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Solution to the graceful exit problem in pre-big-bang cosmology

G. F. R. Ellis,* D. C. Roberts,† D. Solomons,‡ and P. K. S. Dunsby§

Mathematics Department, University of Cape Town, Rondebosch, Cape Town 7701, South Africa
~Received 30 November 1999; published 11 September 2000!

We examine the string cosmology equations with a dilaton potential in the context of the pre-big-bang
scenario with the desired scale factor duality, and give a generic algorithm for obtaining solutions with
appropriate evolutionary properties. This enables us to find pre-big-bang type solutions with suitable dilaton
behavior that are regular att50, thereby solving the graceful exit problem. However, to avoid fine-tuning of
initial data, an ‘‘exotic’’ equation of state is needed that relates the fluid properties to the dilaton field. We
discuss why such an equation of state should be required for reliable dilaton behavior at late times.

PACS number~s!: 04.50.1h, 98.80.Cq
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I. INTRODUCTION

In this paper, we investigate the equations of string c
mology @1,2# in the string frame, allowing for a dilaton po
tential V(f). The pre-big-bang scenario is motivated by t
search for cosmological solutions with ana(t)→1/a(2t)
symmetry in the scale factora(t), which implements an ana
logue of theT-duality symmetry of M theory. However, on
must distinguish between symmetries of the equations
those of their solutions. We look at cases in which theequa-
tionshave such a scale factor symmetry, when solutions m
or may not exhibit the same symmetry, and at cases in wh
the solutions obey the scale factor symmetry, even if th
equations do not. In the latter case we obtain some solut
that seem to have most of the properties desired in the
big-bang scenario, in that they have the desired scale fa
symmetry, the desired evolution of the dilaton field, and c
tinuity at t50 of a(t),f(t),ḟ(t) and the Hubble paramete
H(t)[ȧ(t)/a(t) @but allowing a discontinuity inḢ(t) and
f̈(t) there, implying a corresponding discontinuity
]V/]f], thus providing a solution to the graceful exit pro
lem @3,4#. However, to obtain the desired dilaton behavior
recent times, we need to employ an ‘‘exotic’’ equation
state as discussed below.

There are ‘‘no-go’’ theorems that exclude such regu
transitions in the presence of a perfect fluid and Ka
Ramond sources. A ‘‘lowest order’’ Einstein frame analy
by @4# discusses graceful exit in generalized phase space
derives a set of necessary conditions for transition from
classical dilaton-driven inflationary pre-big-bang phase t
radiation-dominated era, joined att50 in a Planck epoch o
maximal finite curvatureḢ(t). They show that a successfu
exit requires violation of the null energy condition~NEC!.
Classical sources tend to obey the NEC, but various n
kinds of effective sources generating non-singular evolut
have been considered that do not. Thus, failing invocation
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higher order curvature terms, some kind of exotic behav
of matter is necessary in order to obtain a graceful exit fr
the pre-big-bang phase.

In this paper we follow Gasperini@1# by working in the
string frame. The relation to the Einstein frame is left f
another paper. It should be made clear from the start that
solutions are rather special in the spectrum of pre-big-b
models; those we concentrate on in the main show an e
scale factor duality in the solutions, and thus we do not c
sider here the more exciting possibility of a phase of ea
kinetic-dilaton dominated inflation which leads to an ea
phase which is not radiation dual but is genuinely strin
inflationary vacuum. Nevertheless, the set of solutions inv
tigated here helps to understand the spectrum of possibil
available within the broad pre-big-bang set of ideas.

II. STRING COSMOLOGY EQUATIONS

One can determine the general equations of string cosm
ogy by extremizing the lowest order effective action of dil
ton gravity:

S52
1

2ls
d21E dd11xAugue2fFR1~¹f!22

1

12
H21V~f!G

1E dd11xAuguLm , ~1!

wheref is the scalar dilaton,H5dB ~antisymmetric tensor
field strength!, V(f) is the dilaton potential,ls is the funda-
mental string length scale, andLm is the Langrangian density
of other matter sources. To derive string cosmology eq
tions for thed53, homogeneous, isotropic, conformally fl
background we will follow Gasperini@1# in assumingB50,
a perfect fluid minimally coupled to the dilaton, and a Bia
chi type I metric~see Appendix C of@1# for details!. Unlike
Gasperini we assumeV(f)Þ0, to obtain the string cosmol
ogy equations in the following canonical form:

H25
ef

6
r1Hḟ1

V

6
2

ḟ2

6
, ~2!
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Ḣ1H25efS p

2
2

r

3D2Hḟ1
ḟ2

3
2

V8

2
2

V

3
, ~3!

f̈523Hḟ1ḟ22V2V81efS 3p

2
2

r

2D , ~4!

whereV85]V/]f. When combined, these imply the sta
dard energy conservation equation

ṙ523H~r1p!. ~5!

