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Tree amplitudes and two-loop counterterms inD=11 supergravity
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We compute the tree level 4-particle bosonic scattering amplitudBs=ih1l supergravity. By construction,
they are part of a linearized supersymmetry, coordinate, and 3-form gauge invariant. While this on-shell
invariant is nonlocal, suitable SUSY-preserving differentiations turn it into a local one with correct dimension
to provide a natural lowesttwo-loop) order counterterm candidate. Its existence shows explicitly that no
symmetries protect this ultimate supergravity: Indeed this invariant, together with the recently calculated
infinite coefficient of its 4-graviton part, constitutes a demonstration of two-loop non-renormalizability.

PACS numbd(s): 04.65+¢e, 11.10.Gh

I. INTRODUCTION this lowest order framework, the bosonic amplitudes are in-
dependent of fermions: virtual ones cannot contribute at the
In the postD=10 superstring eraD=11 supergravity tree level. The above statements together considerably
(SUGRA) [1] has again attracted the attention it has alwaydighten our task, which will be to compute “just” the parts
deserved, without, however, becoming any easier to handl@volving the gravitational and form bosonic excitations. The
technically. In particular, supersymmetf@USY) invariants  amplitudes involving fermions are not necessarily more com-
are still(absent an appropriate calculakfficult to verify, let ~ plicated, merely less relevant to our immediate goal of repro-
alone construct. Here, we will supplihe linearized bosonic ducing terms about which the appropriate divergence com-
part o) one such invariant. Our work has two motivations putations exist; indeed, we hope to return to théai.
beyond its intrinsic interest within the theory. Most directly, However, in order to use the scattering amplitudes for coun-
we want to determine unambiguously whether there existerterm purposes, it will first be necessary to strip them of the
local invariants that can serve as counterterms at the lowespnlocality associated with exchange of the virtual graviton
possible, here two-loop, order. This nontrivial exercise hagind form particleg“formions” ) without compromising their
an historical basis in lower-dimensional SUGRAs, where thdnvariances. Actually, the task here will be not only to re-
existence of invariants is easier to decide; there, no miraclegove nonlocality but to add sufficient further powers of mo-
occurred: counterterms were always available. They somgnentum to provide an on-shell invariant of correct dimen-
times started at higher order than in pure Einstein gravitysion that is an acceptabl¢and indeed first possible
[general relativityGR)] where every loodexcept, acciden- perturbative counterterm candidate. In this way, we will
tally, one loop aD =4) is dangerougFor a recent historical make contact with the conclusive 2-loop result$4if where
review of divergences in gravities sg2].] However, given it was possible to exhibit the infinity of a local 4-graviton
all the properties unique tb =11, and the fact that it is the term, one that is precisely a component of our invariant. A
last frontier—a local quantum field theof@FT) that is non-  condensed earlier version of our results was givefbin
ghost(i.e., has no quadratic curvature tejnasid reduces to
GR—it is sufficiently important not to give up hope before Il. PROPAGATORS AND VERTICES

abandoningD =11 SUGRA (and with it all QFTs incorpo- . . .
rating GR too quickly on non-renormalizability grounds. The basis for our computations is the flli=11 SUGRA

Our second interest is in the M-theoretical direction: anyaCt'OnI [121’ expanded tg ﬂua;rtlc _order_lr? r':s UI¥O bosons,
invariants that can be obtained here might provide hint§ameyt € graviton and the formion, with three-form poten-

about the wider theory that presumably reduceDte11 1@l Auy, . The field strengtF ,,s=431,A,4p IS invariant
SUGRA as its “zero slope” limit. under the gauge transformatiod®\,,,=d;,&,,, square

The idea underlying our approach is that the set of a”Erackgts de”Otif‘g totfaILorrTL\alized gnti;ymmetrization. The
n-particle (for fixed n) tree level scattering amplitudes con- P0SONIC truncation of the Lagrangian is

structed within a perturbative expansion of the actioips® N N
facto globally SUSY as well as linearized coordinate and Lg=— R———=F 4,y F "7
3-form gauge invariant. Thus, because linearized SUSY does 4x? 48
not mix different powers of fields, the 4-point amplitudes of )
interest to us, taken together, form an invariant. Also, within Koq.
g +—— e HALF s Feoi (1)
144

*Present address: Dipartimento di Fisica, UniversiiaFirenze, ~The metric signature in Eq1) is mostly minus, the Ricci

