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Gravitation theories selected by requiring that they have a unique anti—de Sitter vacuum with a fixed
cosmological constant are studied. For a given dimengitime Lagrangians under consideration are labeled by
an integekk=1,2, ... [(d—1)/2]. Black holes for eack andk are found and are used to rank these theories.

A minimum possible size for a localized electrically charged source is predicted in the whole set of theories,
except general relativity. It is found that the thermodynamic behavior falls into two classes2K=1, these

solutions resemble the three dimensional black hole; otherwise, their behavior is similar to the Schwarzschild-
AdS, geometry.

PACS numbsg(s): 04.50:+h, 04.20.Jb, 04.76:s

[. INTRODUCTION ensemble for minisuperspaces containing the black holes
found in these theories is well defined provided a negative
Black holes are much more than a particular class of exagtosmological constant exists. It is found that black holes are
solutions of the Einstein equations; they are an essential feainstable against decay by Hawking radiation, unless their
ture of the spacetime dynamics in almost any sensible theoryorizon radius is large, compared to the AdS radius.
of gravity. Within the framework of general relativity, the ~ Among all theories under consideration, there is only one
singularity theorems of Hawking and Penrd4é show that 'epresentative in each odd dimension, given by a Chern-
singular configurations—such as the Schwarzschild blacieimons action, having physical black holes whose spectrum
hole—are inevitable under quite generic initial conditions.N@s & mass gap separating them from AdS spacetime. These
Furthermore, the Schwarzschild solution describes the lead2/ack holes always reach thermal equilibrium with a heat
ing asymptotic behavior of the geometry for any Iocalizedbath; _and have positive specm_c heat, which guarantees their
distribution of matter. The existence of this solution at spaceStability under thermal fluctuations.
like infinity is a central ingredient to prove the positivity of
energy in general relativity2]. On the other hand, black
holes are also fundamental objects where the thermodynam- . . . :
ics of the gravitational field and its connection with informa- . The 'standa.rd h|gher dlmensmnql extension of the four-
tion theory is expected to shed light on the quantizatiordimensional Einstein-HilberEH) action reads3]

A. Higher dimensional gravity revisited

problem. 1
In this paper, we survey the black hole solutions in a class ley=— —f dix\V—g(R—2A). (1)
of gravitation theories, selected by requiring that they have a 2(d=2)Qq-,G

unique anti—de Sitter vacuum with a fixed cosmological con-
stant. For a given dimensiagh the Lagrangians under con- String and M-theory corrections to this action would bring in
sideration are labeled by an inteder1,2,...[(d—1)/2], higher powers of curvature—see, e.g., Rg€&7]. This may
where the Einstein-Hilbert Lagrangian correspond&4ol.  be a source of inconsistencies because higher powers of cur-
For each of these theories we examine their static, spherisature could give rise to fourth order differential equations
cally symmetric solutions. The existence of physical blackfor the metric. This not only complicates the causal evolu-
holes is then used as a criterion to assess the validity of thog®n, but in general would introduce ghosts and violate uni-
theories, leading to a natural splitting between theories witharity. However, Zwiebach8] and Zuming9] observed that
even and oddk. ghosts are avoided if stringy corrections would only consist
Coupling these gravity theories with the Maxwell action of the dimensional continuations of the Euler densities, so
predicts the smallest size of a spherically symmetric electrithat the resulting field equations remain second order.
cally charged source, except foe=1. These theories are far from exotic. Indeed, they are de-
An important aspect of the black holes under considerscribed by the most general Lagrangians constructed with the
ation is their thermodynamics, which is expected to be asame principles as general relativity, that is, general covari-
reflection of the underlying quantum theory. The canonicalance and second order field equations for the metric. These
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theories were first discussed by Lanczos det5 in 1938 B. Drawbacks

[10] and more recently by Lovelock fat=3 [11]. For a given dimension and an arbitrary choice of coeffi-
The Lanczos-LovelockLL) action is a polynomial of de- cientsa,’s, higher dimensional LL theories have some draw-

gree[d/2] in curvature Wh'gh canbalso be written in terms  packs. One difficulty is the fact that the dynamical evolution

of the Riemann curvatur®®=dw®’+ »®.0” and the viel-  ¢an pecome unpredictable because the Hessian matrix cannot

beine® as’ be inverted for a generic field configuration. Thus, the ve-
(/2] locities are multivalued functions of the momenta and there-
_ ) fore the passage from the Lagrangian to the Hamiltonian is

lo=r| 2, apl®, @ il defined[ 14,15,

A reflection of this problem can be viewed in the static,
wherea, are arbitrary constants, andP is given by spherically symmetric solutions of Eq&l) and (5). For ar-
bitrary «’s there are negative energy solutions with hori-
L(p)zealA..adRalal --R%p-1%20e%2p+1...e%,  (3)  zons and positive energy solutions with naked singularities
[16].
In first order formalism the actiof®) is regarded as a func- These problems can be curbed if the coefficienf's are
tional of the vielbein and the spin connection, and the correehosen in a suitable way. The aim of the next section is to
sponding field equations obtained varying with respe@®o show that requiring the theories to possasasniquecosmo-
and »?° read logical constant strongly restricts the coefficieniss. As a
consequence, one obtains a set of theories labeled by an in-

[(d—1)/2] tegerk which lead to well defined black hole configurations.
2 ap(d—2p)&i=0, 4
. Il. SELECTING SENSIBLE THEORIES
(a1l o The field equations of LL theor{4) can be rearranged as
21 app(d—2p)€5,=0, (®  a polynomial ofkth degree in the curvature
Sbiby  Sbog_1b
where we have defined eabl,,_bd_lﬁoRﬁll 2, . .Rﬁik 1P2kgboi+1. . . @Pa-1= (6)
ER i=€qp,...0, R*172- - - RP2p-1PzpeP2p+1. .. gPa-1, whereﬁaf’:zRabJr,Bieaeb, and the coefficient@;’s are re-

