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Gravitation theories selected by requiring that they have a unique anti–de Sitter vacuum with a fixed
cosmological constant are studied. For a given dimensiond, the Lagrangians under consideration are labeled by
an integerk51,2, . . . ,@(d21)/2#. Black holes for eachd andk are found and are used to rank these theories.
A minimum possible size for a localized electrically charged source is predicted in the whole set of theories,
except general relativity. It is found that the thermodynamic behavior falls into two classes: Ifd22k51, these
solutions resemble the three dimensional black hole; otherwise, their behavior is similar to the Schwarzschild-
AdS4 geometry.

PACS number~s!: 04.50.1h, 04.20.Jb, 04.70.2s
a
fe
o

e

ac
s
a

ed
ce
f

k
a
a-
io

as
e

on
-

e
c
o
it

n
tr

e

ca

oles
tive
are
eir

ne
rn-

rum
hese
at

their

ur-

in

cur-
ns
lu-
ni-

ist
so

de-
the

ari-
ese
I. INTRODUCTION

Black holes are much more than a particular class of ex
solutions of the Einstein equations; they are an essential
ture of the spacetime dynamics in almost any sensible the
of gravity. Within the framework of general relativity, th
singularity theorems of Hawking and Penrose@1# show that
singular configurations—such as the Schwarzschild bl
hole—are inevitable under quite generic initial condition
Furthermore, the Schwarzschild solution describes the le
ing asymptotic behavior of the geometry for any localiz
distribution of matter. The existence of this solution at spa
like infinity is a central ingredient to prove the positivity o
energy in general relativity@2#. On the other hand, blac
holes are also fundamental objects where the thermodyn
ics of the gravitational field and its connection with inform
tion theory is expected to shed light on the quantizat
problem.

In this paper, we survey the black hole solutions in a cl
of gravitation theories, selected by requiring that they hav
unique anti–de Sitter vacuum with a fixed cosmological c
stant. For a given dimensiond, the Lagrangians under con
sideration are labeled by an integerk51,2, . . . ,@(d21)/2#,
where the Einstein-Hilbert Lagrangian corresponds tok51.
For each of these theories we examine their static, sph
cally symmetric solutions. The existence of physical bla
holes is then used as a criterion to assess the validity of th
theories, leading to a natural splitting between theories w
even and oddk.

Coupling these gravity theories with the Maxwell actio
predicts the smallest size of a spherically symmetric elec
cally charged source, except fork51.

An important aspect of the black holes under consid
ation is their thermodynamics, which is expected to be
reflection of the underlying quantum theory. The canoni
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ensemble for minisuperspaces containing the black h
found in these theories is well defined provided a nega
cosmological constant exists. It is found that black holes
unstable against decay by Hawking radiation, unless th
horizon radius is large, compared to the AdS radius.

Among all theories under consideration, there is only o
representative in each odd dimension, given by a Che
Simons action, having physical black holes whose spect
has a mass gap separating them from AdS spacetime. T
black holes always reach thermal equilibrium with a he
bath, and have positive specific heat, which guarantees
stability under thermal fluctuations.

A. Higher dimensional gravity revisited

The standard higher dimensional extension of the fo
dimensional Einstein-Hilbert~EH! action reads@3#

I EH52
1

2~d22!Vd22GE ddxA2g~R22L!. ~1!

String and M-theory corrections to this action would bring
higher powers of curvature—see, e.g., Refs.@6,7#. This may
be a source of inconsistencies because higher powers of
vature could give rise to fourth order differential equatio
for the metric. This not only complicates the causal evo
tion, but in general would introduce ghosts and violate u
tarity. However, Zwiebach@8# and Zumino@9# observed that
ghosts are avoided if stringy corrections would only cons
of the dimensional continuations of the Euler densities,
that the resulting field equations remain second order.

These theories are far from exotic. Indeed, they are
scribed by the most general Lagrangians constructed with
same principles as general relativity, that is, general cov
ance and second order field equations for the metric. Th
©2000 The American Physical Society13-1
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CRISÓSTOMO, TRONCOSO, AND ZANELLI PHYSICAL REVIEW D62 084013
theories were first discussed by Lanczos ford55 in 1938
@10# and more recently by Lovelock ford>3 @11#.

The Lanczos-Lovelock~LL ! action is a polynomial of de-
gree@d/2# in curvature,1 which can also be written in term
of the Riemann curvatureRab5dvab1va

cv
cb and the viel-

bein ea as2

I G5kE (
p50

[d/2]

apL (p), ~2!

whereap are arbitrary constants, andL (p) is given by

L (p)5ea1•••ad
Ra1a2

•••Ra2p21a2pea2p11
•••ead. ~3!

In first order formalism the action~2! is regarded as a func
tional of the vielbein and the spin connection, and the co
sponding field equations obtained varying with respect toea

andvab read

(
p50

[(d21)/2]

ap~d22p!E a
p50, ~4!

(
p51

[(d21)/2]

app~d22p!E ab
p 50, ~5!

where we have defined

E a
p
ªeab1•••bd21

Rb1b2
•••Rb2p21b2peb2p11

•••ebd21,

E ab
p
ªeaba3•••ad

Ra3a4
•••Ra2p21a2pTa2p11ea2p12

•••ead.

HereTa5dea1va
beb is the torsion 2-form.

Note that in even dimensions, the termL (d/2) is the Euler
density and therefore does not contribute to the field eq
tions. However, the presence of this term in the action—w
a fixed weight factor—guarantees the existence of a w
defined variational principle for asymptotically locally Ad
spacetimes@12,13#. Moreover, the Euler density should a
sign different weights to non-homeomorphic geometries
the quantum theory.

The first two terms in the LL action~2! are the cosmo-
logical and kinetic terms of the EH action~1! respectively,
and therefore general relativity is contained in the LL theo
as a particular case.

The linearized approximation of the LL and EH actio
around a flat, torsionless background are classically equ
lent @9#. However, beyond perturbation theory the prese
of higher powers of curvature in the Lagrangian makes b
theories radically different. In particular, black holes and b
bang solutions of Eq.~2!, have different asymptotic behav
iors from their EH counterparts in general. Hence, a gen
solution of the LL action cannot be approximated by a so
tion of Einstein’s theory.

1Here @x# is the integer part ofx.
2A wedge product between forms is understood throughout.
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B. Drawbacks

For a given dimension and an arbitrary choice of coe
cientsap’s, higher dimensional LL theories have some dra
backs. One difficulty is the fact that the dynamical evoluti
can become unpredictable because the Hessian matrix ca
be inverted for a generic field configuration. Thus, the v
locities are multivalued functions of the momenta and the
fore the passage from the Lagrangian to the Hamiltonian
ill defined @14,15#.

A reflection of this problem can be viewed in the stat
spherically symmetric solutions of Eqs.~4! and ~5!. For ar-
bitrary ap’s there are negative energy solutions with ho
zons and positive energy solutions with naked singulari
@16#.

