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Tree amplitudes and two-loop counterterms inDÄ11 supergravity
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We compute the tree level 4-particle bosonic scattering amplitudes inD511 supergravity. By construction,
they are part of a linearized supersymmetry, coordinate, and 3-form gauge invariant. While this on-shell
invariant is nonlocal, suitable SUSY-preserving differentiations turn it into a local one with correct dimension
to provide a natural lowest~two-loop! order counterterm candidate. Its existence shows explicitly that no
symmetries protect this ultimate supergravity: Indeed this invariant, together with the recently calculated
infinite coefficient of its 4-graviton part, constitutes a demonstration of two-loop non-renormalizability.

PACS number~s!: 04.65.1e, 11.10.Gh
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I. INTRODUCTION

In the post-D510 superstring era,D511 supergravity
~SUGRA! @1# has again attracted the attention it has alwa
deserved, without, however, becoming any easier to ha
technically. In particular, supersymmetry~SUSY! invariants
are still~absent an appropriate calculus! difficult to verify, let
alone construct. Here, we will supply~the linearized bosonic
part of! one such invariant. Our work has two motivatio
beyond its intrinsic interest within the theory. Most direct
we want to determine unambiguously whether there e
local invariants that can serve as counterterms at the low
possible, here two-loop, order. This nontrivial exercise h
an historical basis in lower-dimensional SUGRAs, where
existence of invariants is easier to decide; there, no mira
occurred: counterterms were always available. They so
times started at higher order than in pure Einstein gra
@general relativity~GR!# where every loop~except, acciden-
tally, one loop atD54) is dangerous.@For a recent historica
review of divergences in gravities see@2#.# However, given
all the properties unique toD511, and the fact that it is the
last frontier—a local quantum field theory~QFT! that is non-
ghost~i.e., has no quadratic curvature terms! and reduces to
GR—it is sufficiently important not to give up hope befo
abandoningD511 SUGRA ~and with it all QFTs incorpo-
rating GR! too quickly on non-renormalizability grounds
Our second interest is in the M-theoretical direction: a
invariants that can be obtained here might provide h
about the wider theory that presumably reduces toD511
SUGRA as its ‘‘zero slope’’ limit.

The idea underlying our approach is that the set of
n-particle ~for fixed n) tree level scattering amplitudes co
structed within a perturbative expansion of the action isipso
facto globally SUSY as well as linearized coordinate a
3-form gauge invariant. Thus, because linearized SUSY d
not mix different powers of fields, the 4-point amplitudes
interest to us, taken together, form an invariant. Also, wit
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this lowest order framework, the bosonic amplitudes are
dependent of fermions: virtual ones cannot contribute at
tree level. The above statements together consider
lighten our task, which will be to compute ‘‘just’’ the part
involving the gravitational and form bosonic excitations. T
amplitudes involving fermions are not necessarily more co
plicated, merely less relevant to our immediate goal of rep
ducing terms about which the appropriate divergence co
putations exist; indeed, we hope to return to them@3#.
However, in order to use the scattering amplitudes for co
terterm purposes, it will first be necessary to strip them of
nonlocality associated with exchange of the virtual gravit
and form particles~‘‘formions’’ ! without compromising their
invariances. Actually, the task here will be not only to r
move nonlocality but to add sufficient further powers of m
mentum to provide an on-shell invariant of correct dime
sion that is an acceptable~and indeed first possible!
perturbative counterterm candidate. In this way, we w
make contact with the conclusive 2-loop results of@4#, where
it was possible to exhibit the infinity of a local 4-gravito
term, one that is precisely a component of our invariant
condensed earlier version of our results was given in@5#.

II. PROPAGATORS AND VERTICES

The basis for our computations is the fullD511 SUGRA
action @1#, expanded to quartic order in its two boson
namely the graviton and the formion, with three-form pote
tial Amnr . The field strengthFmnab[4] [mAnab] is invariant
under the gauge transformationsdAnna5] [mjna] , square
brackets denoting total~normalized! antisymmetrization. The
bosonic truncation of the Lagrangian is

LB52
A2g

4k2
R2

A2g

48
FmnrsFmnrs

1
2k

1442
e1•••11A1 – 3F4 – 7F8 – 11. ~1!

The metric signature in Eq.~1! is mostly minus, the Ricci
tensor is defined byRab;1]lGab

l , and the Levi-Civita´
©2000 The American Physical Society10-1
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symbol obeyse0•••10521. The gravitational constantk,
with dimension@L#9/2, also appears explicitly in the topo
logical (P,T)-conserving metric-independent Chern-Sim
~CS! part of Eq.~1!.