Largo E. Fermi 2, Firenze, Italy. tensor is defined b;RaB~+&AFQB, and the Levi-Civita
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symbol obeyse® "1°=—1. The gravitational constant,  and

with dimension[L]%? also appears explicitly in the topo-

logical (P,T)-conserving metric-independent Chern-Simon 1

(C9 part of Eq.(1). DrrpiaBo(p) = > b DF 3
The propagators and vertices required for our computa-

tions are obtained by expanding in powers«fwith g,,, . _

=17,,+«h,,, and keeping all contributions through order Dr is the scalar Feynman propagator afff, is totally

oy
x?. The pr%pagators, from the quadratic part of the action@ntisymmetric in each triplet of indices.
are well known. In harmonidde Donder and Feynman There are three cubic vertices:
gauges for gravity and the 3-form respectively, (a) Three gravitonsl®). Explicit use of this cumbersome
vertex can be avoided in dealing with the four-graviton am-
DEviaB(h) = = N _E b plitudes, bu_t not in pqmputing the grgvit_on—form “Cpmp—
(M)=35\ Pan syt Navpp™ g Napfuv | Dr ton” scattering. To minimize the complications, we write the
vertex already contracted with two on-shell polarization ten-
=G+ *PDg (2)  sors, since we will never need fewer contractions:

2V (k3,k%,K?) efefegeg= (€1- kz)ze'ge’z’— (e1-Ko)(€x-ky) e e5—(€e1-Ko)(€x-Ky) €l €]+ (€s- kl)ze’l‘ef

wviapipo
+(€1'62)(61'k2)(62'kl)ﬂw_(fl'kz)(fl'62)€§k5_(61'k2)(61'fz)fgkg
—(€1-€2)(€2-Ky) €XkY+ (€1 €2) (€l b+ eb €)) Ky Ka— (€17 €2) (€2-Ky) €1KE + (€1 €)?KEK]

+ 1/2( € Ez)zkka'f' 1/2( €1 62)2kzkg+(€1' 62)2kf‘fk’2}_ 3/2( €1 62)27]’uvk1' k2. (4)

Here and throughout the polarization tens®f of a graviton  the local 4-graviton vertex; it will not be written out here, but
is represented as the produ.(ftef of two polarization vec- is needed for the 4-graviton amplitude calculation. The sec-
tors. ond is thenhFF vertex from expanding thE? kinetic term

(b) Graviton form (\FF): this is the usual coupling be- in Eq. (4); it is necessary to ensure gauge invariance in the

tween the metric and the form’s stress tensor. In coordinatgraviton-formion Compton process. Its form, in a gauge
space, where the graviton is traceless, is

1 1
V§FF =T, h*= KhW( FuapsF ™~ 35 nwFaBng“ﬁPf’) VhFF= — 4—852f V=09 F?/89,,690plg- N usDap

5
° K1 YA aBp
twp ol D puap a3 ey
=;<Aaﬁpa#(h” M- SRR P). (6) . .
. . , - —hﬂ,,h“"FaﬂpUF“'B”"+—hwhaﬁFWWF”BP” )
Expressiong5),(6) differ (on shell and for harmonic gauge 48 2
by an integration by parts: the former is the more suitable in (8)

the analysis of pure form scattering, the latter for graviton-
form Compton scattering. Note that both expressions sim-
plify if we choose a gauge whete,, is traceless. IIl. AMPLITUDES

~ () Three formions AFF): Entirely because of themet- In this section we outline the explicit computation (tfie

ric independentCS term in Eq(1), it is usefully written s pogonic part ofthe SUSY invariant amplitude and then con-
struct the corresponding local invariants. Before entering
into details, some general remarks are in order. In momen-
tum space, the non-locality in each scattering amplitiaie

(7)  tothe intermediate denominator of the exchanged payiigle
represented by a sum of simple poles, in each of the Man-

This vertex will produce a non-gravitational contribution to delstam variabless(t,u), corresponding to the three differ-

4-formion scattering and will also be responsible for an un-ent possible channels in four-particle scattering; this nonlo-

usual,F3R “bremsstrahlung,” amplitude. cality is easily neutralized by multiplying the final result by

Finally, to achieve gauge invariance, we must also includehe symmetric polynomiadtu. Since multiplication in mo-
the effects of two 4-point contacikf) vertices. The first is mentum space corresponds to differentiation in coordinate

VE=A

Citzwa CPoT=
)

E GPGTl."SFl.A.4F5A..8.