lated to theay,’s through
EP = €apa,...a RP3. - - R320-122pT2p+1g%20+2. . . @24,
8o [(d—1)/2] k
HereT2=de*+ w?,e” is the torsion 2-form. zp (d_2p)“pxp:ﬁoﬂ (x=pi). @)
Note that in even dimensions, the tetrtf’? is the Euler
density and therefore does not contribute to the field equa- Equation(6) can possess, in general, several constant cur-
tions. However, the presence of this term in the action—withatyre solutions with different radii, = |8/ ~2, making the
a fixed weight factor—guarantees the existence of a wellyajye of the cosmological constant ambiguous. In fact, the
defined variational principle for asymptotically locally AdS ¢osmological constant could change in different regions of a
spacetimeg12,13. Moreover, the Euler density should as- spatial section, or it could jump arbitrarily as the system
sign different weights to non-homeomorphic geometries ingyolves in time[14,15.
the quantum theory. . On the other hand, solving Eq6) for a given global
The first two terms in the LL actioi2) are the cosmo-  jsometry leads in general to several solutions with different
logical and kinetic terms of the EH actidil) respectively,  asymptotic behaviors. Some of these solutions are “spuri-
and therefore general relativity is contained in the LL theoryg s in the sense that perturbations around them yield
as a particular case. _ ghosts. For instance, i#; anda, were the only nonvanish-
The linearized approximation of the LL and EH actionsjng coefficients in the LL actior(3), two different static,
around a flat, torsionless background are classically equivaspherically symmetric solutions would be obtained, which
lent [9]. However, beyond perturbation theory the presenceyre asymptoticallyA)dS and flat respectively. The perturba-
of higher powers of curvature in the Lagrangian makes bothions around the latter solution are gravitons, while those on
theories radically different. In particular, black holes and big-the former are spurious in the sense described afibve
bang solutions of Eq(2), have different asymptotic behav-  These problems are overcome demanding the theory to
iors from their EH counterparts in general. Hence, a generigayea uniquecosmological constant.
sfolut|0n pf the LL action cannot be approximated by a solu- Requiring the existence ad unique cosmological con-
tion of Einstein’s theory. stant implies that locally maximally symmetric solutions
possess only one fixed radius, thaR¥= — Be?e®. This in
turn means that the polynomiél) must have only one real
'Here[x] is the integer part ok. root. Hence, the coefficients,’s are fixed through Eq(7),
2A wedge product between forms is understood throughout. ~ so that the rea3’s in Eg. (6) are all equal, allowing—for
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d=7—an arbitrary number of distinct imaginag/s which
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tors with non-trivial torsion18], as discussed in Appendix

must come in conjugate pairs. Under this assumption, soluA. Whend=2n—1, the maximum value ok is n—1, and
tions representing localized sources of matter approach t#he corresponding Lagrangian is a Chern-Sim@$§) (2n
constant curvature spacetime with a fixed radius in the-1)-form defined through EqA3). For d=2n andk=n

asymptotic region.

—1, the action can be written as the Pfaffian of the 2-form

In what follows, we consider the simplest class of suchrab—pRab (112)e?%e" and, in this sense, it has a Born-
theories, namely, we assume the field equations to be of th@fe|d-like (BI)-like form given by Eq.(A1).

form (6) with only one real3:=1/1?, and no complex roots.
These theories are described by the action

k
l =K pzo ckL®, (8)

which is obtained from Eq2) with the choice
[2(—K) (k)

1 A 1 Sk;

ap=ci=1 (d—2p) | p/* P

0, p>K,

9)

where Isk<[(d—1)/2].
For a given dimensiod, the coefficients,") give rise to a
family of inequivalent theories, labeled by the inteder

(ii ) In three and four dimensions E) defines only one
possible theory which corresponds to EH. As is well known,
the EH action is equivalent to CS theory in three dimensions
[19], and ford=4 the EH action coincides with the Bl action
up to the Euler density.

(iv) In five and six dimensions, there are only two in-
equivalent theories which correspondke-1,2. In five di-
mensionsk=1 represents EH anki=2 leads to CS. Fod
=6, one obtain EH and BI respectively.

(v) For d=7 there exist other interesting possibilities
which are neither EH, Bl nor CS. For instance, consider the
theory given by the actiohy in Eq. (8) with k=2, which
exists only for dimensions greater than 4. In this case the
Lagrangian reads

—4 -2
e{1, ... [(d—1)/2]} which represents the highest power of L=x |_|_(0)+ LL(1)+ LLQ) , (14)
curvature in the Lagrangian. This set of theories possesses d d-2 d—4
only two fundamental constants,andl, related to the gravi- ith
tational constantG, and the cosmological constant wi
through LO=¢, ..., 8% €%, (15
1
= (1)— 18,83, . . &
K 2(d—2)1Q4_,G,’ (10 L €a,...a R T 2€7 - -7, (16)
(d—1)(d—2) L@ = €a,.. _adRalaZRa3a4ea5- ..efd,
A=— Qo (11 (17)

The field equations for the actidp in Eq. (8) read

€ba,.- 'ad_lRalaz. .- R%2k-132k@P2k+1. . . @8d-1=0, (12)

€aba,. »adRasa“‘ - R32k-132kTa2k+1g32k+2. . . @3d-1=),

(13
with R2P:=RaP+ (1/12)e?e®,

Examples

~ —2(d=3)!« g
There are special cases of interest which are obtained f0r|2_ 2 fMd XN—9 2(d—3)(d—4)

particular values of the integdr

(i) The Einstein-Hilbert action id dimensions, Eq(1), is
recovered setting=1 in Eq. (8).

(ii) At the other end of the rangd=[(d—1)/2], even

Here L(® and L") are proportional to the standard cos-
mological and kinetic terms for the EH action, ahtf) is
proportional to the four dimensional Gauss-Bonnet density
[20],

R2:=(R,,gR P~ 4R, RF+R?), (18)

whereR*"*# R*” andR are the Riemann, Ricci and scalar
curvatures, respectively. The action in standard tensor com-
ponents reads

12%?
+R—-A],

(19

with A given by Eq.(11). In sum, the theory wittk=2 is
described by a Lagrangian which is a linear combination of

and odd dimensions must be distinguished. These cases aBauss-Bonnet density, the EH Lagrangian and the volume
exceptional in that they are the only ones which allow secterm with fixed weights.

3A negative cosmological constant is assumed for later conve- Strictly speaking one must add the Euler density to the Lagrang-

nience, but this analysis does not depend on its sign.
“Here the gravitational constant has natural units giveri ®y]
= (lengthy'~ 2%,

ian in Eq.(8) with the coefficientr,=c)~*:=12/2n, which does not
modify the field equations. Therefore, the same Bl Lagrangian Eq.
(A1) is recovered fron{9) but now the indexp ranges from 0 tan.
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Each of the theories described hyfor all k possesses a whereM stands for the mass, as is discussed in detail in Sec.
unique cosmological constant. In fact, as is apparent fronhll C.
Egs.(12) and(13), spacetimes satisfying2’=0 are the only For evenk, the ambiguity of sign expressed throughin
locally maximally symmetric solutions. This ensures that lo-Eds. (23) implies that there are two possible solutions pro-

calized matter fields give rise to solutions which are asympvided C;>0. The solution witho=1 describes a real black
totically AdS spacetimes. hole witha uniqueevent horizon surrounding the singularity

at the origin. The solution witkr=—1 has a naked singu-
larity with positive mass.
If kis odd, there is no ambiguity of sign becauseannot
be different from unity; therefore in that case there exists a
In this section, we test the theories described pyna-  unique static, spherically symmetric solution, which corre-
lyzing their static, spherically symmetric solutions including sponds to a black hole with positive mass.
their electrically charged extensions. It is shown that they The black hole mass for any valuelofs a monotonically
possess well behaved black holes, resembling thécreasing function of the horizon radius , which reads
Schwarzschild-AdS and Reissner-Nordsetr&dS solutions.