In a relationship analogous to that between the class
Friedmann equation and Raychaudhuri equation:

Equation~2! is the first integral of

Eq. ~3! provided that Eq.~4! and Eq.~5! hold. ~6!

These four equations will be the basis for the analysis in
paper.

One of the primary motivations for the pre-big-bang sc
nario@5# is that whenV(f)50, these equations are invaria
under the following transformation:

a~ t !→â~ t !5a21~ t ! ~7!

provided that the dilaton transforms asf→f̂5f26 lna
and the energy density and pressure asr→r85a6r, p

→p852pa26. Thus, if a(t) is a solution, so isâ(t) for
suitable f,r,p. Since the string cosmology equations a
also invariant under time reversal symmetry,

a~ t !→ā~ t !5a~2t !, ~8!

the deceleration associated with standard post-big-bang
mology can be associated with an accelerated evolution p
to the big bang by the generalized transformation

a~ t !→ã~ t !5a21~2t !, ~9!

whereã(t) is a solution for suitablef,r,p becausea(t) is.
The solution hasT-duality symmetry if, for eacht,

a~ t !5ã~ t !5a21~2t !. ~10!

However, if we assumeV(f)Þ0 as in Eqs.~2!–~4!, then
in general the equations are not invariant under the sym
try, Eq. ~10!, even if the solutions are. We will look at bot
cases in what follows, but generically allowing a potent
that does not preserve the symmetry. Note that if we ass
matter with the sameequation of state before and aftert
50, then the matter equations also will not be invariant u
der the scale factor symmetry. One has to decide wha
more physically meaningful: matter with a universal equ
tion of state applicable at all times or that whch has a d
continuous equation of state that preserves this symmetr
what follows, we adopt the first option. We return to discu
this choice in the conclusion.
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Flat dilaton potential with exotic equation of state

To obtain equations of motion preserving the scale fac
symmetry, Eq. ~10!, we assume the simplest potentia
namely a flat potential

V~f!5k, ~11!

wherek is a constant, and then investigate the behavior
the universe. In order to reliably obtain proper limiting b
havior of the dilaton, we assume that the equation of sta

p5
r

3
1

2

3
e2fk ~12!

holds at all times~this choice, which is not invariant unde
the duality symmetry, is discussed further in the followin
sections!. One can immediately see that at late times iff
→const, as we will show follows from this choice, then th
equation of state simply reduces to radiation plus a const

We are interested in getting satisfactory dynamics
H(t) andf(t), or, equivalently, forx(t)[ḟ. To see when
this occurs, we manipulate the string cosmology equati
~2!–~4! subject to Eqs. ~11!,~12! to obtain the two-
dimensional phase space with coordinates (x,H) governed
by the following equations:

Ḣ5
x2

6
22H21

k

6
, ~13!

ẋ5x~x23H !, ~14!

the latter following because of the choice~12!. Having cho-
sen the constantk, we can set initial conditions (x0 ,H0) at
t50, and then extend the solution to positive and nega
values oft by use of these equations. Fork,0, there are no
fixed points in the phase plane, and on every trajectory b
H andx diverge asutu→`. For k50, i.e. no dilaton poten-
tial, there is one fixed point at the origin, but for any initi
condition~set att50), x andH will diverge either as time is
run forward or backward.