The propagators and vertices required for our compu
tions are obtained by expanding in powers ofk, with gmn

[hmn1khmn , and keeping all contributions through ord
k2. The propagators, from the quadratic part of the acti
are well known. In harmonic~de Donder! and Feynman
gauges for gravity and the 3-form respectively,

Dmn;ab~h!5
1

2 S hamhbn1hanhbm2
2

9
habhmnDDF

[Gmn;abDF ~2!
-
a

i
n
im

to
n

d

08401
-

,

and

Dmnr;abs~A!5
1

2
dabs

mnr DF ; ~3!

DF is the scalar Feynman propagator anddabs
mnr is totally

antisymmetric in each triplet of indices.
There are three cubic vertices:
~a! Three gravitons (h3). Explicit use of this cumbersome

vertex can be avoided in dealing with the four-graviton a
plitudes, but not in computing the graviton-form ‘‘Comp
ton’’ scattering. To minimize the complications, we write th
vertex already contracted with two on-shell polarization te
sors, since we will never need fewer contractions:
2Vmn;ab;rs~k3,k1,k2!e1
ae1

be2
re2

s5~e1•k2!2e2
me2

n2~e1•k2!~e2•k1!e1
me2

n2~e1•k2!~e2•k1!e2
me1

n1~e2•k1!2e1
me1

n

1~e1•e2!~e1•k2!~e2•k1!hmn2~e1•k2!~e1•e2!e2
mk2

n2~e1•k2!~e1•e2!e2
nk2

m

2~e1•e2!~e2•k1!e1
mk1

n1~e1•e2!~e1
me2

n1e2
me1

n!k1•k22~e1•e2!~e2•k1!e1
nk1

m1~e1•e2!2k1
mk1

n

11/2~e1•e2!2k1
mk2

n11/2~e1•e2!2k1
nk2

m1~e1•e2!2k1
mk2

n23/2~e1•e2!2hmnk1•k2. ~4!
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Here and throughout the polarization tensoreab of a graviton
is represented as the producte i

ae i
b of two polarization vec-

tors.
~b! Graviton form (hFF): this is the usual coupling be

tween the metric and the form’s stress tensor. In coordin
space,

V3
gFF5kTmnhmn5khmnS FmabrFn

abr2
1

8
hmnFabrsFabrsD

~5!

5kAabr]mS hn[mFn
abr]2

h

2
FmabrD . ~6!

Expressions~5!,~6! differ ~on shell and for harmonic gauge!
by an integration by parts: the former is the more suitable
the analysis of pure form scattering, the latter for gravito
form Compton scattering. Note that both expressions s
plify if we choose a gauge wherehmn is traceless.

~c! Three formions (AFF): Entirely because of the~met-
ric independent! CS term in Eq.~1!, it is usefully written as

V3
F5AmnaCF

mna , CF
rst[

2

~12!4
erst1•••8F1•••4F5•••8 .

~7!

This vertex will produce a non-gravitational contribution
4-formion scattering and will also be responsible for an u
usual,F3R ‘‘bremsstrahlung,’’ amplitude.

Finally, to achieve gauge invariance, we must also inclu
the effects of two 4-point contact (k2) vertices. The first is
te

n
-
-

-

e

the local 4-graviton vertex; it will not be written out here, b
is needed for the 4-graviton amplitude calculation. The s
ond is thehhFF vertex from expanding theF2 kinetic term
in Eq. ~4!; it is necessary to ensure gauge invariance in
graviton-formion Compton process. Its form, in a gau
where the graviton is traceless, is

VhhFF[2
1

48
d2E A2g F2/dgmndgabug5hhmnhab

52
k2

4 F1

3
hm

lhnlFmabrFn
abr

2
1

48
hmnhmnFabrsFabrs1

1

2
hmnhabFma

rsFnbrsG .
~8!

III. AMPLITUDES

In this section we outline the explicit computation of~the
bosonic part of! the SUSY invariant amplitude and then co
struct the corresponding local invariants. Before enter
into details, some general remarks are in order. In mom
tum space, the non-locality in each scattering amplitude~due
to the intermediate denominator of the exchanged particle! is
represented by a sum of simple poles, in each of the M
delstam variables (s,t,u), corresponding to the three differ
ent possible channels in four-particle scattering; this non
cality is easily neutralized by multiplying the final result b
the symmetric polynomialstu. Since multiplication in mo-
mentum space corresponds to differentiation in coordin
0-2
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space, it becomes necessary to understand how these
tional derivatives are to be spread. Suppose that we can w
the amplitude in the generic ‘‘current-current’’ single po
form, as follows:

M5f1
a~k1!f2

b~k2!Vabm~k1 ,k2!
Gmn

s
Wncd~k3 ,k4!

3f3
c~k3!f4

d~k4!1~stu!2perm. ~9!