Ill. STATIC AND SPHERICALLY SYMMETRIC
SOLUTIONS

The subset of theories with odd differ from their even d—2k—1 2\ k
; ) X . re re
counterparts, because in the first case there is a unique black M(r,)= _< 1+—| —C (24)
. . L. . + ZG 2 0-
hole solution, whereas in the latter, an additional solution k |

with a naked singularity exists.

The additive constanCg,is chosen so that the horizon
A. Pure gravity shrinks to a point foM —0; hence

Consider static and spherically symmetric solutions of
Egs. (12) and (13) for a fixed value of the labek. In
Schwarzschild-like coordinates, the metric can be written as COZZ_Gkadek,l’ (29

2

dr
ds’=—N*(r)f(r)dt*+ — +r2dQ3_,. (200  which vanishes in all cases except for CS theory.
F(r) Summarizing, for a given dimensiat= 3 the full set of
[(d—1)/2] inequivalent theories given by the actidp in
Eqg. (8) possess asymptotically AdS black hole solutions

whose line elements read

Replacing thisAnsatzin the field equationg12) and (13)
leads to the following equations fof and f? [21]:

dN "
W_O’ 4L — f_ 2G M + 6421 e
a E pd—2k—1
k
d 1
d-1 _ 2
—|r F(r)+—=| |=0, 21 dr
dr( SENE D m +r2dQg .
where the functiorf(r) is given by |2 pd—-2k-1
1—12(r) (26)
r One can see from E@26) that fork=1, the three dimen-
_ ) sional black hold22] and Schwarzschild-AdS solutions of
Integrating Eqs(21) yields the d-dimensional Einstein-Hilbert action with negative cos-
mological constant are recovered. The black hole solutions
N=N., corresponding to Bl and CS theorif23] are obtained also
from Eq. (26) settingk=[(d—1)/2].
;2 c 1k The whole set of black hole metrics given by EG6)
fA(r)=1+——o _ , (23 share a common causal structure whép-0, which coin-
12 rd-2k-1 cides with the familiar one described by the Penrose diagram

of the four dimensional Schwarzschild-AdS solution. Never-
where the integration constaNt, relates coordinate time to theless, the presence of the Kronecker delta within the met-
the proper time of an observer at spatial infinity and in whatrics (26) signals the existence of two possible black hole
follows is chosen equal to 1. Heke=(*+1)*"%), and the vacua M=0) with different causal structures. The generic

integration constant, is identified as case holds for the whole set of theories except CS, whose
line elements are described by Eg6) with d—2k# 1, that
C1=2G(M+Cy), is
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1k (32
dg?= 1+r2 26M ) e dA,
B 2 pd—2k-1 — +Np=0,
dr’ +r2d03 (27) K

r -2 d 1 G

re 2G\M K -2 —( Y FEmn+=| | = krd—zpz,
+ === dr |2 €

|2 rd—2k—l

. . . . whereF(r) is defined in Eq(22), andp(r) is a redefinition
Analogously with the Schwarzschild-AdS metric, this setOf the electric field:

possesses a continuous mass spectrum, whose vacuum state

is the AdS spacetime. The other case is obtained onlyl for 1

=2n-1 dimensions, and it is a peculiarity of CS theories, p= NFO, . (32
whose black hole solutions are recovered from @) with

k=n—1, which read Integrating these equations yields

2

r N =
ds?=—| 1+ 772Gy M +1)Y0-1) | g2 N=N.=1,
Q
dr? N=e—-:,
— +12d02 . PIN=¢la=
r
1+ l—z—(zen,llvl +1)Y0-1) (33
e Q
(28 AO(r):¢W+MN_’3’
In that case, the black hole vacuuriv €0) differs from
AdS spacetime. Although this configuration has no constant ;2
curvature ford>3, it possesses the same causal structure as f2(r)=1+ — —ogy(r)
2 i)

the three-dimensional zero mass black hole. Another com-

mon feature with 2- 1 dimensions is the existence of a mass

gap between the zero mass black hole and AdS spacetim@jth o=(=1)**1) and

where the later is obtained fdd = —1/2G,,_;. ”
2G M+ 5421 €Gk Q?

B. Coupling to the electromagnetic field 9e(r) = pd=2k-1  (d—3) f2(d—k-2)

The standard coupling with the electromagnetic field is (34)
obtained adding to the gravitational actibnin Eqg. (8) the

Maxwell ternf The integration constantd andQ in Eq. (34) are the mass

and the electric charge of the black hole respectively, as is
shown in the next subsection.
f V=gF# R, d%. (29) Equations(33) provide the electrically charged extension
of the vacuum solutiori23).” The presence of in Eq. (33)
Electrically charged solutions which are static and spherileads to a similar picture as in the uncharged case. \Khen
cally symmetric can be found through tasatz(20), and ~ 0dd, there is a unique electrically charged black hole solution
requiring that and the only non-vanishing component of thédecauseo is always equal to 1, but whek is even, the

L 1
M= 460(]_2

electromagnetic field strength be solution withao=1 represents a black hole, and the solution
with o= —1 possess a naked singularity.
For=—3/Ao(r). (30) Therefore, electrically charged asymptotically AdS black
i i ) hole solutions are obtained from E@3) with o=1, whose
The field equations foN, f< andA, read line element reads—fod> 3—as
dN
IS r? 2 dr? 2402
dr ds?=— 1+|—2—gk(r) dt +r2—+r dQg_,,
d s 0 1+|_2_9k(r)
g P=0, (35
5The constante is related with the “vacuum permeability” "The expressiolB4) is valid ford>3. The three dimensional case
throughe=1/Q4_,¢,. Its natural units arée]= (lengthf'~*. is discussed in Ref$22,24.
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whereg,(r) is given by Eq.(34). EH or CS, the radius, depends only on intrinsic features of

As is naturally expected, the set of black holes describethe source and it is completely independent from gravity.
by Eg. (35, reduce to thed-dimensional Reissner- That is,r. is independent of the labdd, the gravitational
Nordstran-AdS solution fork=1. The electrically charged constantG, and the cosmological constant—or equivalently
black hole solutions corresponding to Bl and CS theorieshe AdS radiud—that is
[23] are also recovered fod=2n and d=2n—1 respec-
tively, as it can be seen replacifkg=n—1 in Eq. (35).