The interesting dynamics is obtained whenk.0. There
are then fixed points atA1 : (0,Ak/12) ~a source!, A2 :
(0,Ak/12) ~a sink!, B1 : (A3k,Ak/3) ~a saddle point!, and
B2 :(2A3k,2Ak/3) ~a saddle point!. In the phase plane
depicted in Fig. 1, we claim the initial conditions in th
region I bounded byA1 , B1 and A2 and the separatrixe
joining them give satisfactory dynamics of bothH and x
which includex→0 asutu→`, x.0 for all times, sof(t) is
monotonic,H remains finite, and a ‘‘bounce’’ occurs tha
avoids the initial singularity. Since region I is bounded
fixed points that have coordinates proportional toAk, in-
creasingk will give one a larger region of initial conditions
that lead to a nonsingular universe with proper dilaton d
namics. We can obtain a solution on the boundary of reg
I ~evolving along the line joiningA2 to A1 , which does not
lie in I! that is invariant under symmetry~8! by settingx0
50, H050 at t50, but this solution, given explicitly by
a(t)5cosh1/2(Ak/3t), is not invariant under the symmetr
4-2
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SOLUTION TO THE GRACEFUL EXIT PROBLEM IN . . . PHYSICAL REVIEW D62 084004
~10!. A drawback of all these models is that inflation will n
stop att.0, but as discussed in the Conclusion, the str
cosmology equations derived in Sec. II do not apply to
present cosmological regime without modification, so it
possible that a radiation dominated evolution started after
time when these equations no longer applied. In any case
gives a specific family of solutions where the equations d
play the desired symmetry~10! but the solutions do not—
which is not very surprising, given the prevalence of brok
symmetries in physics.

III. OBTAINING DESIRED DYNAMICS
FROM A DILATON POTENTIAL

In this section, we generalize the method introduced
Ellis and Madsen@6# through which they obtain a classic
scalar potential associated with a specifieda(t) in the stan-
dard gravitational equations. No field has been observed
coincides with a dilaton potentialV(f), so we assume that i
is a freely disposable function. We show that by a suita
choice ofV(f) one can obtain almost any behavior fora(t)
or, alternatively, forf(t). We first present an algorithm fo
determiningV(f) from a desireda(t) or a desiredf(t), and
then present an analytically smooth solvable example. T
solution illustrates our main point, but has little physical r
evance@although it does satisfy the symmetry~10!#. In the
following section we use these methods to obtain two so
tions that resemble the standard ‘‘pre-big-bang scenar
but with continuity ofa(t) and H(t) and with satisfactory
dynamics off(t). The associated dilaton potentials aread
hoc because they are derived from the desired behavio
the universe, rather than from a field theory model; as d
cussed in many inflationary and quintessence studies,
e.g.,@7,8#.

A. Algorithms

We proceed by providing the followinggeneral algorithm
for determining a dilaton potentialV(f) that produces a de
sireda(t):

~1! Specify a desired monotonic function for the sca
parametera(t), consequently determiningH(t) and Ḣ(t),

FIG. 1. Phase portrait representing the solution space of E
~13!,~14! with k.0.
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~2! Choose an equation of state and solve forr(a) from
Eq. ~5!;1 asa(t) is known, this determinesr(t).

~3! Eliminate V and V8 from Eq. ~4! by use of Eqs.~2!
and~3! to obtain a differential equation relatingH(t), f(t),
r(t), and their time derivatives.

~4! Solve the equation obtained in step~3! for f(t).
~5! Substitute the now known functionsf(t), r(t), and

H(t) anda(t) into the rearranged version of Eq.~2!,

V~ t !56H22efr26Hḟ1ḟ2 ~15!

to obtainV(t).
~6! Invert f(t) to obtaint(f).
~7! TransformV(t) as follows: V(t)5V„t(f)…⇒V(f).

This is possible for each range oft on whichf(t) is mono-
tonic @if it is not monotonic on some range oft, in general
V(f) will not be well defined because it will not be sing
valued for the corresponding values off].

Thus, providedf(t) determined from step~3! is mono-
tonic, we find aV(f) that corresponds to a given monoton
function a(t). Because we have now satisfied Eqs.~5!, ~2!
and the equation obtained in step~3!, the latter depending
essentially on Eq.~4!, it follows from statement~6! that Eq.
~3! will be true also, so we have satisfied all the equations
the theory for this matter description~cf. @6#!; hence we have
a solution of the desired form.