These problems can be curbed if the coefficientsap’s are
chosen in a suitable way. The aim of the next section is
show that requiring the theories to possessa uniquecosmo-
logical constant strongly restricts the coefficientsap’s. As a
consequence, one obtains a set of theories labeled by a
tegerk which lead to well defined black hole configuration

II. SELECTING SENSIBLE THEORIES

The field equations of LL theory~4! can be rearranged a
a polynomial ofkth degree in the curvature

eab1•••bd21
b0R̄b1

b1b2
•••R̄bk

b2k21b2keb2k11
•••ebd2150 ~6!

where R̄b i

ab
ªRab1b ie

aeb, and the coefficientsb i ’s are re-

lated to theap’s through

(
p

[(d21)/2]

~d22p!apxp5b0)
i

k

~x2b i !. ~7!

Equation~6! can possess, in general, several constant
vature solutions with different radiir i5ub i u21/2, making the
value of the cosmological constant ambiguous. In fact,
cosmological constant could change in different regions o
spatial section, or it could jump arbitrarily as the syste
evolves in time@14,15#.

On the other hand, solving Eq.~6! for a given global
isometry leads in general to several solutions with differ
asymptotic behaviors. Some of these solutions are ‘‘sp
ous’’ in the sense that perturbations around them yi
ghosts. For instance, ifa1 anda2 were the only nonvanish
ing coefficients in the LL action~3!, two different static,
spherically symmetric solutions would be obtained, whi
are asymptotically~A!dS and flat respectively. The perturb
tions around the latter solution are gravitons, while those
the former are spurious in the sense described above@17#.

These problems are overcome demanding the theor
havea uniquecosmological constant.

Requiring the existence ofa uniquecosmological con-
stant implies that locally maximally symmetric solution
possess only one fixed radius, that isRab52beaeb. This in
turn means that the polynomial~7! must have only one rea
root. Hence, the coefficientsap’s are fixed through Eq.~7!,
so that the realb ’s in Eq. ~6! are all equal, allowing—for
3-2
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BLACK HOLE SCAN PHYSICAL REVIEW D 62 084013
d>7—an arbitrary number of distinct imaginaryb ’s which
must come in conjugate pairs. Under this assumption, s
tions representing localized sources of matter approac
constant curvature spacetime with a fixed radius in
asymptotic region.

In what follows, we consider the simplest class of su
theories, namely, we assume the field equations to be o
form ~6! with only one realbª1/l 2, and no complex roots.3

These theories are described by the action

I k5kE (
p50

k

cp
kL (p), ~8!

which is obtained from Eq.~2! with the choice

apªcp
k5H l 2(p2k)

~d22p! S k

pD , p<k,

0, p.k,

~9!

where 1<k<@(d21)/2#.
For a given dimensiond, the coefficientscp

k give rise to a
family of inequivalent theories, labeled by the integerk
P$1, . . . ,@(d21)/2#% which represents the highest power
curvature in the Lagrangian. This set of theories posse
only two fundamental constants,k andl, related to the gravi-
tational constantGk and the cosmological constantL
through4

k5
1

2~d22!!Vd22Gk
, ~10!

L52
~d21!~d22!

2l 2
. ~11!

The field equations for the actionI k in Eq. ~8! read

eba1•••ad21
R̄a1a2

•••R̄a2k21a2kea2k11
•••ead2150, ~12!

eaba3•••ad
R̄a3a4

•••R̄a2k21a2kTa2k11ea2k12
•••ead2150,

~13!

with R̄ab
ªRab1(1/l 2)eaeb.

Examples

There are special cases of interest which are obtained
particular values of the integerk.

~i! The Einstein-Hilbert action ind dimensions, Eq.~1!, is
recovered settingk51 in Eq. ~8!.

~ii ! At the other end of the range,k5@(d21)/2#, even
and odd dimensions must be distinguished. These case
exceptional in that they are the only ones which allow s

3A negative cosmological constant is assumed for later con
nience, but this analysis does not depend on its sign.

4Here the gravitational constant has natural units given by@Gk#
5(length)d22k.
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tors with non-trivial torsion@18#, as discussed in Appendi
A. When d52n21, the maximum value ofk is n21, and
the corresponding Lagrangian is a Chern-Simons~CS! (2n
21)-form defined through Eq.~A3!. For d52n and k5n
21, the action can be written as the Pfaffian of the 2-fo
R̄ab5Rab1(1/l 2)eaeb and, in this sense, it has a Born
Infeld-like ~BI!-like form given by Eq.~A1!.5

~iii ! In three and four dimensions Eq.~9! defines only one
possible theory which corresponds to EH. As is well know
the EH action is equivalent to CS theory in three dimensio
@19#, and ford54 the EH action coincides with the BI actio
up to the Euler density.

~iv! In five and six dimensions, there are only two i
equivalent theories which correspond tok51,2. In five di-
mensions,k51 represents EH andk52 leads to CS. Ford
56, one obtain EH and BI respectively.

~v! For d>7 there exist other interesting possibilitie
which are neither EH, BI nor CS. For instance, consider
theory given by the actionI k in Eq. ~8! with k52, which
exists only for dimensions greater than 4. In this case
Lagrangian reads

L5kS l 24

d
L (0)1

2l 22

d22
L (1)1

1

d24
L (2)D , ~14!

with

L (0)5ea1•••ad
ea1

•••ead, ~15!

L (1)5ea1•••ad
Ra1a2ea3

•••ead, ~16!

L (2)5ea1•••ad
Ra1a2Ra3a4ea5

•••ead.
~17!

Here L (0) and L (1) are proportional to the standard co
mological and kinetic terms for the EH action, andL (2) is
proportional to the four dimensional Gauss-Bonnet den
@20#,

R2
ª~RmnabRmnab24RmnRmn1R2!, ~18!

whereRmnab, Rmn andR are the Riemann, Ricci and scala
curvatures, respectively. The action in standard tensor c
ponents reads

I 25
22~d23!!k

l 2 E
M

ddxA2gF l 2R2

2~d23!~d24!
1R2LG ,

~19!

with L given by Eq.~11!. In sum, the theory withk52 is
described by a Lagrangian which is a linear combination
Gauss-Bonnet density, the EH Lagrangian and the volu
term with fixed weights.

e- 5Strictly speaking one must add the Euler density to the Lagra
ian in Eq.~8! with the coefficientan5cn

n21
ª l 2/2n, which does not

modify the field equations. Therefore, the same BI Lagrangian
~A1! is recovered from~9! but now the indexp ranges from 0 ton.
3-3
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CRISÓSTOMO, TRONCOSO, AND ZANELLI PHYSICAL REVIEW D62 084013
Each of the theories described byI k for all k possesses a
unique cosmological constant. In fact, as is apparent fr
Eqs.~12! and~13!, spacetimes satisfyingR̄ab50 are the only
locally maximally symmetric solutions. This ensures that
calized matter fields give rise to solutions which are asym
totically AdS spacetimes.