uva

(12)*
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space, it becomes necessary to understand how these adplieiting the special property that ensures the supersymmetri-
tional derivatives are to be spread. Suppose that we can writgability of the Einstein action, namely that it is, at the tree
the amplitude in the generic “current-current” single pole level, maximally helicity conserving7]. This constrains the
form, as follows: amplitude to be proportional to the combinatiorE,(

. —P4)(E4+ P,). Remarkably, this invariant is also, owing to

identities peculiar td =4, expressible as the square of the
M= 63(Ka) $5(Ka) Vil K1 ko)~ Wacd( ks ka) (UniQUS BR tensor B, (RR+*R¥R) 1. Unfortu-
unra, prvaf -
. g nately, D=4 is highly degeneratésee the Appendix In
X 3(K3) da(Ks) + (stu) — perm. (9 generic dimensions, which in this context meds 8, the

number of invariants quartic in the Weyl tensor is 7 and the
only condition given by the above constraint is obviously not
enough to fix the relative coefficients. Nevertheless, it is still

Then, by multiplying bystu and using the identity

tu= — 1/2( nﬂanvﬁ’+ ,r]m 77/43’_ 7]#1/7701,8) kl k2k3 k?;

wivia sufficient to determine the amplitude completely by consid-
= — 1/2K#VieBRL K2K3 KA (10) ering configurations where the helicities of the gravitons be-
povien B long to the subspace defined by their four-momenta.

and its permutations, we can write A further step can be taken using a very different prop-
erty, which is not manifest from the GR action, having a

M = kiﬁ( kl)k,2,¢g(kz)Vabm(k1 ko) KEviaBGmn string origin: The 4-graviton tree amplitude i_s proportional to

. 4 the square of “bleached” 4-gluon tree amplitudes, upon rep-
X Wicd(Ks,Ka) K, d5(ka)Kp(kg) + (Stu) — perm. resenting the graviton polarization tensor as the product of

(11) two vectors; this is implied by the field theory limit of the
Kawai-Lewellen-Tye(KLT) [8] relations' This additional

In other words, if we Fourier transform back to coordinateinformation, in fact, determines the amplitude completely,
space, the net effect of this procedure is to remove the pol@ecause maximal helicity conservation fixes thacolored
and to add a derivative to each of the four external fields4-gluon amplitude(since there are only two independéft
These new derivatives are to be contracted according to tHBvariants in anyD) and consequently the gravity amplitude,
K *B:~v matrix defined in Eq(10). If the amplitude is already Which is its square. The conclusion that the form\f is
expressed as a product of gauge invariant currents, this pro- Mgoc(stu)*ltgl"'ﬂstgl'"VBR
cedure produces an invariant that is the product of two new
dressed gauge-invariant currents. In the case of gravitation-
ally induced matter interactions, these currents behave like
counterparts of the Bel-Robins¢BR) tensorg6]. follows from the gluon “square root{in this contextF ,,
The above “dressing” procedure leaves unaltered an amstands for the gluon field strength

plitude’s transformation under global symmetries, such as
the linearized supersymmetry of interest: In the momentum
space we are just multiplying an invariant by the harmless
scalar factor, the derivatives. While there will be some ex-

ceptions in details to application of the above remarks, the ) . )
final local results achieved will be correct; i.e., we have a Alternatively one can follow the explicit calculational

constructive procedure for transforming the guarantee&teps spelled out at the beginning of this section. The algebra

symmetry-preserving but nonlocal amplitudes into equallynvolved is quite cumbersome, and benefits from a program
invariant (on-shel) local terms. for algebraic manipulation. This analysis should obviously

lead to the same result and indeed it does. Still, it must be
performed, at least for a particular set of helicities, in order
to obtain the correct normalization of the amplitudes. For
We start with the 4-graviton amplitudd§. The graviton example, by choosing a configuration such thak;=0 for
exchange contributions stem frofa) contracting twoV;  all i andj, one finds that the overall coefficient of Ed.2a
vertices(4) in all three 6,t,u) channels via an intermediate is fixed to be 1/4. The final resull2g possesses the same
graviton propagatof2), which provides a single denomina- tensorial structure as the familiar superstring zero-slope limit
tor, and(b) the local 4-point verte¥'3 . The resultingv§(h) correction toD=10N=2 supergravity, where the; "
will be a non-local quartic polynomial in the Riemann
(Weyl, on linear shejltensor, whose non-locality is remov-
able bystu mUIt'pI'Cat'on' InD=_4’ most of t,he CalCUIat'o_n We emphasizésee alsd4]) that while these relations hold for
can be avoided because a straightforward implementation ¢§<1 ¢, the applicability of the unitarity cuts and sewing techniques
supersymmetry allows one to fix the amplitude completelytor the four-point amplitudes are in fact dimension independent. No
up to normalization: There are only two independent locakpecialD =11 particle configurations are needed, and all our ampli-
scalar quartics in the Weyl tensor and its dudR: the  tudes were computed directly d=11. In particular while(123
squares of Eulerg,=*R*R) and Pontryagin P,=*RR) may look “10 dimensionally stringy,” it holds independentigee
densities. Their relative coefficient can be determined by exalso[9]) atD=11.

