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Triad representation of the Chern-Simons state in quantum gravity

Robert Paternoga and Robert Graham
Fachbereich Physik, Universita¨t-GH Essen, D-45117 Essen, Germany

~Received 30 March 2000; published 14 September 2000!

We investigate a triad representation of the Chern-Simons state of quantum gravity with a nonvanishing
cosmological constant. It is shown that the Chern-Simons state, which is a well-known exact wave functional
within the Ashtekar theory, can be transformed to the real triad representation by means of a suitably gener-
alized Fourier transformation, yielding a complex integral representation for the corresponding state in the triad
variables. It is found that topologically inequivalent choices for the complex integration contour give rise to
linearly independent wave functionals in the triad representation, which all arise from theoneChern-Simons
state in the Ashtekar variables. For a suitable choice of the normalization factor, these states turn out to be
gauge invariant under arbitrary, even topologically nontrivial gauge-transformations. Explicit analytical ex-
pressions for the wave functionals in the triad representation can be obtained in several interesting asymptotic
parameter regimes, and the associated semiclassical 4-geometries are discussed. In restriction to Bianchi-type
homogeneous 3-metrics, we compare our results with earlier discussions of homogeneous cosmological mod-
els. Moreover, we define an inner product on the Hilbert space of quantum gravity, and choose a natural gauge
condition fixing the time gauge. With respect to this particular inner product, the Chern-Simons state of
quantum gravity turns out to be anon-normalizablewave functional.
PACS number~s!: 04.60.Ds, 11.10.Jj, 11.15.Kc
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I. INTRODUCTION

After four decades of vigorous research, a consist
quantization of general relativity remains as one of the m
fundamental problems in theoretical physics. Aside fro
string theory@1,2#, a promising approach to this problem
provided by acanonicalquantization of gravity. Since earl
attempts in the 1960s@3,4#, canonical quantum gravity en
joyed a renaissance after Ashtekar’s discovery of comp
spin-connection variables@5,6#, which replaced@7# the met-
ric variables used up till then. The newAshekar representa
tion of general relativity turned out to be closely related to
Yang-Mills theory of a local SO~3!-gauge group@5#, and
therefore many ideas and concepts known from Yang-M
theory could be carried over to the theory of gravity. In p
ticular, theloop representation, which had just been investi
gated within Yang-Mills theory@8#, furnished yet anothe
representation of general relativity@5,9,10#, and, moreover, a
remarkable connection between gravity and knot the
@9,11#. Later on, the loop representation of general relativ
advanced to a mathematically rigorous theory within
framework of discretized models of gravity, the so-call
quantum spin networks@12,13#.

As one crucial advantage of the Ashtekar representat
the constraint operators of quantum gravity took a poly
mial from in the new spin-connection variables, and expl
solutions were found. Among the different quantum sta
discussed up till then@14,15#, theChern-Simonsstate@16,17#
played an outstanding role, since it was the only wave fu
tional with a well-defined semiclassical limit.1 A loop repre-

1Strictly speaking, this is only true for a nonvanishing cosmolo
cal constant, where de Sitter-like 4-geometries are described b
semiclassical Chern-Simons state@15,18#. The case of a vanishing
cosmological constant has been investigated by Ezawa in@19#,
where it turned out that the semiclassical 4-geometries will in g
eral suffer from different pathologies.
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sentation of the Chern-Simons state was investigated,
turned out to be closely related to the Kauffman brack
@20#. Moreover, this particular state was found to make
obvious connection between quantum gravity and topolo
cal field theory@20,21#.

However, a physical interpretation of the Chern-Simo
state within the Ashtekar representation implied seve
problems, which arose from thereality conditionsunderlying
Ashtekar’s complex theory of gravity@5#. Different real ver-
sions of Ashtekar’s theory were suggested@22–24#, but the
corresponding quantum constraint equations turned out t
nonpolynomial, lacking the Chern-Simons state as a solut

Amazingly, a rather natural way to circumvent the pro
lems associated with Ashtekar’s reality conditions has ne
been investigated: If we would be able to transform t
Chern-Simons state from the Ashtekar to the metric rep
sentation, the geometrical meaning of the fundamental v
ables would be obvious, and no further reality conditio
would be needed. In addition, questions concerning the n
malizability of the Chern-Simons state are much easier
discuss in the real metric variables than in the complex A
tekar spin-connection variables. It is therefore interesting
find an explicit transformation connecting these two rep
sentations, and to study the Chern-Simons state in the m
representation.

Recently, we examined this problem in the framework
thehomogeneousBianchi-type IX model@25–27#. As an in-
termediate step, we introduced thetriad representationof
general relativity, which is trivially connected to the metr
representation we were interested in. Then it turned out
the Chern-Simons state in the Ashtekar representation ca
transformed to the triad variables by a suitably generali
Fourier transformation. Topologically inequivalent choic
for the complexintegration contour in the Fourier integra
gave rise to different, linearly independent quantum state
the triad representation, which all arose from theoneChern-
Simons state in the Ashtekar variables. We found expl
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integral representations for the corresponding states in
triad variables, and gave semiclassical interpretations of
wave functions in different asymptotic parameter regime

In the present paper, we now want to push these res
for the homogeneous model a big step further, and will
for the corresponding form of theinhomogeneousChern-
Simons state in the triad representation. For technical
sons, we will restrict ourselves to model universes, where
spatial hypersurfaces of constant time are compact and w
out boundaries, but of arbitrary topology. In order to reco
the Chern-Simons state as a quantum state of gravity,
should allow for a nonvanishing cosmological consta
which, by the way, is in complete agreement with curre
cosmological data@28,29#.

The rest of this paper is organized as follows: In Sec
we define our notation and start from the metric represe
tion of classical general relativity. We introduce the triad a
the Ashtekar variables, and give new representations of
constraint observables in terms of a single tensor den
which is closely related to the curvature of the Ashtekar s
connection. A canonical quanization of the theory is p
formed in Sec. III. Choosing a particular factor ordering f
the constraint operators of quantum gravity, we discuss
corresponding operator algebra, and show on a formal le
~i.e., without regularization and then performing the lim!
that is closes without any quantum corrections. The trans
mation connecting the Ashtekar and the triad representa
is explained in detail, and is then used to derive a form
functional integral representation for the Chern-Simons s
in the triad representation. In Sec. IV we study seve
asymptotic expansions of this functional integral in so
physically interesting parameter regimes. In particular,
are interested in the semiclassical form of the Chern-Sim
state, which then will allow for a discussion of the semicla
sical 4-geometries. A separate Sec. IV B1 is dedicated to
behavior of the Chern-Simons state under large, topolo
cally nontrivial SO~3!-gauge transformations. The value
the Chern-Simons state on Bianchi-type homogene
3-manifolds is computed and compared with earlier res
obtained within the framework of homogeneous models
Sec. V we define a formal inner product on the Hilbert spa
of quantum gravity, which is gauge fixed with respect to t
time-redefinition invariance, and examine the normalizabi
of the Chern-Simons state. Finally, we summarize our c
clusions in Sec. VI. Three Appendixes deal with certain te
nical details. In Appendix A, we discuss the solvability
the saddle-point equations, which determine the semicla
cal Chern-Simons state, and show how the solutions of th
equations correspond todivergence-freetriads in the limit of
a vanishing cosmological constant. In Appendix B, then fi
divergence-free triads are calculated for homogene
Bianchi-type IX metrics, and the corresponding values of
Chern-Simons state are given. In order to comment on p
sible boundary conditions satisfied by the Chern-Sim
state, a further Appendix C deals with the asymptotic beh
ior of particular semiclassical 4-geometries, which arise fo
special class of initial 3-metrics.
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II. TRIAD REPRESENTATION AND ASHTEKAR
VARIABLES

In order to set the stage and to define our notation le
briefly recall the ADM Hamiltonian formulation of genera
relativity @3,30,31# in terms of the densitized inverse triadẽi

a
and its canonically conjugate momentumpia . This will be
called the triad representation for short@5,17,23,32,33#.

The most commonly used form of the ADM formulatio
@3# employs as generalized coordinates the metric tensohi j
on a family of spacelike 3-manifolds foliating space-tim
Alternatively one may also employ the inverse metric ten
hi j with hi j hjk5dk

i , or, what will be done here, the dens
tized inverse metric

a5 i j 5hhi j ~2.1!

with h5det(hij).
2 Then the canonically conjugate momen

p> i j , which form a tensor density of weight21, become

p> i j 5
dL

da5̇ i j
5

1

gAh
Ki j , ~2.2!

where g516pG is a convenient abbreviation containin
Newton’s constantG, andKi j is the usual extrinsic curvatur
describing the embedding of the 3-manifold in space-tim
The quantityL in Eq. ~2.2! is the Lagrangian defined by th
Einstein-Hilbert action@30,31#, in which we include a cos-
mological term with a cosmological constantL. This choice
of variables implies a symplectic structure on phase-sp
defined by the Poisson brackets

$a5 i j ~x!,p> kl~y!%5
1

2
~dk

i d l
j1d l

idk
j !d3~x2y!,

$a5 i j ~x!,a5 kl~y!%505$p> i j ~x!,p> kl~y!%. ~2.3!

Indicesi, j will be raised and lowered byhi j and its inverse.
In order to move on to the triad representation let us int
duce the densitized inverse triadẽi

a via

ẽi
a•ẽj

a5a5 i j , ~2.4!

and define an enlarged phase space by introducing can
cally conjugate momentapia of the ẽi

a with Poisson brackets

$ẽi
a~x!,pjb~y!%5d j

i dabd
3~x2y!,

$pia~x!,pjb~y!%50. ~2.5!

In the following we shall also make use of the triad 1-form
eia and the triad vectorsei

a5ẽi
a /Ah. In order to guarantee

that Eq.~2.3! is compatible with Eqs.~2.4!, ~2.5!, we relate
p> i j to pja via

2Here and in the following densities of positive weight are d
noted by an upper and densities of negative weight by a lower ti
5-2
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TRIAD REPRESENTATION OF THE CHERN-SIMONS . . . PHYSICAL REVIEW D 62 084005
p> i j 5
1

2Ah
eiapja , ~2.6!

which serves to satisfy the first of Eqs.~2.3!. Furthermore we
introduce the three additional constraints

J̃ª«abcẽ
i
bpic5

!

0. ~2.7!

Here the Levi-Cevitta tensor«abc is defined by

«abcª«~eia!•@abc#, ~2.8!

where «(eia)P$61% measures the orientation of the tria
eia , and@abc# is the totally antisymmetric Levi-Cevitta sym
bol normalized such that@123#511. On the constraint hy-
persurface defined by Eq.~2.7! the quantityp> i j defined by
Eq. ~2.6! is easily checked to be symmetric ini, j as required
by Eq. ~2.2! and to satisfy the last of Eqs.~2.3!.

The ADM Hamiltonian@30,31#

HADM5E d3x~NH̃0
ADM1NiH̃i ! ~2.9!

with Lagrangian parametersN,Ni and constraintsH̃0
ADM ,H̃i

given in terms ofa5 i j ,p> i j is easily rewritten in terms of the
triad representation using Eqs.~2.4!, ~2.6!. This yields ~cf.
@5,17,23,33#!

H̃0
ADM52

g

4
eia«̃ i jk«abcpjbpkc1

1

g
eia«̃ i jkF jka1

2L

g
Ah,

H̃i5] j~ ẽj
apia!2ẽj

a] i pja , ~2.10!

where «̃ i jk is the spatial Levi-Cevitta tensor density,3 and
F jka5] jvka2]kv ja1«abcv jbvkc is the curvature of the
Riemannian spin connectionv ia52 1

2 «abcejb¹ ie
j
c . The ad-

ditional constraints~2.7! must of course be added to th
Hamiltonian~2.9! with new Lagrangian parametersVa .