III. STATIC AND SPHERICALLY SYMMETRIC
SOLUTIONS

In this section, we test the theories described byI k ana-
lyzing their static, spherically symmetric solutions includin
their electrically charged extensions. It is shown that th
possess well behaved black holes, resembling
Schwarzschild-AdS and Reissner-Nordstro¨m-AdS solutions.
The subset of theories withk odd differ from their even
counterparts, because in the first case there is a unique b
hole solution, whereas in the latter, an additional solut
with a naked singularity exists.

A. Pure gravity

Consider static and spherically symmetric solutions
Eqs. ~12! and ~13! for a fixed value of the labelk. In
Schwarzschild-like coordinates, the metric can be written

ds252N2~r ! f 2~r !dt21
dr2

f 2~r !
1r 2dVd22

2 . ~20!

Replacing thisAnsatzin the field equations~12! and ~13!
leads to the following equations forN and f 2 @21#:

dN

dr
50,

d

dr S r d21FF~r !1
1

l 2G kD 50, ~21!

where the functionF(r ) is given by

F~r !5
12 f 2~r !

r 2
. ~22!

Integrating Eqs.~21! yields

N5N` ,

f 2~r !511
r 2

l 2
2sS C1

r d22k21D 1/k

, ~23!

where the integration constantN` relates coordinate time to
the proper time of an observer at spatial infinity and in w
follows is chosen equal to 1. Heres5(61)(k11), and the
integration constantC1 is identified as

C152Gk~M1C0!,
08401
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whereM stands for the mass, as is discussed in detail in S
III C.

For evenk, the ambiguity of sign expressed throughs in
Eqs. ~23! implies that there are two possible solutions pr
vided C1.0. The solution withs51 describes a real blac
hole witha uniqueevent horizon surrounding the singulari
at the origin. The solution withs521 has a naked singu
larity with positive mass.

If k is odd, there is no ambiguity of sign becauses cannot
be different from unity; therefore in that case there exist
unique static, spherically symmetric solution, which cor
sponds to a black hole with positive mass.

The black hole mass for any value ofk is a monotonically
increasing function of the horizon radiusr 1 , which reads

M ~r 1!5
r 1

d22kÀ1

2Gk
S 11

r 1
2

l 2 D k

2C0 . ~24!

The additive constantC0 is chosen so that the horizo
shrinks to a point forM→0; hence

C05
1

2Gk
dd22k,1 , ~25!

which vanishes in all cases except for CS theory.
Summarizing, for a given dimensiond>3 the full set of

@(d21)/2# inequivalent theories given by the actionI k in
Eq. ~8! possess asymptotically AdS black hole solutio
whose line elements read

ds252F11
r 2

l 2
2S 2GkM1dd22k,1

r d22k21 D 1/kGdt2

1
dr2

11
r 2

l 2
2S 2GkM1dd22k,1

r d22k21 D 1/k 1r 2dVd22
2 .

~26!

One can see from Eq.~26! that fork51, the three dimen-
sional black hole@22# and Schwarzschild-AdS solutions o
the d-dimensional Einstein-Hilbert action with negative co
mological constant are recovered. The black hole soluti
corresponding to BI and CS theories@23# are obtained also
from Eq. ~26! settingk5@(d21)/2#.

The whole set of black hole metrics given by Eq.~26!
share a common causal structure whenM.0, which coin-
cides with the familiar one described by the Penrose diag
of the four dimensional Schwarzschild-AdS solution. Nev
theless, the presence of the Kronecker delta within the m
rics ~26! signals the existence of two possible black ho
vacua (M50) with different causal structures. The gene
case holds for the whole set of theories except CS, wh
line elements are described by Eq.~26! with d22kÞ1, that
is
3-4
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BLACK HOLE SCAN PHYSICAL REVIEW D 62 084013
ds252F11
r 2

l 2
2S 2GkM

r d22k21D 1/kGdt2

1
dr2

11
r 2

l 2
2S 2GkM

r d22k21D 1/k 1r 2dVd22
2 . ~27!

Analogously with the Schwarzschild-AdS metric, this s
possesses a continuous mass spectrum, whose vacuum
is the AdS spacetime. The other case is obtained only fod
52n21 dimensions, and it is a peculiarity of CS theorie
whose black hole solutions are recovered from Eq.~26! with
k5n21, which read

ds252S 11
r 2

l 2
2~2Gn21M11!1/(n21)D dt2

1
dr2

11
r 2

l 2
2~2Gn21M11!1/(n21)

1r 2dVd22
2 .

~28!

In that case, the black hole vacuum (M50) differs from
AdS spacetime. Although this configuration has no cons
curvature ford.3, it possesses the same causal structur
the three-dimensional zero mass black hole. Another c
mon feature with 211 dimensions is the existence of a ma
gap between the zero mass black hole and AdS space
where the later is obtained forM521/2Gn21.

B. Coupling to the electromagnetic field

The standard coupling with the electromagnetic field
obtained adding to the gravitational actionI k in Eq. ~8! the
Maxwell term6

I M52
1

4eVd22
E A2gFmnFmnddx. ~29!

Electrically charged solutions which are static and sph
cally symmetric can be found through theAnsatz~20!, and
requiring that and the only non-vanishing component of
electromagnetic field strength be

F0r52] rA0~r !. ~30!

The field equations forN, f 2 andA0 read

dN

dr
50,

d

dr
~r d22p!50,

6The constante is related with the ‘‘vacuum permeability’
throughe51/Vd22e0. Its natural units are@e#5(length)d24.
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dA0

dr
1Np50,

d

dr S r d21FF~r !1
1

l 2G kD 5
Gk

e
r d22p2,

whereF(r ) is defined in Eq.~22!, andp(r ) is a redefinition
of the electric field:

p5
1

N
F0r . ~32!

Integrating these equations yields

N5N`51,

p~r !5e
Q

r d22
,

~33!

A0~r !5f`1
e

~d23!

Q

r d23
,

f 2~r !511
r 2

l 2
2sgk~r !,

with s5(61)(k11) and

gk~r !5S 2GkM1dd22k,1

r d22k21
2

eGk

~d23!

Q2

r 2(d2k22)D 1/k

.

~34!

The integration constantsM andQ in Eq. ~34! are the mass
and the electric charge of the black hole respectively, a
shown in the next subsection.

Equations~33! provide the electrically charged extensio
of the vacuum solution~23!.7 The presence ofs in Eq. ~33!
leads to a similar picture as in the uncharged case. Whenk is
odd, there is a unique electrically charged black hole solut
becauses is always equal to 1, but whenk is even, the
solution withs51 represents a black hole, and the soluti
with s521 possess a naked singularity.

Therefore, electrically charged asymptotically AdS bla
hole solutions are obtained from Eq.~33! with s51, whose
line element reads—ford.3—as

ds252S 11
r 2

l 2
2gk~r !D dt21

dr2

11
r 2

l 2
2gk~r !