Then, by multiplying bystu and using the identity

tu521/2~hmahnb1hnahmb2hmnhab!km
1 kn

2ka
3kb

4

[21/2Kmn;abkm
1 kn

2ka
3kb

4 ~10!

and its permutations, we can write

M5km
1 f1

a~k1!kn
2f2

b~k2!Vabm~k1 ,k2!Kmn;abGmn

3Wncd~k3 ,k4!ka
3f3

c~k3!kb
4f4

d~k4!1~stu!2perm.

~11!

In other words, if we Fourier transform back to coordina
space, the net effect of this procedure is to remove the p
and to add a derivative to each of the four external fiel
These new derivatives are to be contracted according to
Kab;mn matrix defined in Eq.~10!. If the amplitude is already
expressed as a product of gauge invariant currents, this
cedure produces an invariant that is the product of two n
dressed gauge-invariant currents. In the case of gravitat
ally induced matter interactions, these currents behave
counterparts of the Bel-Robinson~BR! tensors@6#.

The above ‘‘dressing’’ procedure leaves unaltered an a
plitude’s transformation under global symmetries, such
the linearized supersymmetry of interest: In the moment
space we are just multiplying an invariant by the harml
scalar factor, the derivatives. While there will be some
ceptions in details to application of the above remarks,
final local results achieved will be correct; i.e., we have
constructive procedure for transforming the guarant
symmetry-preserving but nonlocal amplitudes into equa
invariant ~on-shell! local terms.

A. R4: Graviton-graviton scattering

We start with the 4-graviton amplitudeM4
g . The graviton

exchange contributions stem from~a! contracting twoVg
3

vertices~4! in all three (s,t,u) channels via an intermediat
graviton propagator~2!, which provides a single denomina
tor, and~b! the local 4-point vertexV4

g . The resultingM4
g(h)

will be a non-local quartic polynomial in the Rieman
~Weyl, on linear shell! tensor, whose non-locality is remov
able bystu multiplication. InD54, most of the calculation
can be avoided because a straightforward implementatio
supersymmetry allows one to fix the amplitude complet
up to normalization: There are only two independent lo
scalar quartics in the Weyl tensor and its dual,* R: the
squares of Euler (E4[* R* R) and Pontryagin (P4[* RR)
densities. Their relative coefficient can be determined by
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ploiting the special property that ensures the supersymm
zability of the Einstein action, namely that it is, at the tr
level, maximally helicity conserving@7#. This constrains the
amplitude to be proportional to the combination (E4
2P4)(E41P4). Remarkably, this invariant is also, owing t
identities peculiar toD54, expressible as the square of th
~unique! BR tensor Bmnab5(RR1* R* R)mnab . Unfortu-
nately, D54 is highly degenerate~see the Appendix!. In
generic dimensions, which in this context meansD>8, the
number of invariants quartic in the Weyl tensor is 7 and
only condition given by the above constraint is obviously n
enough to fix the relative coefficients. Nevertheless, it is s
sufficient to determine the amplitude completely by cons
ering configurations where the helicities of the gravitons
long to the subspace defined by their four-momenta.

A further step can be taken using a very different pro
erty, which is not manifest from the GR action, having
string origin: The 4-graviton tree amplitude is proportional
the square of ‘‘bleached’’ 4-gluon tree amplitudes, upon re
resenting the graviton polarization tensor as the produc
two vectors; this is implied by the field theory limit of th
Kawai-Lewellen-Tye~KLT ! @8# relations.1 This additional
information, in fact, determines the amplitude complete
because maximal helicity conservation fixes the~uncolored!
4-gluon amplitude~since there are only two independentF4

invariants in anyD) and consequently the gravity amplitud
which is its square. The conclusion that the form ofM4

g is

M4
g}~stu!21t8

m1•••m8t8
n1•••n8Rm1m2n1n2

Rm3m4n3n4

3Rm5m6n5n6
Rm7m8n7n8

~12a!

follows from the gluon ‘‘square root’’~in this context,Fmn

stands for the gluon field strength!:

M4
gluon}t8

m1•••m8Fm1m2
•••Fm7m8

5~FmnFmn!224Fm1m2Fm2m3
Fm3m4Fm4m1

. ~12b!