The introduction of the complex Ashtekar variabl
@5,6,34#

Aia5v ia6
ig

2
pia ~2.11!

instead of the canonical momentapia is now convenient in
order to simplify the constraints. In the framework of th
paper we shall use the variablesAia just as auxiliary quan-
tities. In Eq.~2.11! either ‘‘1’’ or ‘‘ 2’’ may be chosen, but
we will keep this option open by using both signs togeth
The two choices are classically equivalent, but lead to
equivalent quantizations in the quantum theory. The Pois
brackets in the new variables then take the form

3With our definition of«abc in Eq. ~2.8! the spatial Levi-Cevitta
tensor density is naturally obtained as«̃ i jk5Ah«abce

i
aej

bek
c .
08400
r.
-
n

$ẽi
a~x!,Ajb~y!%56

ig

2
d j

i dabd
3~x2y!, ~2.12!

$Aia~x!,Ajb~y!%50. ~2.13!

The second of these relations follows from the fact that
Riemannian spin connectionv ia can be expressed as@7,17#

v ia5
df

dẽi
a

, ~2.14!

with

fª2
1

2 E d3x«̃ i jkeia] jeka . ~2.15!

EmployingAia as a new and complex spin connection it
convenient to use also its associated curvature

Fi ja5] iAja2] jAia1«abcAibAjc . ~2.16!

Then the constraints take the more pleasing form~cf.
@5,17,23#!

H̃0
ADM[H̃07 i ] i~ei

aJ̃0!5
!

0, ~2.17!

with

H̃05
1

g
eiaF «̃ i jkFjka1

2

3
Lẽi

aG , ~2.18!

H̃i[7
2i

g
@ ẽj

a] jAia2ẽj
a] iAja1Aia] j ẽ

j
a#5

!

0,

~2.19!

J̃a[6
2i

g
@] i ẽ

i
a1«abcẽ

i
cAib#5

!

0, ~2.20!

and the Hamiltonian

H5E d3x~NH̃01NiH̃i1VaJ̃a!, ~2.21!

endowed with the symplectic structure~2.12!, ~2.13!, is dy-
namically equivalent to the Arnowitt-Deser-Misner~ADM !
Hamiltonian~2.9!. In fact, as long asLÞ0, the constraints
~2.18!–~2.20! can all be expressed in terms of the sing
tensor densityG̃L,a

i defined by

G̃L,a
i 5

1

2
«̃ i jkFjka1

1

3
Lẽi

a , ~2.22!

namely,

H̃0[
2

g
eiaG̃L,a

i 5
!

0, ~2.23!
5-3
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H̃i56
2i

g
«> i jk ẽj

aG̃L,a
k 2AiaJ̃a5

!

0, ~2.24!

J̃a56
6i

gL
Di G̃L,a

i 5
!

0, ~2.25!

whereDi is the covariant derivative with respect to the co
nectionAia . For L50 the relation of the constraintJa with
G̃L,a

i is lost. A simple way to satisfy all the constrain
~2.23!–~2.25! for LÞ0 is to restrict the phase space by t
nine conditions

G̃L,a
i 5

!

0. ~2.26!

Equations~2.26! are more restrictive than the seven Eq
~2.23!–~2.25! which they imply, i.e., we can only hope to g
special solutions in this manner. Remarkably, Eqs.~2.26!, if
imposed as initial conditions, remain satisfied for all tim
under the time evolution generated by the Hamilton
~2.21!. This follows from the Poisson brackets

H E d3xNiH̃i ,E d3yl jaG̃L,a
j J

5E d3z~Ni] il ja1l ia] jN
i !G̃L,a

j , ~2.27!

H E d3xVaJ̃a ,E d3yl jbG̃L,b
j J

5E d3zVa«abcl jbG̃L,c
j , ~2.28!

H E d3xNH̃0 ,E d3yl jaG̃L,a
j J

56
i

2 E d3z
N

Ah
~eiaejb

22eibeja!«̃ jklDkl lbG̃L,a
i , ~2.29!

which may be verified with some labor using Eqs.~2.22! and
~2.23!–~2.25!. They imply that on the subspaceG̃L,a

i 50 of
phase space

$H,G̃L,a
i %50; ~2.30!

i.e., this subspace is conserved.
Equations~2.26! bear a superficial formal similarity to

Einstein’s field equations

GL,n
m

ªGm
n1Ldn

m50 ~2.31!

in four space-time dimensions (m,n50,1,2,3) with the
4-dimensional Einstein tensorGm

n satisfying the Bianchi
identity
08400
-

.

s
n

¹mGm
n[0 ~2.32!

and also¹mGL,n
m 50, because the affine connection satisfi

the metric postulate. SinceG̃L,a
i similarly decomposes in a

curvature part satisfying a Bianchi identity

Di~ «̃ i jkFjka![0, ~2.33!

and a cosmological term proportional toL it is a three-
dimensional analog ofGL,n

m . The analogy extends even t

Di G̃L,a
i 50, which holds due to the Bianchi identity but re

quires in addition for the constraint~2.20!. However, it has to
be kept in mind that the spin connectionAia and the densi-
tized inverse triadẽi

a in G̃L,a
i are still independentvariables.

Equations~2.26! therefore are not a closed set of field equ
tions on the spatial manifolds.

III. QUANTIZATION

Canonical quantization in the triad representation
achieved by imposing the commutation relations

@ ẽi
a~x!,pjb~y!#5 i\d j

i dabd
3~x2y! ~3.1!

and representingpia(x) as

pia5
\

i

d

dẽi
a~x!

. ~3.2!

This implies for theAia the representation

Aia~x!5v ia~x!6
g\

2

d

dẽi
a~x!

, ~3.3!

wherev ia(x), given by Eqs.~2.14!, ~2.15!, is a functional of
ẽb

j (y) and a diagonal operator in this representation. We n
have to choose a special factor ordering in the constr
operatorsJ̃a , H̃i , and H̃0 . It turns out thatJ̃a does not
suffer from an ordering ambiguity. We choose the fac
ordering inH̃0 andH̃i as given in Eqs.~2.18! and ~2.19! in
order to achieve closure of the algebra of the generat
Explicitly, the generators are then given by Eqs.~2.18!–
~2.20! or Eqs. ~2.23!–~2.25! with the ordering ofẽa

i ,Ajb

given there. The algebra of the infinitesimal generators
obtained as4

F E d3xj iH̃i ,E d3ywaJ̃aG5 i\E d3z~j i] iwa!J̃a , ~3.4!

F E d3xj iH̃i ,E d3yh jH̃j G5 i\E d3z~j i] ih
j

2h i] ij
j !H̃j , ~3.5!

4The algebra of the constraint operators has been discussed i
sively in the literature; see, e.g.,@5,17,35#. The factor ordering and
the corresponding operator algebra considered here are in a
ment with Ashtekar’s results in@5#.
5-4
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F E d3xwaJ̃a ,E d3ycbJ̃bG5 i\E d3zeabcwacbJ̃c , ~3.6!

F E d3xwaJ̃a ,E d3yNH̃0G50, ~3.7!

F E d3xj iH̃i ,E d3yNH̃0G5 i\E d3z~j i] iN!H̃0 ,

~3.8!

F E d3xNH̃0 ,E d3yMH̃0G5 i\E d3z~N] iM2M] iN!

3hi j ~H̃j1AjaJ̃a!. ~3.9!

On the right-hand side of these equations all generators
pear on the right, which means that the algebra closes
least formally~i.e., in the absence of any regularization pr
cedure!, without any quantum corrections.

Following Dirac @36#, physical statesC@ ẽa
i # must satisfy

J̃aC@ ẽa
i #5

!

0 Lorentz invariance, ~3.10!

H̃iC@ ẽa
i #5

!

0 diffeomorphism invariance, ~3.11!

H̃0C@ ẽa
i #5

!

0 time-redefinition invariance. ~3.12!

Moreover, since the Lorentz constraint~3.10! guarantees
only invariance under local SO~3!-gauge transformations o
the triadẽa

i , while the full symmetry group is given by O~3!,
we further have to impose a discrete, global parity requ
ment

PC@ ẽa
i #ªC@2ẽa

i #5
!

1C@ ẽa
i #, ~3.13!

whereP denotes the parity operator acting on functionals
the triad.

As in the classical theory, the constraints~3.10!–~3.12! on
physical states are all satisfied if the stronger conditions

G̃L,a
i C@ ẽa

i #5
!

0 ~3.14!

hold, whereG̃L,a
i is the tensor density defined by Eqs.~2.22!,

~2.16! in terms of the operatorsẽa
i and Aia given by Eqs.

~2.4!, ~2.11!. Remarkably, the quantum operatorsG̃L,a
i turn

out to commute among themselves. It can be seen from
~2.23!–~2.25!, which must now be read as operator equ
tions, that Eqs.~3.10!–~3.12! are implied by Eq.~3.14!. The
subspace of physical states satisfying Eq.~3.14! is the quan-
tum version of the invariant subspace of classical ph
space defined by Eqs.~2.26!.

To find the solutions of Eqs.~3.14! it is useful to proceed
in two steps. First, it is convenient to perform a similar
transformation~cf. @17#!
08400
p-
at
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-
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s.
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e

C5expF7
2

g\
fG•C8, ~3.15!

wheref was defined in Eq.~2.15!. Under this transforma-
tion, the operatorsAia according to Eq.~3.3! transform like

expF6
2

g\
fG•Aia•expF7

2

g\
fG56

g\

2

d

dẽa
i , ~3.16!

and Eq.~3.14! becomes explicitly

F «̃ imnS 6g\]m

d

dẽn
a

1
g2\

4
«abc

d2

dẽm
bdẽn

c
D1

2L

3
ẽi

aGC850.

~3.17!

As a second step, we now consider a representation
C8@ ẽi

a# by a generalized Fourier integral

C8@ ẽi
a#5E

G
D9@Aia#expF6

2

g\ E d3xẽi
aAiaG•C@Aia#,

~3.18!

where the complex integration manifoldG is chosen in such
a way that partial integrations with respect toAia are permit-
ted without any boundary terms. Besides these restrictionG
may be chosen arbitrarily to guarantee the existence of
functional integral~3.18! ~cf. discussions of the homoge
neous Bianchi IX model@25,27#!. Different choices ofG
within these restrictions, which cannot be deformed into e
other continuously without crossing a singularity of the in
grand, will, in general, correspond to different solutions. U
der the transformation~3.18! the fundamental operator
Aia ,ẽi

a transform like

ẽi
a•C8°7

g\

2

dC̃

dAia
,

dC8

dẽi
a

°6
2

g\
Aia•C̃,

~3.19!

and Eq.~3.17! becomes

F «̃ i jkFjka7
g\L

3

d

dAia
GC̃50. ~3.20!

Up to a normalization factorN, the unique solution of Eq
~3.20! is the Chern-Simons state~cf. @17#!

C̃CS@Aia#5N expF6
3

g\L
SCS@Aia#G , ~3.21!

with the Chern-Simons functional

SCS@Aia#5E d3x«̃ i jk~Aia] jAka1 1
3 «abcAiaAjbAkc!.

~3.22!

In the ẽi
a representation the corresponding wave functio

is given by
5-5
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CCS@ ẽi
a#5NE

G
D9@Aia#expF6

1

g\ S E d3x«̃ i jkeiaDjeka

1
3

L
SCS@Aia# D G . ~3.23!

We shall not attempt a mathematical existence proof of
functional integral and we treat it on a formal level in th
following. The state~3.23! is obviously diffeomorphism in-
variant, and it is also gauge invariant under sufficiently sm
gauge transformations~i.e., those which are continuousl
connected to the identical transformation!:5 The contribution
from the similarity transformation~3.16! and the Fourier
term from Eq.~3.18! fit perfectly together to give the firs
gauge-invariant term in the exponent of Eq.~3.23!, while the
second term proportional toSCS is a well-known gauge-
invariant functional. The wave functionalCCS@ ẽi

a# given in
Eq. ~3.23! further turns out to be parity invariant, as it wa
required by the condition~3.13!.

However, for a trivial choice of the prefactorN in Eq.
~3.23! the stateCCS@ ẽi

a# fails to be invariant underlarge
gauge-transformations of the triad, since the Chern-Sim
functional in Eq.~3.23! transforms non-trivially under suc
transformations~cf. @5,37#!. At this point it is helpful to no-
tice that the prefactorN in Eq. ~3.23!, underlying the only
restriction

dN
dẽi

a
5
!