Alternatively, we can give an algorithm for determining
dilaton potential V(f) that produces a desired dilato
evolution2 f(t) by proceeding in the same way as abov
except for minor changes: replace step~1! by the following:

(18) Specify the desired monotonic function for the dil
ton, f(t), in step~2!, leaver in the formr(a), and replace
step~4! by

(48) solve the equation obtained in step 3! for a(t) @or for
H(t)].

The rest of the algorithm is as before.
Finally, note that we can carry out these procedures pie

wise: for example we can specifya(t) for some range oft
andf(t) for some adjoining range oft, or different behav-
iors for a(t) for different ranges oft, then join the solutions
together, ensuring thata(t), H(t), f(t) and x(t) are con-
tinuous where these ranges meet.

B. Exponential scale factor behavior with no matter

To demonstrate the procedure, we give a simple ana
cally solvable example with a pure scalar field, i.e.r5p
50. Consider an exponential expansion as in classical in
tion,

a~ t !5ewt⇒H5w, Ḣ50, ~16!

1If the equation of state is a function ofV or V8, these quantities
then will have to be eliminated using Eqs.~2! and~3! before solving
Eq. ~5!.

2It is important to note that one has freedom to choose onlya(t)
or f(t), not both.

s.
4-3
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wherew is a positive constant. This solution has the desi
symmetry~10!.

In this case the differential equation forf(t) takes the
form

f̈5Hḟ ~17!

Using Eq.~17! and Eq.~15! we obtain

f~ t !5f01
ḟ0

w
~ewt21!, ~18!

a monotonic function as required, and

V~ t !56w226ḟ0wewt1ḟ0
2e2wt. ~19!

After inserting the inverted equation~18!,

t~f!5
1

w
logF w

ḟ0

S f2f01
ḟ0

w
D G , ~20!

into Eq. ~19!, one obtains

V~f!5w2S f232f01
ḟ0

w
D 2

23w2 ~21!

which is simply a quadratic potential plus a constant. Clea
the behavior forf(t) is unphysical sincef(t)→` instead of
asymptoting to a constant. However, this gives a transpa
example where even though the scale factor symmetry~10!
is broken in the equations@becauseV(f) is not constant#,
the solution obeys that symmetry.

IV. ‘‘PRE-BIG-BANG’’ BEHAVIOR

In this section we try to use the methods just explained
obtain solutions that resemble the ‘‘pre-big-bang scenar
but with satisfactory dynamics off(t) and a continuous
transition from the pre-big-bang to post-big-bang phases
these examples, we seek solutions that evolve from a st
perturbative vacuum, i.e.H→0 andef→0 ~no interactions!,
to the present scenario whereef, which acts as the coupling
constant, asymptotes to a constant. We will assume the
lowing behavior of the universe:

a~ t !5~ t11!1/2, t>0⇒H~ t !5
1

2~ t11!
~22!

determininga(t) for t>0, and by the symmetry~10!,

a~ t !5~2t11!21/2, t<0⇒H~ t !5
1

2~2t11!
~23!

determininga(t) for t<0. Both a(t) andH(t) are continu-
ous att50 with a(0)51, H(0)51/2, butḢ(t) is not con-
tinuous there.

This behavior, which is essentially radiation dominat
evolution of the universe for positive times and power-la
inflation for negative times, is motivated by the ‘‘pre-big
bang’’ scenario introduced in@5#, and exactly obeys the sca
08400
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factor symmetry~10!. Note that we have shifted the origin o
time in each branch from that customarily used, in order
get a smooth evolution throught50; this of course makes no
difference to the desired physical behavior, for we c
choose the origin of time to be wherever we want~and the
equations are invariant under time translationt→t85t1c).
Although the power law inflation ends with the scale-fac
valuea(0)51, required by continuity together with the sym
metry ~10!, the solution has sufficient inflation for any pu
pose because it involves an infinite number ofe-foldings ~it
starts with the asymptotical valuea50 ast→2`).

A. Pre-big-bang behavior with radiation equation of state

First we assume the radiation equation of state holds a
times, that is,

p5
r

3
, ~24!

which, using Eqs.~5! and ~22!,~23!, implies

r~6t !5r0~6t11!72 ~25!

wherer0 is a positive constant and ‘‘1t ’’ refers to the post-
big-bang era, ‘‘2t ’’ to the pre-big-bang era. Notice that bot
r and ṙ are continuous att50.

