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We investigate a triad representation of the Chern-Simons state of quantum gravity with a nonvanishing
cosmological constant. It is shown that the Chern-Simons state, which is a well-known exact wave functional
within the Ashtekar theory, can be transformed to the real triad representation by means of a suitably gener-
alized Fourier transformation, yielding a complex integral representation for the corresponding state in the triad
variables. It is found that topologically inequivalent choices for the complex integration contour give rise to
linearly independent wave functionals in the triad representation, which all arise froom#@hern-Simons
state in the Ashtekar variables. For a suitable choice of the normalization factor, these states turn out to be
gauge invariant under arbitrary, even topologically nontrivial gauge-transformations. Explicit analytical ex-
pressions for the wave functionals in the triad representation can be obtained in several interesting asymptotic
parameter regimes, and the associated semiclassical 4-geometries are discussed. In restriction to Bianchi-type
homogeneous 3-metrics, we compare our results with earlier discussions of homogeneous cosmological mod-
els. Moreover, we define an inner product on the Hilbert space of quantum gravity, and choose a natural gauge
condition fixing the time gauge. With respect to this particular inner product, the Chern-Simons state of
guantum gravity turns out to bersn-normalizablevave functional.

PACS numbgs): 04.60.Ds, 11.10.Jj, 11.15.Kc

I. INTRODUCTION sentation of the Chern-Simons state was investigated, and

After four decades of vigorous research, a consistenfU'ned out to be closely related to the Kauffman brackets
quantization of general relativity remains as one of the most20]: Moreover, this particular state was found to make an
fundamental problems in theoretical physics. Aside from@bvious connection between quantum gravity and topologi-

string theory[1,2], a promising approach to this problem is cal field theory{20,21. _ _
provided by acanonicalquantization of gravity. Since early ~ However, a physical interpretation of the Chern-Simons
attempts in the 1960E3,4], canonical quantum gravity en- State within _the Ashtekar representation implied _several
joyed a renaissance after Ashtekar's discovery of comple®roblems, which arose from thieality conditionsunderlying
spin-connection variabld$,6], which replaced7] the met- Ashtekar’s complex theory of gravif]. Differentreal ver-
ric variables used up till then. The neshekar representa- Sions of Ashtekar's theory were suggesfe@—24, but the
tion of general relativity turned out to be closely related to acorresponding quantum constraint equations turned out to be
Yang-Mills theory of a local S)-gauge groug5], and nonpolynomial, lacking the Chern-Simons state as a solution.
therefore many ideas and concepts known from Yang-Mills Amazingly, a rather natural way to circumvent the prob-
theory could be carried over to the theory of gravity. In par-lems associated with Ashtekar’s reality conditions has never
ticular, theloop representationwhich had just been investi- been investigated: If we would be able to transform the
gated within Yang-Mills theory[8], furnished yet another Chern-Simons state from the Ashtekar to the metric repre-
representation of general relativity,9,10, and, moreover, a sentation, the geometrical meaning of the fundamental vari-
remarkable connection between gravity and knot theonables would be obvious, and no further reality conditions
[9,11]. Later on, the loop representation of general relativitywould be needed. In addition, questions concerning the nor-
advanced to a mathematically rigorous theory within themalizability of the Chern-Simons state are much easier to
framework of discretized models of gravity, the so-calleddiscuss in the real metric variables than in the complex Ash-
quantum spin networkil2,13. tekar spin-connection variables. It is therefore interesting to
As one crucial advantage of the Ashtekar representatiorfind an explicit transformation connecting these two repre-
the constraint operators of quantum gravity took a polynosentations, and to study the Chern-Simons state in the metric
mial from in the new spin-connection variables, and explicitrepresentation.
solutions were found. Among the different quantum states Recently, we examined this problem in the framework of
discussed up till thefil4,195, theChern-Simonstate[16,17  the homogeneouBianchi-type IX mode[25-27. As an in-
played an outstanding role, since it was the only wave functermediate step, we introduced théad representationof
tional with a well-defined semiclassical lintit loop repre-  general relativity, which is trivially connected to the metric
representation we were interested in. Then it turned out that
the Chern-Simons state in the Ashtekar representation can be
IStrictly speaking, this is only true for a nonvanishing cosmologi- transformed to the triad variables by a suitably generalized
cal constant, where de Sitter-like 4-geometries are described by tfeourier transformation. Topologically inequivalent choices
semiclassical Chern-Simons stéfé5,18. The case of a vanishing for the complexintegration contour in the Fourier integral
cosmological constant has been investigated by Ezawfl% gave rise to different, linearly independent quantum states in
where it turned out that the semiclassical 4-geometries will in genthe triad representation, which all arose from tme Chern-
eral suffer from different pathologies. Simons state in the Ashtekar variables. We found explicit
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integral representations for the corresponding states in the Il. TRIAD REPRESENTATION AND ASHTEKAR
triad variables, and gave semiclassical interpretations of the VARIABLES

wave functions in different asymptotic parameter regimes. In order to set the stage and to define our notation let us

In the present paper, we now want to push these ,resu"ﬁriefly recall the ADM Hamiltonian formulation of general
for the homogeneous model a big step further, and will aske ity [3,30,37 in terms of the densitized inverse tria,
for the corresponding form of thenhomogeneoushern- 54 its canonically conjugate momentwy, . This will be
Simons state in the triad representation. For technical regsyjied the triad representation for shf{17,23,32,33
sons, we will restrict ourselves to model universes, where the The most commonly used form of the ADM formulation
spatial hypersurfaces of constant time are compact and witj3] employs as generalized coordinates the metric tehgor
out boundaries, but of arbitrary topology. In order to recovelon a family of spacelike 3-manifolds foliating space-time.
the Chern-Simons state as a quantum state of gravity, walternatively one may also employ the inverse metric tensor
should allow for a nonvanishing cosmological constanthii with hiihjkz ., or, what will be done here, the densi-
which, by the way, is in complete agreement with currenttized inverse metric
cosmological dat®28,29. B B

The rest of this paper is organized as follows: In Sec. Il &' =hh' 2.1
we define our notation and start from the metric representa-
tion of classical general relativity. We introduce the triad andwith h=det(y;).? Then the canonically conjugate momenta
the Ashtekar variables, and give new representations of thgij » Which form a tensor density of weight1, become

constraint observables in terms of a single tensor density,

which is closely related to the curvature of the Ashtekar spin oL 1
connection. A canonical quanization of the theory is per- FiJ:Tij: \/— Kij » 2.2
formed in Sec. lll. Choosing a particular factor ordering for oa yVh

the constraint operators of quantum gravity, we discuss the
corresponding operator algebra, and show on a formal lev g ; S
ewton’s constanG, andKj; is the usual extrinsic curvature

(i.e., without regularization and then performing the limit describing the embedding of the 3-manifold in space-time
that is closes without any quantum corrections. The transfor.—l_he uantityl in Eq. (2.2) is the Lagrangian defined by the ’
mation connecting the Ashtekar and the triad representatio instcéin-Hil)t;ert ac?ibr[éO 31, in Wr?ich %ve include a 3:/05-
s ex_plaingd in detail, and Is _then used to deriv_e a formaEological term with a cos’mo,logical constamht This choice

functional integral representation for the Chern-Simons states yariables implies a symplectic structure on phase-space

in the triad representation. In Sec. IV we study severalgfined by the Poisson brackets
asymptotic expansions of this functional integral in some

here y=167G is a convenient abbreviation containing

physically interesting parameter regimes. In particular, we - 1.

are interested in the semiclassical form of the Chern-Simons {8700, ()} =5 (8o + 8180 B (x—y),

state, which then will allow for a discussion of the semiclas-

sical 4-geometries. A separate Sec. IV B1 is dedicated to the {gij(X),ékl(y)}:Oz{mj(x),ﬂ-kl(y)}_ (2.3

behavior of the Chern-Simons state under large, topologi-

cally nontrivial S@3)-gauge transformations. The value of |ngjcesi, j will be raised and lowered by’ and its inverse.

the Chern-Simons state on Bianchi-type homogeneoug, order to move on to the triad representation let us intro-
3-manifolds is computed and compared with earlier resultgjyce the densitized inverse trigl, via

obtained within the framework of homogeneous models. In

Sec. V we define a formal inner product on the Hilbert space CRCEIET-UN (2.9

of quantum gravity, which is gauge fixed with respect to the

time-redefinition invariance, and examine the normalizabilityand define an enlarged phase space by introducing canoni-
of the Chern-Simons state. Finally, we summarize our concally conjugate momenta, of the®', with Poisson brackets
clusions in Sec. VI. Three Appendixes deal with certain tech-

nical details. In Appendix A, we discuss the solvability of {'a(X),Pip(Y)} = 8 8ap0°(x—Y),
the saddle-point equations, which determine the semiclassi-
cal Chern-Simons state, and show how the solutions of these {Pia(X),Pjp(y)}=0. (2.5

equations correspond thvergence-fredriads in the limit of

a vanishing cosmological constant. In Appendix B, then fiveln the following we shall also make use of the triad 1-forms
divergence-free triads are calculated for homogeneouSia @nd the triad vectors', =,/ h. In order to guarantee
Bianchi-type IX metrics, and the corresponding values of théhat Eq.(2.3) is compatible with Eqs(2.4), (2.9, we relate
Chern-Simons state are given. In order to comment on pos7ij 0 Pja Via

sible boundary conditions satisfied by the Chern-Simons

state, a further Appendix C deals with the asymptotic behav-

ior of particular semiclassical 4-geometries, which arise for a ?Here and in the following densities of positive weight are de-
special class of initial 3-metrics. noted by an upper and densities of negative weight by a lower tilde.
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1 i Y 4
i~ = eiapja, (26) {ela(x),Ajb(Y)}:i?5}5ab§(x_y% (212
2\h
which serves to satisfy the first of Eq&.3). Furthermore we {Aia(x), Ajp(y)}=0. (213

introduce the three additional constraints .
The second of these relations follows from the fact that the

\ Riemannian spin connectian;, can be expressed 88,17

Nj‘zsabchéibpiczo- (2.7 5 014
Here the Levi-Cevitta tensar,, is defined by YT s, '
sanc=¢(€ia) -[abC], (2.8 ~ with
where e(e;,) e {1} measures the orientation of the triad bi=— EJ d3xziike, 0 ey, (2.15
€., and[abc] is the totally antisymmetric Levi-Cevitta sym- 2 latjmka

bol normalized such thdtl23]=+1. On the constraint hy- _ _ o
persurface defined by E2.7) the quantitym;; defined by ~EMPIoying.A;; as a new and complex spin connection it is
Eq. (26) is eas”y checked to be symmetriciirj as required convenient to use also its associated curvature

by Eqg. (2.2 and to satisfy the last of Eq§2.3).