1r 2dVd22
2 ,

~35!

7The expression~34! is valid ford.3. The three dimensional cas
is discussed in Refs.@22,24#.
3-5



be
-

ie

-
s

ic
te

i-
r

r-

u-

a
u

.
ry

e

y
ric

a
a

in
w

er
h

f
ity.

tly

f the

ed
he

in

cal
n

d

the
ere
r-
ase

en-
n

ned

del

ace

CRISÓSTOMO, TRONCOSO, AND ZANELLI PHYSICAL REVIEW D62 084013
wheregk(r ) is given by Eq.~34!.
As is naturally expected, the set of black holes descri

by Eq. ~35!, reduce to the d-dimensional Reissner
Nordström-AdS solution fork51. The electrically charged
black hole solutions corresponding to BI and CS theor
@23# are also recovered ford52n and d52n21 respec-
tively, as it can be seen replacingk5n21 in Eq. ~35!.

For a generic value of the labelk, in analogy with stan-
dard Reissner-Nordstro¨m-AdS geometry, the black hole so
lutions given by Eq.~35! possess in general two horizon
located at the roots off 2(r ). They satisfy 0,r 2,r 1 pro-
vided the mass is bounded from below asM>hk(Q), where
hk is a monotonically increasing function of the electr
charge. Both horizons merge when the bound is satura
corresponding to the extreme case, that isr 15r 2 for M
5hk(Q). Solutions withM,hk(Q) possess naked singular
ties which should be considered unphysical. Thus, fo
given electric charge, the existence of a lower bound onM is
in agreement with the cosmic censorship principle.

An important difference with the Reissne
Nordström-AdS case (k51) is shared by all electrically
charged black hole solutions withkÞ1, as can be inferred
evaluating the scalar curvature for the metrics~35!, given by

R5
1

r d22

d2

dr2 F r d22S gk~r !2
r 2

l 2 D G . ~36!

For anykÞ1, Eq.~36! has a branch point unbounded sing
larity at the zero of the functiongk(r ). This is a real timelike
singularity located at

r e5S e

2~d23!

Q2

S M1
1

2Gk
dd22k,1D D

1/(d23)

, ~37!

which can be reached in a finite proper time. However,
external observer is protected from it because it is s
rounded by both horizons, i.e., 0,r e,r 2,r 1 .

Whenk is even, spacetime cannot be extended tor ,r e ,
because in that case the metrics~35! would become complex
This means that the manifold possesses a real bounda
r 5r e , and therefore,r e is the smallest possible sizeof a
spherical body endowed of electric chargeQ and massM.

For odd values ofkÞ1 there is no obstruction to defin
spacetime within the regionr ,r e . However, as it can be
seen from Eq.~36!, there is an additional timelike singularit
located atr 50. In that case, a spherical source with elect
chargeQ and massM, whose radius is smaller thanr e pos-
sesses an exterior geometry described by Eq.~35! which can-
not be empty, since it has a singularity atr 5r e . This means
that the original source generates ‘‘a shield,’’ which acts
the effective source of the external geometry. Hence, ag
r e is thesmallest sizefor the source.

This means that the presence of electric charge brings
new length scale into the system, except when one deals
the EH action. For CS theory (d52k11), the radiusr e de-
pends on the gravitational constant. However, in the gen
case, which is given by the set of theories which are neit
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EH or CS, the radiusr e depends only on intrinsic features o
the source and it is completely independent from grav
That is, r e is independent of the labelk, the gravitational
constantGk and the cosmological constant—or equivalen
the AdS radiusl—that is

r e5S e

2~d23!

Q2

M D 1/(d23)

, ~38!

which has the same expression as the classical radius o
electron ind dimensions. It is noteworthy thatr e is encoded
in the geometry.

Remarkably, the only theory within the family discuss
here, which is unable to predict a minimum size for t
source is general relativity.

C. Mass and electric charge from boundary terms

In order to identify the integration constants appearing
the black hole solutions~26! and ~35! with the mass and
electric charge, it is convenient to carry out the canoni
analysis@25#. The total action can be written in Hamiltonia
form as

I T5I G1I M1B, ~39!

where I G and I M are the canonical actions for gravity an
electromagnetism, respectively,

I G5E ddx~p i j ġi j 2N'HG'2NiHGi!, ~40!

I M5E ddx~piȦi2N'HM'2NiHMi2A0] i p
i !,

~41!

andB stands for a boundary term which is needed so that
action attains an extremum on the classical solution. H
HGm andHMm are the Hamiltonian generators of diffeomo
phisms on the gravitational and electromagnetic ph
spaces, respectively~see Ref.@14#!.

In case of static, spherically symmetric spacetimes, a g
eral theorem@26# implies that the extremum of the action ca
be found through a minisuperspace model, which is obtai
replacing theAnsätze ~20! and ~30! into the action, as well.
Hence, one deals with a simple one-dimensional mo
which allows fixing the boundary termB as a function of the
integration constants requiring the total action~39! to have
an extremum on the classical solutions. The minisupersp
action takes the form

I T5DtE N

2 F d

dr H r d21

Gk
FF~r !1

1

l 2G kJ 2
1

e
r d22p2Gdr

1
1

e
DtE A0

d

dr
~r d22p!dr1B, ~42!

where NªN'(r ) f 22(r ), and p is a redefinition of the ca-
nonical momentumpr , conjugate toAr ,
3-6
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p5
1

N
F0r5

eVd22

r d22Ag
pr , ~43!

andg is the determinant of the angular metric.
The action~42! is a functional of the fieldsN, f 2, A0 and

p, whose variation leads to a bulk term which vanishes
the field equations~31!. Thus, the variation of the action~42!
on shell is a boundary term given by

dI T5DtE d

dr S N
r d21

2Gk
dFF~r !1

1

l 2G kD dr

1
1

e
DtE d

dr
~A0r d22dp!dr1dB, ~44!

which means that the action is stationary on the black h
solution provided

dB52Dt~N`dM1f`dQ!. ~45!

SincedM is multiplied by the proper time separation at i
finity, one identifiesM and Q as the mass and the electr
charge up to additive constants. The additive constant rel
with the mass is calledC0 and it is fixed in Eq.~25!, requir-
ing that the horizon shrink to a point forM→0. The additive
constant related to the electric charge vanishes, deman
that the electrically charged solution~35! reduce to the un-
charged one~26! for Q50. Therefore, the boundary term
that must be added to the action is

B52Dt~M1f`Q!1B0 , ~46!

whereN` has been chosen equal to 1, andB0 is an arbitrary
constant without variation. This proves that the integrat
constantsM andQ appearing in the black hole metrics~35!
and ~26! are the mass and the electric charge respective

These results are confirmed also through an alterna
method which holds for even dimensions, as is discusse
Appendix B.