The equation forf now takes the form

f̈5
2

3
efr1Hḟ12Ḣ. ~26!

Substituting in Eqs.~22! and~25!, we could not find an ana
lytical solution to Eq.~26!, so we investigate the three d
mensional phase space with coordinates (t,f,x), given from
Eqs.~26!,~22!,~23!,~25! by

ḟ5x, ẋ5
2

3
efr0~6t11!721

x

2~6t11!
7

1

~6t11!2
,

~27!

where the top sign holds fort.0 and the bottom sign fort
,0. We can set initial data att50, and then investigate th
phase plane orbits as we run the trajectory forward and ba
ward in time in such a way thatx and f are continuous
throught50. Thenẋ is discontinuous there, but we have n
problem in joining the solutions fort.0 andt,0.

For t.0, there is an exceptional integral curveg(t) given
by (t,f̃0,0), wheref̃0[ ln(3/2r0); this is the only integral
curve with a fixed value off andx. Note that settingf0 and
x0 determines the initial point in the phase space, and sp
fying r0 determines the location of this exceptional curve.
the 2-dimensional sub-spacest5const with coordinates
(f,x), the curveg(t) has coordinates (f̃0,0) for all t, and
represents a set of saddle points parametrised byt. To get
exactly the desired dilaton dynamics in the future (x.0,
ef→const⇒x→0 as t→`), one must restrict the initia
conditions (f0 ,x0) to start precisely on the stable branch
these saddle points, which intersects the surfacet50 in a
4-4
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single curve„0,g1(x),x… passing through the exception

point g05(0,f̃0,0) ~for more details, see Appendix A!.
However, there is actually slightly more freedom than this
finding physically relevant initial conditions because if a tr
jectory starts close enough to the stable branch~but not ex-
actly on it!, then the trajectory will stay close to the fixe
point for an arbitrarily long period of time beforef and x
diverge, and this may suffice for physical purposes eve
the solution eventually diverges~cf. the discussion of inter-
mediate isotropisation in@9#!. Nevertheless, the physicall
relevant set of solutions is very unstable and requires v
precise fine-tuning, in order to obtain the desired dilaton
namics, lying in a small open neighborhoodD1 of the curve
f05g1(x0) in the initial data set att50. Indeed we have
found it very difficult to obtain numerical solutions with th
desired behavior because of this instability.

For t,0 there are no points with a fixed value off andx
~because we assumer0.0). To get the desired dilaton dy
namics in the past (x.0, ef→0 ast→2`) one must fur-
ther restrict the initial conditions, the problem being that E
~27! is an inhomogeneous equation forx with a time-varying
source function~albeit a source function that decays away
t→6`). We can obtain the desired behavior ify0

5 2
3 ef0r0!1, i.e. f0! ln(3/2r0) ~details are given in Ap-

pendix A!. This is a sufficient condition; there will be
wider domainD2 of initial data att50, containing this set
which will ensure that at early enough times the desired
havior is attained.

To get a satisfactory solution for all time, for a give
choice ofr0, one must set the initial conditions to lie in bo
D1 andD2 , so the crucial issue is whether they intersect
not. We have not attained finality on this point. It may
that the ‘‘no-go’’ theorems with a potential@3# imply that
they do not intersect, but this implication is not entire
clear, as the conditions of those theorems may not co
spond precisely to the conditions we contemplate here
they do intersect, we can attain the desired behaviorx→0
andef→0 when time runs backward as well asef→const
as time runs forward and, in principle, one can obtain a c
tinuousV(f) associated with the unstable solution describ
above because every function is continuous on the right h
side of Eq.~15!. Furthermore,f(t) is monotonic and con-
tinuous, and therefore invertible, so one can complete
~6! of the algorithm set out in Sec. III A. However, attainin
such solutions will require extreme fine-tuning of the init
data, and this is very difficult to do because one does
know where the stable branch of the saddle point inters
t50. Thus, if such solutions do exist, the extreme fin
tuning required for their initial data makes them seem i
practicable as cosmologies despite their other desirable p
erties.