Alternatively one can follow the explicit calculationa
steps spelled out at the beginning of this section. The alge
involved is quite cumbersome, and benefits from a progr
for algebraic manipulation. This analysis should obviou
lead to the same result and indeed it does. Still, it must
performed, at least for a particular set of helicities, in ord
to obtain the correct normalization of the amplitudes. F
example, by choosing a configuration such thate i•kj50 for
all i and j, one finds that the overall coefficient of Eq.~12a!
is fixed to be 1/4. The final result~12a! possesses the sam
tensorial structure as the familiar superstring zero-slope li
correction toD510N52 supergravity, where thet8

m•••m8

1We emphasize~see also@4#! that while these relations hold fo
D<10, the applicability of the unitarity cuts and sewing techniqu
for the four-point amplitudes are in fact dimension independent.
specialD511 particle configurations are needed, and all our am
tudes were computed directly inD511. In particular while~12a!
may look ‘‘10 dimensionally stringy,’’ it holds independently~see
also @9#! at D511.
0-3
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symbol originates from theD58 transverse subspace@9#, as
has also been noted in@10# which carried out direct
4-graviton calculations as well. This reflects the fact th
maximal supersymmetry implies a uniqueR4 in all dimen-
sions. If we assume only 1/2 of the maximal supersymme
in genericD, we find that there is room for two invariants, a
can be seen by looking, e.g., at the effective action of
heterotic superstring where the analogue of Eq.~12a! is ac-
companied by anotherR4 term.2

At this point it is quite easy to write down a combinatio
of local R4 that represents Eq.~12a!. In terms of the basis o
the Appendix, the Lagrangian is

L4
g5

1

4
I 42I 7 , ~13!

where we have dropped a term proportional to
8-dimensional Euler density (e8e8R4) that, being a total di-
vergence to leading order, does not affect the amplitude
many respects, the form~12a! for the contribution coming
from the 4-graviton amplitude is a perfectly physical on
However, one might wonder whether there is a formulat
of the above Lagrangian in terms of currents that enco
passes both gravity and matter in a unified way as in
occurs in, e.g.,N52,D54 supergravity@11#. This might
also lead to some understanding of higher spin SUSY m
tiplets. Using the quartic basis expansion, one may rew
L4

g in various ways involving any of the BR currents of th
Appendix and a closed 4-formPabmn51/4R[mn

ab Rab]ab . For
example, if we choose the BR tensor

Bmnab[@RmrasRn
r

b
s1~nm!#2

1

2
gmnRarstRb

rst

2
1

2
gabRmrstRn

rst1
1

8
gmngabRlrstR

lrst,

we can write

L4
g548k2F2BmnabBmanb2BmnabBmnab16Bmra

rBmsa
s

2
15

49
~Bmn

mn!21PmnabPmnabG . ~14!

Because of the larger number of allowed invariants and
helicities in D511, this representation does not seems

2The number of supersymmetrizableR4 combinations can be eas
ily understood by means of the KLT relations. Given two indepe
dent Yang-Mills~YM ! combinationsF4, it is a straightforward ex-
ercise to show that only three~combinations of! R4 give rise to an
amplitude that factorizes into gauge invariant vector amplitud
Assuming ‘‘N54’’ supersymmetry requires just one of the facto
in the above product to be maximally helicity conserving wh
assuming ‘‘N58’’ requires both, leaving just one candidate. Obv
ously this reduces the number of invariants first to 2 and then t
08401
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share the elegance and power of the four dimensional o
Still, it is remarkably compact.

B. F4: Formion-formion scattering

We turn now to pure formion scattering. This amplitude
quite simple to investigate because it must be manife
~form! gauge invariant: the three-form potentialA only ap-
pears in the operative vertices~5!,~7! through its curvatureF;
the relevant currents are in fact the CSCmna

F and the stress
tensorTmn

F . The interactions are mediated respectively
the formion and the graviton. Therefore the amplitude is
ready organized in terms of gauge invariant currents; ind
we have, in terms ofTF ,CF of Eqs.~5!,~7!,

MF4
grav-med54S k

12D
2S TF

ab~k1 ,k2!
1

s
Gab;mn

3TF
mn~k3 ,k4!1permD , ~15!

and

MF4
f orm-med52

1

12S k

24D
2S CFabr~k1 ,k2!

1

s

3Cabr
F ~k3 ,k4!1permD , ~16!

where ‘‘perm’’ stands for permutation of the four extern
particles. The sum of Eqs.~15! and~16! agrees with a recen
calculation of formion scattering from a quite different sta
ing point @12#. We must now multiply our totalMF4 by stu
and see how the derivatives spread. Using the simple
stated at the beginning of this section, we recognize imm
diately that there is an economical way of organizingL4

F in
terms of matter BR and of the correspondingCF extensions.
In fact, if we define

Bmnab
F []aFm]bFn1]bFm]aFn

2
1

4
hmn]aF]bF, ]mBmnab

F 50, ~17!