The ADM Hamiltonian[30,31] Fija=diAja— djAiat €apcAinAjc - (2.19
B N Then the constraints take the more pleasing fofch
HAPM = f d3x(NHEPM+ NIT;) 29 [517,23)
with Lagrangian parametef$,N' and constraint§{5°™ , 7, ﬂOADMEﬂOIiai(eia"'jo);o, (2.17)

given in terms ofd", m;; is easily rewritten in terms of the
triad representation using Eqg.4), (2.6). This yields(cf.  with

[5,17,23,33
y 1 27 7-lo=£e- K E it EA’éi (2.18
~ o o ia jka als .
HQDM:_Zeiasllksabcpjbpkc+_eiaSIJijka+_\/ﬁa Y s
Y Y
_ . _ ~ 20 B o
Hi=0;(%apia) —®adiPja, (2.10 HiE+7[ejaaj«4ia_ejaﬁiAJa+Aiaﬁjela]:0,
(2.19

where ¥ is the spatial Levi-Cevitta tensor densitand
ija=&jwka—ﬁkwja+sabcwjbwkc is the Curva_ture of the 2i I
Riemannian spin connectian,, = — %sabcejbvielc. The ad- T=—[08 s+ £ 0p @ Aip]=0, (2.20
ditional constraints(2.7) must of course be added to the 04
Hamiltonian(2.9) with new Lagrangian parametefs, . o

The introduction of the complex Ashtekar variables@nd the Hamiltonian
[5,6,34

-y H=J d3x(NHo+NH +Q,7,), (2.21)
Aia= wiaifpia (2.1
endowed with the symplectic structu2.12), (2.13), is dy-

instead of the canonical momengg, is now convenient in namically equivalent to the Arnowitt-Deser-MisnGkDM)

S . . Hamiltonian(2.9). In fact, as long as\ #0, the constraints
order to simplify the constraints. In the framework of this . :
paper we shall use the variablgl, just as auxiliary quan- (2-185‘(2-20), E?n al pe expressed in terms of the single
tities. In Eq.(2.11) either “+” or “ —" may be chosen, but tensor density, , defined by
we will keep this option open by using both signs together.

; ; ; . _ 1 1

The_ two ch0|ces_ are cla§S|caIIy equivalent, but lead to in o) a=—~8”kfjka+ CAE,, (2.22
equivalent quantizations in the quantum theory. The Poisson a2 3

brackets in the new variables then take the form

namely,
Swith our definition ofe . in Eq. (2.8) the spatial Levi-Cevitta 7 2 !
. . =—g =0, 2.2

tensor density is naturally obtained % = \he 5 €',e/ % - Ho % a0 a (223
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2 ! V,G*,=0 (2.32
Hi=*—8i®a0) a— AiaJa=0, (2.24 _ . o
Y and alsoV ,G% ,=0, because the affine connection satisfies
] the metric postulate. Sincg, , similarly decomposes in a
~ 61 - ! curvature part satisfying a Bianchi identity
Ja=* -7 DiGy a=0, (2.25

Dyi(8"* Fiya) =0, (2.33
whereD; is the covariant derivative with respect to the con-

nection.A;, . For A=0 the relation of the constraitf, with and a cosmological term proportional # it is a three-

i i I
gAa is lost. A simple way to satisfy all the constraints leenS|onal analog oBj ,. The analogy extends even to

(2.23—(2.25 for A0 is to restrict the phase space by the ,g'A =0, which holds due to the Bianchi identity but re-
nine conditions quires in addition for the constraif2.20. However, it has to

be kept in mind that the spin connectioh, and the densi-

! tized inverse triad', in gA , are stillindependenvariables.
glA,a:o' (2.29 Equations(2.26) therefore are not a closed set of field equa-

) o tions on the spatial manifolds.
Equations(2.26) are more restrictive than the seven Egs.

(2.23—(2.25 which they imply, i.e., we can only hope to get
special solutions in this manner. Remarkably, EGs26), if
imposed as initial conditions, remain satisfied for all times Canonical quantization in the triad representation is
under the time evolution generated by the Hamiltonianachieved by imposing the commutation relations

(2.21). This follows from the Poisson brackets

Ill. QUANTIZATION

[8a(X),Pjn(Y) =17 8] 32p0%(X—Y) (0
[fd3xNi7~ii, d3ykja§£\,a] and representing;,(x) as
A _ﬁ 1) 3.0
= f B2NIN ot N NITL 00 (.27 Pia=T 5.0 .2
This implies for the4,, the representation
UdBXQaJa’f dsy)\jbgk'bl _ ks
Aia(x)_wia(x)—7 X (3.9
f d"20azapchjp0i ¢ (2.28 wherew;,(x), given by Eqs(2.14), (2.15), is a functional of

| (y) and a diagonal operator in this representation. We now
[ f d*xNT, f d3y)\jaajA a] have to cipoo:ie a speslal factor ordering in the constraint

operators7,, H;, and Hgy. It turns out that7, does not

suffer from an ordering ambiguity. We choose the factor

e N ordering inH, and; as given in Eqs(2.18 and(2.19 in
T2 Z\/ﬁ(eiaejb order to achieve closure of the algebra of the generators.

_ Explicitly, the generators are then given by E¢8.18—

_Zeibeja)EjKIDk)\lbalA,a7 (229 (220 or Egs.(2.23—(2.29 with the ordering of&;, A,

given there. The algebra of the infinitesimal generators is
which may be verified with some labor using E¢g22 and  obtained a%
(2.23—(2.25. They imply that on the subspagh ,=0 of
phase space

f d3X§iﬂi ) dsy@ahja}:ihf daz(gi‘?i@a)?aa (3-4)

{H.G\ 2} =0; (2:30
. . . [f d*xéH; dsYﬂjﬂj}:iﬁf d3z(£'0;
i.e., this subspace is conserved.

Equations(2.26) bear a superficial formal similarity to i
. . . ) — P9 ENVH.
Einstein’s field equations 79§ H;, (3.9
Gi ,=G",+Ad=0 (2.32
) ) ] ] ) “The algebra of the constraint operators has been discussed inten-
in four space-time dimensionsu(r=0,1,2,3) with the sijvely in the literature; see, e.45,17,39. The factor ordering and

4-dimensional Einstein tensdg*, satisfying the Bianchi the corresponding operator algebra considered here are in agree-
identity ment with Ashtekar’s results ifb].
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~ ~1 . ~ 2
[J dSX(Pajavf d3y¢b~7b :lhf d326abc@a¢bJC1 (3.6 \I’:exr{ly_ﬁ ¢} -, (3.19
3.~ 3o | where ¢ was defined in Eq(2.15. Under this transforma-
“ d X‘Paja’J d*yNH, =0, @7 tion, the operators4;, according to Eq(3.3) transform like
~ ~ ] _ ~ 2 vh
H d3x§'Hi,f d3yNH, =|hf d®z(£'9;N)Ho, exp{i%d) -Aia-exp{ 4 = 5,| , (3.16
' (3.9

and Eq.(3.14) becomes explicitly

U d3xN7-lo,Jd3yM7-{0_=thd3z(N(9iM—M(?iN) yzh 5 ) oA

~imn
€ ( * ’yﬁam%na 4 abC5‘é 5‘é

Xh(H+ AjaTa). (3.9

pear on the right, which means that the algebra closes, S, f‘i sebcond step, I'Wed r|1:ow _cor]s;der Ia representation of
least formally(i.e., in the absence of any regularization pro- * L€ al by a generalized Fourier integra
cedurg, without any quantum corrections.

. : : i . _ 2 .
Following Dirac[36], physical state®[€,] must satisfy Ve, ]= LDQ[Aia]eXF{i%f d3x’é'ad4ia} W[ Al

_ o (3.18
JW[8,]=0 Lorentz invariance, (3.10

(3.17
On the right-hand side of these equations all generators a%—,

where the complex integration manifoltlis chosen in such
5 o a way that partial integrations with respectAg, are permit-
H;W[€,]=0 diffeomorphism invariance, (3.11) ted without any boundary terms. Besides these restrictions,
may be chosen arbitrarily to guarantee the existence of the
o functional integral(3.18 (cf. discussions of the homoge-
HoW[E,]=0 time-redefinition invariance. (3.12  neous Bianchi IX mode[25,27). Different choices ofl’
within these restrictions, which cannot be deformed into each
Moreover, since the Lorentz constraif8.10 guarantees other continuously without crossing a singularity of the inte-
only invariance under local S8)-gauge transformations of grand, will, in general, correspond to different solutions. Un-
the trladéa, while the full symmetry group is given by(Q), der the transformation3.18 the fundamental operators
we further have to impose a discrete, global parity require-A;, ,&', transform like

ment
TR yh 5U 5\If’ 2 g
. ! _ e, — AV,
PUIE =W ~8,]=+W[E], (3.13 YA, ® At
(3.19
h denotes th it t ti functionals of
meetrr?; enotes the parity operator acting on functionals o and Eq.(3.17) becomes
As in the classical theory, the constraif#s10—(3.12 on EA S
physical states are all satisfied if the stronger conditions ~uk]_-]ka+ Y F=o. (3.20
3 A,
!
Gy JV[B,]=0 (3.149  Up to a normalization factolV, the unique solution of Eq.

_ (3.20 is the Chern-Simons statef. [17])
hold, whereg), , is the tensor density defined by E¢8.22,
(2.19 in terms of the operator8, and .4;, given by Egs.

(2.4), (2.17). Remarkably, the quantum operat@’ﬁ,a turn
out to commute among themselves. It can be seen from Eqgs.
(2.23—(2.29, which must now be read as operator equa-with the Chern-Simons functional
tions, that Eqs(3.10—(3.12 are implied by Eq(3.14. The
subspace of physical states satisfying Bj14) is the quan-
tum version of the invariant subspace of classical phase SCS[A'a]_J d*x ”k(A'a’g Acat 3 eapcdiaA ibAke)-
space defined by Eq§2.26). (3.22
To find the solutions of Eq€3.14) it is useful to proceed _
in two steps. First, it is convenient to perform a similarity In the®', representation the corresponding wave functional
transformation(cf. [17]) is given by

3
CiAla] Nex;{_ A SCiAla]} (3-21)
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. 1 ) IV. ASYMPTOTIC EXPANSIONS OF THE CHERN-
\Ifcs[é'a]:/\/f Dg[Aia]exr{ t%( J d*xz'* e, Djexa SIMONS STATE
r

Since the functional integral occurring in tBg represen-
i _ tation of the Chern-Simons state.23 is too complicated to
+ 1 Sed Aial | |- (3.23 . , :
A be performed analytically, we will restrict ourselves to an
asymptotic evaluation of the wave function@.23 in sev-
_ . _eral interesting parameter regimes. The possible different
We shall nlot attempt a mathemqtlcal existence proof. of thisisymptotic regimes can be displayed by rewriting the Chern-
functional integral and we treat it on a formal level in the Simons statg3.23 in dimensionless quantities. Therefore,

following. The state(3.23 is obviously diffeomorphism in- e introduce the three fundamental length scales of the
variant, and it is also gauge invariant under sufficiently smalkheory, namely, the Planck scale

gauge transformation§.e., those which are continuously

connected to the identical transformatisriThe contribution api=\/y#, (4.0

from the similarity transformation(3.16 and the Fourier

term from Eq.(3.18 fit perfectly together to give the first the cosmological scale parameter,

gauge-invariant term in the exponent of £§.23, while the

second term proportional tScs is a well-known gauge- = [ a3y

invariant functional. The wave functiondt -J&',] given in Acos™= X

Eq. (3.23 further turns out to be parity invariant, as it was

required by the conditio3.13. and a third length scale, which is associated with the cosmo-
However, for a trivial choice of the prefactdy” in Eq.  logical constant,

(3.23 the stateW4J€',] fails to be invariant undetarge

gauge-transformations of the triad, since the Chern-Simons \/§

functional in Eq.(3.23 transforms non-trivially under such ani= A

transformationgcf. [5,37]). At this point it is helpful to no-

tice that the prefactoV in Eq. (3.23, underlying the only These three length scales give rise to the definition of two