B. ‘‘Pre-big-bang’’ behavior with exotic equation of state

Finally, we assume the identical ‘‘pre-big-bang’’ behavi
of the last example@Eqs.~22!,~23!#, but we obtain a stable
solution with a different equation of state. The instability
08400
-

if

ry
-

.

s

-

r

e-
If

-
d
nd

p

ot
ts
-
-
p-

the last example arises because of our choice of equatio
state, as can be seen by inspection of Eq.~4!, which we write
now as

ẋ523Hx1x21b, ~28!

where

b[2V2V81efS 3p

2
2

r

2D . ~29!

As mentioned before, we want to obtainef→ constant,
i.e. x→0, at late times, which impliesb→0 in Eq. ~28!. If
we choose the radiation equation of state as in the last
ample@Eq. ~24!#, thenb52V2V8. Therefore, requiringb
→0 ast→` puts a heavy restriction on the dilaton potenti
namelyV→e2f at late times. Consequently, there is a fin
tuning problem if you use the radiation equation of state.

In the present example, we assumeb50 for all times,
which from Eq.~28! demands the exotic equation of state

p5
r

3
1

2

3
e2f~V1V8! ~30!

at all times@note that Eq.~12! is the special case resultin
whenV850]. Using this equation of state implies

r~ t !5E 2He2f~12Hḟ16Ḣ23ḟ2!dt ~31!

which allows the density to go through zero and beco
negative. We discuss this equation further in the Conclus

The differential equation that relatesH(t) to f(t) is sim-
ply Eq. ~28! with b50:

f̈523Hḟ1ḟ2. ~32!

For arbitrarya(t), this can be solved~with a051 and x0

[ẇ0) by

exp@f02f~ t !#512x0E
0

t

a23~ t !dt. ~33!

For the specific case given by Eqs.~22!,~23! we obtain from
this the analytical solution

f~ t !51f02 lnu122x0@12~11t !21/2#u ~34!

for t.0 and

f~ t !51f02 lnU12
2x0

5
@12~12t !5/2#U ~35!

for t,0. Inverting Eq.~34! we obtain

t~f!5
4x0

2e2(f2f0)

@~122x0!ef2f021#2
21 ~36!

and inverting Eq.~35! we obtain
4-5
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t~f!512F5ef2f02512x0

2x0
G2/5

. ~37!

Now we can solve Eq.~31! to obtainr(a) and sor(t) ~see
Appendix B for one particular case!, and substitute our re
sults into Eq.~15! to obtain the dilaton potentialV(f) that is
associated with our specified ‘‘pre-big-bang’’ behavior. Th
is straightforward but tedious, and results in very comp
analytic expressions@the real complexity coming through th
expressions forr(t) that occur as a consequence of t
choice of the exotic equation of state#. Rather than giving
these analytic expressions, we give a graph of the pote
for one particular case in Fig. 2.

To discuss the relevant initial conditions, it is instructi
to look at the phase plane~Fig. 2! with coordinates (t,x),
wherex5ḟ is governed by the equation

ẋ52
3

2~6t11!
x1x2 ~38!

where we again use1 to representt.0 and2 to represent
t,0. One can easily see thatx50 (⇒ẋ50) is an attractor,
and represents a physically uninteresting solution withf
5const. Alsox53/2(6t11) is a nullcline, characterizing

the other points whereẋ50. This curve starts at (0,3
2 ) and

drops symmetrically away to zero ast→6`. Now we can
solve Eq.~38! analytically for t.0, finding

x5
1

2~ t11!~11C1At11!
~39!

whereC15(1/2x021) is positive iff x0,1/2. The separa-
trix between the solutions that diverge and those that
asymptotically to zero ast→` is the special solution with

C150 which goes through (0,1
2 ), that is,

x5
1

2~ t11!
~40!

FIG. 2. Phase portrait representing the solution space of
~38!.
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which itself goes to zero ast→`. If we specify the initial
conditions att50 such thatf0 is free and 0,x0, 1

2 ⇔C1

.0, then as we run the trajectories forward in timex→0. In
this case, for large positive values oft, Eq. ~39! will be
approximately

x5
1

2C1 tA2t
.0 ~41!

@note thatf(t) is monotonic fort.0 becausex.0 on these
trajectories#. Let T1 be such that Eq.~41! is valid for all t
.T1.0. Then, fort.T1 ,

f~ t !.E
T1

t 1

2C1tA2t
dt1fT1

5
1

C1A2
@T1

21/22t21/2#

1fT1
. ~42!