For a generic value of the labk] in analogy with stan-
dard Reissner-Nordstmo-AdS geometry, the black hole so-
lutions given by Eq.(35 possess in general two horizons which has the same expression as the classical radius of the
located at the roots of’(r). They satisfy 8<r_<r, pro-  electron ind dimensions. It is noteworthy that, is encoded
vided the mass is bounded from belowNds=h,(Q), where  in the geometry.

h, is a monotonically increasing function of the electric  Remarkably, the only theory within the family discussed
charge. Both horizons merge when the bound is saturate@iere, which is unable to predict a minimum size for the
corresponding to the extreme case, that is=r_ for M source is general relativity.

=h,(Q). Solutions withM <h,(Q) possess naked singulari-
ties which should be considered unphysical. Thus, for a
given electric charge, the existence of a lower bound/ios ) ) ) ) o
in agreement with the cosmic censorship principle. In order to |dent|fy_ the integration constants appearing in

An important difference  with the Reissner- the bl_ack hole s.ollut|on$26) gnd (35) with the mass anq
Nordstran-AdS case K=1) is shared by all electrically eIectrlg charge, it is convenient to carry out the c_anomcal
charged black hole solutions witk 1, as can be inferred analysig[25]. The total action can be written in Hamiltonian

evaluating the scalar curvature for the met(@@s), given by ~ form as
r2 lt=Ig+Iy+B, (39
rd‘z(gk(r)—l—z)]. (36)

1/(d—-3)

2
€ 9 , (38)

2(d-3) M

=

C. Mass and electric charge from boundary terms

_1o|2

rd72 er

wherelg and |y, are the canonical actions for gravity and
electromagnetism, respectively,
For anyk+ 1, Eq.(36) has a branch point unbounded singu-

larity at the zero of the functiog,(r). This is a real timelike _ J' d TP _NiYg
singularity located at leg=| d™(7'g;j—N"Hg, —N'Hgj), (40)
€ Q2 1/(d-3) - _ _
e~ 2(d—3) . @D lM:fddx(plAi_NLHML_NIHMi_AO&ipI)y
( M* 26, 5"‘2“) (4

which can be reached in a finite proper time. However aﬁa\ndB stands for a boundary term which is needed so that the

external observer is protected from it becéuse it is ’Surgction attains an extremum on the classical solution. Here

rounded by both horizons, i.e. <0 ,<r_<r Hg, andHy , are the Hamiltonian generators of diffeomor-
e O <r_<r,.

Whenk is even, spacetime cannot be extended<a, phisms on the gravitational and electromagnetic phase

because in that case the metri85) would become complex. spaces, respectivelgee Ref[14]).

This means that the manifold possesses a real boundary grt'allntrfszfeﬁ{[zsé?tilr% Tizzetﬂ;?Itlffesgmrentﬂﬁqsfﬁﬁit';?ff{nacgﬁn'
r=re, and thereforer, is the smallest possible sizd a P

spherical body endowed of electric chailQeand massM. ?ee ];ggi':]d tmg&ﬁgaier?'zrgf:ﬁzr(sspo?ciﬁtg]?ﬁ:l‘;‘g%ﬁh ;SS %)ézla}med
For odd values ok#1 there is no obstruction to define H(fnce gone deals with a simple one-dimensional médel
spacetime within the region<re. However, as it can be which éllows fixing the boundar pterlﬁ as a function of the
seen from Eq(36), there is an additional timelike singularity . : 9 naary ;
_ : . ._integration constants requiring the total acti@®) to have
located atr =0. In that case, a spherical source with electric ; . -
S an extremum on the classical solutions. The minisuperspace
chargeQ and masdM, whose radius is smaller than pos-

sesses an exterior geometry described by(&g).which can- action takes the form

not be empty, since it has a singularityratr,. This means d-1 K
that the original source generates “a shield,” which acts as | :Atf N arr- F(r)+ E _ Erdfzpz dr
the effective source of the external geometry. Hence, again, T 2|dr| Gy |2 €
re is thesmallest sizdor the source. 1 q
This means that the presence of electric charge brings in a d—2
new length scale into the system, except when one deals with * ;Atj Aoa“ p)dr+B, (42)

the EH action. For CS theondE& 2k+1), the radiug de-
pends on the gravitational constant. However, in the generishere N:=N*(r)f~2(r), andp is a redefinition of the ca-
case, which is given by the set of theories which are neithenonical momentunp’, conjugate toA,,
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1 €eQy_» —1)/2]}, is obtained. For a fixed value &f the Lagrangian
p= NFOr:Wprv (43 s given just byL® defined in Eq.(3), so that the action
Y reads
and vy is the determinant of the angular metric.
The action(42) is a functional of the field&, f2, Ay and TKZLJ € R2122. . . R82k-182kgd2k+1. . . gid
p, whose variation leads to a bulk term which vanishes on (d=2k)J %1% '
the field equationé31). Thus, the variation of the actid#2) (48)

on shell is a boundary term given b
y g y wherek is defined in Eq(10). The field equations coincide

d pd-1 with thel —>oo_|imit of Egs. (12), (13), which merely amounts
5|T=Atf a( N>G. 9 dr to replacingR®” by R3P,
K Note that fork=1, the standard EH action without cos-
1 d mological constant is recovered, while for 2 the Lagrang-
+ ZAtf E(Aord‘zﬁp)drvL 6B, (44)  ian is the Gauss-Bonnet densit}8).

Static and spherically symmetric solutions of E¢8)
éead to a similar picture as in the electricallyn)charged
asymptotically AdS case: whekis odd, one obtains only
one solution describing a black hole, but for even valuds of

SB=—At(N,.oM + ¢..5Q). (45  two different solutions exist; one of them describes a black

hole, while the other possesses naked singularities even

Since sM is multiplied by the proper time separation at in- When the mass bound holds.
finity, one identifiesM and Q as the mass and the electric  Itis simple to verify that black hole solutions of the action
charge up to additive constants. The additive constant related® correspond to the vanishing cosmological constant limit
with the mass is calle@, and it is fixed in Eq(25), requir-  Of the solutions for pure grawthG). This also holds for the
ing that the horizon shrink to a point féd —0. The additive ~ €lectrically charged solutionS5).
constant related to the electric charge vanishes, demanding

k

1
F(r)+|—2

which means that the action is stationary on the black hol
solution provided

that the electrically charged solutidB5) reduce to the un- 1.Q=0
charged ong26) for Q=0. Therefore, the boundary term  The asymptotically flat solutions without electric charge
that must be added to the action is are given by
B=—-At(M+ ¢.Q)+Bg, (46) 2G,M 1k (2
. . dSZZ— 1—(m) dt2+ﬁ
whereN., has been chosen equal to 1, d@ylis an arbitrary r 2G\M
constant without variation. This proves that the integration - pd—2k-1

constantdM and Q appearing in the black hole metri¢35)
and(26) are the mass and the electric charge respectively. +r2dQ§72_ (49
These results are confirmed also through an alternative
method which holds for even dimensions, as is discussed ihe generic cases correspondite 2k— 1+ 0, for which the
Appendix B. metrics (49) represent black hole solutions with an event
horizon located ar , =(2G,M)¥@~2k=1)  As ysual, their