HikaV1V2 R#3#4”3"4

RMS#GVSVGR#7#8V7V8 (123

gluonx M1 Mg .
M4 t8 Fﬂvll’«z FP«7M8

= (F, Fr)2—aFrmmep, | Frsiaf, . (12b)

A. R*: Graviton-graviton scattering
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symbol originates from th® =8 transverse subspaf@], as share the elegance and power of the four dimensional one.
has also been noted ifil0] which carried out direct Still, it is remarkably compact.
4-graviton calculations as well. This reflects the fact that
maximal supersymmetry implies a unig& in all dimen- B. F4: Formion-formion scattering
sions. If we assume only 1/2 of the maximal supersymmetry
in genericD, we find that there is room for two invariants, as
can be seen by looking, e.g., at the effective action of th X o .
heterotic superstring where the analogue of @&a is ac- (form) jgauge invariant: th_e three-form pot_entmlonly ap_'
companied by anothe®* term? pears in the operative vert,c@,(?) through its curvaturé;

At this point it is quite easy to write down a combination e rele\éant currents are in fact the (C_ﬁm and the stress
of local R* that represents E4124). In terms of the basis of t€nsorT,,. The interactions are mediated respectively by

We turn now to pure formion scattering. This amplitude is
é:]uite simple to investigate because it must be manifestly

the Appendix, the Lagrangian is the formion and the graviton. Therefore the amplitude is al-
ready organized in terms of gauge invariant currents; indeed
1 we have, in terms of ¢,C of Egs.(5),(7),
Lg:_|4_|7, (13)
4 d K \? 1
Mgzav-me =4 1—2) TgB(kl,kz)gGaﬁ;MV

where we have dropped a term proportional to the
8-dimensional Euler densityegegR?) that, being a total di-

vergence to leading order, does not affect the amplitude. In XTéV(k3,k4)+perm), (15
many respects, the forrtl2ag for the contribution coming

from the 4-graviton amplitude is a perfectly physical one.gng

However, one might wonder whether there is a formulation

of the above Lagrangian in terms of currents that encom- 1
passes both gravity and matter in a unified way as in fact Mg med= — 1—2<
occurs in, e.g.N=2D=4 supergravity[11]. This might

also lead to some understanding of higher spin SUSY mul- .

tiplets. Using the quartic basis expansion, one may rewrite Xcagp(k3,k4)+perm>, (16)
L$ in various ways involving any of the BR currents of the

Appendix and a closed 4-forR,, 5, = 1/4R% R g1ap- FOr  where “perm” stands for permutation of the four external
example, if we choose the BR tensor particles. The sum of Eq$15) and(16) agrees with a recent
calculation of formion scattering from a quite different start-
- or ing point[12]. We must now multiply our totaM g, by stu
Burap=[RupacRW g7+ (vu)] - EgMVRaPUTRﬁP and see how the derivatives spread. Using the simple rule
stated at the beginning of this section, we recognize imme-
diately that there is an economical way of organizltfgin
terms of matter BR and of the correspondi@f extensions.
In fact, if we define

K \?2 1
_ Fapp _
24) (C (k11k2)s

1
oT NpoT
- EgaﬁR,U,pU'TRVP + gg,u,vgaBR}\pa'TR per

we can write .
BﬂmﬁE doF 0gF ,+dgF L0,F,

L§=48k? 2B, B *"#~B,,.sB* *#+6B,,,, B "%, 1
4 nvaf pvafB Hp _Znﬂv&aFo’bﬁF, (;MBZWBZO, (17
15
v 2 va
—4—9(8” )"t PuapP? Bl. (14 ] 1
= _ My M
CPO'T;CV.B_(24)26170'7'“1"'“8(9“': 1Hag