Crst;ab
F [

1

~24!2
erstm1•••m8

]aFm1•••m4]b

3Fm5•••m8, ]rCrst;ab
F 50, ~18!

where implicit indices are summed in the obvious way, th

L4
F5

k2

36
Bmnab

F Bm1n1a1b1

F Gmm1 ;n1nKaa1 ;b1b

2
k2

12
Cmnr;ab

F CFmnr
a1b1

Kaa1 ;b1b. ~19!

Reflecting its simple ‘‘current-current’’ origin, the pure ma
ter sector has a natural~if perhaps not unique! expression in

-

s.

1.
0-4
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terms of currents. There is also a basis of scalars quartic iF;
we have not used it here, but it is tabulated in the Appen

C. F3R: Topological Bremsstrahlung

Here there is just one diagram, namely the emission o
graviton described by the stress tensor vertex~5!,~6!, from
any of the 3 formion lines emanating out of the CS ver
~7!. The analysis of this amplitude follows the lines of th
previous section. While it is not manifestly~gravitationally!
gauge invariant, its invariance can be verified using the
lowing local D511 identity

d~A`F`F`F ![Fam1m2m3
Fm4•••m7

Fm8•••m11
em1•••m11[0.

~20!

This identity enables us to write the amplitude schematic
in the form

M4
hF3

5hmnS FmabrGn
abr2

1

8
hmnGabrsFabrsD1perm

~21!

where ‘‘perm’’ symmetrizes the 3 formions;Gmnab is the
effective field strength~obeying theF equation of motion!
constructed out of the ‘‘connection’’ defined by (D)21CF

abr

with the CF of Eq. ~7!. Then the gauge invariance of th
amplitude is equivalent to the conservation of the ‘‘ener
momentum tensor’’ effectively defined in Eq.~21!. Next we
again multiply derivatives according to the rule given at t
start of this section. Turning thehmn in Eq. ~21! into a Rie-
mann tensor takes some patience and a certain numb
integrations by parts, however. The final result is

L4
FFFg5~stu!M4

FFFg52
k2

3
Cmnr;ab

F CRFmnr
a1b1

Kaa1 ;b1b,

~22!
08401
.

a

x

l-

y

y

of

Cmnr;ab
RF [4]l~R (a b)

s [l Fs
mnr] !2

2

3
Rs

(a b)
l ]lFs

mnr . ~23!

To prove this result, we used the following generalization
the identity~20!:

]a]bFam1m2m3
]aFm4•••m7

]bFm8•••m11
em1•••m11[0. ~24!

While it is clear that a ‘‘CRF current’’ must exist sinceCF

factorizes the amplitude, Eq.~23! is not unique and we claim
no special significance for it.

D. R2F2: Compton scattering

The most complicated amplitude is that for gravito
formion scattering. It involves two classes of diagrams. T
first consists of theTmn

F stress tensor turning into two grav
tons via graviton exchange between the verticeshmnTmn

F of
Eq. ~6! and theh]h]h of Eq. ~4! along with the mixed quar-
tic contact term~8! required to preserve gauge invarianc
The second set is more Compton like: the gravitons sca
off formion lines, via twoTmn

F currents through virtual for-
mion exchange~in direct as well as crossing versions!. The
schematic expression for the total amplitude should look l
M4

ggFF;k2R2F2 up to derivatives and the exchange po
~There is no simpleD54 reduction available here since
4-form is a constant inD54.) To perform the detailed cal
culations it proved useful to employ the program FOR
@13#.

As yet we can only give the amplitude in semi-final form
before the graviton polarizations have been converted
curvatures, but with the formions entirely expressed in ter
of their field strengths. The eventual ‘‘FFRR’’ form is guar-
anteed by the~verified! invariance of M under graviton
gauge transformations. The amplitude, before (stu) multipli-
cation, reads
s as
s

M4
ggFF5

1

6s
~F12

m1n1e1m1
e2n1

e2•p2e1•p123F12
m1m2n1n2e2m1

e1m2
k2n1

e2n2
e1•p123F12

m1m2n1n2k1m1
e1m2

e1n1
e2n2

e2•p2

26F12
m1m2m3n1n2n3k1m1

e2m2
e1m3

k2n1
e1n2

e2n3
13F12

m1m2n1n2k1m1
e1m2

k2n1
e2n2

e1•e2!