U3
, 4.2

4.3

restriction dimensionless parameters, for example,
aCOS 2 A 2 a'COS 2 agos 4 4
o ! 524 K=l ) T3l Al Toa 49
se, '

Moreover, we may rescale the triad fields with the help of the
cosmological scale paramet&y, to arrive at dimensionless
is just required to be constant under infinitesimal variationdield variables denoted by a prinfie:
of €., while it may still depend on topological invariants of ) 1 . o 3
the triad. In Sec. IV B1 we will make use of this remarkable €a=80€ia, ©a=a,f. Vh'=aih. 45
freedom, choosing the normalization factgrin such a way _ _
that the stateV @ ,] becomes invariant even under large Making use of Egs.(4.1)—(4.5 the Chern-Simons state
gauge-transformations of the triad with a non-trivial winding (3.23 reduces to the form

number.
Unfortunately, the integration manifold in Eq. (3.23 Vg8 1= jpg _ + uF 4.6
cannot be given explicitly, but we will argue that several cd®al=N r [AiaJexi = pFl, 49

topologically inequivalent choices fdt do exist, which give

rise to linearly independent quantum staflesd€',]. These  where the exponerft is defined by
different states in th@', representation all arise from tlo@e
Chern-Simons state in thé;, representation, a phenomenon
which is well known from discussions of the homogeneous
Bianchi IX model in earlier paperg25,27). Together these
states span the subspace of physical states corresponding to
the invariant subspace of phase space defined classically by
@'A .=0. Because of the Gaussian saddle-point form of &g

’ with respect to the parameterit is natural to study the limit
p—oo first. This limit corresponds to the regimee,,s>ap
and also to the formal limit — 0 [cf. Eq. (4.4)], so we shall

) 1
Fi= f d*xz¥e/, D;ep,+ ~ Sed Aial- (4.7

A. The semiclassical limitp— o

SHere and in the following, we shall refer to the @Dgauge
invariance just as “gauge invariance” for short. The diffeomor-
phism and the time-redefinition invariance, which are of course
inherent gauge symmetries of the theory as well, will allways be ®By definition, the Ashtekar variabled;, carry no dimension and
mentioned separately. need not be rescaled.
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refer to it as thesemiclassicalimit for short. In the limity  the choice of the integration contolirin Eq. (4.6) whether
—oo the asymptotic form of the integrd#.6) becomes in this particular saddle point contributes to the functional inte-

leading order ofu gral or not. Under gauge or coordinate transformations of the
triad @', the fixed solution4;, of Eq. (4.10 transforms like
e ]Mﬂmﬁ/‘ w6°F ‘1’2 = uF] a spin connection, since Ed4.10 is a coordinate- and
e « Ne—————— cexd = , . i ; i i
cd€a 5 Aia(X) 8 Aip(Y) 2 gauge-covariant equation. Consequently, the semiclassical

(4.9 expression (4.8) remains unchanged undesufficiently
smal) gauge transformations, as indeed must be the case,
where an infinite prefactor in E¢4.8) has been omitted. The since W¢s, also for u—«, was constructed as as a
asymptotic expressio4.8) has to be evaluated at a saddle coordinate- and gauge-invariant state. Therefore, we may
point of the exponenFE with respect toA;,, which is ob-  solve Eq.(4.10 in any desired gauge f& ,, fixing auto-

tained by solving the saddle-point equations matically a gauge for the solutiong, .
Any possiblesaddle-point contributiori4.8) for a given
SF 1 ! saddle point4;, can be chosen to become tth@minantcon-
5A =28+ ;’é”"}'jkazo. (4.9  tribution to the functional integral in Eq4.6) in the limit
1a

u—o0 by choosing the complex integration manifdldsuit-
ably. So the number of linearly independent semiclassical
wave functionals¥ -J®',] equals the number of inequiva-
lent saddle points4;, of Eq.(4.10. This is also the number
~=ijk . __Ay ' ' ' Bl -
8K 9 Aat+ EsaboAjb-Akc =— Ee as (4.10 of linearly |ndependgmxacn/yave fung:tmnalslfcs{e al, be
cause the complex integration manifdld constructed as a
. contour of steepest descent to a given saddle péint sat-
and coincide with the classical equatiodg ,=0 as they isfies the requirements fdt in Eq. (3.18 and may therefore
should, since the latter constitute the classical limit of thehe used to define an exact wave functiot@b). We con-
gravitational Chern-Simons state. The saddle-point equationgude that theone Chern-Simons staté.21) in the complex
(4.10 must be read as determining implicitly the complex Ashtekar representation generates a discrete, finite set of lin-
spin connectiond;, for any given real tria®',, for which  early independent gravitational states in the real triad repre-
we wish to evaluatal J@',]. Since®', carries information sentation, which differ by the topology of the integration
about the coordinate system and the loca(@®@auge de- manifolds I' connecting the two representations via Eqg.
grees of freedom, the solutiond, of Eq. (4.10 for agiven  (3.18. The number of the different Chern-Simons states in
triad €', have no further gauge freedom. This is why we the@', representation depends on the topology of the spatial
expect a discrete, finite set of solutiods, of Eq.(4.10 for ~ manifold M5 and should at least k®vo.
a fixed triadg', . A detailed mathematical discussion of the  We will now try to construct explicit solutionsl;, of the
solvability properties of the semiclassical saddle-point equanonlinear, partial differential equation@.10. In general,
tion (4.10 will be given in Appendix Al. analytical solutions of this complicated set of equations are
For a fixed triadé', the number of the different gauge not available, so we will restrict ourselves to asymptotic so-
fields A;, solving Eq.(4.10 will depend on the topology of lutions in the two different limitsk— oo and k—0, which
the spatial manifold\15: For example, ifM3 has the topol-  will be treated in Secs. IV B and IV C, respectively.
ogy of the 3-spheres®, five distinct solutionsA;, of the
corresponding saddle-point equations are found for spatially B. The limit of large scale parameterp— o, k— o
homogeneou8-manifolds, which are described by the Bian-
chi IX model (cf. [25,27). It follows from the arguments o - . . i
given in Appendix Al that this number of saddle points is Eq. (4.4, the limit x—co within the semiclassical limik

preserved under sufficiently small inhomogeneous perturba-" > €an be .realized .by taking the scale paramagg;tof the
tions of the triade’,. We therefore findive physically in-  SPatial manifold sufficiently largeac,eap@, . In this spe-

equivalent solutionsd,, in this case. If we consider mani- Cia! asymptotic regime, solutions of E(t.10 can be found

folds M with the topology of the 3-toru$?, the subset of by inserting the ansatz
homogeneous manifolds is described by the Bianchi | model, K>
restricting the number of independent solutiodg of Eq. Aia ~ el +0(x) (4.1
(4.10 to two, as in this homogeneous model. Considering . .
other topologies ofM5, the number of inequivalent saddle into the saddle-point equations
points will differ further. However, we will see in Sec. IVB 1
that, forany given topology of the spatial 3-manifold, B 9 Aat 5 eancAipAie| = — K84, (412
the number of distinct saddle pointg, of Eq. (4.10 should 2
at leastbe two.

Given a topology ofM5; and a saddle-point solutiod;,
of Eq. (4.10), the evaluation of Eq(4.8) at this saddle point c9=+ie/,, (4.13
gives a possible semiclassical contribution to the Chern-
Simons statel' -d€',] in the limit x—<o. It will depend on  or, equivalently,

Equations(4.9) more explicitly take the form

According to our definition of the parametessand « in

Then we find the two solutions
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K% first term in EqQ.(4.19 derives from the contributions of

Aig ~ =i \/geiﬁ O(°). (4149 orderx2 andx~ Y2 to the asymptotic series of;, given in
Eqg. (4.16). It defines a real action

We should stress that the two signs occurring in E¢<.3),

(4.14 areindependenbf the double sign in Eq2.1)), i.e., 1 \F 3 4A
for both possible definitioné2.11) of the Ashtekar variables S= i; Kf d*vh =3 RJ (4.20

we find two independent, complex conjugate solutighsof

the saddle-point equatiorig.12) in the limit k—, corre-  giving rise to a well-defined, semiclassical time evolution.
sponding to two semiclassical wave functions via Eg9). The term of orderx ™! in the expansior(4.16, which was

To avoid confusion, we will discuss only one of these solu-not given explicitly there, because it is rather lengthy, deter-
tions in the following, which is obtained by choosing the mines the asymptotic form of the second term in Eg19),
upper sign in Eqs(4.13, (4.14). The corresponding results which is real valued and therefore governs the asymptotic

for the second solution may then be obtained at any time byehavior of |qu5[2_ Surprisingly, this contribution again

a complex conjugation. _ turns out to be a Chern-Simons functional, but with, re-
The result(4.14 can be improved by calculating the co- placed by the real Riemannian spin connectigp. As one
efficientsc(l) of the asymptotic series can check quite easily, this function8td w;,] has the in-

teresting property that it is also invariant undecal scale
transformations of the triad,;—~exd {(X)]es -

Inserting the result$4.17 and (4.19 into Eq. (4.9), we
find for the semiclassical Chern-Simons state ing&hgrep-
All coefficients in Eqg.(4.15 can be calculated analytically, resentation
since, in any order ok, the non-Abe)Iian term in Eq4.12
contains the unknown coefficiert.’, while the nonlocal Ko _ 1( /3 4A
term in Eq.(4.12 is known from rt'?1r(1ae previous orders. Con- Wes o« N-hT ex;{iy—ﬁ(| \/;f ng\/ﬁ(?_ R)
sequently, the recursion equations determimfﬁ are just
algebraic equations at each space point, which, moreover, are 3
linear and analytically solvable fon>0. The first three +Kscs[wia])
terms of the serie4.15 turn out to be

K— 0 *
Aig ~ ZO w2, (4.19
=

sm—> 0

, (4.29

where the complex conjugate solutidihgs is equally pos-
KH“’,\/E \/7 R j . sible, if we choose the second saddle-point solution in Egs.
Aia ~ TN T Ciat 0ig +i K(Zem_eﬂR ") +O(k ). (4.13, (4.14). It is remarkable that this result is universal in
the sense that it does not depend on the topology of the
spatial 3-manifoldM.