D. Asymptotically flat limit „ l\`…

The black hole metrics~26! and ~35! tend asymptotically
to an AdS spacetime with radiusl, whose curvature satisfie
Rab→2 l 22eaeb at the boundary. Then, their asymptotica
flat limit is obtained by takingl→`. Thus, instead of taking
the vanishing limit of the volume term (a0→0), the vanish-
ing cosmological constant limit of the actionI k is obtained
setting l→` in Eq. ~9!. This procedure is consistent wit
taking the same limit in the field equations~12! and ~13!.

When l→` the only non-vanishing term in Eq.~9! is the
kth one; consequently the action is obtained from Eq.~2!
with the following choice of coefficients:

apª c̃p
k5

1

~d22k!
dp

k . ~47!

Therefore, replacing Eq.~47! in Eq. ~2!, a new family of
Lagrangians labeled by the integerkP$1,2, . . . ,@(d
08401
n
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21)/2#%, is obtained. For a fixed value ofk, the Lagrangian
is given just byL (k) defined in Eq.~3!, so that the action
reads

Ĩ k5
k

~d22k!
E ea1•••ad

Ra1a2
•••Ra2k21a2kea2k11

•••ead,

~48!

wherek is defined in Eq.~10!. The field equations coincide
with the l→` limit of Eqs. ~12!, ~13!, which merely amounts
to replacingR̄ab by Rab.

Note that fork51, the standard EH action without cos
mological constant is recovered, while fork52 the Lagrang-
ian is the Gauss-Bonnet density~18!.

Static and spherically symmetric solutions of Eq.~48!
lead to a similar picture as in the electrically~un!charged
asymptotically AdS case: whenk is odd, one obtains only
one solution describing a black hole, but for even values ok,
two different solutions exist; one of them describes a bla
hole, while the other possesses naked singularities e
when the mass bound holds.

It is simple to verify that black hole solutions of the actio
~48! correspond to the vanishing cosmological constant li
of the solutions for pure gravity~26!. This also holds for the
electrically charged solutions~35!.

1. QÄ0

The asymptotically flat solutions without electric char
are given by

ds252F12S 2GkM

r d22k21D 1/kGdt21
dr2

12S 2GkM

r d22k21D 1/k

1r 2dVd22
2 . ~49!

The generic cases correspond tod22k21Þ0, for which the
metrics ~49! represent black hole solutions with an eve
horizon located atr 15(2GkM )1/(d22k21). As usual, their
common vacuum geometry is the flat Minkowski spacetim
and their causal structure is described through the stan
Penrose diagram of the Schwarzschild solution. In case
k51 ~EH!, the Schwarzschild solution is recovered from E
~49! for d.3. Exceptional cases occur whend52k11, for
which the action~48! corresponds to a CS theory for th
Poincare´ group ISO(d21,1). Their static, spherically sym
metric solutions~49! do not describe black holes becau
they have a naked singularity at the origin. This can be
ferred from Eq.~28! because whenl→` the horizon recedes
to infinity. For instance, in three dimensions, the soluti
~49! represent a conical spacetime@27#.

2. QÅ0

The electrically charged asymptotically flat black hole s
lutions can be obtained ford.3 from Eq. ~35! in the limit
l→`. As for the uncharged solutions, the generic case ho
for d22k21Þ0, whose line elements read
3-7
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ds252@12gk~r !#dt21
dr2

12gk~r !
1r 2dVd22

2 , ~50!

with gk(r ) given by

gk~r !5S 2GkM

r d22k21
2

eGk

~d23!

Q2

r 2(d2k22)D 1/k

. ~51!

For different generic values of the labelk, the black hole
solutions given by Eq.~50! resemble the Reissner-Nordstro¨m
one, possessing two horizons which are found solv
gk(r )51. As usual, these horizons satisfy 0,r 2,r 1 pro-
vided the mass is bounded from below by

Q2<
~d22k21!

eGk
S ~d23!GkM

d2k22 D (2d22k24)/(d22k21)

.

~52!

The extreme case occurs when both horizons coalesce, th

r 15r 25S ~d23!GkM

d2k22 D 1/(d22k21)

, ~53!

so that the bound~52! is saturated.
The d-dimensional Reissner-Nordstro¨m solution is ob-

tained from Eq.~50! settingk51. Equation~52! reproduces
the well-known four-dimensional bound given by

QEH
2 <

GM2

e
, ~54!

which is saturated whenr 15r 25GkM , as can be seen from
Eq. ~53! for d54 andk51.

A further example corresponds to the electrically charg
black hole in the vanishing cosmological constant limit
the BI action. The bound and the extreme radius are obta
in that case from Eqs.~52! and ~53! for d52n and k5n
21:

QBI
2 <

1

eGn21
F ~2n23!Gn21M

n21 G2(n21)

r 15r 25
~2n23!Gn21M

n21
. ~55!

The full set of asymptotically flat electrically charge
black hole solutions~50! shares a common feature with i
asymptotically AdS counterparts given by Eq.~35! in the
generic case (d22k21Þ0). That is the existence of a time
like singularity forkÞ1 located at the zero ofgk(r ) in Eq.
~51! given by

r e5S e

2~d23!

Q2

M D 1/(d23)

, ~56!

which satisfies 0,r e,r 2,r 1 and is again interpreted a
the smallest possible sizeof a spherical body with electric
08401
g

t is

d
f
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chargeQ and massM. Then one concludes that this feature
absent only when one deals with the EH action with or wi
out cosmological constant.

IV. THERMODYNAMICS

A. Temperature

As usual, we define the black hole temperature by
condition that in the Euclidean sector, the solution be w
defined~smooth! at the horizon. This means that the Eucli
ean time is a periodic coordinate with period

t54pS d f2

dr U
r 1

D 21

, ~57!

which is identified withb51/kBT, wherekB is the Boltz-
mann constant. Thus, the Hawking temperature is given

T5
1

4pkB

d f2

dr U
r 1

. ~58!

For the electrically uncharged cases, the black hole te
perature for the set of metrics~26! is

T5
1

4pkBk S ~d21!
r 1

l 2
1

~d22k21!

r 1
D . ~59!

For all k such thatd22k21Þ0, the functionT(r 1) exhibits
the same behavior as the standard Schwarzschild-AdS b
hole ~which is obtained fork51); that is, the temperature
diverges atr 150. It has a minimum atr c given by

r c5 lAd22k21

d21
, ~60!

and grows linearly for larger 1 . Consideringk5n21, for-
mula ~59! reproduces the known results for BI (d52n) and
CS (d52n21) black holes@23#. The temperature~59!
reaches an absolute minimum atr c equal to

Tc5
A~d22k21!~d21!

2pkBkl
, ~61!

provided the existence of a nonvanishing cosmological c
stant (lÞ`).

In case of CS theory, that is whend22k2150, T(r 1) is
not divergent at all, its absolute minimum is atr c50 and
Tc50. Thus, CS black holes are the only exceptional ca
among all the possibilities considered here. Both, CS
generic cases are depicted in Fig. 1.