0, ~3.24!

is just required to be constant under infinitesimal variatio
of ẽi

a , while it may still depend on topological invariants o
the triad. In Sec. IV B1 we will make use of this remarkab
freedom, choosing the normalization factorN in such a way
that the stateCCS@ ẽi

a# becomes invariant even under larg
gauge-transformations of the triad with a non-trivial windi
number.

Unfortunately, the integration manifoldG in Eq. ~3.23!
cannot be given explicitly, but we will argue that seve
topologically inequivalent choices forG do exist, which give
rise to linearly independent quantum statesCCS@ ẽi

a#. These
different states in theẽi

a representation all arise from theone
Chern-Simons state in theAia representation, a phenomeno
which is well known from discussions of the homogeneo
Bianchi IX model in earlier papers@25,27#. Together these
states span the subspace of physical states correspond
the invariant subspace of phase space defined classical
G̃L,a

i 50.

5Here and in the following, we shall refer to the SO~3!-gauge
invariance just as ‘‘gauge invariance’’ for short. The diffeomo
phism and the time-redefinition invariance, which are of cou
inherent gauge symmetries of the theory as well, will allways
mentioned separately.
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IV. ASYMPTOTIC EXPANSIONS OF THE CHERN-
SIMONS STATE

Since the functional integral occurring in theẽi
a represen-

tation of the Chern-Simons state~3.23! is too complicated to
be performed analytically, we will restrict ourselves to
asymptotic evaluation of the wave functional~3.23! in sev-
eral interesting parameter regimes. The possible differ
asymptotic regimes can be displayed by rewriting the Che
Simons state~3.23! in dimensionless quantities. Therefor
we introduce the three fundamental length scales of
theory, namely, the Planck scale

aPlªAg\, ~4.1!

the cosmological scale parameter,

acosªS E d3xAhD 1/3

, ~4.2!

and a third length scale, which is associated with the cos
logical constantL,

aLªA3

L
. ~4.3!

These three length scales give rise to the definition of t
dimensionless parameters, for example,

kªS acos

aL
D 2

5
L

3
acos

2 , mªS acos

aPl
D 2

5
acos

2

g\
. ~4.4!

Moreover, we may rescale the triad fields with the help of
cosmological scale parameteracos to arrive at dimensionless
field variables denoted by a prime:6

eia8 5acos
21eia , ẽ8 i

a5acos
22ẽi

a , Ah85acos
23Ah. ~4.5!

Making use of Eqs.~4.1!–~4.5! the Chern-Simons stat
~3.23! reduces to the form

CCS@ ẽi
a#5NE

G
D9@Aia#exp@6mF#, ~4.6!

where the exponentF is defined by

FªE d3x«̃ i jkeia8 Djeka8 1
1

k
SCS@Aia#. ~4.7!

A. The semiclassical limitµ\`

Because of the Gaussian saddle-point form of Eq.~4.6!
with respect to the parameterm it is natural to study the limit
m→` first. This limit corresponds to the regimeacos@aPl
and also to the formal limit\→0 @cf. Eq. ~4.4!#, so we shall

e
e 6By definition, the Ashtekar variablesAia carry no dimension and
need not be rescaled.
5-6
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refer to it as thesemiclassicallimit for short. In the limitm
→` the asymptotic form of the integral~4.6! becomes in
leading order ofm

CCS@ ẽi
a# }

m→`

NU md2F

dAia~x!dAjb~y!
U21/2

•exp@6mF#,

~4.8!

where an infinite prefactor in Eq.~4.8! has been omitted. The
asymptotic expression~4.8! has to be evaluated at a sadd
point of the exponentF with respect toAia , which is ob-
tained by solving the saddle-point equations

dF

dAia
52ẽ8 i

a1
1

k
«̃ i jkFjka5

!

0. ~4.9!

Equations~4.9! more explicitly take the form

«̃ i jk S ] jAka1
1

2
«abcAjbAkcD52

L

3
ẽi

a , ~4.10!

and coincide with the classical equationsG̃L,a
i 50 as they

should, since the latter constitute the classical limit of
gravitational Chern-Simons state. The saddle-point equat
~4.10! must be read as determining implicitly the compl
spin connectionAia for any given real triadẽi

a , for which
we wish to evaluateCCS@ ẽi

a#. Sinceẽi
a carries information

about the coordinate system and the local SO~3!-gauge de-
grees of freedom, the solutionsAia of Eq. ~4.10! for a given
triad ẽi

a have no further gauge freedom. This is why w
expect a discrete, finite set of solutionsAia of Eq. ~4.10! for
a fixed triadẽi

a . A detailed mathematical discussion of th
solvability properties of the semiclassical saddle-point eq
tion ~4.10! will be given in Appendix A1.

For a fixed triadẽi
a the number of the different gaug

fieldsAia solving Eq.~4.10! will depend on the topology o
the spatial manifoldM3 : For example, ifM3 has the topol-
ogy of the 3-sphereS3, five distinct solutionsAia of the
corresponding saddle-point equations are found for spat
homogeneous3-manifolds, which are described by the Bia
chi IX model ~cf. @25,27#!. It follows from the arguments
given in Appendix A1 that this number of saddle points
preserved under sufficiently small inhomogeneous pertu
tions of the triadẽi

a . We therefore findfive physically in-
equivalent solutionsAia in this case. If we consider man
folds M3 with the topology of the 3-torusT3, the subset of
homogeneous manifolds is described by the Bianchi I mo
restricting the number of independent solutionsAia of Eq.
~4.10! to two, as in this homogeneous model. Consider
other topologies ofM3 , the number of inequivalent sadd
points will differ further. However, we will see in Sec. IV B
that, for any given topology of the spatial 3-manifoldM3 ,
the number of distinct saddle pointsAia of Eq. ~4.10! should
at leastbe two.

Given a topology ofM3 and a saddle-point solutionAia
of Eq. ~4.10!, the evaluation of Eq.~4.8! at this saddle point
gives a possible semiclassical contribution to the Che
Simons stateCCS@ ẽi

a# in the limit m→`. It will depend on
08400
e
ns
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g

-

the choice of the integration contourG in Eq. ~4.6! whether
this particular saddle point contributes to the functional in
gral or not. Under gauge or coordinate transformations of
triad ẽi

a the fixed solutionAia of Eq. ~4.10! transforms like
a spin connection, since Eq.~4.10! is a coordinate- and
gauge-covariant equation. Consequently, the semiclas
expression ~4.8! remains unchanged under~sufficiently
small! gauge transformations, as indeed must be the c
since CCS, also for m→`, was constructed as as
coordinate- and gauge-invariant state. Therefore, we m
solve Eq.~4.10! in any desired gauge forẽi

a , fixing auto-
matically a gauge for the solutionsAia .

Any possiblesaddle-point contribution~4.8! for a given
saddle pointAia can be chosen to become thedominantcon-
tribution to the functional integral in Eq.~4.6! in the limit
m→` by choosing the complex integration manifoldG suit-
ably. So the number of linearly independent semiclass
wave functionalsCCS@ ẽi

a# equals the number of inequiva
lent saddle pointsAia of Eq. ~4.10!. This is also the numbe
of linearly independentexactwave functionalsCCS@ ẽi

a#, be-
cause the complex integration manifoldG, constructed as a
contour of steepest descent to a given saddle pointAia , sat-
isfies the requirements forG in Eq. ~3.18! and may therefore
be used to define an exact wave functional~4.6!. We con-
clude that theoneChern-Simons state~3.21! in the complex
Ashtekar representation generates a discrete, finite set o
early independent gravitational states in the real triad rep
sentation, which differ by the topology of the integratio
manifolds G connecting the two representations via E
~3.18!. The number of the different Chern-Simons states
the ẽi

a representation depends on the topology of the spa
manifold M3 and should at least betwo.

We will now try to construct explicit solutionsAia of the
nonlinear, partial differential equations~4.10!. In general,
analytical solutions of this complicated set of equations
not available, so we will restrict ourselves to asymptotic s
lutions in the two different limitsk→` and k→0, which
will be treated in Secs. IV B and IV C, respectively.

B. The limit of large scale parameterµ\`, k\`

According to our definition of the parametersm andk in
Eq. ~4.4!, the limit k→` within the semiclassical limitm
→` can be realized by taking the scale parameteracosof the
spatial manifold sufficiently large,acos@aPlaL . In this spe-
cial asymptotic regime, solutions of Eq.~4.10! can be found
by inserting the ansatz

Aia ;
k→`

Akcia
~0!1O~k0! ~4.11!

into the saddle-point equations

«̃ i jk S ] jAka1
1

2
«abcAjbAkcD52kẽ8 i

a . ~4.12!

Then we find the two solutions

cia
~0!56 ieia8 , ~4.13!

or, equivalently,
5-7
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Aia ;
k→`

6 iAL
3 eia1O~k0!. ~4.14!

We should stress that the two signs occurring in Eqs.~4.13!,
~4.14! are independentof the double sign in Eq.~2.11!, i.e.,
for both possible definitions~2.11! of the Ashtekar variables
we find two independent, complex conjugate solutionsAia of
the saddle-point equations~4.12! in the limit k→`, corre-
sponding to two semiclassical wave functions via Eq.~4.8!.
To avoid confusion, we will discuss only one of these so
tions in the following, which is obtained by choosing th
upper sign in Eqs.~4.13!, ~4.14!. The corresponding result
for the second solution may then be obtained at any time
a complex conjugation.

The result~4.14! can be improved by calculating the co
efficientscia

(n) of the asymptotic series

Aia ;
k→`

(
n50

`

cia
~n!k~12n!/2. ~4.15!

All coefficients in Eq.~4.15! can be calculated analytically
since, in any order ofk, the non-Abelian term in Eq.~4.12!
contains the unknown coefficientcia

(n) , while the nonlocal
term in Eq.~4.12! is known from the previous orders. Con
sequently, the recursion equations determiningcia

(n) are just
algebraic equations at each space point, which, moreover
linear and analytically solvable forn.0. The first three
terms of the series~4.15! turn out to be

~4.16!

To calculate the corresponding saddle-point contribution
the semiclassical Chern-Simons state via Eq.~4.8! we need
the Gaussian prefactor and the exponentF defined in Eq.
~4.7!, evaluated at the saddle pointAia . The asymptotic
form of the Gaussian prefactor becomes in the limitk→`

U md2F

dAia~x!dAjb~y!
U21/2

}
k→`

h23/4, ~4.17!

with the abbreviation

hª )
xPM3

h~x!. ~4.18!

The exponent in Eq.~4.8! for k→` can be expanded a
follows:

F ;
k→` 1

g\m F iA3
L E d3xAhS 4L

3 2RD1
3
L SCS~v ia!G

1O~k23/2!. ~4.19!

Here the contributionf from the similarity transformation
~3.15! has disappeared, because it precisely cancels with
contributionv ia in the asymptotic series~4.16! of Aia . The
08400
-

y

re

o

he

first term in Eq. ~4.19! derives from the contributions o
orderk1/2 andk21/2 to the asymptotic series ofAia given in
Eq. ~4.16!. It defines a real action

S56
1

g
A3

L E d3xAhS 4L

3
2RD , ~4.20!

giving rise to a well-defined, semiclassical time evolutio
The term of orderk21 in the expansion~4.16!, which was
not given explicitly there, because it is rather lengthy, det
mines the asymptotic form of the second term in Eq.~4.19!,
which is real valued and therefore governs the asympt
behavior of uCCSu2. Surprisingly, this contribution again
turns out to be a Chern-Simons functional, but withAia re-
placed by the real Riemannian spin connectionv ia . As one
can check quite easily, this functionalSCS@v ia# has the in-
teresting property that it is also invariant underlocal scale
transformations of the triadeia°exp@z(x)#eia .

Inserting the results~4.17! and ~4.19! into Eq. ~4.8!, we
find for the semiclassical Chern-Simons state in theẽi

a rep-
resentation

CCS }
m→`

k→`

N•h23/4
•expF6

1

g\
XiA3

LE d3xAhS 4L

3
2RD

1
3

L
SCS@v ia#CG , ~4.21!

where the complex conjugate solutionCCS* is equally pos-
sible, if we choose the second saddle-point solution in E
~4.13!, ~4.14!. It is remarkable that this result is universal
the sense that it does not depend on the topology of
spatial 3-manifoldM3 .