N e’
o<\ [ Ok~ 1)
() (4.16

To calculate the corresponding saddle-point contribution to 1. Large gauge transformations

the semiclassical Chern-Simons state via @98 we need An unsatisfactory feature of the asymptotic stete2?) is
the Gaussian prefactor and the exponEndefined in Eq. the fact that its exponent isot invariant under large gauge
(4.7), evaluated at the saddle point;,. The asymptotic transformations with a nonvanishing winding number: As is

form of the Gaussian prefactor becomes in the liriib oo well known [5,37], in general the Chern-Simons functional
Scd wia] transforms inhomogeneously under local gauge
wo’F T2 ke transformations of the triad,
— h=3%/4, (4.17
0Aa(X) 0 A;n(Y)

€ia— Qap€ip= Scd wial—>Scd wia]+ 5 1(Q), (4.22
ith the abbreviati
W © abbreviation with (Q,4p)=Qe0(3) being an arbitrary rotation matrix.
The quantityl (2) occurring in Eq.(4.22 is defined by
h:i= [] hx). (4.18
XEM3 L.
) I(Q)::J d3x§”"Tr[QTaiﬂQTajﬂQTakQ]
The exponent in Eq(4.8) for k—~ can be expanded as
follows: (4.23

koo 1 [ 4A 3 and is known as the Cartan-Maurer invarigdi]. Its value
F ~ Vi [I \/%f d3x\/ﬁ(T— R) + KSCS(wia)

is restricted to be of the form
+O(k %), (4.19 1(Q)=1y-w(Q), (4.24

Here the contributiony from the similarity transformation where the winding numbewn(€) is an integer, and, is a
(3.19 has disappeared, because it precisely cancels with theonstant depending only on the topology of the 3-manifold
contributionw;, in the asymptotic serie@.16) of 4;,. The  Ms.
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A consequence of Eq44.22) is that the asymptotic Chern- K0 i
Simons staté4.21) will not be invariant under general gauge ~ W.g o« AN-h~ ¥4 ex;{ + u| 4iJk— —| Trm?
transformations of the triad, at least as long as we make a oo Vi
trivial choice for the normalization factol in Eq. (4.21). 1 1
However, as we pointed out in Sec. lll, the factdidoes not —2TrM™M + = Tr2 M} — —[Tr M2MmT
need to becompletelyindependent of the triad—it is still 2 K

allowed to depend on topological invariants, such as the

Cartan-Maurer invariant. This is why we are free to choose _ }TrM(TerJrZTrMTM)JFZ detM

the normalization facta\ according to 6 '
1) (4.30
Neexpg F——|, (4.25 . . .
2vh A For homogeneous manifolds of Bianchi-type IX, the deter-

minant of the matrixM is given by deM=8), whereV is
whereQ) is a special gauge transformation rotating the triagthe dimensionless, invariant volume of the unit 3-sphere, so
eia INto a gauge-fixedriad g;, of the 3-metrich;; =€ e, . the r_natrlx_M may be parameterized by a diagonal, traceless
Then the requiremer(8.24 remains to be satisfied, and, in matrix 8 via
addition, the Chern-Simons stafé.21) becomes invariant
under arbitrary gauge transformations of the trggg, since
the inhomogeneous term in E@L.22 is canceled precisely
by a suitable contribution from the prefactaf according to
Eq. (4.25. With our special choicé4.25 of the normaliza- Tre?B. Tre*P=Tre®A+ Tre?P. Tre 2A-3, (4.32
tion factor V" we circumvent the definition of the so-called
“® angle,” which can be introduced alternatively to solve and introducing the rescaled paramei€r=)"“"k/4, we
the problem associated with large gauge transformationind for Bianchi-type IX homogeneous 3-manifolds:
[5,37]. As a special, gauge-fixed triaf, in the definition of —
Q may serve the “Einstein triad” that can be constructed by Ve o« N-h™34 exr{ tﬂ(m NPEEINPY
solving the eigenvalue problem of the three-dimensional Ein- - YhA
stein tensoG'; :

M=23/Ve?h. (4.31)

Using the identity

2/3

Tre 28

(4.33

Thus, up to a quantum correction in the Gaussian prefactor,
we reproduce exactly the result obtained earlier within the

1
.. . . _ _Tre4ﬂ
G'j9'a=N30'z, 9'a8ip=Gap- (4.26 2

1
—3 [Tre®—Tre?f. Tre £+ 7]

2. Restriction to Bianchi-type homogeneous 3-manifolds

It is very instructive to specialize the asymptotic state
(4.2)) to the case of spatially homogeneous 3-manifolds. Fo

homogeneous manifolds of one of the nine Bianchi types, thd@mework of the homogeneous Bianchi [X model [25]
3-metric can be expressed in termsofariant triad 1-forms ~ [¢©- EQ- (5.18 therd. To compare the results explicitly, we
e,= 1= 1,,dX as(cf. [38)) have to identifyx’ with the parametek in [25], and to set

y=16m, V=472,
(4.27) In the case of flat 3-metrics, which are of Bianchi type |,
the structure matriM turns out to vanish, and Ed4.30

with a spatially constantstructure matrixm=(m,,). We  reduces to
should restrict ourselves to compactified, homogeneous koo
3-manifolds, such that the volume Pes o« N- h—3/4. exr{i4i,u\/;]=N- h—34

_ _ 1
h=8t, deu=—35Myepcatcdy,

m—

V:% 8abcf e (4.28 4i A
cexp +—- —f d3x\h
vh NV 3

is finite. If we introduce the scale-invariant structure matrix . .
M as a result which also follows directly from E@4.21) by set-

ting R=0, Scd wi,]=0.

, (4.39

M=ag m, (4.29
3. Semiclassical 4-geometries
the asymptotic Chern-Simons stéte2]) takes the following Let us now ask for the semiclassical trajectories and the
value for Bianchi-type homogeneous 3-manifolds: corresponding semiclassical 4-geometries, which are de-

scribed by the statét.2]) in the limit w—o0, k—, i.e., in

the limit of large scale parameteeg,ap,a, . Choosing

"Here a bar over an index indicates tmat summation with re- the Lagrangian multipliers trivially abl=1, N'=0, Q,=0
spect to this index should be performed. in Eq. (2.21), we find
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~i ~i i Y i T 11
e,=—{H®. )= ilsljk'DJ—eka: — Egukgabcpjbekx, 3 JE‘ i
1T
(4.33 - i t — oo
I!
where the dot denotes a derivative with respect to the clas-
sical ADM time variablet introduced in Sec. Il. The semi-
classical momentum;, is given in terms of the actiof.20 (M, g)

of the wave functior(4.21) by

- 4.3
pia—g—a, (4.36

or can equivalently be extracted from the asymptotic saddle
point A;, according to Eq.4.16 in connection with Eq.
(2.1D:

%,
= 2 [A 3[R | Zt, Ml
Pia = *2l \Vgeat Az eaeaRi | XL

(4.3

Ui (M3, h)(tl))

FIG. 1. Geometrical illustration of the generalized de Sitter—4-
n geometry (4.39. The spatial 3-manifolds X15,h)(t) are repre-
sented by one-dimensional curves; possible inhomogeneities are in-
dicated by small deformations of these curves. The resulting space-
ace " 3 time 4-ma_nifo|d _Q\/l4,g) accor_ding to _Eq(4.39) _then corresponds
T8~ 2\/:’éi I \/:~ej G (4.39 to a two-dimensional, Lorentzian manifold, which has been embed-
a 372 AT ' ded into a flat, three-dimensional Minkowski space. Portions of the
marginal spatial 3-manifolds, which are of thamelength scale,

which describes a de Sitter—like time evolution in IeadinghaVe been magnified to illustrate the increase in homogeneity in the
orderacys course of evolution.

Thus, for large scale parameterg, the classical evolutio
of the triad®', is determined by the equation

B (x t)aw~ g (x)-ex;{xz\ﬁ.t} (4.39 A Kioi Clgn (4.40
a 1 a,”° 3 1 - 1a =0 1a " *

with corrections described by the second term of @38  Then we find in the lowest order af
containing the three-dimensional Einstein tenSoy.

Figure 1 shows an embedding of the asymptotic ik ) 1 (0)~(0)
4-geometry(4.39 into a flat Minkowski space, where the e% 9,Cia + 5 €anCip Cicc | =0, (4.41
time direction has been chosen according to the lower sign in
Eq. (4.39. As is well known for inflationary models such as (0) . o
the one discussed within this paper, the spatial, Riemanni I'er'r'ncia has to be dlat gauge field, which is of the general
3-manifolds (M3,h)(t) tend to homogenize in the course of

time t. ,
Cl(fa)): - % Sabc‘(ldb&iﬂdc with Qe 0(3) (442)

C. The semiclassical vacuum limiu—, x—0 The matrix Q(x) is a free integration field, as long as we
Apart from the limit k—o, there exists another restrict ourselves to the leading ordéx «°) of the saddle-
asymptotic regime, where an analytical treatment of thePoint equations4.12). However, in the next-to-leading order
semiclassical saddle-point equatiorté.12 is tractable, O(x"), we find the equations
namely, the limitx— 0. By virtue of the relationship&l.4), a
discussion of the Chern-Simons std#6) in the limit u -~ - ! ,
—, xk—0 corresponds to an investigation of the & *D|”CLY=EF(9,Cig +2ap iy Cie) =284,
asymptotic regime, >a..s>ap,. This limit may be realized (4.43
by considering the special case of a vanishing cosmological
constantA —0 within the semiclassical limit, which will be Which imply additional restrictions for the coefficier@®?’,
called the semiclassical vacuum limit for short. and thus for the matriX2 in Eq. (4.42. Theseintegrability
To find solutions of Eqs(4.12) in the limit k—0 we  conditionsfor the equationg4.43 can be obtained by oper-
proceed analogously to Sec. IVB, and try a power seriegting on Eq.(4.43 with D from the left: Then the left-
ansatz of the form hand side becomes proportional to the curvaturecfﬁ),
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which vanishes by virtue of Eq4.41), and a multiplication lim Wee=tW, .

of the resulting equations with2., yields k—0
. . o]
Di(O)él&E&i’éla"_8abCCi(t(J))’éIC:0' (4.44 p F{ 1 (IoW[dia] d3xzikd.g.d
o ex i7; _2T+f Xe iaé’j ka) ,
If we insert the general solutio®.42 into Eq. (4.44), we Y
arrive at the three integrability conditions (4.50

! where the Gaussian prefactor, which contains a complicated,
3i(Qar€'p) =0, (4.45 nonlocal functional determinant, has been hidden in the pro-
portionality sign.

From the result4.50 we can see the gauge invariance of
the semiclassical vacuum stalg,., since this state does not
~ o depend explicitly on the tria@',, but only on the 3-metric
d'a:=0468', (448 h;;=eej,, to which we have chosenfixeddivergence-free
triad d',. It is remarkable that for the one unique choice
(4.25 of the prefactor gauge invariance, even under large
gauge-transformations, can be achieved in both of the two
quite different limitsk— o and k—0.