Because of the larger number of allowed invariants and of
helicities in D=11, this representation does not seems to X [FHsHe, apcgw;a[fo, (18

where implicit indices are summed in the obvious way, then

2The number of supersymmetrizali¥ combinations can be eas- 2
ily understood by means of the KLT relations. Given two indepen- LF:K_BF BF GHH1iVIVK @a1:B1B
dent Yang-Mills(YM) combinationsF#, it is a straightforward ex- 436 #reRT b
ercise to show that only thrgeombinations of R* give rise to an 2
amplitude that factorizes into gauge invariant vector amplitudes. _ K_CF . _CFnve K @a1iB1B, (19
Assuming “N=4" supersymmetry requires just one of the factors 12 7 mreiaB 1P

in the above product to be maximally helicity conserving while
assuming ‘N=8" requires both, leaving just one candidate. Obvi- Reflecting its simple “current-current” origin, the pure mat-
ously this reduces the number of invariants first to 2 and then to 1ter sector has a naturéf perhaps not uniqueexpression in
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terms of currents. There is also a basis of scalars quarkc in . Ix : 2 N
we have not used it here, but it is tabulated in the Appendix. Cuupap=4n(R%pF ") = 3R g dhF 7. (23)

C. F°R: Topological Bremsstrahlung To prove this result, we used the following generalization of

Here there is just one diagram, namely the emission of &1€ identity (20):
graviton describe(_j by_the stress tensor vel@x(6), from S e F o ‘9BFM P B0, (24)
any of the 3 formion lines emanating out of the CS vertex 172F3 4 8
(7). The analy5|s of t_h|s_ a_mphtude fc_JIIows thg Ilnes of the While it is clear that a ‘€RF
previous section. While it is not manifest{gravitationally
gauge invariant, its invariance can be verified using the fol
lowing local D= 11 identity

current” must exist sincec”
factorizes the amplitude, E€R3) is not unique and we claim
‘no special significance for it.

d(AAFAFAF)=F F F M1 rI=(). D. R?F?: Compton scattering

Rl U Ll L A A
(20 The most complicated amplitude is that for graviton-
formion scattering. It involves two classes of diagrams. The
¥irst consists of theTZ,, stress tensor turning into two gravi-
tons via graviton exchange between the vertibééT;V of
- 1 Eq. (6) and thehghoh of Eq. (4) along with the mixed quar-
M3~ =h*"| FLap,G, PP = gmyGagngaﬁ’“’) + perm tic contact term(8) required to preserve gauge invariance.
1) The second set is more Compton like: the gravitons scatter
off formion lines, via ton';V currents through virtual for-
where “perm” symmetrizes the 3 formion$s,,,,z is the  mion exchangein direct as well as crossing version3he
effective field strengtiobeying theF equation of motion ~ schematic expression for the total amplitude should look like
constructed out of the “connection” defined by ) 1C2P* MY9FF~ «2R?F2 up to derivatives and the exchange pole.
with the Cg of Eq. (7). Then the gauge invariance of the (There is no simpled=4 reduction available here since a
amplitude is equivalent to the conservation of the “energy4-form is a constant ilb=4.) To perform the detailed cal-
momentum tensor” effectively defined in E@®1). Next we  culations it proved useful to employ the program FORM
again multiply derivatives according to the rule given at the[13].

This identity enables us to write the amplitude schematicall
in the form

start of this section. Turning the,, in Eqg. (21) into a Rie- As yet we can only give the amplitude in semi-final form,
mann tensor takes some patience and a certain number béfore the graviton polarizations have been converted into
integrations by parts, however. The final result is curvatures, but with the formions entirely expressed in terms
of their field strengths. The eventuaFFRR’ form is guar-
K teed by the(verified) i [ fM und it
LFFFO_ (stuyMFFFO= — " oF  cRFump  gaaripip anteed by the(verified invariance o under graviton
4 4 3 Tnvpiab *1h1 ’ gauge transformations. The amplitude, befaref multipli-

(22 cation, reads

1
ggFF_ — (pH1v1 _ QEM1M2V1IV2 _ aE MMV
Mz _GS(Flz €14,€20,€2° P2€1-P1—3F), €20, €1,,K20, €2,,€1- P1— 3F; Kip, €10,€10,€20,€2° P2

M2V V2

_ REM1K2M3VIV2V3 .
6F1; Kip,€20,€10,K20, €10,€2,,F3F 5 Kip €1,,K20 €2,,€1° €2)

_ gEM1K2Y1P2
3F,

H1vy _ Mip2V1V2
+@(F12 62,41,1611/161' P2€2-P1 El,u1€2,u2k1111611/262‘ P1 3F12 k2/.L162,u262V161V261' P2