1. Large gauge transformations

An unsatisfactory feature of the asymptotic state~4.21! is
the fact that its exponent isnot invariant under large gaug
transformations with a nonvanishing winding number: As
well known @5,37#, in general the Chern-Simons function
SCS@v ia# transforms inhomogeneously under local gau
transformations of the triad,

eia°Vabeib⇒SCS@v ia#°SCS@v ia#1 1
6 I ~V!, ~4.22!

with (Vab)5VPO(3) being an arbitrary rotation matrix
The quantityI (V) occurring in Eq.~4.22! is defined by

I ~V!ªE d3x«̃ i jk Tr@VT] iV•VT] jV•VT]kV#

~4.23!

and is known as the Cartan-Maurer invariant@37#. Its value
is restricted to be of the form

I ~V!5I 0•w~V!, ~4.24!

where the winding numberw(V) is an integer, andI 0 is a
constant depending only on the topology of the 3-manif
M3 .
5-8
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A consequence of Eq.~4.22! is that the asymptotic Chern
Simons state~4.21! will not be invariant under general gaug
transformations of the triad, at least as long as we mak
trivial choice for the normalization factorN in Eq. ~4.21!.
However, as we pointed out in Sec. III, the factorN does not
need to becompletelyindependent of the triad—it is stil
allowed to depend on topological invariants, such as
Cartan-Maurer invariant. This is why we are free to choo
the normalization factorN according to

N}expF7
I ~V̂!

2g\L
G , ~4.25!

whereV̂ is a special gauge transformation rotating the tr
eia into a gauge-fixedtriad gia of the 3-metrichi j 5eiaeja .
Then the requirement~3.24! remains to be satisfied, and,
addition, the Chern-Simons state~4.21! becomes invarian
under arbitrary gauge transformations of the triadeia , since
the inhomogeneous term in Eq.~4.22! is canceled precisely
by a suitable contribution from the prefactorN according to
Eq. ~4.25!. With our special choice~4.25! of the normaliza-
tion factor N we circumvent the definition of the so-calle
‘‘ Q angle,’’ which can be introduced alternatively to sol
the problem associated with large gauge transformat
@5,37#. As a special, gauge-fixed triadgia in the definition of
V̂ may serve the ‘‘Einstein triad’’ that can be constructed
solving the eigenvalue problem of the three-dimensional E
stein tensorGi

j :7

Gi
jg

j
a5l ãgi

ã , gi
agib5dab . ~4.26!

2. Restriction to Bianchi-type homogeneous 3-manifolds

It is very instructive to specialize the asymptotic sta
~4.21! to the case of spatially homogeneous 3-manifolds.
homogeneous manifolds of one of the nine Bianchi types,
3-metric can be expressed in terms ofinvariant triad 1-forms
ea5ia5i iadxi as ~cf. @38#!

h5ia^ ia , dia52 1
2 mba«bcdic∧id , ~4.27!

with a spatially constantstructure matrixm5(mab). We
should restrict ourselves to compactified, homogene
3-manifolds, such that the volume

V5 1
6 «abcE ia∧ib∧ic ~4.28!

is finite. If we introduce the scale-invariant structure mat
M as

M5acos•m, ~4.29!

the asymptotic Chern-Simons state~4.21! takes the following
value for Bianchi-type homogeneous 3-manifolds:

7Here a bar over an index indicates thatno summation with re-
spect to this index should be performed.
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CCS }
m→`

k→`

N•h23/4
•expF6mS 4iAk2

i

Ak
FTr M2

22TrMTM1
1

2
Tr2 MG2

1

k FTr M2MT

2
1

6
Tr M~Tr M212TrMTM!12 detMG D G .

~4.30!

For homogeneous manifolds of Bianchi-type IX, the det
minant of the matrixM is given by detM58V, whereV is
the dimensionless, invariant volume of the unit 3-sphere
the matrixM may be parameterized by a diagonal, tracel
matrix b via

M52A3 Ve2b. ~4.31!

Using the identity

Tre2b
•Tre4b5Tre6b1Tre2b

•Tre22b23, ~4.32!

and introducing the rescaled parameterk8ªV22/3k/4, we
find for Bianchi-type IX homogeneous 3-manifolds:

CCS }
m→`

k→`

N•h23/4
•expF6

24V
g\L S 4iAk832 iAk8FTre22b

2
1

2
Tre4bG2

1

2
@Tre6b2Tre2b

•Tre22b17# D G .
~4.33!

Thus, up to a quantum correction in the Gaussian prefac
we reproduce exactly the result obtained earlier within
framework of the homogeneous Bianchi IX model in@25#
@cf. Eq. ~5.18! there#. To compare the results explicitly, w
have to identifyk8 with the parameterk in @25#, and to set
g516p, V54p2.

In the case of flat 3-metrics, which are of Bianchi type
the structure matrixM turns out to vanish, and Eq.~4.30!
reduces to

CCS }
m→`

k→`

N•h23/4
•exp@64imAk#5N•h23/4

•expF6
4i

g\
AL

3 E d3xAhG , ~4.34!

a result which also follows directly from Eq.~4.21! by set-
ting R50, SCS@v ia#50.

3. Semiclassical 4-geometries

Let us now ask for the semiclassical trajectories and
corresponding semiclassical 4-geometries, which are
scribed by the state~4.21! in the limit m→`, k→`, i.e., in
the limit of large scale parametersacos@aPl ,aL . Choosing
the Lagrangian multipliers trivially asN51, Ni50, Va50
in Eq. ~2.21!, we find
5-9
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ẽi
a52$H,ẽi

a%56 i «̃ i jkDjeka52
g

2
«̃ i jk«abcpjbekx ,

~4.35!

where the dot denotes a derivative with respect to the c
sical ADM time variablet introduced in Sec. II. The semi
classical momentumpia is given in terms of the action~4.20!
of the wave function~4.21! by

pia5
dS

dẽi
a

, ~4.36!

or can equivalently be extracted from the asymptotic sad
point Aia according to Eq.~4.16! in connection with Eq.
~2.11!:

pia ;
k→`

6
2

g FAL

3
eia1A3

LS R

4
eia2ejaRj

i D G .
~4.37!

Thus, for large scale parametersacos the classical evolution
of the triadẽi

a is determined by the equation

7ẽi
a ;

acos→`

2AL

3
ẽi

a1A3

L
ẽj

aGi
j , ~4.38!

which describes a de Sitter–like time evolution in leadi
orderacos,

ẽi
a~x,t ! ;

acos→`

ẽi
a,`~x!•expF72AL

3
•tG , ~4.39!

with corrections described by the second term of Eq.~4.38!
containing the three-dimensional Einstein tensorGi

j .
Figure 1 shows an embedding of the asympto

4-geometry~4.39! into a flat Minkowski space, where th
time direction has been chosen according to the lower sig
Eq. ~4.39!. As is well known for inflationary models such a
the one discussed within this paper, the spatial, Rieman
3-manifolds (M3 ,h)(t) tend to homogenize in the course
time t.

C. The semiclassical vacuum limitµ\`, k\0

Apart from the limit k→`, there exists anothe
asymptotic regime, where an analytical treatment of
semiclassical saddle-point equations~4.12! is tractable,
namely, the limitk→0. By virtue of the relationships~4.4!, a
discussion of the Chern-Simons state~4.6! in the limit m
→`, k→0 corresponds to an investigation of th
asymptotic regimeaL@acos@aPl . This limit may be realized
by considering the special case of a vanishing cosmolog
constantL→0 within the semiclassical limit, which will be
called the semiclassical vacuum limit for short.

To find solutions of Eqs.~4.12! in the limit k→0 we
proceed analogously to Sec. IV B, and try a power se
ansatz of the form
08400
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Aia ;
k→0

(
n50

`

Cia
~n!kn. ~4.40!

Then we find in the lowest order ofk

«̃ i jk S ] jCka
~0!1

1

2
«abcCjb

~0!Ckc
~0!D50, ~4.41!

i.e., Cia
(0) has to be aflat gauge field, which is of the genera

form

Cia
~0!52 1

2 «abcVdb] iVdc with VPO~3!. ~4.42!

The matrix V(x) is a free integration field, as long as w
restrict ourselves to the leading orderO(k0) of the saddle-
point equations~4.12!. However, in the next-to-leading orde
O(k1), we find the equations

«̃ i jkDj
~0!Cka

~1!
ª «̃ i jk~] jCka

~1!1«abcCjb
~0!Ckc

~1!!5
!

2ẽ8 i
a ,
~4.43!

which imply additional restrictions for the coefficientsCia
(0) ,

and thus for the matrixV in Eq. ~4.42!. Theseintegrability
conditionsfor the equations~4.43! can be obtained by oper
ating on Eq.~4.43! with Di

(0) from the left: Then the left-
hand side becomes proportional to the curvature ofCia

(0) ,

FIG. 1. Geometrical illustration of the generalized de Sitter–
geometry ~4.39!. The spatial 3-manifolds (M3 ,h)(t) are repre-
sented by one-dimensional curves; possible inhomogeneities ar
dicated by small deformations of these curves. The resulting sp
time 4-manifold (M4 ,g) according to Eq.~4.39! then corresponds
to a two-dimensional, Lorentzian manifold, which has been emb
ded into a flat, three-dimensional Minkowski space. Portions of
marginal spatial 3-manifolds, which are of thesamelength scalea,
have been magnified to illustrate the increase in homogeneity in
course of evolution.
5-10
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which vanishes by virtue of Eq.~4.41!, and a multiplication
of the resulting equations withacos

2 yields

Di
~0!ẽi

a[] i ẽ
i
a1«abcCib

~0!ẽi
c5

!
0. ~4.44!

If we insert the general solution~4.42! into Eq. ~4.44!, we
arrive at the three integrability conditions

] i~Vabẽ
i
b!5

!
0, ~4.45!

which fix the integration fieldV(x) in Eq. ~4.42!. Moreover,
the special triad fields

d̃i
aªVabẽ

i
b , ~4.46!

with V chosen according to Eq.~4.45!, turn out to have the
geometrically interesting property of beingdivergence free.
Therefore, we may use the different possible divergence-
triads d̃i

a of a given Riemannian manifold (M3 ,h) to pa-
rametrize the saddle pointsAia in the limit k→0 via Eqs.
~4.46! and ~4.42!.

For a given divergence-free triadd̃i
a , which characterizes

uniquely one saddle-point solutionAia in the limit k→0, we
now wish to calculate the corresponding saddle-point con
bution ~4.8! to the Chern-Simons state~4.6! in the limit m
→`, k→0. We first expand the exponentF defined in Eq.
~4.7! for k→0, and find, in particular, that the Chern-Simo
functionalSCS@Aia# is given by

SCS@Aia# ;
k→0

1
6 I ~V!1O~k2!. ~4.47!

Here V is the special rotation matrix defined in Eq.~4.45!,
connecting the given divergence-free triadd̃i

a with an arbi-
trary triad ẽi

a , for which we want to evaluateCCS@ ẽi
a#. In

Eq. ~4.47! a contribution of orderO(k1) is missing, since
this term becomes proportional to the curvature of theflat
gauge fieldCia

(0) . Using Eq.~4.47!, the exponentF of the
semiclassical Chern-Simons state takes the following form
the limit k→0:

F ;
k→0 I ~V!

6k 1E d3x«̃ i jkdia8 ] jdka8 1O~k!. ~4.48!

The Cartan-Maurer invariantI (V) in Eq. ~4.48! can be con-
tracted with the Cartan-Maurer invariantI (V̂) in the defini-
tion ~4.25! of the normalization factorN to give

I ~V!2I ~V̂![I ~V•V̂T!5..I 0•ŵ@dia#. ~4.49!

Hereŵ@dia# denotes the winding number of the divergenc
free triaddia with respect to the Einstein triadgia defined in
Eq. ~4.26!, which is a functional ofdia only: For a given
divergence-free triaddia we know the 3-metric hi j
5diadja , and therefore the Einstein triadgia .