. ' ; s ) Theexistencef divergence-free triads to a given 3-metric
rametrize the saddle poinid; in the limit k—0 via Egs. h;; is discussed in Appendix A2. There, we also argue that in
(4.46 and(4.42. . general there will even exist different, topologically in-

For a given divergence-free triatl, , which characterizes equivalent divergence-free triads, giving rise to linearly in-
uniquely one saddle-point solutiod, in the limit k—0, we  dependent semiclassical vacuum states via(E&Q).
now wish to calculate the corresponding saddle-point contri-

bution (4.8) to the Chern-Simons statd.6) in the limit w 1. Restriction to Bianchi-type A homogeneous 3-manifolds
—o, k—0. We first expand the exponeRtdefined in Eq.
(4.7) for k—0, and find, in particular, that the Chern-Simons
functional Scd A;,] is given by

which fix the integration field2(x) in Eq. (4.42. Moreover,
the special triad fields

with Q chosen according to E@4.45), turn out to have the
geometrically interesting property of beimtjvergence free
Therefore, we may use the different possible divergence-fre

triadsd', of a given Riemannian manifold\s,h) to pa-

We now wish to evaluate the semiclassical vacuum state
(4.50 for the special case of Bianchi-type homogeneous
3-manifolds. For such manifolds, it follows directly from Eg.

k=0 5 (4.27) that the divergence of thiavarianttriad 1 ;= ' ,0; can
Scd Aial ~ 5 1(2)+O(k%). (447 pe expressed in terms of the structure mainixas
Here Q is the special rotation matrix defined in Ed.45), .1
connecting the given divergence-free tridlg with an arbi- V. 'a:ﬁ 9i1'a= e apcMpc - (4.51)

trary triad@',, for which we want to evaluatd -J@',]. In
Eq. (4.47 a contribution of orde®(«') is missing, since
this term becomes proportional to the curvature of filaé
gauge fieldC?). Using Eq.(4.47), the exponenf of the
semiclassical Chern-Simons state takes the following form
the limit k—0:

Consequently, the invariant triag, of Bianchi-type homo-
geneous 3-manifolds is divergence free, if, and only if the
istructure matrixm is symmetrici.e., if the 3-manifold is of
'Bianchi type A. If we restrict ourselves to this special class
of manifolds in the following, at leasbne divergence-free

«—0 1(Q) iy triad d”’=1, is known, and we can calculate the corre-
~ _67+J d X&' di9;di,+ O(k). (448 sponding value of the semiclassical vacuum statg0):
The Cartan-Maurer invarian{€) in Eq. (4.48 can be con- 0" Y
. : oA . Wiae < exgF—Trm|. (4.52
tracted with the Cartan-Maurer invarial{tQ2) in the defini- vac vh
tion (4.29 of the normalization factal to give

Here we made use of the fact that for 3-manifolds of Bianchi
Q)= 1()=1(Q- Q") =1y-W[dj,]. (4.49 type A, the invariant triadi,j1 and the Einstein triad, differ
~ o i only by aspatially constantotationQ, implying a vanishing
Herew[ d;,] denotes the winding number of the dlvergence-windmg numbeni ;,]=0 in Eq.(4.50. A further special-

free triadd;, with respect to the Einstein triagl, defined in  ization of the result4.52 to Bianchi-type IX homogeneous
Eqg. (4.26, which is a functional ofd;, only: For a given |y anifolds gives

divergence-free triadd;; we know the 3-metric h;

=d;adj4, and therefore the Einstein triag, . P 2V, .,

Inserting the result$4.49, (4.48 into (4.8), we find the Wiae ex4+%(a1+a2+a3) , (4.53
following saddle-point contribution to the Chern-Simons
state(4.6) in the limit u— o, k—0: where we have introduced the three scale paramatgvia
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a; a; ag
aaz’ azd; a;a;

2.
= V=Va,a,az, R']:?(S}. (4.57

45

(459 Consequently, the spatial manifold has to be a 3-sphere with
with the same, dimensionless volurweof the unit 3-sphere radius, and the four-dimensional line element becomes
that already occurred in Sec. IV B2. The saddle-point value
(4.53 corresponds to the “wormhole state” of the Bianchi ds?’=d 72+ r2dQ2, (4.58
type-IX model[25,27. Within the framework of the homo-
geneous Bianchi type-IX model, four further semiclassicaWwith d3 being the line element of the unit 3-sphere. As for
vacuum states are known, which, in the inhomogeneous aphe stationary solutions mentioned above, the line element
proach of the present paper, correspond to nontrivia(4.58 describes a locally flat, positive definite 4-manifold.
divergence-free triads of Bianchi type-IX manifolds via Eq. Because of the nonlinearity of the evolution equations
(4.50. These topologically nontrivial divergence-free triads (4.59, the general behavior of the solution is quite compli-
of Bianchi type-IX metrics and the resulting values of thecated and cannot be discussed here. However, a complete
semiclassical vacuum statd.50 will be discussed sepa- discussion of the possible semiclassical trajectories can be
rately in Appendix B. given within the narrow class of Bianchi-type-1X homoge-

As a further restriction of the stai@.52 one may con- neous 3-manifolds; cf25]. There it turns out that the semi-

sider again the case of flat Bianchi-type-l manifolds, whereclassical evolution governed by the invariant, divergence-
the structure matrixm, and therefore the exponent of Eq. free triadd{”=1,, which corresponds to the wormhole state
(4.52, vanishes. Thus, for flat 3-manifolds the behavior of(4.53 via Eq. (4.50, gives rise to asymptoticallyflat
the semiclassical vacuum state is governed by the Gaussiangeometries in the limit of large scale parametagss.

m=:2 diag{

prefactor, which we do not know explicitly. Moreover, a second divergence-free triad of these Bianchi-
) _ _ type-IX homogeneous 3-manifolds, which is given in Ap-
2. Semiclassical 4-geometries pendix B, is known to evolve in such a way thaimpact,

The semiclassical trajectories and the associatefegular4-manifolds are approached in the limit of vanishing
4-geometries, which are generated by the st4t80 in the  scale parameted;,s.”
limit k—0, u—o, can be calculated by solving the evolu- One may now ask if such a universal behavior of the
tion equation$4.35) with the flat, semiclassical spin connec- semiclassical trajectories, which can be found within the Bi-
tion A, derived in Sec. IV C. However, in contrast to the anchi IX model, carries over to the inhomogeneous case.
limit k— o discussed in Sec. IV B3, we here arriveraggi- Unfortunately, this does not seem to be the case: In Appen-
nary evolution equations, since the semiclassical action oflix C we explicitly solve the evolution equatiof$.55 for a
the wave functionalV, . according to Eq(4.50 is purely pa_rtlcular (_:Iass of initial 3-manlfqlds, and find th_at these so-
imaginary. Fo||owing Hawk|nd39]’ a geometrica| interpre_ lutions SatISfy neither the condition of asympt0t|ca| flatness
tation may still be given in terms of an imaginary time vari- in the limit ac,s—, nor the “no-boundary” proposal sug-
able 7:=it, converting the Lorentzian signature of the four- gested by Hartle and Hawkin@9—-41. Thus we conclude
dimensional space-time into a positive, Euclidian signaturethat, in the inhomogeneous case, the semiclassical vacuum
Then the semiclassical evolution equations can convenient/§tate given in Eq(4.50 will in generalnot be subject to any
be expressed in terms of the divergence-free tigd which ~ SPecific_boundary condition, such as the “no-boundary”
characterizes the flat Ashtekar spin connectiéy in the ~ Proposal or the condition of asymptotical flatness.
limit k—O0:
V. NON-NORMALIZABILITY OF THE CHERN-SIMONS
diaia: LF Yy o didia: fon. (459 STATE IN A PHYSICAL INNER PRODUCT

T 4 We now want to argue that the gravitational Chern-
Simons statél' {€',] according to Eq(3.23 doesnot con-
stitute a normalizable physical state on the Hilbert space of
quantum gravity. Therefore, we will derive a physical inner
product on the configuration space of real triads, which we
) . . want to be gauge fixed with respect to the time reparametri-
. Stationary §o|ut|ons of Eq$4.55) areé given bywia=0, zation invar?ancge of general relal?ivity. In this partiCllJolar inner
L.e., flat 3-manifolds (M3,h). \/iV|th our trivial choice of the 4,0t we then will try to calculate the corresponding norm
Lagrangian mg!t|pllerﬂfl, N =_0, the_se correspo.nd to lo- _of the Chern-Simons stad 4@, ].
cally flat, positive definite semiclassical space-time mani- To derive a physical inner product within the framework

folds (M,,g). Further solutions of Eqi4.59 can be con- ¢ the Faddeev-Popov calcul{#2,43, we first have to find
structed with help of the scaling ansatz

Herew;, in the second equation is the Riemannian spin con
nection of the divergence-free triad,. Obviously, the
gauge condition;d',=0 remains preserved in the course of
evolution, as must be the case.

dia(X, 7)==+ 7-d"{5(x), (4.56
8The semiclassical vacuum state, corresponding to this second
which impliesd’;;(X) = w5 (X), and therefore a simple form divergence-free triad via E¢4.50), is the “no-boundary state” of
for the Ricci tensor of the spatial 3-manifold: the Bianchi IX model.
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a kinematical inner product, denoted by-) in the follow-  Furthermore, led, be an arbitrary, positive scale parameter.
ing, with respect to which the quantum constraint operator’hen the gauge condition

Ho, H;, andZ, are formally Hermitian. Since the complex ,

Hamiltonian constraint operatdk, defined in Eq.(2.18 Y= \/W—aiﬁ(x)=0 (5.5
cannot be Hermitian with respect amyinner product on the

configuration space, we repla#g by its real versiof¢4,®¥  is a diffeomorphism- and SG)-gauge invariant equation
given in Eq.(2.17), with the factor ordering suggested there. fixing the volume form of the 3-metric. In particular, it fol-
With the help of the commutator8.4)—(3.9) one can check lows from Eq.(5.5) that the length scale, and the cosmo-

; ; oy 7 T oot logical scalea.s introduced in Eq.(4.2) must be equal. In
quite easily that the algebra &f;°" , 7¢; and 7, still closes cos ; . . .
without any quantum corrections. However, the explicitthe gauges.5), the physical norm associated with the inner

commutators turn out to be much more complicated than thBrOdUCt(S'z) _obwously depends on the s_cale para_mgt)@r
. ~ o~ o~ ; and the choice ofi(x), but we can consider the lima,
corresponding commutators @iy, H;, J, given in Egs.

(3.4—(3.9), and will not be given here. -
Since the quantum stat¥ s given in Eq.(3.23 is also |W2:= lim <<‘1’||‘1’>>ph . 5.6
annihilated by the operatorHy®™, the substitution a,— g

Ho—H5"™ has no negative consequences for the theory, but

the positive effect is that we can now define a kinematicalVhich. in the case of the Chern-Simons stite: W cs, will

. duct. with respect to which the o erat@féDM turn out to be independent df(x). For an explicit calcula-
nner proauct, ”p ) P '’ tion of Eq. (5.6), we need the Faddeev-Popov commutator
‘H;, and J, are Hermitian. This product turns out to be occurring in Eq.(5.3), which turns out to be

<‘P|¢>=f Dea]V*[en]- Pleal, (5.9 %[ﬂQDM(x),}(y)]=%é\g(x—y)j(x), (5.7

where the functional integral has to be performed over allyith
real triadse;,(x). While 75" and 7, are formally Hermit-

ian in the produci5.1), H; is Hermitian only if we take a
regularization of the theory, where terms containing the sin-
gular object ¢,8)(0) vanish® If we can achieve this, we
have found a kinematical inner product on the configurationThe Faddeev-Popov functional determindptaccording to
space of all real triad®;,(x), and can continue with the Eg. (5.3 follows as

Faddeev-Popov calculus by choosing a gauge condition

~ if 1) o
J(X):=? eia(x) Se (X)+ Se: (X) eia(x) . (58)

X[ ea]1=0 fixing the time gauge. The corresponding physical B Y~
inner product is then obtained as ‘JH_XL[AS 27, 5.9
<(1P||<I>>>phy5=<\1f|5[}]-|JH||CI>), (5.2  which, acting on the wave functional .5, measures the
. _ . space product of the currep¢x) of ¥sin the h(x) direc-
with the Faddeev-Popov functional determinant tion of superspace. Since we are dealing with the liayjt

=a.,s—, the exact quantum statég given in Eq.(3.23
i~ - may be substituted by the asymptotic st@e21) for explicit
L _ r3/ADM
In= de(ﬁ [Ho™™" (). X)) (53 calculations. Then the current df o5 in the h(x) direction
turns out to have the same sign at each space point for large

A rather natural way to fix the time gauge is to considerScale parameters, =acs,"* o we donot need to take the
3-geometries with a given volume forrfh(x), for which ~ modulus of the Faddeev-Popov determinant in &q2), as
there remain only two local degrees of freedom. Therefordn® general calculus i2] would prescribe. More explicitly,
we assume(x) to be a fixed, positive scalar density of We find the result
weight +1 on the spatial manifold\53, normalized such

a,—®

that'° X
a In-Vedy=o = h"Wedyoo, (5.10
!
f d3xw(x)=1. (5.4  whereh was defined in Eq4.18), so the physical norr(b.6)

becomes in the limig, — o°:

9Some authors argue that this should be possible; cf. Matschull

[33]. This property of¥ s in the limit a,,<—% reminds one of the
OFor example, the quantify may be chosen as the rescaled vol- Vilenkin proposal for the wave function of the Universe discussed
ume element of a maximally symmetric 3-metric 8r5. in [44,45.
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resentations for the constraint observablés 7;, and .7,

in terms of a single tensor densﬁgkya defined in Eq(2.22),
which is closely related to the curvaturg, of the Ashtekar
spin connection4,, .