1
_ REM1M2K3VIV2V3 H1MQVIV . | g . .
6F12 k2M161M262M3k1V162V261V3+ 3F12 k2,u1€2,u2klvlelvzel 62)+6t F12 62#161,,162 klfl k2

1 1
M1V _ M 2_ M1 2
+F; e, €, €2-Ki€r- Ky > Flo 'Kiu Ko, (€1-€2) 5 Flo Kou,Kiy (€1-€2)

_ M1y viag — MH191 viag
Flz,ulylfl fzalfl €24, F12,41u1~7:2 Elalfg €la,

. M1V1 M2V 1V2 M1Vy _ 2
+ 7 Fi 62M161V162'61+6F12 61u162u261v162v2+':12 €1,,€2,,€1° €2 8F12(61.62) ) (25)

The last, local term includes the 4-point vert} as well as local contributions from the other graphs. The notation is as
follows: k; ,p; denote respectively the graviton and formion momenta,Ffid “"*"""" is the product of the field strengths
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of formions 1 and 2, with the last-4i indices contracted, dates, consisting of a polygdtriangle or higherwith form
while %12 stands for the invariant combinatioh e/ and graviton segments and appropriate emerging externgl
—K“2¢" As in Sec. Il, the polarization tensor of each bosons at its vertices, hav'e as S|rr31plelslt egxample a form tri-
L ' angle with three externd lines ~ «°[d**xd”eAFF. How-
"bver, this odd number of derivatives clearly cannot yield a

\r;]eecttrqésﬁd.evrglth _tnrlgrsshggnger;g??es’ t]r(? d%mﬁgtqg;r'ghsaﬁméscalar. The same counting also excludes the one-loop poly-
Ic u Ul 198, sponding to 1 9 gon’s gravitational or form extensions suchf&R, FR? or
of the (1-2) gravitons, while the 1/term is then separately 3 .3
evenF~R at thisk* level.

invariant under(1-2). _
In summary, the set of scattering amplitudes At WO lOOpS’A_I2~K2fdMXAL2' S0 thaﬁALZN[L,] “
(14),(19),(22),(25) displayed in this section represents theWh'Ch can be achievetto lowest relevant, %, order in ex-

bosonic part of the advertised linear 4-point SUSY invariant{€Mal lines by (for the pure graviton contributionAL,
~d¥R*, where ¢*2 means 12 explicit derivatives spread

among the 4 curvatures. There are no relevant 2-point
~ 9*®R? or 3-point~ ¢*“R® terms because tHe? can be field
redefined away into the Einstein action in its leading (tart

In the previous section, we first constructed and then loh? order,E, is a total divergence in any dimensjomhile R®
calized the(bosonig four-point tree amplitudes to obtain the cannot appear by SUSY. This latter fact was first demon-
bosonic part of a linearized SUSY invariant quartic in thestrated inD=4 but must therefore also apply in higher
field strengths F,R). Here we discuss some consequencesimply by a direct dimensional reduction argument. Thus the
of this invariant’s existence on the issue of the renormalizterms we need are, for their 4-graviton pdrf, of Eq. (5)
ability of D=11 SUGRA. In this connection a brief review with 12 explicit derivatives. The companions bf in L
of the general SUGRA divergence problem as it applies tawill simply appear with the same number of derivatives. It is
D =11 may be useful. For clarity, we work in the framework easy to see that the addition&’ can be inserted without
of dimensional regularization, in which only logarithmic di- spoiling SUSY; indeed they appear as naturally as did mul-
vergences appear and consequently the local countertertiplication by stu in localizing theM, to L,: for example,
must have dimension zeficluding dimensions of the cou- 2 might become, in momentum space language, a combi-
pling constants in the loop expansjotthe generic gravita- nation of ®+1t%+u®) and (stu)?, and spread according to
tional loop expansion proceeds in powers «f (we will  rules similar to those presented in the text. This establishes
separately discuss the effect of the additional appearance @ie structure of the 4 point local counterterm candidate we
k in the CS vertex It should also be state@n connection are considering. We do not of course imply that these are the
with anotherx? counting that while the present discussion only invariants, but they are the essential ones, as we see
really proceeds at lowest order in an expression about flatow, to the nonrenormalizability problem.
space, with linearized curvatures, etc., the “covariantly Before the present construction of the complete counter-
dressed” quantities enter through, including additional gravi-term was completed, the actual coefficient of its 4-graviton
ton lines at each graviton vertex; this will not alter the diver-part was compute@4] by a combination of string-inspired
gence countings, although it can be extremely complicated tand unitarity techniques. The structure of infinities in the
achieve. Indeed, the same can be said of the whole processfolr-graviton sector for all maximal supergravities up to two
reaching the fully locally SUSY invariant version of our loops was extensively studied there, and conjectures on
4-point amplitudes: it must exist just because it comes fronmhigher loops were presented as wéllery recently, a paral-
the underlying actiorfl), as the physical expression of scat- lel analysis of type | supergravities has been carried out in
tering among asymptotically defined states, though that dog45].) Here, for completeness we state the methods and rel-
not make the perturbative resummation very obvious. evant final results of4]: Begin by computing the tree super-