Inserting the results~4.49!, ~4.48! into ~4.8!, we find the
following saddle-point contribution to the Chern-Simo
state~4.6! in the limit m→`,k→0:
08400
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lim
k→0

CCS5
..Cvac

}
m→`

expF6 1
g\ S I 0ŵ@dia#

2L 1E d3x«̃ i jkdia] jdkaD G ,
~4.50!

where the Gaussian prefactor, which contains a complica
nonlocal functional determinant, has been hidden in the p
portionality sign.

From the result~4.50! we can see the gauge invariance
the semiclassical vacuum stateCvac, since this state does no
depend explicitly on the triadẽi

a , but only on the 3-metric
hi j 5eiaeja , to which we have chosen afixeddivergence-free
triad d̃i

a . It is remarkable that for the one unique choi
~4.25! of the prefactorN gauge invariance, even under larg
gauge-transformations, can be achieved in both of the
quite different limitsk→` andk→0.

Theexistenceof divergence-free triads to a given 3-metr
hi j is discussed in Appendix A2. There, we also argue tha
general there will even exist different, topologically in
equivalent divergence-free triads, giving rise to linearly
dependent semiclassical vacuum states via Eq.~4.50!.

1. Restriction to Bianchi-type A homogeneous 3-manifolds

We now wish to evaluate the semiclassical vacuum s
~4.50! for the special case of Bianchi-type homogeneo
3-manifolds. For such manifolds, it follows directly from Eq
~4.27! that the divergence of theinvariant triad ıWa5i i

a] i can
be expressed in terms of the structure matrixm as

¹W • ıWa5
1

Ah
] i ı̃

i
a5«abcmbc . ~4.51!

Consequently, the invariant triadıWa of Bianchi-type homo-
geneous 3-manifolds is divergence free, if, and only if t
structure matrixm is symmetric, i.e., if the 3-manifold is of
Bianchi type A. If we restrict ourselves to this special cla
of manifolds in the following, at leastone divergence-free
triad dW a

(0)5 ıWa is known, and we can calculate the corr
sponding value of the semiclassical vacuum state~4.50!:

Cvac
~0! }

m→`

expF7
V

g\
TrmG . ~4.52!

Here we made use of the fact that for 3-manifolds of Bian
type A, the invariant triadıWa and the Einstein triadgW a differ
only by aspatially constantrotationV̂, implying a vanishing
winding numberŵ@i ia#50 in Eq. ~4.50!. A further special-
ization of the result~4.52! to Bianchi-type IX homogeneou
manifolds gives

Cvac
~0! }

m→`

expF72V
g\ ~a1

21a2
21a3

2!G , ~4.53!

where we have introduced the three scale parametersab via
5-11
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m5..2 diagF a1

a2a3
,

a2

a3a1
,

a3

a1a2
G ⇒ V5Va1a2a3 ,

~4.54!

with the same, dimensionless volumeV of the unit 3-sphere
that already occurred in Sec. IV B2. The saddle-point va
~4.53! corresponds to the ‘‘wormhole state’’ of the Bianc
type-IX model@25,27#. Within the framework of the homo
geneous Bianchi type-IX model, four further semiclassi
vacuum states are known, which, in the inhomogeneous
proach of the present paper, correspond to nontri
divergence-free triads of Bianchi type-IX manifolds via E
~4.50!. These topologically nontrivial divergence-free tria
of Bianchi type-IX metrics and the resulting values of t
semiclassical vacuum state~4.50! will be discussed sepa
rately in Appendix B.

As a further restriction of the state~4.52! one may con-
sider again the case of flat Bianchi-type-I manifolds, wh
the structure matrixm, and therefore the exponent of E
~4.52!, vanishes. Thus, for flat 3-manifolds the behavior
the semiclassical vacuum state is governed by the Gaus
prefactor, which we do not know explicitly.

2. Semiclassical 4-geometries

The semiclassical trajectories and the associa
4-geometries, which are generated by the state~4.50! in the
limit k→0, m→`, can be calculated by solving the evol
tion equations~4.35! with the flat, semiclassical spin conne
tion Aia derived in Sec. IV C. However, in contrast to th
limit k→` discussed in Sec. IV B3, we here arrive atimagi-
nary evolution equations, since the semiclassical action
the wave functionalCvac according to Eq.~4.50! is purely
imaginary. Following Hawking@39#, a geometrical interpre
tation may still be given in terms of an imaginary time va
abletª i t , converting the Lorentzian signature of the fou
dimensional space-time into a positive, Euclidian signatu
Then the semiclassical evolution equations can convenie
be expressed in terms of the divergence-free triaddia , which
characterizes the flat Ashtekar spin connectionAia in the
limit k→0:

d

dt
d̃i

a56 «̃ i jk] jdka ⇔ d

dt
dia57v ia . ~4.55!

Herev ia in the second equation is the Riemannian spin c
nection of the divergence-free triaddia . Obviously, the
gauge condition] i d̃

i
a50 remains preserved in the course

evolution, as must be the case.
Stationary solutions of Eqs.~4.55! are given byv ia50,

i.e., flat 3-manifolds (M3 ,h). With our trivial choice of the
Lagrangian multipliersN51, Ni50, these correspond to lo
cally flat, positive definite semiclassical space-time ma
folds (M4 ,g). Further solutions of Eq.~4.55! can be con-
structed with help of the scaling ansatz

dia~x,t!57t•d8 ia~x!, ~4.56!

which impliesd8 ia(x)5v ia(x), and therefore a simple form
for the Ricci tensor of the spatial 3-manifold:
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Ri
j5

2

t2 d j
i . ~4.57!

Consequently, the spatial manifold has to be a 3-sphere
radiust, and the four-dimensional line element becomes

ds25dt21t2dV3
2, ~4.58!

with dV3
2 being the line element of the unit 3-sphere. As f

the stationary solutions mentioned above, the line elem
~4.58! describes a locally flat, positive definite 4-manifold

Because of the nonlinearity of the evolution equatio
~4.55!, the general behavior of the solution is quite comp
cated and cannot be discussed here. However, a com
discussion of the possible semiclassical trajectories can
given within the narrow class of Bianchi-type-IX homog
neous 3-manifolds; cf.@25#. There it turns out that the sem
classical evolution governed by the invariant, divergen
free triaddW a

(0)5 ıWa , which corresponds to the wormhole sta
~4.53! via Eq. ~4.50!, gives rise to asymptoticallyflat
4-geometries in the limit of large scale parametersacos.
Moreover, a second divergence-free triad of these Bian
type-IX homogeneous 3-manifolds, which is given in A
pendix B, is known to evolve in such a way thatcompact,
regular 4-manifolds are approached in the limit of vanishin
scale parameteracos.

8

One may now ask if such a universal behavior of t
semiclassical trajectories, which can be found within the
anchi IX model, carries over to the inhomogeneous ca
Unfortunately, this does not seem to be the case: In App
dix C we explicitly solve the evolution equations~4.55! for a
particular class of initial 3-manifolds, and find that these s
lutions satisfy neither the condition of asymptotical flatne
in the limit acos→`, nor the ‘‘no-boundary’’ proposal sug
gested by Hartle and Hawking@39–41#. Thus we conclude
that, in the inhomogeneous case, the semiclassical vac
state given in Eq.~4.50! will in generalnot be subject to any
specific boundary condition, such as the ‘‘no-boundar
proposal or the condition of asymptotical flatness.

V. NON-NORMALIZABILITY OF THE CHERN-SIMONS
STATE IN A PHYSICAL INNER PRODUCT

We now want to argue that the gravitational Cher
Simons stateCCS@ ẽi

a# according to Eq.~3.23! doesnot con-
stitute a normalizable physical state on the Hilbert space
quantum gravity. Therefore, we will derive a physical inn
product on the configuration space of real triads, which
want to be gauge fixed with respect to the time reparame
zation invariance of general relativity. In this particular inn
product, we then will try to calculate the corresponding no
of the Chern-Simons stateCCS@ ẽi

a#.
To derive a physical inner product within the framewo

of the Faddeev-Popov calculus@42,43#, we first have to find

8The semiclassical vacuum state, corresponding to this sec
divergence-free triad via Eq.~4.50!, is the ‘‘no-boundary state’’ of
the Bianchi IX model.
5-12
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a kinematical inner product, denoted by^•u•& in the follow-
ing, with respect to which the quantum constraint operat
H̃0 , H̃i , and Ĩa are formally Hermitian. Since the comple
Hamiltonian constraint operatorH̃0 defined in Eq.~2.18!
cannot be Hermitian with respect toany inner product on the
configuration space, we replaceH̃0 by its real versionH̃0

ADM

given in Eq.~2.17!, with the factor ordering suggested ther
With the help of the commutators~3.4!–~3.9! one can check
quite easily that the algebra ofH̃0

ADM , H̃i andJ̃a still closes
without any quantum corrections. However, the expli
commutators turn out to be much more complicated than
corresponding commutators ofH̃0 , H̃i , J̃a given in Eqs.
~3.4!–~3.9!, and will not be given here.

Since the quantum stateCCS given in Eq.~3.23! is also
annihilated by the operatorH̃0

ADM , the substitution

H̃0°H̃0
ADM has no negative consequences for the theory,

the positive effect is that we can now define a kinemati
inner product, with respect to which the operatorsH̃0

ADM ,

H̃i , andJ̃a are Hermitian. This product turns out to be

^CuF&5E D9@eia#C* @eia#•F@eia#, ~5.1!

where the functional integral has to be performed over
real triadseia(x). While H̃0

ADM andJ̃a are formally Hermit-

ian in the product~5.1!, H̃i is Hermitian only if we take a
regularization of the theory, where terms containing the s
gular object (] id)(0) vanish.9 If we can achieve this, we
have found a kinematical inner product on the configurat
space of all real triadseia(x), and can continue with the
Faddeev-Popov calculus by choosing a gauge condi
x̃@eia#50 fixing the time gauge. The corresponding physi
inner product is then obtained as

^^CiF&&phys5^Cud@x̃#•uJHuuF&, ~5.2!

with the Faddeev-Popov functional determinant

JHª detS i

\
@H̃0

ADM~x!,x̃~y!# D . ~5.3!

A rather natural way to fix the time gauge is to consid
3-geometries with a given volume formAh(x), for which
there remain only two local degrees of freedom. Theref
we assumeṽ(x) to be a fixed, positive scalar density o
weight 11 on the spatial manifoldM3 , normalized such
that10

E d3xṽ~x!5
!

1. ~5.4!

9Some authors argue that this should be possible; cf. Matsc
@33#.

10For example, the quantityṽ may be chosen as the rescaled v
ume element of a maximally symmetric 3-metric onM3 .
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Furthermore, letax be an arbitrary, positive scale paramet
Then the gauge condition

x̃ªAh~x!2ax
3ṽ~x!5

!
0 ~5.5!

is a diffeomorphism- and SO~3!-gauge invariant equation
fixing the volume form of the 3-metric. In particular, it fol
lows from Eq.~5.5! that the length scaleax and the cosmo-
logical scaleacos introduced in Eq.~4.2! must be equal. In
the gauge~5.5!, the physical norm associated with the inn
product ~5.2! obviously depends on the scale parameterax

and the choice ofṽ(x), but we can consider the limitax

→`,

iCi`
2
ª lim

ax→`
^^CiC&&phys, ~5.6!

which, in the case of the Chern-Simons stateC5CCS, will
turn out to be independent ofṽ(x). For an explicit calcula-
tion of Eq. ~5.6!, we need the Faddeev-Popov commuta
occurring in Eq.~5.3!, which turns out to be

i

\
@H̃0

ADM~x!,x̃~y!#5
g

4
d3~x2y! ̃~x!, ~5.7!

with

̃~x!ª
i\

2 Feia~x!
d

deia~x!
1

d

deia~x!
eia~x!G . ~5.8!

The Faddeev-Popov functional determinantJH according to
Eq. ~5.3! follows as

JH5 )
xPM3

g

4
̃~x!, ~5.9!

which, acting on the wave functionalCCS, measures the
space product of the current̃(x) of CCS in the h(x) direc-
tion of superspace. Since we are dealing with the limitax

5acos→`, the exact quantum stateCCS given in Eq.~3.23!
may be substituted by the asymptotic state~4.21! for explicit
calculations. Then the current ofCCS in the h(x) direction
turns out to have the same sign at each space point for l
scale parametersax5acos,

11 so we donot need to take the
modulus of the Faddeev-Popov determinant in Eq.~5.2!, as
the general calculus in@42# would prescribe. More explicitly,
we find the result

JH•CCSu x̃50 }

ax→`

h1/2
•CCSu x̃50 , ~5.10!

whereh was defined in Eq.~4.18!, so the physical norm~5.6!
becomes in the limitax→`:

ll
11This property ofCCS in the limit acos→` reminds one of the

Vilenkin proposal for the wave function of the Universe discuss
in @44,45#.
5-13
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iCCSi`
2 }E D9@eia#h1/2uCCSu2d@x̃#. ~5.11!