Then, in Sec. Ill, we performed a canonical quantization
of the theory in the triad representation. In the particular

factor ordering for the quantum constraint operaﬂabs ﬂi ,

and .7, suggested by Eq$2.23—(2.25, we found that the
6 constraint algebra closes formally without any quantum cor-
:905{,3,(]}, (5.12  rections.
vhA On the quantum-mechanical level, the transformation
from the Ashtekar to the triad representation turned out to be
given by a generalized Fourier transformatic18 and a
Sed B l=Scd wial— L 1(D) (5.13 subsequent similarity transformatid8.15. Here it was es-
sential to allow for an arbitrargomplexintegration manifold
is a locally scale-invariant functional describing the exponent” in the Fourier integra(3.18), restricted only by the condi-
of |Wd? according to Eqs(4.21) and (4.25. The weight tion that partial integrations should be permitted without get-
function w[ 8,] occurring in Eqg.(5.12 depends on the ting any boundary terms.
choice of the new integration variablgs,. Since the inte- Making use of the transformatior8.15 and(3.18, we
grand of Eq.(5.12) is locally scale invariant, the integral is then recovered the Chern-Simons state of quantum gravity
independent of the choice 8{x) in Eq. (5.5), as announced by searching for a wave functional which is annihilated by

above, so the gauge conditign=0 can be omitted in the G, = The Chern-Simons state in the triad representation
second line of Eq(5.12. _ . turned out to be given by the formal complex functional
As aresult, we find that the diffeomorphism-, gauge-, andntegral (3.23. In our approach the Ashtekar variables
locally scale-invariant functionabcd 8,], which is closely played only the role of convenient auxiliary quantities. The
related to the Chern-Simons functional of the Riemanniarmeality conditionsoriginally introduced by Ashtekar ih5]
spin connectiorw;, , governs the “probability” distribution  enter nowhere explicitly, but lie hidden in the choice of the
associated with the Chern-Simons st&de2]) in the limit  integration contourl” for the functional integrals in Egs.
acos—©. Since the functionalScd wiq] is obviously un-  (3.18 and(3.23.
bounded from above and below, we conclude that the norm We did not try to perform the complex functional integral
(5.12 cannot be finite, even if we fix the remaining gaugeoccurring in Eq.(3.23 analytically, but restricted ourselves
freedoms concerning the diffeomorphism and the locato semiclassical expansions of the Chern-Simons state,
SO(3)-gauge transformations. which were treated in Sec. IV. Rewriting the state €', ]
However, we should keep in mind that the res@il2 in suitable dimensionless field parameters, the functional in-
has been derived for a very special choice of the gauge conegral turned out to be of a Gaussian saddle-point form in the
dition y according to Eq(5.5). Since different gauge fixings semiclassical limitu—c, and the semiclassical Chern-
of the Hamiltonian constraint give rise ioequivalentphysi-  Simons state was determined by solutions of the saddle-point
cal inner products on the Hilbert space of quantum graity, equationg4.10. Here it depended on the choice of the inte-
there may still exist other choices §f for which the Chern-  gration contoud”, which particular saddle-points contributed

¥ 42 f Dl AV ed?a%]. (5.1

If we now introduce the new integration variablel, and
eight locally scale-invariant field8,., the functional integral
in Eq. (5.11) becomes

1P cd2e f DIVNIDY B, W[ B, 1h¥3 W d26[ Vh—ad 3]

- [ pwip e =

where

Simons statel -J@',] turns out to be normalizable. to the functional integral3.23 via Eq. (4.8). In order to
prove the consistency of the semiclassical expansions, we
V1. DISCUSSION AND CONCLUSION argued for the solvability of the saddle-point equatichd0

in a separate Appendix Al from a mathematical point of
The main purpose of this paper was to derive and discusgiew, where it turned out that saddle-point solutions will
a triad representation of the Chern-Simons state, which is axist at least under the restricti®(x) # 2A.
well-known exact wave functional of quantum gravity within e were able to find explicit analytical results for the
Ashtekar’s theory of general relativity. In particular, we were semiclassical Chern-Simons state in the two asymptotic re-
interested in an explicit transformation connecting the reabimeSK:Aaas/SHoo and k—0, which were discussed in
triad representation with the complex Ashtekar representagecs |V B and IV C, respectively.
tion. Therefore, we first investigated this transformation on | the limit k—o, two different solutions of the saddle-
the classical level in Sec. Il. Here we also derived new réPhoint equationg4.10 could be found, giving rise to the lin-
early independent asymptotic staté's.s and Vg given in
Eq. (4.21). For a suitable choice of the normalization factor
12This is a peculiarity of the Hamiltonian constraint, and in con- A/ according to Eq(4.25, these asymptotic states turned out
trast to gauge-fixing procedures associated ith or 7,, for to be invariant under arbitrary, even topologically nontrivial

which the Faddeev-Popov calculus guaranteasigue physical ~SO(3)-gauge transformations of the triad. In the special case
inner product42,43. of Bianchi-type homogeneous 3-metrics, we obtained the ex-
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plicit result (4.30 for the value of the asymptotic Chern- non-normalizablewith respect to this particular inner prod-
Simons state(4.21), which, by a further restriction to uct. However, as we have pointed out, there may still exist
Bianchi-type-IX metrics, coincided with the correspondingother gauge-fixing procedureg.g., the one suggested by
result known from discussions of the homogeneous BianchiSmolin and Soo ir18]), which render the Chern-Simons

type-IX model. state to be normalizable.
The asymptotic Chern-Simons std#21) in the limit «
—oo gives rise to a well-defined semiclassical time evolu- ACKNOWLEDGMENTS

tion, which we discussed in Sec. IV B3. There it turned out

that for large scale parameters., the semiclassical schaft through the Sonder-forschungsbereich “Unordnung

4-geometries associated with the Chern-Simons state ajg,q grope Fluktuationen” is gratefully acknowledged. We
given by inhomogeneously generalized de Sitter space-timefy ther wish to thank Professor Abresch from the Ruhr-

~ Inthe limit x—0, the semiclassical saddle-point contribu- ynjyersita Bochum for many fruitful discussions and impor-
tions to the Chern-Simons state can be characterized bt ideas concerning the mathematical problems discussed
divergence-free triadgl, of the Riemannian 3-manifold in Appendix A.

(M3, h) via Eqg.(4.50. Thus we had to answer the nontrivial

Support of this work by the Deutsche Forschungsgemein-

question of whether divergence-free triads to a given APPENDIX A: ON THE SOLVABILITY
3-metric will in general exist, which was done in Appendix OF THE SADDLE-POINT EQUATIONS
A2.

In restriction to homogeneous manifolds of Bianchi type The solvability of the semiclassical saddle-point equations
A, one divergence_free triad was exp||c|t|y known’ g|V|ng (41@ IS stentla| In.Ol’deI’ to justlfy the ConSIStency .Of the
rise to the result4.52. In particular, we were able to recover asymptotical expansions of the Chern-Simons state discussed
vacuum state within the homogeneous Bianchi IX modelProperties of the nonlinear, partial differential equations
For Bianchi-type-IX manifolds, four further divergence-free (4.10 from a mathematical point of view, which will be

triads&g“), we{1,2,3,4, were constructed in Appendix B. done in Sec. Al. Applying the results of Sec. Al to the

They gave rise to four additional saddle-point contributionsSpeCIal case of a vanishing cosmological consfarwe wil

o . then, in Sec. A2, be able to prove the existence of
q}‘(':al’ @e{1234, to the vacuum Chern-Simons state, divergence-free triads of Riemannign 3-manifolds, which de-
which, however, were restn_cted to occur simultaneously. W%ermine the semiclassical vacuum st&tes0).
concluded that, together with the wormhole state, dnlg
linearly independent values of the vacuum Chern-Simons
state are realized for Bianchi-type-1X manifolds. ) . _

Since these two values should continue to exist under suf- If we want to discuss the solvability of the saddle-point
ficiently small, inhomogeneous perturbations of the 3-metricéquations(4.10 within the theory of partial differential
and since also in the limit— exactly two different values €duations(cf. [46]), it is not advisable to study this problem
of the semiclassical Chern-Simons state were found, on# the particular form(4.10, since the spatial derivative op-
may assume that the one Chern-Simons state in the Ashtek@fator, which is given by the curl of the gauge field, , is
representation corresponds to two linearly independent staté&§own to benonelliptic. However, we will show that it is
in the triad representation. possible to consider a set of second order partial differential

Within the narrow class of Bianchi_type_|x metricsy the eCIL!atiQHS inStead, which will 'tum out to be elllptIC in Ieading
semiclassical 4-geometries associated with the vacuurerivative order, thus allowing for solvability statements
Chern-Simons statét.50 are satisfying physically interest- concerning the solutionsl, . _
ing boundary conditions, namely, either the “no-boundary”  Let us first introduce new variables
condition proposed by Hartle and Hawkihg9—41], or the )
condition of asymptotical flatness at large scale parameters Kij=(wia= Aia) €ja=+iKj (A1)
a.os- However, this doesnot remain true for general

3-metrics, as we have shown by exhibiting a counter exinstéad of the gauge fieldd;,, wheree;, denotes a fixed

ample in Appendix C. We conclude that, in general, thetriad for which we want to solve the set of equatigasl0).

Chern-Simons state will not satisfy the “no-boundary” con- UP t0 & Wick rotation, the tensd;; plays the role of the
dition or the condition of asymptotical flatness. NeverthelessSémiclassical extrinsic curvature tens¢y [cf. Egs.(2.2),
as we have remarked in Sec. V, the asymptotic $tag in (2.6), gnd (2.1D]. If we rewnte; the saddle-point equations
the limit x— o reminds one of the Vilenkin proposal for the (4-10 in terms of the new variablek;; , they become

wave function of the Universpi4,45.

In Sec. V, we investigated the normalizability of the
Chern-Simons staté3.23 in the triad representation. We
defined a kinematical inner product on the Hilbert space of
guantum gravity, and by performing a special gauge fixing 1 .
for the time gauge we arrived at the physical inner product :GiAjJr*;Cij_ —3V, K, =0, (A2)
(5.2). Unfortunately, the Chern-Simons state turned out to be '

1. The general casé\ #0

: 1.
gl/\,j::ﬁglzx,aeja
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where It has been added to obtain simple expressions for the trace
, , and the antisymmetric part df;; , which are given by
*K =3 N g kO (A3)
. - o hiA; =0, 3A,=2hiv, 7M. (A9)
are the cofactors of the matrix elemeitd, andG), ; is the = k=5 i’to
usual, three-dimensional Einstein tensor with a cosmological
term. In analogy to Eq(2.25, the set of equation§A2) Instead of solving the nine equatio(’7), we may therefore

implies the three Gauss constraints consider the six equations

~ 6i J. Lokl 2i ik ! 5 !