1
1

6u
~F12

m1n1e2m1
e1n1

e1•p2e2•p123F12
m1m2n1n2e1m1

e2m2
k1n1

e1n2
e2•p123F12

m1m2n1n2k2m1
e2m2

e2n1
e1n2

e1•p2

26F12
m1m2m3n1n2n3k2m1

e1m2
e2m3

k1n1
e2n2

e1n3
13F12

m1m2n1n2k2m1
e2m2

k1n1
e1n2

e1•e2!1
1

6t S F12
m1n1e2m1

e1n1
e2•k1e1•k2

1F12
m1n1e1m1

e2n1
e2•k1e1•k22

1

2
F12

m1n1k1m1
k2n1

~e1•e2!22
1

2
F12

m1n1k2m1
k1n1

~e1•e2!2

2F12m1n1
F 1

m1a1e2a1
F 1

n1a1e2a1
2F12m1n1

F 2
m1a1e1a1

F 2
n1a1e1a1D

1
1

12S F12
m1n1e2m1

e1n1
e2•e116F12

m1m2n1n2e1m1
e2m2

e1n1
e2n2

1F12
m1n1e1m1

e2n1
e1•e21

1

8
F12~e1 .e2!2D . ~25!

The last, local term includes the 4-point vertex~8! as well as local contributions from the other graphs. The notation i
follows: ki ,pi denote respectively the graviton and formion momenta, andF12

m1•••m in1•••n i is the product of the field strength
0-5
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of formions 1 and 2, with the last 42 i indices contracted

while F i
m1m2 stands for the invariant combinationski

m1e i
m2

2k1
m2e i

m1 . As in Sec. II, the polarization tensor of eac
graviton is represented as the product of two polarizat
vectors,e i . With these conventions, the amplitude is sy
metric unders-u interchange, corresponding to interchan
of the ~1-2! gravitons, while the 1/t term is then separatel
invariant under~1-2!.

In summary, the set of scattering amplitud
~14!,~19!,~22!,~25! displayed in this section represents t
bosonic part of the advertised linear 4-point SUSY invaria

IV. LOCAL INVARIANTS AND THE RENORMALIZATION
PROBLEM

In the previous section, we first constructed and then
calized the~bosonic! four-point tree amplitudes to obtain th
bosonic part of a linearized SUSY invariant quartic in t
field strengths (F,R). Here we discuss some consequen
of this invariant’s existence on the issue of the renorma
ability of D511 SUGRA. In this connection a brief review
of the general SUGRA divergence problem as it applies
D511 may be useful. For clarity, we work in the framewo
of dimensional regularization, in which only logarithmic d
vergences appear and consequently the local counter
must have dimension zero~including dimensions of the cou
pling constants in the loop expansion!; the generic gravita-
tional loop expansion proceeds in powers ofk2 ~we will
separately discuss the effect of the additional appearanc
k in the CS vertex!. It should also be stated~in connection
with anotherk2 counting! that while the present discussio
really proceeds at lowest order in an expression about
space, with linearized curvatures, etc., the ‘‘covarian
dressed’’ quantities enter through, including additional gra
ton lines at each graviton vertex; this will not alter the dive
gence countings, although it can be extremely complicate
achieve. Indeed, the same can be said of the whole proce
reaching the fully locally SUSY invariant version of ou
4-point amplitudes: it must exist just because it comes fr
the underlying action~1!, as the physical expression of sca
tering among asymptotically defined states, though that d
not make the perturbative resummation very obvious.

At one loop ~omitting the overall ‘‘infinite’’ 1/e factor!,
the counter-action would beDI 1;k0*dx11DL1. But there is
no candidateDL1 of dimension 11, since an odd dimensio
cannot be achieved by a purely gravitationalDL1. @‘‘Gravi-
tational’’ ;eGR4 or ‘‘form gravitational’’ ;eAR4 ~respec-
tively parity odd and even! CS-like3 terms@14# cannot arise
perturbatively, i.e., with integer powers ofk.# Possible in-
variants involving odd powers ofk arising from the CS ver-
tex also cannot give rise to 1-loop diagrams. These ca

3In this connection we also note that the presence of the L
Cività tensor usually does not invalidate the use of dimensio
regularization~or reduction! schemes to the order we need. In a
case our conclusions would also apply, in a more complicated w
in other regularization schemes that preserve SUSY.
08401
n
-

t.

-

s
-

o

rm

of

at

i-
-
to
of

es

i-

dates, consisting of a polygon~triangle or higher! with form
and graviton segments and appropriate emerging exte
bosons at its vertices, have as simplest example a form
angle with three externalF lines ;k3*d11x]9eAFF. How-
ever, this odd number of derivatives clearly cannot yield
scalar. The same counting also excludes the one-loop p
gon’s gravitational or form extensions such asF2R, FR2 or
evenF3R at thisk3 level.