If we now introduce the new integration variablesAh, and
eight locally scale-invariant fieldsbk , the functional integral
in Eq. ~5.11! becomes

iCCSi`
2 }E D@Ah#D8@bk#w@bk#h3/2uCCSu2d@Ah2acos

3 ṽ#

5E D8@bk#w@bk#expF6
6

g\L
ŜCS@bk#G , ~5.12!

where

ŜCS@bk#ªSCS@v ia#2 1
6 I ~V̂! ~5.13!

is a locally scale-invariant functional describing the expon
of uCCSu2 according to Eqs.~4.21! and ~4.25!. The weight
function w@bk# occurring in Eq. ~5.12! depends on the
choice of the new integration variablesbk . Since the inte-
grand of Eq.~5.12! is locally scale invariant, the integral i
independent of the choice ofṽ(x) in Eq. ~5.5!, as announced
above, so the gauge conditionx̃50 can be omitted in the
second line of Eq.~5.12!.

As a result, we find that the diffeomorphism-, gauge-, a
locally scale-invariant functionalŜCS@bk#, which is closely
related to the Chern-Simons functional of the Riemann
spin connectionv ia , governs the ‘‘probability’’ distribution
associated with the Chern-Simons state~4.21! in the limit
acos→`. Since the functionalSCS@v ia# is obviously un-
bounded from above and below, we conclude that the n
~5.12! cannot be finite, even if we fix the remaining gau
freedoms concerning the diffeomorphism and the lo
SO~3!-gauge transformations.

However, we should keep in mind that the result~5.12!
has been derived for a very special choice of the gauge
dition x̃ according to Eq.~5.5!. Since different gauge fixings
of the Hamiltonian constraint give rise toinequivalentphysi-
cal inner products on the Hilbert space of quantum gravit12

there may still exist other choices ofx̃, for which the Chern-
Simons stateCCS@ ẽi

a# turns out to be normalizable.

VI. DISCUSSION AND CONCLUSION

The main purpose of this paper was to derive and disc
a triad representation of the Chern-Simons state, which
well-known exact wave functional of quantum gravity with
Ashtekar’s theory of general relativity. In particular, we we
interested in an explicit transformation connecting the r
triad representation with the complex Ashtekar represe
tion. Therefore, we first investigated this transformation
the classical level in Sec. II. Here we also derived new r

12This is a peculiarity of the Hamiltonian constraint, and in co

trast to gauge-fixing procedures associated withH̃i or J̃a , for
which the Faddeev-Popov calculus guarantees aunique physical
inner product@42,43#.
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resentations for the constraint observablesH̃0 , H̃i , and J̃a

in terms of a single tensor densityG̃L,a
i defined in Eq.~2.22!,

which is closely related to the curvatureFi ja of the Ashtekar
spin connectionAia .

Then, in Sec. III, we performed a canonical quantizati
of the theory in the triad representation. In the particu

factor ordering for the quantum constraint operatorsH̃0 , H̃i ,

and J̃a suggested by Eqs.~2.23!–~2.25!, we found that the
constraint algebra closes formally without any quantum c
rections.

On the quantum-mechanical level, the transformat
from the Ashtekar to the triad representation turned out to
given by a generalized Fourier transformation~3.18! and a
subsequent similarity transformation~3.15!. Here it was es-
sential to allow for an arbitrarycomplexintegration manifold
G in the Fourier integral~3.18!, restricted only by the condi-
tion that partial integrations should be permitted without g
ting any boundary terms.

Making use of the transformations~3.15! and ~3.18!, we
then recovered the Chern-Simons state of quantum gra
by searching for a wave functional which is annihilated
G̃L,a

i . The Chern-Simons state in the triad representat
turned out to be given by the formal complex function
integral ~3.23!. In our approach the Ashtekar variable
played only the role of convenient auxiliary quantities. T
reality conditionsoriginally introduced by Ashtekar in@5#
enter nowhere explicitly, but lie hidden in the choice of t
integration contourG for the functional integrals in Eqs
~3.18! and ~3.23!.

We did not try to perform the complex functional integr
occurring in Eq.~3.23! analytically, but restricted ourselve
to semiclassical expansions of the Chern-Simons st
which were treated in Sec. IV. Rewriting the stateCCS@ ẽi

a#
in suitable dimensionless field parameters, the functional
tegral turned out to be of a Gaussian saddle-point form in
semiclassical limitm→`, and the semiclassical Chern
Simons state was determined by solutions of the saddle-p
equations~4.10!. Here it depended on the choice of the int
gration contourG, which particular saddle-points contribute
to the functional integral~3.23! via Eq. ~4.8!. In order to
prove the consistency of the semiclassical expansions,
argued for the solvability of the saddle-point equations~4.10!
in a separate Appendix A1 from a mathematical point
view, where it turned out that saddle-point solutions w
exist at least under the restrictionR(x)Þ2L.

We were able to find explicit analytical results for th
semiclassical Chern-Simons state in the two asymptotic
gimesk5Lacos

2 /3→` and k→0, which were discussed in
Secs. IV B and IV C, respectively.

In the limit k→`, two different solutions of the saddle
point equations~4.10! could be found, giving rise to the lin
early independent asymptotic statesCCS and CCS* given in
Eq. ~4.21!. For a suitable choice of the normalization fact
N according to Eq.~4.25!, these asymptotic states turned o
to be invariant under arbitrary, even topologically nontriv
SO~3!-gauge transformations of the triad. In the special c
of Bianchi-type homogeneous 3-metrics, we obtained the
5-14
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plicit result ~4.30! for the value of the asymptotic Chern
Simons state~4.21!, which, by a further restriction to
Bianchi-type-IX metrics, coincided with the correspondi
result known from discussions of the homogeneous Bian
type-IX model.

The asymptotic Chern-Simons state~4.21! in the limit k
→` gives rise to a well-defined semiclassical time evo
tion, which we discussed in Sec. IV B3. There it turned o
that for large scale parametersacos the semiclassica
4-geometries associated with the Chern-Simons state
given by inhomogeneously generalized de Sitter space-tim

In the limit k→0, the semiclassical saddle-point contrib
tions to the Chern-Simons state can be characterized

divergence-free triadsdW a of the Riemannian 3-manifold
(M3 ,h) via Eq.~4.50!. Thus we had to answer the nontrivi
question of whether divergence-free triads to a giv
3-metric will in general exist, which was done in Append
A2.

In restriction to homogeneous manifolds of Bianchi ty
A, one divergence-free triad was explicitly known, givin
rise to the result~4.52!. In particular, we were able to recove
the ‘‘wormhole-state’’ ~4.53!, which is a well-known
vacuum state within the homogeneous Bianchi IX mod
For Bianchi-type-IX manifolds, four further divergence-fre
triads dW a

(a) , aP$1,2,3,4%, were constructed in Appendix B
They gave rise to four additional saddle-point contributio
Cvac

(a) , aP$1,2,3,4%, to the vacuum Chern-Simons stat
which, however, were restricted to occur simultaneously.
concluded that, together with the wormhole state, onlytwo
linearly independent values of the vacuum Chern-Sim
state are realized for Bianchi-type-IX manifolds.

Since these two values should continue to exist under
ficiently small, inhomogeneous perturbations of the 3-met
and since also in the limitk→` exactly two different values
of the semiclassical Chern-Simons state were found,
may assume that the one Chern-Simons state in the Ash
representation corresponds to two linearly independent s
in the triad representation.

Within the narrow class of Bianchi-type-IX metrics, th
semiclassical 4-geometries associated with the vacu
Chern-Simons state~4.50! are satisfying physically interest
ing boundary conditions, namely, either the ‘‘no-boundar
condition proposed by Hartle and Hawking@39–41#, or the
condition of asymptotical flatness at large scale parame
acos. However, this doesnot remain true for genera
3-metrics, as we have shown by exhibiting a counter
ample in Appendix C. We conclude that, in general, t
Chern-Simons state will not satisfy the ‘‘no-boundary’’ co
dition or the condition of asymptotical flatness. Neverthele
as we have remarked in Sec. V, the asymptotic state~4.21! in
the limit k→` reminds one of the Vilenkin proposal for th
wave function of the Universe@44,45#.

In Sec. V, we investigated the normalizability of th
Chern-Simons state~3.23! in the triad representation. W
defined a kinematical inner product on the Hilbert space
quantum gravity, and by performing a special gauge fix
for the time gauge we arrived at the physical inner prod
~5.2!. Unfortunately, the Chern-Simons state turned out to
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non-normalizablewith respect to this particular inner prod
uct. However, as we have pointed out, there may still ex
other gauge-fixing procedures~e.g., the one suggested b
Smolin and Soo in@18#!, which render the Chern-Simon
state to be normalizable.
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APPENDIX A: ON THE SOLVABILITY
OF THE SADDLE-POINT EQUATIONS

The solvability of the semiclassical saddle-point equatio
~4.10! is essential in order to justify the consistency of t
asymptotical expansions of the Chern-Simons state discu
in Sec. IV. Therefore, it is worth studying the solvabilit
properties of the nonlinear, partial differential equatio
~4.10! from a mathematical point of view, which will be
done in Sec. A1. Applying the results of Sec. A1 to t
special case of a vanishing cosmological constantL, we will
then, in Sec. A2, be able to prove the existence
divergence-free triads of Riemannian 3-manifolds, which
termine the semiclassical vacuum state~4.50!.

1. The general caseLÅ0

If we want to discuss the solvability of the saddle-po
equations~4.10! within the theory of partial differential
equations~cf. @46#!, it is not advisable to study this problem
in the particular form~4.10!, since the spatial derivative op
erator, which is given by the curl of the gauge fieldAia , is
known to benonelliptic. However, we will show that it is
possible to consider a set of second order partial differen
equations instead, which will turn out to be elliptic in leadin
derivative order, thus allowing for solvability statemen
concerning the solutionsAia .

Let us first introduce new variables

Ki jª~v ia2Aia!eja[7 iK ji ~A1!

instead of the gauge fieldsAia , whereeia denotes a fixed
triad for which we want to solve the set of equations~4.10!.
Up to a Wick rotation, the tensorKi j plays the role of the
semiclassical extrinsic curvature tensorKi j @cf. Eqs. ~2.2!,
~2.6!, and ~2.11!#. If we rewrite the saddle-point equation
~4.10! in terms of the new variablesKi j , they become

GL, j
i

ª

1

Ah
G̃L,a

i eja

5GL, j
i 1* Ki

j2
1

Ah
«̃ ikl¹kKl j 5

!
0, ~A2!
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where

* Ki
jª

1
2 «̃ ikl«> jmnKk

mKl
n ~A3!

are the cofactors of the matrix elementsKi
j , andGL, j

i is the
usual, three-dimensional Einstein tensor with a cosmolog
term. In analogy to Eq.~2.25!, the set of equations~A2!
implies the three Gauss constraints

J̃a56
6i
gL @¹ jGL,i

j 2Ah«> i jkKl
jGL

lk#ẽi
a[6

2i
g eia«̃ i jkKjk5

!
0,

~A4!

which require the tensorKi j to be symmetric ini and j.
Therefore, if we takeKi j to be symmetric in the following,
the Gauss-constraints~A4! are satisfied identically, and th
first line of Eq. ~A4! takes the form of three generalize
Bianchi identities. We thus conclude that the set of equati
~A2! constitutes only six independent equations for the
fields Ki j 5Kj i we are searching for.