At one loop (omitting the overall “infinite” 1/e facton,  gravity amplitudes by means of the KLT relations. Next, use
the counter-action would b&l,~ «°fdx*AL,. Butthere is  these tree amplitudes as input for the cutting rules to obtain
no candidateAL, of dimension 11, since an odd dimension the analytic structure of the one-loop amplitudes at Bny
cannot be achieved by a purely gravitationdl,. [“Gravi- This information, because of the high degree of supersym-
tational” ~ eI'R* or “form gravitational” ~eAR* (respec- metry, is enough to reconstruct the one-loop amplitudes.
tively parity odd and evenCS-like® terms[14] cannot arise  Now iterate the procedure and go to two loofWhat makes
perturbatively, i.e., with integer powers af] Possible in- the procedure quite cumbersome beyond two loops is the
variants involving odd powers of arising from the CS ver- increasing number ofi-particle cuts that one has to exam-
tex also cannot give rise to 1-loop diagrams. These candineto reconstruct the amplitudg Finally compute the even-

tual divergences; ilD=11 as we saw on general grounds

IV. LOCAL INVARIANTS AND THE RENORMALIZATION
PROBLEM

3In this connection we also note that the presence of the Levi-
Civita tensor usually does not invalidate the use of dimensional “Remarkably, the two-particle cut can be iterated to an arbitrary
regularization(or reduction schemes to the order we need. In any number of loops, because “N8"” supersymmetry guarantees very
case our conclusions would also apply, in a more complicated waysimple iterative rules for gluing the amplitudes. One essentially
in other regularization schemes that preserve SUSY. always reproduces the tree level's tensorial structure.

084010-6



TREE AMPLITUDES AND TWO-LOOP COUNTERTERME . . . PHYSICAL REVIEW D 62 084010

there is no 4-point one-loop divergen@a the dimensional understood from the latters’ properties; persistenceDin
regularization approag¢hwhile at two loops the calculation =11 of the “tgtg” D =10 string theory hallmark is perhaps

yields the explicit infinite result one first hint about the M-string connection.
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V. SUMMARY
APPENDIX: QUARTIC CURVATURE INVARIANT BASIS

We have succeeded in constructing explicitly the tree
level nonlocal 4-point scattering amplitudes involving the
two bosons oD =11 SUGRA, namely the graviton and for-
mion, as well as obtaining the corresponding local invarian
in a SUSY-preserving way. Extending the result to the rest o
the amplitude, involving two or four gravitinos, is not that
difficult in terms of the techniques employed h¢Bg3: the
gravitino primarily interacts with the graviton through its
stress tensor-k“T,,(¢), and with the formion through a
simple (nonminima) coupling term~ (41" F). The (com-
plicated 4-fermion contact terms are needed, but only for | =(R
the 4-fermion part of the amplitude, where they ensure the
SUSY invariance, not for the 2-gravitino to 2-boson ampli- I3=R“'8P"RQBWRW”“’R
tudes. In any case the bosonic part alone, if SUSY trans-
formed, will provide a complete linearized SUSY invariant.  |,= R*PIR, MR\ R

