dtu f 8~ t !u,

and the conditionf 8PL1(@c,1`)) allows us to get the de
sired result. Moreover,

lim
x→1`

P~x!5F2me 0

0 me
G .

Then our operatorHred has a purely absolutely continuou
spectrum in the complement of the closed interv
@2me ,me#.

Note also that this holds also for the flat space-time c
@where the anomalous contribution is monotone and boun
in @c,1`),c.0 ~then it is of bounded variation! and is also
a term which can belong toP1(x)#.

In order to verify that an infinite number of eigenvalues
contained in the mass gap of our one-particle Hamiltoni
we use theorem 2.3 of Ref.@13#. Some preliminary defini-
tions are given below.

One considers forxP(0,1`) an operatorL of the form

Ly[J~y82Sy! ~C1!

where

J5S 0 21

1 0 D ,

and

S5S p~x! c11V1~x!

c22V2~x! 2p~x!
D ,

wherec1 andc2 are positive numbers andp(x), V1(x), and
V2(x) are real, locally integrable functions@13#.

We introduce also a nontrivial linear functionalG@ .# de-
fined on real 232 matricesB by G@B#5^Bu,u&, whereu is
a non-null two-vector and̂ ,& is the inner product in
R2. G@B# so defined is a positive functional according
the definition of Ref.@13#. Let I be the identity matrix and le
P be the matrix

P[JS5S 2c21V2~x! p~x!

p~x! c11V1~x!
D .

Theorem 2.3 of Ref.@13# is:
4-10
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Let h.0, G be a nontrivial positive linear functional an
assumeP locally absolutely continuous. Then, for any se
adjoint extensionL1 of L the sets(L1)ù(2h,h) is infinite
if the scalar differential equation,

2G@ I #z91G@P22h2I 1~P8J2JP8!/2#z50

is oscillatory11either at 0 or at1`.
We verify that our Hamiltonian implements the cond

tions given in theorem 2.3 of Ref.@13#. In our case we have

c15c25me ,

V1~x!5~Af 21!me1
eQ

r
,

V2~x!52~Af 21!me1
eQ

r
,

p~x!52S kAf

r
1maAf

Q

r 2D .

As a consequence, in order to verify if the spectrum of
self-adjoint extensionL1 of L has an infinite number of ei

11‘‘Oscillatory at infinity’’ means that in a left neighborhood (b,
1`), with b.0, of 1` all the solutions of the above second ord
scalar differential equation admit infinitely many zeroes in (b,
1`) @13#. An analogous definition holds for ‘‘oscillatory at 0.’’
-

s-

r.

-

08401
e

genvalues in (2me ,me) it is sufficient to verify that the
following scalar differential equation

2G@ I #z91G@P22me
2I 1~P8J2JP8!/2#z50 ~C2!

~whereP[JS) has an oscillatory behavior either at 0 or
1`. Note that in our case the self-adjoint extension of t
reduced Hamiltonian is unique. We chooseu15(1,0)T and
also u25(0,1)T. Then one obtains a scalar equation in t
form

2z91G6~x!z50 ~C3!

whereG6 is relative to the choice of the vectoru6 . One has

G1~x!5V2
2~x!22meV2~x!1p2~x!1p8~x!,

G2~x!5V1
2~x!12meV1~x!1p2~x!2p8~x!,

and asymptotically forx→1` it holds

G6~x!;
22me~meM6eQ!

x
. ~C4!

One can use corollary 37, p. 1463, of Ref.@18# for the
scalar equation ~C3!. If the limit limx→1` x2G6(x)
5 limr→1` r 2G6(r ),2 1

4 , then the equation is oscillator
near 1`. In our case Q.0 and x2G1(x)→2` as
x→1` @if Q,0 thenx2G2(x)→2`#, that is, the behavior
is oscillatory. Cf., also the examples in Ref.@13#. Then

s~Hred!ù~2me ,me!5 infinite set. ~C5!
.
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