Beside the Gauss-constraints~A4!, four further equations
are implied by Eq.~A2! via Eqs.~2.23! and ~2.24!, namely,
the Hamiltonian constraint

H̃0
ADM5

2Ah
g GL,i

i [
Ah
g ~K22Ki

jKj
i12L2R!5

!
0,

~A5!

and the three diffeomorphism constraints

H̃i57
2ih
g «> i jkGL

jk[6
2iAh

g ~¹ jKj
i2¹ iK!5

!
0, ~A6!

respectively. HereK in Eqs.~A5! and~A6! denotes the trace
of (Ki

j ). Remarkably, the Hamiltonian constraint~A5! is a
purely algebraic equation forKi j , which will be solved ex-
plicitly later on, while the diffeomorphism constraints~A6!
are linear equations and contain information about the div
gence of the fieldsKi j .

Moreover, since Eqs.~A2! contain the curl of the fields
Ki j , Eqs.~A2! and~A6! together may be used to construc
second-order derivative operator similar to the Lapla
Beltrami operator ofKi j . Let us therefore consider the fo
lowing second-order differential equations:

D i jªAh@«> jmn¹ iGL
mn2«> imnh

mk¹kGL, j
n 1 1

2 «> i jk¹nGL
nk#5

!
0,

~A7!

which must be satisfied for solutionsKi j of Eq. ~A2!. The
first term in Eq.~A7! can be simplified with the help of Eq
~A6!, and gives in the leading derivative order the gradien
the divergence ofKi j and, in addition, the Hessian ofK.
Making use of Eqs.~A2!, the second term in Eq.~A7! con-
tributes the curl ofKi j , i.e., taking the first two terms in Eq
~A7! together, we arrive at

D i j 5¹ i¹ jK2DKi j 1O~¹ iKjk! ~A8!

in leading derivative order. By virtue of Eqs.~A4!, the third
term in Eq.~A7! contains only first-order derivatives ofKi j .
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It has been added to obtain simple expressions for the t
and the antisymmetric part ofD i j , which are given by

hi j D i j [0, «̃ i jkD jk[
g

2
hi j ¹ jH̃0

ADM . ~A9!

Instead of solving the nine equations~A7!, we may therefore
consider the six equations

D~ i j !ª
1
2 ~D i j 1D j i !5

!

0, H̃0
ADM5

!

0 ~A10!

to determine the six fieldsKi j .
In a next step, we will now solve the Hamiltonian co

straint~A5! explicitly. At any space pointxPM3 , Eq. ~A5!
describes a five-dimensional hyperboloid in the s
dimensional space spanned byKi j , as long as

;xPM3 : R~x!Þ2L, ~A11!

which will be assumed in the following. This five
dimensional hyperboloid may be parametrized with the h
of a stereographic projection; hence the general solution
the Hamiltonian constraint can be written in the form

Ki
j5

AR22L

12TrQ2 F11TrQ2

A6
d j

i 12Qi
j G , TrQ2Þ1,

~A12!

whereQ is a symmetric,tracelessmatrix. MatricesQ with
TrQ251 correspond to coordinate singularities of the s
reographic projection, and thus have to be excluded in
~A12!. Inserting the general solution~A12! of H̃0

ADM50 into
the first of Eqs.~A10!, we arrive at five equations for the fiv
fields Qi

j , which remain to be determined.
We now want to argue that the effective set of part

differential equations obtained this way is soluble with r
spect toQi

j . Let us therefore consider a background soluti
Q̄i

j of these equations, which we assume to be known
sufficiently simple parameter fieldsẽi

a and L.13 Under in-
finitesimal perturbations of the parameter fieldsẽi

a and L,
the new solutionQi

j will differ from the background solu-
tion Q̄i

j by an infinitesimal amount

Qi
j5Q̃i

j1e•Q8 j
j1O~e2!, ~A13!

and in the following it will be sufficient to show that th
fields Q8 i

j exist to any given background solutionQ̄i
j . In-

serting the perturbation ansatz~A13! into D ( i j )50, we arrive
at five linear partial differential equationsD ( i j )8 50 in O~e!
determining the fieldsQ8 i

j . To show that these equations a
soluble with respect toQ8 i

j , we will restrict ourselves to a
discussion of the symbol ofD ( i j )8 50, which we will show to

13Explicit solutions Aia of the saddle-point equations~4.10!,
which correspond to the fieldsQi

j via Eqs.~A1! and ~A12!, are in
fact known for various homogeneous 3-manifolds, such as Bian
type-IX manifolds; cf.@25#.
5-16
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be elliptic ~cf. @46#!. The symbols(k) of a linear differential
operator is obtained by computing the action on a Fou
mode

Q8I
j~x!5Q̂i

j~k!•eiklx
l
, ~A14!

in leading order of the wave vectork. For the operatorD8( i j )
under study, we obtain

s i j ~D~mn!8 ;k!522
AR22L

~12TrQ̄2!2
FA6kikjQ̄mnQ̂mn

2uku2S ~12TrQ̄2!Q̂i j 1A2

3
Q̄mn

3~hi j 1A6Q̄i j !Q̂mnD G . ~A15!

The symbols(k) is called elliptic, if it has a trivial kernel for
kÞ0. Then the linear differential operator is invertible in th
leading derivative order, and solutions of the linear differe
tial equations will exist. To prove the ellipticity of the sym
bol ~A15!, it remains to be shown that the linear equation

A6qninj5A2

3
q~hi j 1A6Q̄i j !1~12TrQ̄2!Q̂i j

~A16!

have only the trivial solutionQ̂i j 50 for nÞ0, where we
have introduced the abbreviations

qªQ̄i j Q̂i j , nª
k

uku
⇒ unu51. ~A17!

Contracting Eqs.~A16! with Q̄i j , we obtain the necessar
implication

q~11TrQ̄22A6Q̄i j nminj !5
!

0, ~A18!

i.e., if we can show that the bracket in Eq.~A18! is different
from zero, Eq.~A18! impliesq50, and thereforeQ̂i j 50 via
Eq. ~A16!, so the ellipticity ofs(k) according to Eq.~A15!
would have been proven.

It now follows from a simple estimate for symmetric m
trices Q̄ that the vanishing of the bracket in Eq.~A18!
implies14

11(
i 51

3

Q̄i
2<A6 max

i 51

3

$Q̄i%, ~A19!

14Here and in the following, we have to restrict ourselves toreal-

valuedmatricesQ̄, which correspond to real or complex solution
Aia of the saddle-point equations~4.10! via Eqs.~A12! and~A1! in
the two different casesR.2L or R,2L, respectively.
08400
r

-

where theQ̄i denote the three eigenvalues of the matrixQ̄.
SinceQ̄ is traceless, these three eigenvalues may be par
etrized by

Q̄j5A2

3
% cosS u1

2p j

3 D , j P$1,2,3%

with

%>0, 0<u,2p. ~A20!

Then the relation~A19! takes the form

11%2<2r⇔~12r!2<0, ~A21!

and is obviously only satisfied for%51. Moreover, because
of the identity TrQ̄25%2, the particular value%51 corre-
sponds to the coordinate singularity of the stereographic p
jection used in Eq.~A12!, and is hence not permitted b
construction. Thus the relation~A19! has been brought to a
contradiction, and we conclude that the bracket in Eq.~A18!
cannot vanish, which finishes our proof of the ellipticity
the symbols(k) given in Eq.~A15!.

Summarizing our results, we have shown that the se
linear partial differential equationsD ( i j )8 50, which deter-
mines the fieldsQ8 i

j , is elliptic, and therefore soluble in
leading derivative order. It follows that the solutionsQi

j of
the nonlinear set of equationsD ( i j )50 continue to exist un-
der infinitesimal perturbations of the parameter fieldsẽi

a and
L. Therefore, solutionsKi j of Eq. ~A7!, and also solutions
Aia of the saddle-point equations~4.10!, can be obtained via
Eqs.~A12! and~A1! for a wide range of parameter fieldsẽi

a
and L, as long as the only restrictionRÞ2L met in Eq.
~A11! is satisfied.

2. Divergence-free triads in the limit L\0

In this section we want to discuss how suitableflat gauge
field Aia may be used to construct divergence-free triadsdW a
of a given Riemannian 3-manifold (M3 ,h). Such a flat
gauge field onM3 can be obtained by pursuing anyfixed
solutionAia@ ẽi

a ,L# of the saddle-point equations~4.10! in
the limit L→0. Using the arguments of Sec. A1, this will b
possible for 3-manifolds withR(x)Þ0. By virtue of Eq.
~2.25!, the corresponding gauge fieldAia will not only be
flat, but it will in addition satisfy the three Gauss constrain

Di ẽ
i
a[] i ẽ

i
a1«abcAibẽi

c50, ~A22!

whereẽi
a is a fixed but arbitrary triad of the 3-metrich.

Let us now consider the parallel transport associated w
the gauge fieldAia : Given a vectorvW (0)5va,0eWa at a point
P0 of M3 , and a curveC: xi5 f i(u), 0<u<1, connecting
P0 with a second pointP1 , we define a vector fieldvW (u)
alongC by solving the equations of parallel transport,

Dva

Du ª

]va

]u 1«abc

] f i

]u Aibvc5
!

0, va~0!5
!

va,0 .

~A23!
5-17
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Since the gauge fieldAia is flat, the resulting vectorvW (1) at
point P1 does not depend on the particular choice ofC ~cf.
@47#!, i.e., if we restrict ourselves to the case of simply co
nected manifoldsM3 in the following, the parallel transpor
of vW (0) along arbitrary curvesC,M3 will define a well-
defined vector fieldvW (x) on M3 . By construction, this vec-
tor field vW (x) turns out to be covariantly constant with r
spect toAia ,

Diva[] iva1«abcAibvc[0, ~A24!

and, as a consequence of Eq.~A22!, the vector fieldvW (x) is
in addition divergence free,

~A25!

Moreover, it follows from Eq.~A24! that the parallel trans
port according to Eq.~A23! conserves the scalar product
two vectorsvW andwW :

~A26!

From Eqs. ~A25! and ~A26! it is then obvious that a
divergence-free triaddW a(x) of the Riemannian 3-manifold
(M3 ,h) can be constructed by choosing three orthonorm
vectorsdW a at a pointP0 , and parallel propagating these ve
tors along arbitrary curvesC,M3 . Since the only freedom
in this construction arises from the choice ofdW a at a single
point P0 , this divergence-free triaddW a(x) associated with
the flat gauge fieldAia turns out to be unique up to globa
rotations.

APPENDIX B: THE VACUUM STATE
ON BIANCHI-TYPE-IX HOMOGENEOUS MANIFOLDS

In this appendix we want to discuss the semiclass
vacuum state~4.50! in the special case of Bianchi-type IX
homogeneous 3-manifolds. While one saddle-point contri
tion, the so-called ‘‘wormhole-state,’’ is given by the resu
~4.53!, four further semiclassical vacuum states are kno
within the framework of the homogeneous Bianchi IX mod
@25,27#. In the inhomogeneous approach of the present
per, these additional states should correspond to topol
cally nontrivial divergence-free triads of Bianchi-type-I
manifolds via Eq.~4.50!. Such special triads can indeed b
constructed from the divergence-free triads of the u
3-sphere, which will be discussed first in Sec. B1. T
divergence-free triads of Bianchi-type-IX manifolds and t
corresponding saddle-point contributions to the vacu
Chern-Simons state will then be given in Sec. B2.

1. Divergence-free triads of the unit 3-sphere

The 3-sphere is a maximally symmetric 3-manifold w
six Killing vectorsjWa

6 , representing the commutator algeb

@jWa
6 ,jWb

6#562@abc#jW c
6 , @jWa

1 ,jWb
2#50W ~B1!
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of the symmetry group SO~4!>SO~3!3SO~3!. From the sec-
ond of these commutation relations it follows that the thr
vector fieldsjWa

2 are the left-invariant vector fields to th

Killing vectors jWa
1 , and vice versa; i.e., the metric tensor

the unit 3-sphere can be expanded inbothof the two setsjWa
6

with spatially constantcoefficients. In particular, if we
choose the normalization ofjWa

6 as in the first of Eqs.~B1!,

the invariant vector fieldsjWa
6 form automatically two differ-

ent sets of invariant triadsıWa
6
ªjWa

6 to the metrich of the unit
3-sphere:

ıWa
1

^ ıWa
15h5 ıWa

2
^ ıWa

2 . ~B2!