Ja=*5x [ViGhi— Jheij K/ G T8 o= £ - €48k} =0, Agijy=3 (A +4;)=0, He”=0 (A10)
(A4)

to determine the six field&;; .

which require the tensoklj; to be symmetric ini and j. In a next step, we will now solve the Hamiltonian con-
Therefore, if we takeC;; to be symmetric in the following, straint(A5) explicitly. At any space point e M3, Eg. (A5)
the Gauss-constraint®\4) are satisfied identically, and the describes a five-dimensional hyperboloid in the six-
first line of Eq. (A4) takes the form of three generalized dimensional space spanned kj; , as long as
Bianchi identities. We thus conclude that the set of equations
(A2) constitutes only six independent equations for the six VxeMs: ROO)#2A, (A11)
fields Kj; = K;; we are searching for.

Beside the Gauss-constrairis4), four further equations
are implied by Eq(A2) via Egs.(2.23 and(2.24), namely,
the Hamiltonian constraint

which will be assumed in the following. This five-
dimensional hyperboloid may be parametrized with the help
of a stereographic projection; hence the general solution of
the Hamiltonian constraint can be written in the form

~ 2yh . Jh o !
He™M=—- G\ ;= (K2= K+ 2A=R) =0, i - VR—2A 1+Tr925i_+2g_ s
(A5) 1= 6 ! e ’
(A12)

and the three diffeomorphism constraints

- _2ih o 2iyh !
Hi=F = eipdn ===~ (VK =Vik) =0, (A8)

where @ is a symmetrictracelessmatrix. Matrices@ with
TrQ?=1 correspond to coordinate singularities of the ste-
reographic projection, and thus have to be excluded in Eq.
) ) (A12). Inserting the general solutidA12) of ﬂéDM =0 into
respectively. HerdC in Egs.(A5) and(A6) denotes the trace e first of Eqs(A10), we arrive at five equations for the five
of (K')). Remgrkably, Fhe Hamllton_lan cpnstral(rAS) isa  fields Qij . which remain to be determined.

purely algebraic equation fdt;; , which will be solved ex- We now want to argue that the effective set of partial

plicitly later on, while the diffeomorphism constraint86) gjfferential equations obtained this way is soluble with re-

are linear equations and contain information about the divergpect tOQij . Let us therefore consider a background solution

gence of the fieldd(; . 5 . .
Moreover, since EqsA2) contain the curl of the fields Q| of these equations, which we assume g be known for

Ky s (A2) and(a6) together may be used o construt a S8RV SREE FERTESE T TEE T o T
second-order derivative operator similar to the Laplace; b P g '

Beltrami operator ofCj; . Let us therefore consider the fol- the n_eiw SOIUt'(_)n_Q_I W'_" differ from the background solu
lowing second-order differential equations: tion Q' by an infinitesimal amount

! =0+e Q+0(?), A13
Ay AL 2maV 07" 2imeh ™V, GR  + § £ VoG =0, QT Qe it ole (A19
(A7) and in the following it will be sufficient to show that the
: - . fields Q''; exist to any given background solutia®; . In-
which must be satisfied for solutioris;; of Eq. (A2). The : ! ) > T I
first term in Eq.(A7) can be simplified JWith the help of Eq. S(terft_mg infrert:rr?;tlg.?f:rnesriill? '”;?.frg?_g'owi egr(lv)e
(A6), and gives in the leading derivative order the gradient oft TVE N part ',i 1al equations; =2 in e

the divergence ofC;; and, in addition, the Hessian . determ|n|r_1g the field® j To ShOW that t_hese equations are
Making use of Eqs(A2), the second term in EGA7) con- spluble_wnh respect t@'';, )/ve_wnl re_strlct our_selves to a
tributes the curl ofC;; , i.e., taking the first two terms in Eq. discussion of the symbol af ;;,=0, which we will show to

(A7) together, we arrive at

Ajj=V;V;K=AK;; + O(ViKj) (A8) BExplicit solutions A, of the saddle-point equationgt.10),
which correspond to the field@‘j via Egs.(Al) and(A12), are in
in leading derivative order. By virtue of Eq8A4), the third  fact known for various homogeneous 3-manifolds, such as Bianchi-
term in Eq.(A7) contains only first-order derivatives #f; . type-IX manifolds; cf.[25].
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where theQ; denote the three eigenvalues of the ma@x

operator is obtained by computing the action on a Fouriekince Q is traceless, these three eigenvalues may be param-

mode
Q"' (%)= (k) - ek, (A14)

in leading order of the wave vect&r For the operatod’ ;)
under study, we obtain

VR—2A

(1-Tr@??

— . 2__
_|k|2( (1—T|’Q2)Qij+ \/;an

X(hij+\/g§ij)émn)l-

i (Al k)= —2 V6kik, O™,

(A15)

The symbolo (k) is called elliptic, if it has a trivial kernel for

k#0. Then the linear differential operator is invertible in the
leading derivative order, and solutions of the linear differen-

tial equations will exist. To prove the ellipticity of the sym-
bol (A15), it remains to be shown that the linear equations

2 — -, -
Veanin;= \[5 a(hy+8Q) +(1-Tre?) g,
(A16)

have only the trivial solutior@ij=0 for n#0, where we
have introduced the abbreviations

k

Contracting Eqs(A16) with 0, we obtain the necessary
implication

1.

q:=010;, n=r=|n|= (A17)

q(1+Tro?— ﬁ@jnminj)%o, (A18)

e., if we can show that the bracket in E§18) is different
from zero, Eq(A18) impliesq=0, and therefor@”— =0 via
Eq. (A16), so the ellipticity ofa(k) according to Eq(A15)
would have been proven.

It now follows from a simple estimate for symmetric ma-

trices @ that the vanishing of the bracket in E¢ALS8)
impliest

3 3
1+2l Q’< 6 maxQ;}, (A19)
i= i=1

¥Here and in the following, we have to restrict ourselveseial-
valuedmatricesQ, which correspond to real or complex solutions
A, of the saddle-point equatiori4.10 via Egs.(A12) and(Al) in
the two different caseR>2A or R<2A, respectively.

etrized by
— 2 27\ .
Q= \[59 cos( 0+ T)' je{l,2,3
with
0=0, 0<6<2. (A20)
Then the relatiorfA19) takes the form
1+0%<2p=(1-p)?<0, (A21)

and is obviously only satisfied fazr=1. Moreover, because

of the identity TIQ?=p?, the particular valugp=1 corre-
sponds to the coordinate singularity of the stereographic pro-
jection used in Eq(A12), and is hence not permitted by
construction. Thus the relatia®19) has been brought to a
contradiction, and we conclude that the bracket in &d.8)
cannot vanish, which finishes our proof of the ellipticity of
the symbolo(k) given in Eqg.(A15).

Summarizing our results, we have shown that the set of
linear partial differential equatlonA’ =0, which deter-
mines the f|eldsQ",, is elliptic, and therefore soluble in
leading derivative order. It follows that the solutlo@,é] of
the nonlinear set of equatiors;;y=0 continue to exist un-
der infinitesimal perturbations of the parameter fi@gsand
A. Therefore, solutions;; of Eq. (A7), and also solutions
Aj, of the saddle-point equatiortg.10), can be obtained via
Egs.(A12) and(Al) for a wide range of parameter fiel@s,
and A, as long as the only restrictioR#2A met in Eq.
(Al11) is satisfied.

2. Divergence-free triads in the limit A—0

In this section we want to discuss how suitafié¢ gauge
field A;, may be used to construct divergence-free tridgls
of a given Riemannian 3-manifoldM{3,h). Such a flat
gauge field onM3 can be obtained by pursuing afixed
solution A;,[€',,A] of the saddle-point equatior{g.10 in
the limit A—0. Using the arguments of Sec. A1, this will be
possible for 3-manifolds witiR(x)#0. By virtue of Eq.
(2.25, the corresponding gauge field,, will not only be
flat, but it will in addition satisfy the three Gauss constraints

DE',= 08 3+ £apcAin€ =0, (A22)
where®', is a fixed but arbitrary triad of the 3-metric

Let us now consider the parallel transport associated with
the gauge field4,, : Given a vectow (0)=uv, o€, at a point
P, of M3, and a curvel: x'=f'(u), O<us<1, connecting
P, with a second poinP,, we define a vector field (u)
alongC by solving the equations of parallel transport,

If! ! !
Ua(o):Ua,O-

(A23)

v,

Dva
- (Qu +8abco’)u .AibUCZO,

Du
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Since the gauge field\;, is flat, the resulting vectaf(1) at  of the symmetry group S@)=SQ(3) XSQ(3). From the sec-
point P; does not depend on the particular choiceCacf.  ond of these commutation relations it follows that the three
[47]), i.e., if we restrict ourselves to the case of simply con-vector fieldsé, are the left-invariant vector fields to the
nected manifolds\; in the following, the parallel transport Killing vectors 5; , and vice versa; i.e., the metric tensor of

of v(0) along arbitrary curve€C M5 will define a well- ) . 2o
defined vector fieldi(x) on M. By construction, this vec- the unit 3-sphere can be expandedathof the two sets,
with spatially constantcoefficients. In particular, if we

tor field v(x) turns out to be covariantly constant with re- -
spect toA;, , choose the normalization &, as in the first of Eqs(B1),

the invariant vector field§, form automatically two differ-
ent sets of invariant triads; := £, to the metrich of the unit

and, as a consequence of E422), the vector fieldv(x) is 3-sphere:
in addition divergence free,

Diva=0djva+ eapcAipv =0, (A24)

el =h=1,0I1,. (B2)
. o, 1 i 1 _ _
V-o=—=Div,e' )= —=(Dp,&,+v,Die,)=0. According to Eqs(B1) and (4.27), both invariant triads ;
\/Z \/Z N’ i - ~a
0 0 (A25) have a symmetric structure matrir, and are thus diver-

gence free by virtue of Eq4.51). Since they are triads to the

Moreover, it follows from Eq(A24) that the parallel trans- .
a(A24) P § same metridh, they must be connected by a gauge transfor-

port according to Eq(A23) conserves the scalar product o

two vectorsy andw: mationE e O(3):
B
(0 w)=Dy(v w,) =D w,+v,Dw,=0. la =Eaplb. (B3)
v . B . .
0 0 (A26)  The matrixE has a spatially nontrivial dependence, and may

From Eqgs.(A25) and (A26) it is then obvious that a Of course be calculated explicitly in any given coordinate
divergence-free triadi,(x) of the Riemannian 3-manifold SyStém Ors_s'ls However, in the following the explicit form
(Ms,h) can be constructed by choosing three orthonormaf! the rotation matrixE will not be needed.
vectorsaa at a pointP,, and parallel propagating these vec-
tors along arbitrary curve6C M5. Since the only freedom
in this construction arises from the choice(i}jqc at a single
point Py, this divergence-free tria&a(x) associated with
the flat gauge field4;, turns out to be unique up to global
rotations.