At two loops, DI 2;k2*d11xDL2, so thatDL2;@L#220

which can be achieved~to lowest relevant, 4th, order in ex-
ternal lines! by ~for the pure graviton contribution! DL2

;]12R4, where ]12 means 12 explicit derivatives sprea
among the 4 curvatures. There are no relevant 2-p
;]16R2 or 3-point;]14R3 terms because theR2 can be field
redefined away into the Einstein action in its leading part~to
h2 order,E4 is a total divergence in any dimension! while R3

cannot appear by SUSY. This latter fact was first dem
strated inD54 but must therefore also apply in higherD
simply by a direct dimensional reduction argument. Thus
terms we need are, for their 4-graviton part,L4

g of Eq. ~5!
with 12 explicit derivatives. The companions ofL4

g in L4
tot

will simply appear with the same number of derivatives. It
easy to see that the additional]12 can be inserted withou
spoiling SUSY; indeed they appear as naturally as did m
tiplication by stu in localizing theM4 to L4: for example,
]12 might become, in momentum space language, a com
nation of (s61t61u6) and (stu)2, and spread according t
rules similar to those presented in the text. This establis
the structure of the 4 point local counterterm candidate
are considering. We do not of course imply that these are
only invariants, but they are the essential ones, as we
now, to the nonrenormalizability problem.

Before the present construction of the complete coun
term was completed, the actual coefficient of its 4-gravit
part was computed@4# by a combination of string-inspired
and unitarity techniques. The structure of infinities in t
four-graviton sector for all maximal supergravities up to tw
loops was extensively studied there, and conjectures
higher loops were presented as well.~Very recently, a paral-
lel analysis of type I supergravities has been carried ou
@15#.! Here, for completeness we state the methods and
evant final results of@4#: Begin by computing the tree supe
gravity amplitudes by means of the KLT relations. Next, u
these tree amplitudes as input for the cutting rules to ob
the analytic structure of the one-loop amplitudes at anyD.
This information, because of the high degree of supersy
metry, is enough to reconstruct the one-loop amplitud
Now iterate the procedure and go to two loops.~What makes
the procedure quite cumbersome beyond two loops is
increasing number ofn-particle cuts that one has to exam
ineto reconstruct the amplitude.4! Finally compute the even
tual divergences; inD511 as we saw on general ground

i-
l

y,

4Remarkably, the two-particle cut can be iterated to an arbitr
number of loops, because ‘‘N58’’ supersymmetry guarantees ver
simple iterative rules for gluing the amplitudes. One essentia
always reproduces the tree level’s tensorial structure.
0-6
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there is no 4-point one-loop divergence~in the dimensional
regularization approach!, while at two loops the calculation
yields the explicit infinite result

DI 2~g!upole5S k

2D 6 1

48e ~4p!11

p

5791500

3@438~s61t61u6!253s2t2u2#~stuM4
g tree!,

~26!

for the local 4-graviton divergence, dimensionally regul
ized to D51122e, with (stu)M4

g tree[Lg of Eqs. ~12a!–
~14!. The results of Sec. III then embody the extension of E
~26! to the complete bosonic sector counterterm.

V. SUMMARY

We have succeeded in constructing explicitly the t
level nonlocal 4-point scattering amplitudes involving t
two bosons ofD511 SUGRA, namely the graviton and fo
mion, as well as obtaining the corresponding local invari
in a SUSY-preserving way. Extending the result to the res
the amplitude, involving two or four gravitinos, is not th
difficult in terms of the techniques employed here@3#: the
gravitino primarily interacts with the graviton through i
stress tensor;kmnTmn(c), and with the formion through a
simple ~nonminimal! coupling term;(c̄GcF). The ~com-
plicated! 4-fermion contact terms are needed, but only
the 4-fermion part of the amplitude, where they ensure
SUSY invariance, not for the 2-gravitino to 2-boson amp
tudes. In any case the bosonic part alone, if SUSY tra
formed, will provide a complete linearized SUSY invarian
In addition to its intrinsic interest as a example of a ‘‘phy
cal’’ process inD511 SUGRA, the result was of primar
interest to us as confirmation of the existence of an invar
that ~in its localized version! has the dimension of a cand
date counterterm for~dimensionally regularized! 2-loop in-
finities. Indeed, its 4-graviton part agreed completely w
the coefficient of the 2-loop infinity recently calculated
that sector in@4#, while its 4-formion part agreed with a ver
different matrix-theory motivated scattering calculation@12#.
The existence of infinities in this ultimate local SUGR
model, while not unexpected from a purely power count
field theoretical point of view, is important in showing th
no hidden symmetry rescues this most unique theory.
course such a putative symmetry could still suppress
higher loop infinities beyond a certain order, but this see
unlikely given the concrete result of@4#, together with the
obvious constructibility of higher order candidate count
terms, e.g., using the scattering approach. We can at
conclude that the case for underlying finite extended~M!
theories is thereby strengthened. In this connection, we
phasize that the invariant found here has a further interes
another example~see also@16,17#! of possible local correc-
tions to M theory whose leading term is presumably the
tion ~1!. This might teach us something about this underly
model, just as the corrections to the Einstein action in sl
expansion of the variousD510 superstring models could b
08401
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understood from the latters’ properties; persistence inD
511 of the ‘‘t8t8’’ D510 string theory hallmark is perhap
one first hint about the M-string connection.
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APPENDIX: QUARTIC CURVATURE INVARIANT BASIS

We briefly tabulate~for the Ricci-flat geometries of inter
est! a basis in the space of scalars quartic in curvature, w
attention to the special caseD54; details can be found in
@6,18#. A similar expansion of quartics scalar in the 4-for
fields is also appended.