B. Specific heat and thermal equilibrium

As seen in Sec. III A, the black hole mass is a monoto
cally increasing function ofr 1 ; therefore the behavior o
T(M ) is qualitatively similar to that ofT(r 1).

Using Eqs.~59! and ~24!, the specific heatCk5]M /]T
can be expressed as a function ofr 1:
3-8
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Ck5k
2pkB

Gk
r 1

d22kS r 1
2 1r c

2

r 1
2 2r c

2D S 11
r 1

2

l 2 D k21

. ~62!

In case ofd22k21Þ0, the specific heat~62! possesses a
unbounded discontinuity atr 15r c ~see Fig. 2!, signaling a
phase transition. The specific heatC is positive forr 1.r c ,
and has the opposite sign forr 1,r c .

Again, the CS case is exceptional. Settingd52n21 and
k5n21 in Eq. ~62!, the specific heat is found as

CCS5~n21!
2pkB

Gn21
r 1S 11

r 1
2

l 2 D n22

, ~63!

which is a continuous monotonically increasing positi
function ofr 1 and does not diverge for any finite value ofr 1

@28#.
The presence of a negative cosmological constant ma

it possible for the family of black hole solutions~26! to reach
thermal equilibrium, as is possible for the Schwarzsch

FIG. 1. The black hole temperature is plotted as a function
the horizon radiusr 1 . For d22kÞ1 the temperature reaches a
absolute minimumTc at r 15r c .

FIG. 2. The specific heatCk is plotted as a function of the
horizon radius. For a generic theory,d22kÞ1, Ck has a simple
pole atr 15r c . For the exceptional case,d52k11 ~CS!, the spe-
cific heat is a continuous, monotonically increasing, positive fu
tion of r 1 .
08401
es

-

AdS4 spacetime@29# and for the three-dimensional blac
hole. Let us assume that any black hole described by Eq.~26!
is immersed in a thermal bath of temperatureT0.Tc . If d
22k21Þ0, the thermal behavior splits in two branches: f
r 1,r c , the specific heat is negative and therefore black h
state is driven away from that with temperatureT0; for r 1

.r c , the black hole state is attracted towards the equilibri
configuration at temperatureT0 ~see Fig. 3!. Thus, the tem-
peratureT0 corresponds to two equilibrium states of radiir u
~unstable! and r s ~locally stable!, with r u,r c,r s . Neglect-
ing quantum tunneling processes, there are two possible
narios: if the initial black hole state hasr 1,r u , the black
hole cannot reach equilibrium because it evaporates unti
final stage. Otherwise, forr 1.r u , the black hole evolves
towards an equilibrium configuration atr 15r s .

If the heat bath has temperature belowTc , the black hole
cannot reach a stable equilibrium state and must evapo
as depicted in Fig. 4.

None of the above arguments hold for the Chern-Sim
case. Whend22k51, the specific heat~63! is always posi-
tive; therefore the equilibrium configuration is alway
reached, independently from the initial black hole state a
for any finite temperature of the heat bath.

f

-

FIG. 3. In the generic case,d22kÞ1, the black hole can reach
thermal equilibrium with a bath of temperature higher thanTc ,
provided the horizon radius satisfiesr 1.r u .

FIG. 4. In the generic case,d22kÞ1, the black hole canno
reach thermal equilibrium with a bath of temperature lower th
Tc .
3-9
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C. Entropy

It is well known that the partition function which de
scribes the black hole thermodynamics is obtained thro
the Euclidean path integral in the saddle point approxima
around the black hole solution@30#. That is,

Z'e2I E,

which means that the Euclidean action evaluated on
black hole configuration is identified withb times the free
energy of the system

I E5bM2
S

kB
1b(

i
m iQi , ~64!

where them i ’s are the chemical potentials corresponding
the chargesQi . The Euclidean minisuperspace action
given by the Wick-rotated form of Eq.~42!, that is

I E52bE
r 1

` N

2 F d

dr H r d21

Gk
FF~r !1

1

l 2G kJ 2
1

e
r d22p2Gdr

2
1

e
bE

r 1

`

A0

d

dr
~r d22p!dr1BE . ~65!

In what follows we shall consider the electrically u
charged cases only. The bulk part of the Euclidean actio
a linear combination of the constrains and, therefore, its
shell value is given by the boundary termBE . This boundary
piece is determined by the requirement thatI E be stationary
on the black hole geometry. Varying Eq.~65! leads to

dI E52
bN`

2Gk
E

r 1

` d

dr H r d21dFF~r !1
1

l 2G kJ dr1dBE ,

~66!

on shell. From this expression, one finds

dBE5bdM2
2pk

Gk
r 1

d22k21S 11
r 1

2

l 2 D k21

dr 1 ,

where N` has been set equal to one and we have u
d f2/drur 1

54pb21. From Eq.~64! one identifies

dS5k
2pkB

Gk
r 1

d22k21S 11
r 1

2

l 2 D k21

dr 1 , ~67!

which is integrated into

Sk5k
2pkB

Gk
E

0

r 1

r (d22k21)S 11
r 2

l 2 D k21

dr. ~68!

This is a monotonically increasing function ofr 1 , in agree-
ment with the second law of thermodynamics. In Eq.~68! the
lower limit in the integral has been fixed by the conditio
Sk(r 150)50 for the whole set of black holes given by E
~26!.
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For the EH action~that is for k51), expression~68!
readily reproduces, for the Schwarzschild-AdS solution,

SEH5
2pkB

~d22!G
r 1

d22 ,

which in standard units@3# is the celebrated ‘‘area law’’

SEH5
kB

G̃

A

4
.

For k5@(d21)/2# ~BI and CS!, formula ~68! reduces to
the known results@23#. The theory described byI 2 in Eq.
~19! is an intrinsically higher dimensional one, and the co
responding black hole entropy is given by

S25
4pkB

G2
r 1

d24F 1

~d24!
1

r 1
2

~d22!l 2G . ~69!

Hence, the area law is a peculiarity of the Einstein-Hilb
theory (k51), while forkÞ1 the entropy~68! becomes pro-
portional to the area in the larger 1 limit, that is

Sk'k
2pkB

~d22!Gkl
2(k21)

r 1
d225k

G

Gkl
2(k21)

SEH , ~70!

with r 1@ l .

D. Asymptotically flat limit

In the limit l→`, the geometry of the uncharged blac
hole is given by Eq.~49! whose corresponding temperatu
is

T05
1

4pkBk

~d22k21!

r 1
. ~71!

This gives a vanishing value for CS theory (d22k2150),
which is consistent with the fact that in that case, the geo
etry possesses a singularity which is not surrounded b
horizon in the limit l→`, so that no temperature can b
associated with it. For all the other cases (d22k21Þ0), the
horizon is located atr 15(2GkM )1/(d22k21), so that the
black hole temperature~71! is a monotonically decreasin
function of the mass. Therefore, thermal equilibrium c
never be reached, consistently with the fact that the spe
heat is always negative:

C052k
2pkB

Gk
r 1

d22k . ~72!