D. Asymptotically flat limit (I— o) common vacuum geometry is the flat Minkowski spacetime,
and their causal structure is described through the standard
Penrose diagram of the Schwarzschild solution. In case of
k=1 (EH), the Schwarzschild solution is recovered from Eq.
(49) for d>3. Exceptional cases occur whdr-2k+ 1, for
which the action(48) corresponds to a CS theory for the
Poincaregroup ISO(d—1,1). Their static, spherically sym-
metric solutions(49) do not describe black holes because
they have a naked singularity at the origin. This can be in-
ferred from Eq.28) because wheh—« the horizon recedes
to infinity. For instance, in three dimensions, the solution
(49) represent a conical spacetifi?].

The black hole metric§26) and(35) tend asymptotically
to an AdS spacetime with radilswhose curvature satisfies
R3P—, —| 2P at the boundary. Then, their asymptotically
flat limit is obtained by takind— . Thus, instead of taking
the vanishing limit of the volume ternn(,—0), the vanish-
ing cosmological constant limit of the actidp is obtained
settingl —oo in EqQ. (9). This procedure is consistent with
taking the same limit in the field equatiof2) and (13).

Whenl— oo the only non-vanishing term in E9) is the
kth one; consequently the action is obtained from Ej.
with the following choice of coefficients:

. 1 ) 2. Q#0

P (d—2k) %- (47 The electrically charged asymptotically flat black hole so-
lutions can be obtained fai>3 from Eq.(35) in the limit

Therefore, replacing Eq47) in Eq. (2), a new family of |—o. As for the uncharged solutions, the generic case holds

Lagrangians labeled by the integeke{1,2,...[(d for d—2k—1+0, whose line elements read

ap==C
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) dr? y 2 chargeQ and mas$/1. Then one concludes that this feature is
ds?=—[1—gy(r)]dt +m+r dQg_,, (500  absent only when one deals with the EH action with or with-
K out cosmological constant.
with g.(r) given by
IV. THERMODYNAMICS
1K
B 2G M B eGy Q? (51) A. Temperature
()= pd=2k-1 (d—3) p2(d-k-2)

As usual, we define the black hole temperature by the
condition that in the Euclidean sector, the solution be well

For different generic values of the labkl the black hole  defined(smooth at the horizon. This means that the Euclid-
solutions given by Eq50) resemble the Reissner-Nordstro  ean time is a periodic coordinate with period
one, possessing two horizons which are found solving

g«(r)=1. As usual, these horizons satisfy<®_<r, pro- daf? |\t
vided the mass is bounded from below by T=4m dr ' (57)
M+
ok _ (2d—2k—4)/(d—2k—1)
Q< (d-2k-1) ((d S)GKM) ) which is identified withB=1/kgT, where kg is the Boltz-
Gy d—k-2 (52) mann constant. Thus, the Hawking temperature is given by
. . 1 df?
The extreme case occurs when both horizons coalesce, that is =1 ar (58)
TKpB
(d—3)GM | Yd-2k-1) f+
+=r-= (—d—k—z ) , (53 For the electrically uncharged cases, the black hole tem-
perature for the set of metri¢g6) is
so that the bound52) is saturated.
The d-dimensional Reissner-Nordstro solution is ob- T d-1) =+ (d—2k—1) (59
tained from Eq(50) settingk=1. Equation(52) reproduces A1 kgk |2 r '

the well-known four-dimensional bound given by
For allk such thad—2k—1+#0, the functionT(r ) exhibits
2 _ GMm? the same behavior as the standard Schwarzschild-AdS black
QEn= e ! (54) hole (which is obtained fokk=1); that is, the temperature
diverges atr . =0. It has a minimum at; given by

which is saturated when, =r _=G;M, as can be seen from

Eq. (53) for d=4 andk=1. - [d—2k—1 60
A further example corresponds to the electrically charged ¢ d-1 "~

black hole in the vanishing cosmological constant limit of

the Bl action. The bound and the extreme radius are obtaineahd grows linearly for large , . Consideringk=n—1, for-

in that case from Eqs(52) and (53) for d=2n andk=n mula (59) reproduces the known results for B1€2n) and

-1: CS (d=2n—-1) black holes[23]. The temperaturg59)
reaches an absolute minimumratequal to

,_ 1 (2n—3)Gn_1Mr(”1)
W=, | n-1 L _d-2k-1)(d-1) -
¢ 27 kgkl '
(2n—-3)G,,_1M
r+=r_=T. (55 provided the existence of a nonvanishing cosmological con-

stant (# ).

In case of CS theory, that is whelr-2k—1=0, T(r,) is
not divergent at all, its absolute minimum is =0 and
T.=0. Thus, CS black holes are the only exceptional cases
among all the possibilities considered here. Both, CS and
generic cases are depicted in Fig. 1.

The full set of asymptotically flat electrically charged
black hole solutiong50) shares a common feature with its
asymptotically AdS counterparts given by E®5) in the
generic cased—2k—1+#0). That is the existence of a time-
like singularity fork# 1 located at the zero daf(r) in Eq.
(51) given by

B. Specific heat and thermal equilibrium

As seen in Sec. Il A, the black hole mass is a monotoni-
cally increasing function of , ; therefore the behavior of
T(M) is qualitatively similar to that off (r ).
which satisfies 8&r.<r_<r, and is again interpreted as  Using Egs.(59) and (24), the specific heaC,=dM/JT
the smallest possible sizd a spherical body with electric can be expressed as a functionrof

E Q2| Vd-3)
le=

2(d—3) M ’ (56
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Tﬂ T4

Ty

Chern-Simons

> ru Fe rs 1’+
[ Te
FIG. 3. In the generic casd,—2k# 1, the black hole can reach

FIG. 1. The black hole temperature is plotted as a function Ofthermal equilibrium with a bath of temperature hlgher th-bd']
the horizon radius , . For d—2k+#1 the temperature reaches an provided the horizon radius satisfies>r
u-

absolute minimunT, atr , =r..