We briefly tabulatgfor the Ricci-flat geometries of inter-
es) a basis in the space of scalars quartic in curvature, with
ttention to the special cag@=4; details can be found in
E6,18]. A similar expansion of quartics scalar in the 4-form
ields is also appended.
In generic dimension, which turns out to =8, the
basis consists of 7 elements. A suitable chd@] is given
by (we retain the letteR to denote on-shell Riemann, that is,
Weyl tensorg
RPP7)2, 1,=R*PPIR 5 "R R

afBpo JIAZO) ]

povw

In addition to its intrinsic interest as a example of a “physi- e’
cal” process inD=11 SUGRA, the result was of primary |5:RaﬁpoRanvaxw oo
interest to us as confirmation of the existence of an invariant
that (in its localized versionhas the dimension of a candi- lg=R*PP7R } *R,” “R
. . . . a p N u Brow
date counterterm fofdimensionally regularized2-loop in-
finities. Indeed, its 4-graviton part agreed completely with 17=R¥PPRM LR LR,y - (A1)

the coefficient of the 2-loop infinity recently calculated in
that sector if4], while its 4-formion part agreed with a very Since we are actually interested only in actidrether than
different matrix-theory motivated scattering calculatjd®].  |ocal scalars we are free to discard any combinations of the

The existence of infinities in this ultimate local SUGRA | that produce a total divergence at the linearized level. The
model, while not unexpected from a purely power countingguler density

field theoretical point of view, is important in showing that

no hidden symmetry rescues this most unique theory. Of Eg=1,—16l,+213;+16l,— 3215+ 16l5—321; (A2)
course such a putative symmetry could still suppress all

higher loop infinities beyond a certain order, but this seemgpossesses this property in every dimension and thus the com-
unlikely given the concrete result ¢#], together with the bination(A2) can be considered as effectively vanishing: for
obvious constructibility of higher order candidate counter-our purpose there are then only 6 independent invariants.
terms, e.g., using the scattering approach. We can at leafEg could be detected in amplitudes with more than four
conclude that the case for underlying finite extendist) gravitons)

theories is thereby strengthened. In this connection, we em- In D=4 the number of independent invariants is further
phasize that the invariant found here has a further interest asduced to just 2. The relation connecting the diffeleman
another examplésee alsd16,17]) of possible local correc- be shown in many different ways. Here, to be self-contained,
tions to M theory whose leading term is presumably the acwe will demonstrate them by exploiting some “accidental”
tion (1). This might teach us something about this underlyingsymmetries of the BeI-Robinsop tensBr,,,z: Upon ex-
model, just as the corrections to the Einstein action in slop@anding the product of Levi-Civitaymbols implicit in the
expansion of the varioud = 10 superstring models could be two dual curvatures of
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B,uvaﬁz RP;LUaRpVU'BJr * Rp,u,oa* RpVO',B ' (A3)

one obtains the different form

1
Burap=RCL7aRpvopt R, pRy o0~ ngRa’“ Rgpor
(A4)

of the same object. We thereby easily recover the fivo
=4 identities

1
Rap(rTRBpO'T_ ZgaBRMPUTR,upUT: O, (AS)

1 oo
5RLR

. +R?,74R

R?,”

vBpo pvoa” "N v uNpaocp

1
- §(g,quaﬁ_gMﬁgVa) R)\pO’TR}\pUTZO' (AG)

The first identity follows from tracelessness of E43) in its
first index pair, a property manifest for EGp4). The second
follows by exploiting the total symmetry of EqA4). Both
facts are implicit in the/A3) definition. Then Eq(A5) im-
plies

[,=41,. (A7)

The scalar identities coming from E(A6) are obtained by

PHYSICAL REVIEW D62 084010
while RP#7'R £ @ yields

|7_|6+_|3+ 1_6|1:0 (Ag)

8
Using the vanishing of the Euler combination and the rela-
tions (A7), (A8), and(A9), we can, for example, determine
all the invariants in terms df;, I3, andls:

I, s 3 I3
"8 T e

I, s ly

Finally, to show that 5 vanishes identically, one utilizes the
vanishing inD =4 of any expression antisymmetric in 5 in-
dices; more specifically antisymmetrizing the 5 lower
uppe) indices (qtuw) in the definition ofl5 in Eq. (Al)
yields (after some algebjehe value 4<1s.

Although we have not explicitly used them in text, similar
(off-shell) bases also exist for our 4-forms. FDe=8, there
are 4 independent combinations

fi=(F%? f,=(F*F")(F,F,),
f3EFABFBCFCDFDA1

fu= FAMVFQ,BFBWFBVB (A1)

multiplying it by all possible independent 4-index tensors:where the omitted indices ify, f, are internally traced in

usingRP#"R, 2 #, we find

1
|7_|6+§|5_Z|4+§|1:0, (A8)

each pair, while the capital indices iy, f, are shorthand

for an index pair. Thus, each pair f has no open indices,
in f, there are two, andl;, f, have 4 open indices per pair,
traced in the two possible independent ways.
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