2. Divergence-free triads of Bianchi-type-IX
homogeneous manifolds

Anisotropic manifolds of Bianchi-type IX can be de-
scribed by choosing an invariant triad of the unit 3-sphere,

for example,1; , and rescaling this triad with three scale
parametersy,>0:

APPENDIX B: THE VACUUM STATE

- Tht i —1._di
ON BIANCHI-TYPE-IX HOMOGENEOUS MANIFOLDS la=Daptb”™ with D" ":=diaga;,a;,a3). (B4)

In this appendix we want to discuss the semiclassicalrhent, is the invariant triad of a Bianchi-type-IX manifold,

vacuum state(4.50) in the special case of Bianchi-type IX anq the metric tensor is given ty=1,® 1. In the general,

homogeneous 3-manifolds. While one saddle-point contribu-, . . . .
tion, the so-called “wormhole-state,” is given by the result anisotropic case, only three of the six vector fields dis

(4.53, four further semiclassical vacuum states are knownCusseOI in Sec. B1 remain as Killing vectors of the 3-metric

within the framework of the homogeneous Bianchi IX model N namely, the fields, . We will assume that the invariant
[25,27). In the inhomogeneous approach of the present patriad 1, given in Eq.(B4) is positive oriented. As pointed out
per, these additional states should correspond to topologin Sec. IV C1, this triadi{?):= 1, is automatically divergence
cally nontrivial divergence-free triads of Bianchi-type-IX free, and gives rise to the “wormhole” saddle-point contri-
manifolds via Eq.(4.50. Such special triads can indeed be pytion (4.53 to the semiclassical vacuum state.
constructed from the divergence-free triads of the unit To find further, topologically nontrivial divergence-free

3-sphere, which will be discussed first in Sec. B1. The, . 3 ; el ;
divergence-free triads of Bianchi-type-IX manifolds and themgﬂzg‘% of Bianchi-type-IX metrics, let us ry an ansatz of

corresponding saddle-point contributions to the vacuum
Chern-Simons state will then be given in Sec. B2. - -
J da=EpaOpclec, (B5)
1. Divergence-free triads of the unit 3-sphere

The 3-sphere is a maximally symmetric 3-manifold with

15 H H
A > . For example, if we employ the Euler anglésd, ¢ as coordi-
six Killing vectors ¢, , representing the commutator algebra P oy 9lgs .

nates on the unit 3-sphere, the mafixurns out to be precisely the

>4 24 . 2h 2o. = well-known Euler-matrixE(y, 9, ¢) (for a definition of the Euler
(&2 & 1==2[abclé;, [&.6,1=0 (B1) matrix, see, e.g[48]).
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where O=(0,,) €SO(3) is assumed to be spatially winding number has the numerical valyg= 9672 for mani-
constant® If we require the triadi, according to Eqs(B5),  folds with S* topology (cf. [37)), it follows that the “abso-
(B4) to be divergence free, we arrive at three equations fotute” winding numbers of the triadd'®, «<{1,2,3,4, are
the matrixO, simply given byw= —1.
, To proceed in the computation of the semiclassical
V.-dy=0pDed f; ,Eba];o_ (B6)  saddle-point contributiongt.50), we further have to evaluate

the functional ¢ defined in Eg. (2.15 for the four

The spatial derivatives of the matri with respect to the  gjyergence-free triad§a=ag“), ae{1,2,3,4. Inserting the

vector fieldsr; can be calculated by inserting E4B3) into  triads(B10) into ¢ according to Eq(2.15, we first recover

Egs.(B1), and are given by the wormhole exponent of E¢4.53), if the spatial derivative
- d; acts on the invariant triad,. In addition, we obtain a
[1a Epcl=2&andEqc- (B7) second term, which stems from the action of the derivative

operatord; on the spatially nontrivial matri¥. This contri-
bution can again be calculated by reexpressing the spatial

derivative in terms of the vector fields , and making use
g Of EGs.(B7). In case of the divergence-free trig" , we
obtain the explicit result

i.e., the matrixO has to be chosen in such a way that for any
given diagonal matribD the matrixO- D is symmetric The

Therefore, the requirement®86) can be simplified to the
form
8abcobdDdc;Oa

(4);Hoc (0) 4y 6
Yool o Wiol-ex i'y_ﬁ — —+a;a,taj,aztaza;

only four solutionsO e SO(3) of this problem turn out to be vac vac A '
OW=diag +1,-1,-1), O@=diag—1,+1,—1), (B13)
@ o with (%) given in Eq.(4.53. The saddle-point valuéB13)
O¥=diag -1,-1,+1), O%=diag+1,+1,+1). is known as the “no-boundary” state from the homogeneous

(B9) Bianchi IX model. Three further semiclassical saddle-point

Hence the ansatB5) gives exactly four further divergence- contributions to the vacuum staté.50), which correspond

free triads of Bianchi-type-IX homogeneous manifolds, 0 the remaining divergence-free triadl$’ , @< {1,2,3, are
of the same form a¥ (%) given in Eq.(B13), but with two of
d9=E 0 I;, ae{l,234. (B10)  the three scale parametexs replaced by their negatives. In

the framework of the Bianchi IX model, the corresponding

We now wish to compute the semiclassical saddle-poinstates were referred to as “asymmetric” states. We conclude
contributions to the vacuum statd.50, which correspond that all five saddle-point value®{%), ae{0,...,4, known
to the divergence-free triadﬁ“), ae{1,2,3,4. Therefore for the homogeneous Bianchi IX model can be recovered
we first need the winding numbe® of these triads with ~ within the inhomogeneous approach of the present paper by
respect to the Einstein triagl, of Bianchi-type-IX metrics. evaluating the statg.50 for the five topologically inequiva-
Since the Einstein triad turns out to be given exactly by thdent divergence-free triadég“), ae{0,...,4, of Bianchi-
invariant triad of the homogeneous 3-metri,= fa, we type-IX manifolds. Up to a Gaussian prefactor, which always
have to calculate the Cartan-Maurer invaria@®<3 of the lies hidden in the proportionality signs of Eq4.53), (B13),

four rotation matrices the results are of the same form ag #5,27).
However, as we have shown[ia7,49, the four semiclas-
Q@:=ET.0%, «ae{1,234. (B11)  sical saddle-point contributiorn® (%), «<{1,2,3,4, are re-

stricted to occussimultaneouslyfor symmetry reasons. This
can also be seen within the present, inhomogeneous ap-

proach, since the four divergence-free triadg“’,
ae{1,2,3,4, all have the same winding number, and thus
should enter into the value of the Chern-Simons state with
the same topological right. We conclude that, in agreement
Q)= —8f d3xe apcte Oogy Oty =—48Y, (B12)  with discussions of the nondiagonal Bianchi IX model, only
two independent values of the vacuum Chern-Simons state
are found for Bianchi-type-IX manifolds.

This can be done without knowing the matBxin Eq. (B11)
explicitly, because the spatial derivatives in E4.23 may

be substituted by, =, 15, and then be eliminated with

the help of Eq(B7), yielding

where V=272 is the dimensionless volume of the unit

3-sphere. Since the constdgtin the definition(4.24) of the
APPENDIX C: A NONFLAT 4-METRIC GENERATED BY

THE VACUUM STATE

16At least in the isotropic case;=a,=a3, this ansatz gives the We now want to give special solutions of the vacuum
second divergence-free triag of the 3-sphere by virtue of Eq. evolution equation$4.55), such that the associated semiclas-
(B3), if we simply chooseD= 1. sical 4-geometries satisfy neither the “no-boundary” condi-
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tion proposed by Hartle and Hawking9-41], nor the con-
dition of asymptotical flatness in the limit of large scale
parametersag,..’ Let us therefore consider the class of
3-metrics

h=1,®1,, (C1)
where the triad vector fieIdEd= Liaé'i are given by
-1 5 - 1 5
Il_al 11 |2—a2 21
|_)3:a_(33+ X2(91+X1(?2). (CZ)
3

The scale parametess, in Eq. (C2) are assumed to be spa-

tially constant, and the triacfia is taken to be positive ori-
ented. Then the structure matmx introduced in Eq(4.27)
takes the spatially constant form

: (C3

i.e., the triadfa is the invariant triad of a spatially homoge-

PHYSICAL REVIEW 52 084005

d N o053 d N o304 d o
ar TN T g NN gm0
(C6)
where we have introduced the new variables
01:=dpdg, Oy:=agdy, O3:=aidp. (C?)
Choosing the lapse functidd as
N:15(010203)7l/2, (C8)

the set of Eqs(C6) is easily integrated and has the general
solution

oi(r)=\ro+ 7, op(r)=\ro— T,

o3(T)=03=const; |7|< 7. (C9Y
Here we have choser=0 such thair;(0)=0,(0), soonly
two integration constants,>0 and o3>0 remain in Eq.
(C9.

In order to prove that the 4-geometry according to Eq.
(C9 is nonflat, it is not sensible to compute the

neous 3-manifold, which can be classified to be of Bianchi#-dimensional Ricci or Einstein tensor, since these quantities

type VI_;. Since the structure matrimn according to Eq.
(CY) is symmetric, it follows directly from Eq4.51) that the

invariant triad ra is divergence free. The Killing vectors of
the 3-metric(C1) must commute with the, and are given
by

& =coshx3d, +sinhx3d,, &=sinhx3d;+ coshx3ds,

£3= 0. (Co

They may be used to compactify the 3-manifald; with the
metric (C1) in the three, - directions, giving rise to a mani-
fold with the nontrivial topologyS*x T2. The compactified
3-manifold will then have a finite volum&/'=Va a,as,
where the value o¥>0 depends on the particular choice of
the compactification.

We are now interested in the semiclassical 4-geometries

being generated by the evolution equati¢hs5 in case of

the divergence-free triad,= 1,,. If we allow for an arbitrary
lapse functiorN, they read

d i ~ijk
| a:iNS ﬁjl‘ka'

dr (€5

For the three-metri¢C1) under study, Eqs(C5) take the
form

Here we assume the vacuum linit-0 to be realized by con-
sidering a sufficiently small value for the cosmological constant

vanish identically by construction, so we will consider the
nontrivial componentﬁ‘RO‘Oj of the four-dimensional Rie-
mann tensor instead. For a vanishing shift vedtor 0, they
are given by

dKi Ki KK
Nt

4R0i 0i= (ClO)

with Ki,- being the usual extrinsic curvature tensor. With help
of the triad (C2), we may convert the spatial indices of
“R%, into internal indicesa, b, to obtain

Rapi=tiatlp *R%; . (C1y

For the metric(C1), (R,p) is a diagonal matrix with

: (C12

and analogous expressions f,, R,,. Making use of the
evolution Eqs(C6), we can eliminate the derivatives in Eq.
(C12 to arrive at

010203 1 1 2
Raz= > —t =, (C13
o1 03

and inserting the general soluti@g@9) into Eq. (C13, we
find
Raz= 0'37'5( TS— ) %2>, (C19

Thus we have found a component of the Riemann tensor,

Then it will be possible to take the cosmological scale parametewhich is nonzero for all times, | 7/ <7y, so the semiclassi-

aos arbitrarily large at the same time; cf. E@L.4).

cal 4-geometries obtained by evolving the initial
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3-geometriegC1) arenowhereflat. Moreover, the semiclas-
sical 4-geometries doot satisfy the “no-boundary” condi-
tion: While the cosmological scale parameter

_ 3\ 1/6_ 4l 1/6, 2 2\1/12
Acos™ V /3(0'1‘720'3) /oy /30'3 (To_ 7) ! (C1H

PHYSICAL REVIEW D 62 084005

vanishes only at the timelike bordefrs|— 7o of the semi-

classical space-time manifolds, the corresponding curvature

componentsk;; at the same time are tending te~. Con-
sequently, the semiclassical 4-manifolds arg regular or
compact for vanishing scale parametegss.
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