5 2, 2 2\ k-1 AdS, spacetime[29] and for the three-dimensional black
Co=k TKB q_ok M+ ¢ _t (62) hole. Let us assume that any black hole described byZ&.
Gk 7 \r2—r? 12 is immersed in a thermal bath of temperatdig>T.. If d

- —2k—1+#0, the thermal behavior splits in two branches: for
In case ofd—2k—1+#0, the specific hea62) possesses an r, <r, the specific heat is negative and therefore black hole
unbounded discontinuity at, =r (see Fig. 2 signaling a  state is driven away from that with temperaturg for r ..

phase transition. The specific he@is positive forr . >r.,  >r_, the black hole state is attracted towards the equilibrium
and has the opposite sign for <r.. configuration at temperatufg, (see Fig. 3 Thus, the tem-
Again, the CS case is exceptional. Settihg2n—1 and  peratureT, corresponds to two equilibrium states of radji
k=n—1 in Eq.(62), the specific heat is found as (unstablg andr (locally stablé, with r,<r.<r. Neglect-
5\ n—2 ing quantum tunneling processes, there are two possible sce-
Coem (N1 2TKg 1+ M+ 63) narios: if the initial black hole state has <r,, the black
cs=(n—1) Gp_1 F+ 12 ’ hole cannot reach equilibrium because it evaporates until its

final stage. Otherwise, for, >r,, the black hole evolves
which is a continuous monotonically increasing positivetowards an equilibrium configuration Bt =r.

function ofr ;. and does not diverge for any finite valuerof If the heat bath has temperature beldw, the black hole

[28]. cannot reach a stable equilibrium state and must evaporate,
The presence of a negative cosmological constant makess depicted in Fig. 4.

it possible for the family of black hole solutiori26) to reach None of the above arguments hold for the Chern-Simons

thermal equilibrium, as is possible for the Schwarzschild-case. Wherd —2k= 1, the specific hea®63) is always posi-
tive; therefore the equilibrium configuration is always

c , reached, independently from the initial black hole state and
i for any finite temperature of the heat bath.
T4
Chern-Simons :
Erc ‘ r,
<+~ d-2k+1
: T.
i Ty
FIG. 2. The specific heaCy is plotted as a function of the r. re
horizon radius. For a generic theoy;-2k# 1, C, has a simple
pole atr , =r.. For the exceptional casd=2k+1 (CS), the spe- FIG. 4. In the generic casel—2k+1, the black hole cannot
cific heat is a continuous, monotonically increasing, positive func+each thermal equilibrium with a bath of temperature lower than
tion ofr, . T..
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C. Entropy For the EH action(that is for k=1), expression(68)
It is well known that the partition function which de- readily reproduces, for the Schwarzschild-AdS solution,

scribes the black hole thermodynamics is obtained through

the Euclidean path integral in the saddle point approximation SEH:ﬂri—Z,
around the black hole solutidi30]. That is, (d=2)G
Z~e 'k, which in standard unitg3] is the celebrated “area law”
which means that the Euclidean action evaluated on the kg A
black hole configuration is identified witB times the free SEHZE 2

energy of the system

S For k=[(d—1)/2] (Bl and CS, formula (68) reduces to
lg=BM— —+BZ niQi, (64)  the known result§23]. The theory described bk, in Eq.
Ks ! (19) is an intrinsically higher dimensional one, and the cor-

where theu;’s are the chemical potentials corresponding torespondmg black hole entropy is given by

the chargesQ;. The Euclidean minisuperspace action is 4 1 2
given by the Wick-rotated form of Eq42), that is _ KB d-4 b+ | (69)
G, " [(d=4) (d-2)I2
=N[ d [rd-t 1 1,
IEZ_BJ Slarl o | FO+ 5| (—2r prjdr Hence, the area law is a peculiarity of the Einstein-Hilbert
f+ k ! theory k=1), while fork+ 1 the entropy(68) becomes pro-
1 (= d portional to the area in the large. limit, that is
——,BJ’ Ao (r4 ?p)dr+Bg. (65)
€ Jy, Tdr
kTR e, O o g
In what follows we shall consider the electrically un- > (d—2)G 2k " G201 T

charged cases only. The bulk part of the Euclidean action is

a linear combination of the constrains and, therefore, its onwith r . >1.

shell value is given by the boundary teBa . This boundary

piece is determined by the requirement thabe stationary D. Asymptotically flat limit

on the black hole geometry. Varying E@5) leads to In the limit |— o, the geometry of the uncharged black

BN, (= d 17K hole is given by Eq(49) whose corresponding temperature
__ 1 ), d-1 = is
Sle Zkaudr{r 5F(r)+|2 ]dr+6BE,
1 d—2k-1
(66) o_ ( ). 71
A kgk ry

on shell. From this expression, one finds

5\ k-1 This gives a vanishing value for CS theoy-2k—1=0),
27K oaa 1+ M+ s which is consistent with the fact that in that case, the geom-
Gy F+ 2 Feo etry possesses a singularity which is not surrounded by a
horizon in the limitl—o, so that no temperature can be
where N., has been set equal to one and we have use#éssociated with it. For all the other cases{2k—1+0), the

SBe= BOM —

df¥/dr|, =4xB1. From Eq.(64) one identifies horizon is located ar,=(2G, M) 21 so that the
N black hole temperaturérl) is a monotonically decreasing
2k p2\ k1 function of the mass. Therefore, thermal equilibrium can
5S= k—Br{J; k=1l 14~ S, (67) never be reached, consistently with the fact that the specific
G 12 heat is always negative:
which is integrated into 27k
CO= —k—=——rd-2, (72)
o\ k-1 Gy
_kZWKBfr+ (d—2k—1) 1 r d 68
S= Gy Jo ' + |_2 r- (68) The entropy is also an increasing functionraf,
d— 2k
This is a monotonically increasing function of , in agree- o_k27TKB r(+ 29 (73
ment with the second law of thermodynamics. In &) the 0 Gy (d—2k)’

lower limit in the integral has been fixed by the condition
S(r . =0)=0 for the whole set of black holes given by Eq. which is consistent with the second law of thermodynamics.
(26). Note that formula73) is proportional to the area of the ho-
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rizon only fork=1 (EH). Thus, in thel — limit, the area d

law cannot be recovered even as an approximation in the . . .
cases withk# 1. ul -~ (EH) - — L — (L)~ ~ L — —(CS)

| | | | |

. o - - (BH)- - L - —(L)- -Bl |

E. Canonical ensemble T | T | |

In four dimensions, Hawking and Page have shown that in o] — - (EH)— -1, - —(”1:)— -Cs [

the presence of a negative cosmological constant, the parti- I [ I [ [

tion function in the canonical ensemble is well defined, un- s| ~ ~ (EH)- — I, - —(B1) [ [

like in case of a vanishing. [29]. The same argument can be I ! I [ [

extended for higher dimensions for the whole set of theories 7=~ (BH)— — 1, — —(CS) | |