According to Eqs.~B1! and ~4.27!, both invariant triadsıWa
6

have a symmetric structure matrixm, and are thus diver-
gence free by virtue of Eq.~4.51!. Since they are triads to th
same metrich, they must be connected by a gauge transf
mationEPO(3):

ıWa
15EabıWb̄. ~B3!

The matrixE has a spatially nontrivial dependence, and m
of course be calculated explicitly in any given coordina
system onS3.15 However, in the following the explicit form
of the rotation matrixE will not be needed.

2. Divergence-free triads of Bianchi-type-IX
homogeneous manifolds

Anisotropic manifolds of Bianchi-type IX can be de
scribed by choosing an invariant triad of the unit 3-sphe
for example, ıWa

1 , and rescaling this triad with three sca
parametersab.0:

ıWaªDabıWb1 with D21
ªdiag~a1 ,a2 ,a3!. ~B4!

Then ıWa is the invariant triad of a Bianchi-type-IX manifold
and the metric tensor is given byh5 ıWa^ ıWa . In the general,
anisotropic case, only three of the six vector fieldsjWa

6 dis-
cussed in Sec. B1 remain as Killing vectors of the 3-me
h, namely, the fieldsjWa

2 . We will assume that the invarian

triad ıWa given in Eq.~B4! is positive oriented. As pointed ou
in Sec. IV C1, this triaddW a

(0)
ª ıWa is automatically divergence

free, and gives rise to the ‘‘wormhole’’ saddle-point cont
bution ~4.53! to the semiclassical vacuum state.

To find further, topologically nontrivial divergence-fre
triadsdW a of Bianchi-type-IX metrics, let us try an ansatz o
the form

dW a5EbaObcıWc , ~B5!

15For example, if we employ the Euler anglesc, q, w as coordi-
nates on the unit 3-sphere, the matrixE turns out to be precisely the
well-known Euler-matrixE(c,q,w) ~for a definition of the Euler
matrix, see, e.g.,@48#!.
5-18
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where O5(Oab)PSO(3) is assumed to be spatial
constant.16 If we require the triaddW a according to Eqs.~B5!,
~B4! to be divergence free, we arrive at three equations
the matrixO,

¹W •dW a5ObcDcd@ ıWd
1 ,Eba#5

!
0. ~B6!

The spatial derivatives of the matrixE with respect to the
vector fieldsıWa

1 can be calculated by inserting Eqs.~B3! into
Eqs.~B1!, and are given by

@ ıWa
1 ,Ebc#52«abdEdc . ~B7!

Therefore, the requirements~B6! can be simplified to the
form

«abcObdDdc5
!

0, ~B8!

i.e., the matrixO has to be chosen in such a way that for a
given diagonal matrixD the matrixO•D is symmetric. The
only four solutionsOPSO(3) of this problem turn out to b

O~1!5diag~11,21,21!, O~2!5diag~21,11,21!,

O~3!5diag~21,21,11!, O~4!5diag~11,11,11!.
~B9!

Hence the ansatz~B5! gives exactly four further divergence
free triads of Bianchi-type-IX homogeneous manifolds,

dW a
~a!5EbaObc

~a!
• ıWc , aP$1,2,3,4%. ~B10!

We now wish to compute the semiclassical saddle-po
contributions to the vacuum state~4.50!, which correspond
to the divergence-free triadsdW a

(a) , aP$1,2,3,4%. Therefore
we first need the winding numbersŵ of these triads with
respect to the Einstein triadgW a of Bianchi-type-IX metrics.
Since the Einstein triad turns out to be given exactly by
invariant triad of the homogeneous 3-metric,gW a[ ıWa , we
have to calculate the Cartan-Maurer invariants~4.23! of the
four rotation matrices

V~a!
ªET

•O~a!, aP$1,2,3,4%. ~B11!

This can be done without knowing the matrixE in Eq. ~B11!
explicitly, because the spatial derivatives in Eq.~4.23! may
be substituted by] j5i ja

1
• ıWa

1 , and then be eliminated with
the help of Eq.~B7!, yielding

I ~V~a!!528E d3x«abcia
1∧ib

1∧ic
15248V, ~B12!

where V52p2 is the dimensionless volume of the un
3-sphere. Since the constantI 0 in the definition~4.24! of the

16At least in the isotropic casea15a25a3 , this ansatz gives the

second divergence-free triadıWa
2 of the 3-sphere by virtue of Eq

~B3!, if we simply chooseO51.
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winding number has the numerical valueI 0596p2 for mani-
folds with S3 topology ~cf. @37#!, it follows that the ‘‘abso-
lute’’ winding numbers of the triadsdW a

(a) , aP$1,2,3,4%, are
simply given byŵ521.

To proceed in the computation of the semiclassi
saddle-point contributions~4.50!, we further have to evaluate
the functional f defined in Eq. ~2.15! for the four
divergence-free triadseWa5dW a

(a) , aP$1,2,3,4%. Inserting the
triads ~B10! into f according to Eq.~2.15!, we first recover
the wormhole exponent of Eq.~4.53!, if the spatial derivative
] j acts on the invariant triadıWa . In addition, we obtain a
second term, which stems from the action of the derivat
operator] j on the spatially nontrivial matrixE. This contri-
bution can again be calculated by reexpressing the sp
derivative in terms of the vector fieldsıWa

1 , and making use

of Eqs. ~B7!. In case of the divergence-free triaddW a
(4) , we

obtain the explicit result

Cvac
~4! }

m→`

Cvac
~0!
•expF6

4V
g\ S 2

6

L
1a1a21a2a31a3a1D G ,

~B13!

with Cvac
(0) given in Eq.~4.53!. The saddle-point value~B13!

is known as the ‘‘no-boundary’’ state from the homogeneo
Bianchi IX model. Three further semiclassical saddle-po
contributions to the vacuum state~4.50!, which correspond
to the remaining divergence-free triadsdW a

(a) , aP$1,2,3%, are
of the same form asCvac

(4) given in Eq.~B13!, but with two of
the three scale parametersab replaced by their negatives. I
the framework of the Bianchi IX model, the correspondi
states were referred to as ‘‘asymmetric’’ states. We concl
that all five saddle-point valuesCvac

(a) , aP$0,...,4%, known
for the homogeneous Bianchi IX model can be recove
within the inhomogeneous approach of the present pape
evaluating the state~4.50! for the five topologically inequiva-
lent divergence-free triadsdW a

(a) , aP$0,...,4%, of Bianchi-
type-IX manifolds. Up to a Gaussian prefactor, which alwa
lies hidden in the proportionality signs of Eqs.~4.53!, ~B13!,
the results are of the same form as in@25,27#.

However, as we have shown in@27,49#, the four semiclas-
sical saddle-point contributionsCvac

(a) , aP$1,2,3,4%, are re-
stricted to occursimultaneouslyfor symmetry reasons. This
can also be seen within the present, inhomogeneous
proach, since the four divergence-free triadsdW a

(a) ,
aP$1,2,3,4%, all have the same winding number, and th
should enter into the value of the Chern-Simons state w
the same topological right. We conclude that, in agreem
with discussions of the nondiagonal Bianchi IX model, on
two independent values of the vacuum Chern-Simons s
are found for Bianchi-type-IX manifolds.

APPENDIX C: A NONFLAT 4-METRIC GENERATED BY
THE VACUUM STATE

We now want to give special solutions of the vacuu
evolution equations~4.55!, such that the associated semicla
sical 4-geometries satisfy neither the ‘‘no-boundary’’ con
5-19
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tion proposed by Hartle and Hawking@39–41#, nor the con-
dition of asymptotical flatness in the limit of large sca
parametersacos.

17 Let us therefore consider the class
3-metrics

h5 ıWa^ ıWa , ~C1!

where the triad vector fieldsıWa5ia
i ] i are given by

ıW15
1

a1
]1 , ıW25

1

a2
]2 ,

ıW35
1

a3
~]31x2]11x1]2!. ~C2!

The scale parametersab in Eq. ~C2! are assumed to be spa
tially constant, and the triadıWa is taken to be positive ori-
ented. Then the structure matrixm introduced in Eq.~4.27!
takes the spatially constant form

m5diagF a1

a2a3
,2

a2

a3a1
,0G , ~C3!

i.e., the triadıWa is the invariant triad of a spatially homoge
neous 3-manifold, which can be classified to be of Bian
type VI21. Since the structure matrixm according to Eq.
~C3! is symmetric, it follows directly from Eq.~4.51! that the
invariant triad ıWa is divergence free. The Killing vectors o
the 3-metric~C1! must commute with theıWa and are given
by

jW15coshx3]11sinhx3]2 , jW25sinhx3]11coshx3]2 ,

jW35]3 . ~C4!

They may be used to compactify the 3-manifoldM3 with the
metric ~C1! in the threejWa2 directions, giving rise to a mani
fold with the nontrivial topologyS13T2. The compactified
3-manifold will then have a finite volumeV5Va1a2a3 ,
where the value ofV.0 depends on the particular choice
the compactification.

We are now interested in the semiclassical 4-geomet
being generated by the evolution equations~4.55! in case of
the divergence-free triaddW a5 ıWa . If we allow for an arbitrary
lapse functionN, they read

d

dt
ı̃ i

a56N«̃ i jk] j ika . ~C5!

For the three-metric~C1! under study, Eqs.~C5! take the
form

17Here we assume the vacuum limitk→0 to be realized by con-
sidering a sufficiently small value for the cosmological constantL.
Then it will be possible to take the cosmological scale param
acos arbitrarily large at the same time; cf. Eq.~4.4!.
08400
i

s

d

dt
s157NAs2s3

s1
,

d

dt
s256NAs3s1

s2
,

d

dt
s350,

~C6!

where we have introduced the new variables

s1ªa2a3 , s2ªa3a1 , s3ªa1a2 . ~C7!

Choosing the lapse functionN as

N57
1

2
~s1s2s3!21/2, ~C8!

the set of Eqs.~C6! is easily integrated and has the gene
solution

s1~t!5At01t, s2~t!5At02t,

s3~t![s35const; utu,t0 . ~C9!

Here we have chosent50 such thats1(0)5s2(0), soonly
two integration constantst0.0 and s3.0 remain in Eq.
~C9!.

In order to prove that the 4-geometry according to E
~C9! is nonflat, it is not sensible to compute th
4-dimensional Ricci or Einstein tensor, since these quanti
vanish identically by construction, so we will consider th
nontrivial components4R0i

0 j of the four-dimensional Rie-
mann tensor instead. For a vanishing shift vectorNi50, they
are given by

4R0i
0 j52

1

N

d

dt
Ki

j1Ki
kK

k
j , ~C10!

with Ki
j being the usual extrinsic curvature tensor. With he

of the triad ~C2!, we may convert the spatial indices o
4R0i

0 j into internal indicesa, b, to obtain

Rabªi iai j
b

4R0i
0 j . ~C11!

For the metric~C1!, (Rab) is a diagonal matrix with

R3352
1

Na3

d

dt S 1

N

da3

dt D , ~C12!

and analogous expressions forR11, R22. Making use of the
evolution Eqs.~C6!, we can eliminate thet derivatives in Eq.
~C12! to arrive at

R335
s1s2s3

2 S 1

s1
2 1

1

s2
2D 2

, ~C13!

and inserting the general solution~C9! into Eq. ~C13!, we
find

R335s3t0
2~t0

22t2!23/2.0. ~C14!

Thus we have found a component of the Riemann ten
which is nonzero for all timest, utu,t0 , so the semiclassi-
cal 4-geometries obtained by evolving the initi

er
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3-geometries~C1! arenowhereflat. Moreover, the semiclas
sical 4-geometries donot satisfy the ‘‘no-boundary’’ condi-
tion: While the cosmological scale parameter

acos5V1/3~s1s2s3!1/65V1/3s3
1/6~t0

22t2!1/12 ~C15!
d

ty

v.

08400
vanishes only at the timelike bordersutu→t0 of the semi-
classical space-time manifolds, the corresponding curva
componentsR33 at the same time are tending to1`. Con-
sequently, the semiclassical 4-manifolds arenot regular or
compact for vanishing scale parametersacos.
tt.

od.
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