In generic dimension, which turns out to beD>8, the
basis consists of 7 elements. A suitable choice@18# is given
by ~we retain the letterR to denote on-shell Riemann, that i
Weyl tensors!

I 15~RabrsRabrs!2, I 25RabrsRabr
lRmnv

sRmnvl ,

I 35RabrsRab
lmRlm

nvRrsnv ,

I 45RabrsRab
lmRrl

nvRsmnv ,

I 55RabrsRab
lmRr

n
l

vRsnm v ,

I 65RabrsRa
l

r
mRl

n
m

vRbnsv ,

I 75RabrsRa
l

r
mRl

n
b

vRmnsv . ~A1!

Since we are actually interested only in actions~rather than
local scalars!, we are free to discard any combinations of t
I n that produce a total divergence at the linearized level. T
Euler density

E85I 1216I 212I 3116I 4232I 5116I 6232I 7 ~A2!

possesses this property in every dimension and thus the c
bination~A2! can be considered as effectively vanishing: f
our purpose there are then only 6 independent invaria
(E8 could be detected in amplitudes with more than fo
gravitons.!

In D54 the number of independent invariants is furth
reduced to just 2. The relation connecting the differentI i can
be shown in many different ways. Here, to be self-contain
we will demonstrate them by exploiting some ‘‘accidenta
symmetries of the Bel-Robinson tensorBmnab : Upon ex-
panding the product of Levi-Civita´ symbols implicit in the
two dual curvatures of
0-7
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Bmnab5Rr
m

s
aRrnsb1* Rr

m
s

a* Rrnsb , ~A3!

one obtains the different form

Bmnab5Rr
m

s
aRrnsb1Rr

m
s

bRrnsa2
1

2
gmnRa

rstRbrst

~A4!

of the same object. We thereby easily recover the twoD
54 identities

Ra
rstRbrst2

1

4
gabRmrstRmrst50, ~A5!

1

2
Rma

rsRnbrs1Rr
m

s
bRrnsa2Rr

n
s

mRrasb

2
1

8
~gmngab2gmbgna!RlrstR

lrst50. ~A6!

The first identity follows from tracelessness of Eq.~A3! in its
first index pair, a property manifest for Eq.~A4!. The second
follows by exploiting the total symmetry of Eq.~A4!. Both
facts are implicit in the~A3! definition. Then Eq.~A5! im-
plies

I 154I 2 . ~A7!

The scalar identities coming from Eq.~A6! are obtained by
multiplying it by all possible independent 4-index tenso
usingRrmsnRr s

a b , we find

I 72I 61
1

2
I 52

1

4
I 41

1

8
I 150, ~A8!
S.

tu

ru

08401
:

while RrmsnRr s
b a yields

I 72I 61
1

8
I 31

1

16
I 150. ~A9!

Using the vanishing of the Euler combination and the re
tions ~A7!, ~A8!, and ~A9!, we can, for example, determin
all the invariants in terms ofI 1 , I 3, andI 5:

I 75
I 1

8
2

I 3

4
, I 65

3

16
I 12

I 3

8
,

I 45
I 1

4
2

I 3

2
12I 5 , I 25

I 1

4
. ~A10!

Finally, to show thatI 5 vanishes identically, one utilizes th
vanishing inD54 of any expression antisymmetric in 5 in
dices; more specifically antisymmetrizing the 5 lower~or
upper! indices (pqtuw) in the definition ofI 5 in Eq. ~A1!
yields ~after some algebra! the value 43I 5.

Although we have not explicitly used them in text, simil
~off-shell! bases also exist for our 4-forms. ForD>8, there
are 4 independent combinations

f 1[~F2!2, f 2[~FmFn!~FmFn!,

f 3[FABFBCFCDFDA,

f 4[FAmnFab
A FB

maFBnb ~A11!

where the omitted indices inf 1 , f 2 are internally traced in
each pair, while the capital indices inf 3 , f 4 are shorthand
for an index pair. Thus, each pair inf 1 has no open indices
in f 2 there are two, andf 3 , f 4 have 4 open indices per pai
traced in the two possible independent ways.
ys.
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