(8) labeled byk. T | T | |

The partition function in the canonical ensemble reads 6| — — (EH)— — BI | | |

| | | | |

Z(m:f e AMp(M)dM, (74 T Emm e

0 I I [ I I

o — (e} (BI) ! I !

where p(M)=expS,/«g) is the density of states as a func- b | ! !

tion of the energy. The convergence of this integral depends s| —(Em)z(Cs) 1 ! ' !

on the asymptotic behavior &, for large M, ' ! ! ' !

k

._
~
w
IS
o

~ (d—2)/(d-1) ) .
Sc=agkM ! FIG. 5. Black hole scan: summary of all theories describet} by

up to 11 dimensions. The integkr1, ... [(d—1)/2] represents
whereag | is a positive constant. Thus, the integrand of Eq_the highest power of curvature in the action. The columns with odd
(74) goes as expfBM+ kg ag M@ 2@y and therefore K are singled out by cosmic censorship. The supersymmetric exten-
the partition function convergés. sions qf EH and CS theories are known. The supergravities for the
This argument breaks down in tHesc limit: in that ~ €Mainingl’s are unknown.

case, the entropy is B. Special cases selected from cosmic censorship

A first distinction between the different theories men-
tioned above comes from the study of their spherically sym-
metric, static solutions. It is found that for odd physical
with ag . a different positive constant, which yields a diver- black holes satisfying the cosmic censorship criterion exist.
gent pértition function. For evenk, however, both physical black holes and solutions

The lesson one can draw from this exercise is that thavith naked singularities with positive mass exist. This al-
presence of a negative cosmological constant is sufficient tfady casts doubt on the soundness of this subset of theories.

render the canonical ensemble well defined for all the theoMoreover, the absence of a cosmic censorship principle
ries described here. would be in conflict with the existence of a positive energy

theorem obtained from supersymmetry. This means that the
supersymmetric extensions of the theories considered here
V. SUMMARY AND DISCUSSION can be expected to be very different for odd and ekeeim
fact, as it has been shown [81], CS theories with even
k—defined ford=5,9, ... —have a supersymmetric exten-
We have examined a family of gravitation theories in di- sjion based on superunitary groups, whereas for lodd
mensiond, whose common feature is to possess vacuum so=3 7,11 . . . ) thecorresponding supergravities are based on
lutions with maximal symmetry. This means that thethe orthosymplectic groups.
theories—described by the actibp—have a unique cosmo-  The different theories considered here are summarized in
logical constant. For a gived there exis{ (d—1)/2] differ- the scheme shown in Fig. 5.
ent theories labeled by the integker which is the highest Here we have highlighted the odk columns as they
power of curvature in the Lagrangian. Fke=1, the EH  would represent better candidates for physical theories based
action is recovered, while for the largest valuekofthat is  on the criterion of cosmic censorship versus supersymmetry.
k=[(d—1)/2], Bl and CS theories are obtained. These three Note that CS theories are the representatives of the lowest
cases exhaust the different possibilities up to six dimensiongossible dimension for a givén Moreover, CS gravity theo-
and new interesting cases arise tb#7. For instance, the ries exhibit local AdS symmetry whereas all other gravita-
case withk=2, which is described by the acti¢f9), exists  tion theories of the same dimension only have local Lorentz
only for d>4: In five dimensions this theory is equivalent to invariance(see Appendix A
CS; ford=6 it is equivalent to BI, and fod=7 and up, it Over the years, 11 dimensional spacetime has been be-
defines a new class of theories. lieved to be the arena for the ultimate unified theory. From

SE: ag M (d=2Kk)/(d—2k—1)

A. Theories described by the actionl
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the present analysis, it follows that mh=11, the casek In the CS case, the temperature grows linearly with
=1,3,5 are of special interest. The supersymmetric extensiohence there is no critical temperature and the thermal equi-
for k=1 is the famous Cremmer-Julia-Scherk supergravitylibrium is always attained.

[32], which only exists if the cosmological constant vanishes In an equilibrium configuration, the free energy=M

[33]. The supersymmetric extension flo=5 with a finiteA ~ —TScan be expressed as a functionrqf. For fixedk the
is also known[34,31], whose vanishing cosmological con- Pehavior ofF can be found from Eq€24), (59) and(68) as
stant version is described [85]. The corresponding super- pd-2k-1
symmetric extension of the gravity theory wik=3 is an F(ry, —»0)~=——, (753
open problem. 2(d—2k)Gy
C. Black holes rd-t
. _ F(ri—o)~——————0. (75b)
For all dimensions and for arly there exist well-behaved 2(d—2)G,l?

black hole solutions, in the sense that the singularities are

hidden by an event horizon. Fdr-2k+ 1, the causal struc- This change in sign has been interpreted as an indication
ture of these black holes is the same as that ofhat, for smallr . the black hole would be unstable for decay
Schwarzschild-AdS and Reissner-NordetrddS space- into AdS spacetime, while for large, the black hole would
times. However, this set of black holes differs from standardoe stable[5]. This suggests that a phase transition would
d-dimensional Schwarzschild and Reissner-Norastsolu-  occur atF(r,)=0. This conclusion, however, contradicts
tions in that their asymptotic behavior, with respect to thethe fact that the phase transition actually occurs at the critical
vacuum, is given bgge— gog=r ~(4~2< DK Again, the CS valuer ., where the specific he&@ changes sign, and which

case stands separate from the rest, in that the causal struct@@es not coincide with the zero &f(r ;). In particular, con-
of the vacuum is the same as that of 2 dimensions, and Sidering the EH actionk=1), the change of sign iff oc-
analogously, there is a mass gap betweenMheO black  curs atr, = while r.=1y(d—3)/(d—1)<I. Moreover, for
hole and AdS spacetimeV(= — 1/2G,,_). Furthermore, in the CS cased—2k=1, there is no phase transition at all,
the vanishing cosmological constant limit, the CS theoryalthoughF still has a change in sign. The source of the
supports no static, spherically symmetric black holes. disagreement lies in that the canonical ensemble is defined
In the electrically charged case, the black holeskigr1 ~ keepingT fixed, while the limits in Eqs(758 and (75b) do
predict a minimum size for a physical source. It is notewor-not respect this condition.

thy that the geometry encodes this restriction for all cases, From all the evidence presented here, it is apparent that
except for the EH action. CS theories form an exceptional class: They are genuine

gauge theories whose supersymmetric extension is known;
their black hole spectrum has a mass gap separating it from
. ) AdS spacetime, and these black holes possess remarkable
The presence of a negative cosmological constant for ththermodynamical properties. CS black holes can reach ther-
entire set of theories described by the actignmakes it mal equilibrium with a heat bath at any temperature, and the

possible for black holes to reach thermal equilibrium with apositivity of the specific heat guarantees their stability under
heat bath. The AdS radidsacts as a regulator allowing the thermal fluctuations.