The entropy is also an increasing function ofr 1 ,

Sk
05k

2pkB

Gk

r 1
(d22k)

~d22k!
, ~73!

which is consistent with the second law of thermodynami
Note that formula~73! is proportional to the area of the ho
3-10
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rizon only for k51 ~EH!. Thus, in thel→` limit, the area
law cannot be recovered even as an approximation in
cases withkÞ1.

E. Canonical ensemble

In four dimensions, Hawking and Page have shown tha
the presence of a negative cosmological constant, the p
tion function in the canonical ensemble is well defined, u
like in case of a vanishingL @29#. The same argument can b
extended for higher dimensions for the whole set of theo
~8! labeled byk.

The partition function in the canonical ensemble reads

Z~b!5E
0

`

e2bMr~M !dM, ~74!

wherer(M )5exp(Sk /kB) is the density of states as a fun
tion of the energy. The convergence of this integral depe
on the asymptotic behavior ofSk for largeM,

Sk'ad,kM
(d22)/(d21),

wheread,k is a positive constant. Thus, the integrand of E
~74! goes as exp(2bM1kB

21ad,kM
(d22)/(d21)) and therefore

the partition function converges.
This argument breaks down in thel→` limit: in that

case, the entropy is

Sk
05ad,k

0 M (d22k)/(d22k21),

with ad,k
0 a different positive constant, which yields a dive

gent partition function.
The lesson one can draw from this exercise is that

presence of a negative cosmological constant is sufficien
render the canonical ensemble well defined for all the th
ries described here.

V. SUMMARY AND DISCUSSION

A. Theories described by the actionI k

We have examined a family of gravitation theories in
mensiond, whose common feature is to possess vacuum
lutions with maximal symmetry. This means that t
theories—described by the actionI k—have a unique cosmo
logical constant. For a givend there exist@(d21)/2# differ-
ent theories labeled by the integerk, which is the highest
power of curvature in the Lagrangian. Fork51, the EH
action is recovered, while for the largest value ofk, that is
k5@(d21)/2#, BI and CS theories are obtained. These th
cases exhaust the different possibilities up to six dimensio
and new interesting cases arise ford>7. For instance, the
case withk52, which is described by the action~19!, exists
only for d.4: In five dimensions this theory is equivalent
CS; for d56 it is equivalent to BI, and ford57 and up, it
defines a new class of theories.
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B. Special cases selected from cosmic censorship

A first distinction between the different theories me
tioned above comes from the study of their spherically sy
metric, static solutions. It is found that for oddk, physical
black holes satisfying the cosmic censorship criterion ex
For evenk, however, both physical black holes and solutio
with naked singularities with positive mass exist. This
ready casts doubt on the soundness of this subset of theo
Moreover, the absence of a cosmic censorship princ
would be in conflict with the existence of a positive ener
theorem obtained from supersymmetry. This means that
supersymmetric extensions of the theories considered
can be expected to be very different for odd and evenk. In
fact, as it has been shown in@31#, CS theories with even
k—defined ford55,9, . . . —have a supersymmetric exten
sion based on superunitary groups, whereas for oddk (d
53,7,11, . . . ) thecorresponding supergravities are based
the orthosymplectic groups.

The different theories considered here are summarize
the scheme shown in Fig. 5.

Here we have highlighted the oddk columns as they
would represent better candidates for physical theories ba
on the criterion of cosmic censorship versus supersymme

Note that CS theories are the representatives of the low
possible dimension for a givenk. Moreover, CS gravity theo-
ries exhibit local AdS symmetry whereas all other gravi
tion theories of the same dimension only have local Lore
invariance~see Appendix A!.

Over the years, 11 dimensional spacetime has been
lieved to be the arena for the ultimate unified theory. Fro

FIG. 5. Black hole scan: summary of all theories described byI k

up to 11 dimensions. The integerk51, . . . ,@(d21)/2# represents
the highest power of curvature in the action. The columns with o
k are singled out by cosmic censorship. The supersymmetric ex
sions of EH and CS theories are known. The supergravities for
remainingI k’s are unknown.
3-11
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CRISÓSTOMO, TRONCOSO, AND ZANELLI PHYSICAL REVIEW D62 084013
the present analysis, it follows that ind511, the casesk
51,3,5 are of special interest. The supersymmetric exten
for k51 is the famous Cremmer-Julia-Scherk supergrav
@32#, which only exists if the cosmological constant vanish
@33#. The supersymmetric extension fork55 with a finiteL
is also known@34,31#, whose vanishing cosmological con
stant version is described in@35#. The corresponding super
symmetric extension of the gravity theory withk53 is an
open problem.

C. Black holes

For all dimensions and for anyk, there exist well-behaved
black hole solutions, in the sense that the singularities
hidden by an event horizon. Ford22kÞ1, the causal struc
ture of these black holes is the same as that
Schwarzschild-AdS and Reissner-Nordstro¨m-AdS space-
times. However, this set of black holes differs from stand
d-dimensional Schwarzschild and Reissner-Nordstro¨m solu-
tions in that their asymptotic behavior, with respect to t
vacuum, is given byg002ḡ00'r 2[(d22k21)/k] . Again, the CS
case stands separate from the rest, in that the causal stru
of the vacuum is the same as that of 211 dimensions, and
analogously, there is a mass gap between theM50 black
hole and AdS spacetime (M521/2Gn21). Furthermore, in
the vanishing cosmological constant limit, the CS theo
supports no static, spherically symmetric black holes.

In the electrically charged case, the black holes forkÞ1
predict a minimum size for a physical source. It is notew
thy that the geometry encodes this restriction for all cas
except for the EH action.

D. Thermodynamics

The presence of a negative cosmological constant for
entire set of theories described by the actionI k makes it
possible for black holes to reach thermal equilibrium with
heat bath. The AdS radiusl acts as a regulator allowing th
canonical ensemble to be well defined, unlike the case
zero cosmological constant. The black hole entropy ob
the area law only in the casek51. For other values ofk, the
entropy respects the second law of thermodynamics, bec
dS/dr1.0, but the area law is recovered only in the lim
r 1 / l→`.

In the limit L→0, the area law never holds, except f
k51. In that limit, the temperature has no minimum a
consequently the thermodynamic equilibrium cannot
reached.

The thermodynamic behavior is qualitatively the same
the Schwarzschild-AdS4 black hole in the generic casesd
22kÞ1. On the other hand, Chern-Simons black holes
odd dimensions behave like thed53 case.

In the generic cases, black holes have a minimum te
peratureTc at r 15r c5 lA(d22k21)/(d21), so that—as is
depicted in Fig. 3—those whose horizon radius exceed
unstable equilibrium positionr u can reach equilibrium with a
heat bath of temperature higher thanTc . If the heat bath has
a temperature belowTc , or r 1,r u , the black holes evapo
rate.
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In the CS case, the temperature grows linearly withr 1 ;
hence there is no critical temperature and the thermal e
librium is always attained.