canonical ensemble to be well defined, unlike the case of |n contrast with the generic case, a small CS black hole is
zero cosmological constant. The black hole entropy obeystable against decay by Hawking radiation. This suggests

the area law only in the case=1. For other values _df, the  that, as in the three dimensional case, G8peigravities
entropy respects the second law of thermodynamics, becaugguld have a well-defined quantum theory.

dSdr, >0, but the area law is recovered only in the limit
ro/l—oo,

In the limit A—0, the area law never holds, except for
k=1. In that limit, the temperature has no minimum and The authors are grateful to R. Aros, M. Batos, M. Con-
consequently the thermodynamic equilibrium cannot bereras, M. Henneaux, C. Manez, F. Madez, R. Olea, M.
reached. Plyushchay, J. Saavedra, and C. Teitelboim for many en-

The thermodynamic behavior is qualitatively the same asightening discussions and helpful comments. This work was
the Schwarzschild-AdSblack hole in the generic caseés supported in part through grants 1990189, 1980788 from
—2k#1. On the other hand, Chern-Simons black holes foFONDECYT, and by the “Actions de Recherche Concer-
odd dimensions behave like tlie=3 case. tees” of the “Direction de la Recherche Scientifique—

In the generic cases, black holes have a minimum tem€ommunauteFran@ise de Belgique,” by 1ISN-Belgium
peratureT, atr . =r.=l(d—2k—1)/(d—1), so that—asis (convention 4.4505.86 The institutional support of Fuerza
depicted in Fig. 3—those whose horizon radius exceed th@érea de Chile, I. Municipalidad de Las Condes, and a group
unstable equilibrium position, can reach equilibrium with a of Chilean companieAFP Provida, CODELCO, Empresas
heat bath of temperature higher thBp. If the heat bath has CMPC, and Telefoica del Suy is also recognized. CECS is
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APPENDIX A: CS AND BI THEORIES
Requiring that the integrability conditions of equati@h APPENDIX B: CONSERVED CHARGES FROM A

do not impose further algebraic constraints on the curvature BACKGROUND-INDEPENDENT SURFACE INTEGRAL

or the torsion beyond Eq5) implies that the coefficients . . . ]
ap's in Eq. (2) satisfy a recursive equation, whose solution If one deals with more general solutions possessing dif-
fixes them in terms of the gravitational and cosmologicalférent isometries, the identification of the integration con-
constant§18]. An equivalent way to express this is that the Stants with the conserved charges through the minisuper-
ay's become fixed as in Eq9) with k=[(d—1)/2], just SPace trick does not work, because in general the reduced
requiring the existence of a sector in the theory with propa@ction does not lead to the true extremum of the original

gating torsion. Thus, id=2n dimensions, the Lagrangian action. The Hamiltonian method provides a way to express
reads the mass as a surface integf2b]. However, this procedure

requires the invertibility of the symplectic matrix associated
with the actionl . This is impossible to perform globally in
phase space, because there are field configurations for which
the symplectic form degenerates. Therefore, no general for-
mula could be found for an arbitrary field configuration.
o A way to circumvent this problem is carried out th
wheré R#P:=R"+ (1/1%)e%". =2n following a recently proposed meth$tl2,13 which is
The expressioliAl) is proportional to the Pfaffian of the appropriate to deal with asymptotically AdS spacetimes.
2-form R®" and, in this sense, it has a Born-Infeld-like form  Consider the action, defined in Eq.(8). In first order
[36]: formalism, the existence of an extremuml pfor asymptoti-
cally locally AdS spacetimes fixes the boundary term that
1 must be added to the action as being proportional to the
L=2""1(n—1)!«l? \/de< Rab _eaeb) . (A2) Euler density multiplied by a fixed weight factor. Hence, in
12 order to cancel the boundary term coming from the variation
of I, the total action including the boundary term—up to a
constant—is given by

kl?
L=—-—¢€,

o Madﬁaiaz. .. Rad-18d, (A1)

1

Ford=2n-1 dimensions, the Lagrangian is given by the

Euler-Chern-Simons form for the AdS group, whose exterior l-=1.+ ko jg (B1)
derivative is proportional to the Euler density im 2limen- Tk nJoE

sions, .

with
I (_1)n+k+1|2(n—k)
P _ _ — — Kk,
ALES 1= e R RO Pon= iy, (AD) T -
n
k

where R*B stands for the AdS curvature. This LagrangianThe total actionl+ is invariant under diffeomorphisms by

was discussed if87] and also in23] for torsion-free mani- ~construction, becausk, is written in terms of differential

folds. forms. Thus, Noether’s theorem provides a conserved current
Additional terms which depend explicitly on the torsion (d*J=0) associated with this invariance, which can be lo-

are required by local supersymmef1,34 and they can be cally written as*J=dQ. Assuming the topology of the

consistently added to the Lagrangian only fi=4m—1 manifold to be of the formM =RX 3, this procedure yields

[18]. a regularized and background-independent expression for the
These torsional Lagrangians are odd under parity and areonserved charges associated with a Killing veétowhich

obtained from the Chern characters associated with the Ad® globally defined on the boundary of the spatial sectizin

curvature in 4n dimensions. Furthermore, the coefficients in The surface integral reads

front of the different terms in these torsional Lagrangians are

ngcessarily_quantized. The odd dimensional action,'with or Q(g):f gﬂwabTab’ (B3)

without torsional terms, has a larger local symmetry given by g3 "

SO(d—1,2), so that beyond standard local Lorentz symme-

try (6e?=\?,e? and sw?=—D\?P), these theories are in- Where, T, is the variation of the total Lagrangian with re-

variant also under local “AdS translations:” spect to the curvature

n
Tap=—r= > CISPTva (B4)
8A positive cosmological constant is obtained makife — 2.
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with black hole metricg26), which leads to the expected result
Q(dy) =M. (B6)
Thp= Ke€aba,...a,R¥3% - - R¥20-1%20e%20+1. . . g%, It is a simple exercise to check that formuB3) vanishes

(B5  when evaluated on any constant curvature spacetime—
satisfying R*"=R2P+| ~2e3%”=0—which admits at least
. _ one Killing vector. This means that spaces which are locally
and where the coefficients} are defined through Eq$9)  Ads have vanishing Noether charges for the whole set of
and(B2). _ _ theories defined by, in even dimensions. These spaces in
The mass is obtained from E@3) when§=d;, without  general possess non-trivial topologies and could be regarded
making further assumptions about the matching with a backas different possible vacua. Hence one can find massive so-
ground geometry nor with its topology. lutions which correspond to excitation of the corresponding
One way to check this result is evaluating the mass for thezacuum in the same topological sector.
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