In an equilibrium configuration, the free energyF5M
2TS can be expressed as a function ofr 1 . For fixedk the
behavior ofF can be found from Eqs.~24!, ~59! and~68! as

F~r 1→0!;
r 1

d22k21

2~d22k!Gk
, ~75a!

F~r 1→`!;2
r 1

d21

2~d22!Gkl
2k

. ~75b!

This change in sign has been interpreted as an indica
that, for smallr 1 the black hole would be unstable for deca
into AdS spacetime, while for larger 1 the black hole would
be stable@5#. This suggests that a phase transition wou
occur atF(r 1)50. This conclusion, however, contradic
the fact that the phase transition actually occurs at the crit
valuer c , where the specific heatC changes sign, and which
does not coincide with the zero ofF(r 1). In particular, con-
sidering the EH action (k51), the change of sign inF oc-
curs atr 15 l while r c5 lA(d23)/(d21), l . Moreover, for
the CS case,d22k51, there is no phase transition at a
although F still has a change in sign. The source of t
disagreement lies in that the canonical ensemble is defi
keepingT fixed, while the limits in Eqs.~75a! and ~75b! do
not respect this condition.

From all the evidence presented here, it is apparent
CS theories form an exceptional class: They are genu
gauge theories whose supersymmetric extension is kno
their black hole spectrum has a mass gap separating it f
AdS spacetime, and these black holes possess remark
thermodynamical properties. CS black holes can reach t
mal equilibrium with a heat bath at any temperature, and
positivity of the specific heat guarantees their stability un
thermal fluctuations.

In contrast with the generic case, a small CS black hol
stable against decay by Hawking radiation. This sugge
that, as in the three dimensional case, CS~super!gravities
could have a well-defined quantum theory.
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APPENDIX A: CS AND BI THEORIES

Requiring that the integrability conditions of equation~4!
do not impose further algebraic constraints on the curva
or the torsion beyond Eq.~5! implies that the coefficients
ap’s in Eq. ~2! satisfy a recursive equation, whose soluti
fixes them in terms of the gravitational and cosmologi
constants@18#. An equivalent way to express this is that th
ap’s become fixed as in Eq.~9! with k5@(d21)/2#, just
requiring the existence of a sector in the theory with pro
gating torsion. Thus, ind52n dimensions, the Lagrangia
reads

L5
k l 2

2n
ea1•••ad

R̄a1a2
•••R̄ad21ad, ~A1!

where8 R̄ab
ªRab1(1/l 2)eaeb.

The expression~A1! is proportional to the Pfaffian of the
2-form R̄ab and, in this sense, it has a Born-Infeld-like for
@36#:

L52n21~n21!!k l 2AdetS Rab1
1

l 2
eaebD . ~A2!

For d52n21 dimensions, the Lagrangian is given by t
Euler-Chern-Simons form for the AdS group, whose exter
derivative is proportional to the Euler density in 2n dimen-
sions,

dLG 2n21
AdS 5

k l

2n
eA1•••A2n

R̄A1A2
•••R̄A2n21A2n5k̄E2n , ~A3!

where R̄AB stands for the AdS curvature. This Lagrangi
was discussed in@37# and also in@23# for torsion-free mani-
folds.

Additional terms which depend explicitly on the torsio
are required by local supersymmetry@31,34# and they can be
consistently added to the Lagrangian only ford54m21
@18#.

These torsional Lagrangians are odd under parity and
obtained from the Chern characters associated with the
curvature in 4m dimensions. Furthermore, the coefficients
front of the different terms in these torsional Lagrangians
necessarily quantized. The odd dimensional action, with
without torsional terms, has a larger local symmetry given
SO(d21,2), so that beyond standard local Lorentz symm
try (dea5la

beb anddvab52Dlab), these theories are in
variant also under local ‘‘AdS translations:’’

8A positive cosmological constant is obtained makingl 2→2 l 2.
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dea52Dla

dvab5
1

l 2
~laeb2lbea!. ~A4!

APPENDIX B: CONSERVED CHARGES FROM A
BACKGROUND-INDEPENDENT SURFACE INTEGRAL

If one deals with more general solutions possessing
ferent isometries, the identification of the integration co
stants with the conserved charges through the minisu
space trick does not work, because in general the redu
action does not lead to the true extremum of the origi
action. The Hamiltonian method provides a way to expr
the mass as a surface integral@25#. However, this procedure
requires the invertibility of the symplectic matrix associat
with the actionI k . This is impossible to perform globally in
phase space, because there are field configurations for w
the symplectic form degenerates. Therefore, no general
mula could be found for an arbitrary field configuration.

A way to circumvent this problem is carried out ind
52n following a recently proposed method@12,13# which is
appropriate to deal with asymptotically AdS spacetimes.

Consider the actionI k defined in Eq.~8!. In first order
formalism, the existence of an extremum ofI k for asymptoti-
cally locally AdS spacetimes fixes the boundary term t
must be added to the action as being proportional to
Euler density multiplied by a fixed weight factor. Hence,
order to cancel the boundary term coming from the variat
of I k , the total action including the boundary term—up to
constant—is given by

I T5I k1kanE E2n , ~B1!

with

an5cn
k
ª

~21!n1k11l 2(n2k)

2nS n21
k D . ~B2!

The total actionI T is invariant under diffeomorphisms b
construction, becauseI k is written in terms of differential
forms. Thus, Noether’s theorem provides a conserved cur
(d* J50) associated with this invariance, which can be
cally written as * J5dQ. Assuming the topology of the
manifold to be of the formM5R3S, this procedure yields
a regularized and background-independent expression fo
conserved charges associated with a Killing vectorj, which
is globally defined on the boundary of the spatial section]S.
The surface integral reads

Q~j!5E
]S

jmvm
abTab , ~B3!

where,Tab is the variation of the total Lagrangian with re
spect to the curvature

Tabª
dLT

dRab
5 (

p51

n

cp
kpT ab

p , ~B4!
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with

T ab
p 5keaba3•••ad

Ra3a4
•••Ra2p21a2pea2p11

•••ead,
~B5!

and where the coefficientscp
k are defined through Eqs.~9!

and ~B2!.
The mass is obtained from Eq.~B3! whenj5] t , without

making further assumptions about the matching with a ba
ground geometry nor with its topology.

One way to check this result is evaluating the mass for
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black hole metrics~26!, which leads to the expected resul

Q~] t!5M . ~B6!

It is a simple exercise to check that formula~B3! vanishes
when evaluated on any constant curvature spacetim
satisfying R̄ab5Rab1 l 22eaeb50—which admits at leas
one Killing vector. This means that spaces which are loca
AdS have vanishing Noether charges for the whole se
theories defined byI k in even dimensions. These spaces
general possess non-trivial topologies and could be rega
as different possible vacua. Hence one can find massive
lutions which correspond to excitation of the correspond
vacuum in the same topological sector.
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