Thus ast→`, for all x
0
, f(t)→ a constant value, sayf` ,

and expf(t)→exp(f`). ~Note that it is essential to check th
result even thoughx→0; cf. the discussion below of wha
happens ast→2`). If we specify the initial conditions at
t50 such thatf0 is free and1

2 ,x0⇔C1,0, as we run the
trajectories forward in time, thenx→` as t→t0 given by
11C1At01150, that is t05@(2x0)221#/(2x021)2. In
this case for large values ofx, Eq. ~38! can be approximated
as follows:

x@
3

2~ t11!
⇒ẋ.x2⇒x.1/~ t2t0!. ~43!

The solution diverges ast→t0 and the approximation, Eq
~41!, never applies. This behavior conforms to that impli
by Eq. ~34!, and may be seen clearly on the phase plane

If we run the trajectories backward in time, starting fro
initial data withx0.0, they will cross the nullcline and the
drop to zero, never becoming negative becausex50 is an
exceptional solution of the equations. Thenf(t) is mono-
tonic for t,0 also becausex.0 on these trajectories. Solv
ing Eq. ~38! analytically for t,0 gives

x52
5

2

~ t21!A2t11

~ t222t11!A2t111C2

~44!

whereC25(5/2x
0
21). This expression goes to zero for a

C2.21, corresponding tox
0
. 0 ~note that it does not

matter if C2 is positive or negative!. For large negativet its
value, for allC2 , will be approximately

x5df/dt.2
5

2t
. ~45!

Let T2 be such that Eq.~45! is valid for t,T2,0. Then, for
t,T2 ,

q.
4-6
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f~ t !.E
T2

t S 2
5

2t Ddt1fT2
5

5

2
lnS T2

t D1fT2
2⇒expf~ t !

}S T2

t D 5/2

. ~46!

Thus ast→2`, for all x
0
, f(t)→2` even thoughx→0,

and expf(t)→0, which is the dynamics we desire@1#, and
indeed is indicated already by Eq.~35!. The value ofC2

corresponding to the separatrix, Eq.~40!, is C254, which
does not give any special behavior fort,0.

Typical results of the integrations for this case are giv
in Figs. 3–5.

In summary, one gets a stable solution for 0,x0,1/2, as
one can see from the phase plane, with good ‘‘pre-big-ban
behavior and the desired dynamics forf(t) for both large
and smallt. The shape of the potential is a bit unusual, b
results directly from the specific requested ‘‘pre-big-ban
evolution, Eqs.~22!,~23!, and the chosen initial conditions
Smoothing out that behavior att50, so that the solution
departs from the ‘‘radiation’’ form Eq.~22! at very early
times while preserving the symmetry~10!, will result in a
smoothed out potentialV(f); we can choosea(t) in this
way so thatH(t) and henceV(f) are continuous att50.
Initial conditions can be set so that the matter has the des
late time behavior:p/r→1/3, r→0. However, it then has
unusual behavior at early times in that bothr andh[r1p

FIG. 3. The evolution of the scalefactora(t) as a function of
time t, with a(0)51, over the time interval@210,10#. For negative
times t<0, there is power-law inflation,t>0, followed by a radia-
tion dominated phase of expansion for positive timet>0.

FIG. 4. The function exp@f(t)# as a function of timet, with
a(0)51, f(0)50 and x(0)50.25. Here exp@f(t)# increases
monotonically from 0 at timet52` to 2 at t51`.
08400
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go negative for some values oft,0. It is unclear if this
should be regarded as a serious defect of the model or
remembering that with the unusual equation of state adop
the properties of matter are different than usual, and in p
ticular the speed of sound will no longer be given by t
usual expression. This needs further investigation. Wha
clear is that these solutions are not physically reliable at
→1` ~see below!, and they will have to be joined on to
some other solution to give an adequate model of the u
verse with ordinary matter behavior at late times. Howev
as discussed below, that problem occurs in the entire fam
of pre-big-bang models, and so is not restricted to the mod
considered here.

V. DISCUSSION

We have given examples making very clear the disti
tion between the equations and the solution having the
sired ‘‘pre-big-bang’’ symmetry. We have given a broa
method of attaining the desired string cosmology solutio
when there is a dilaton potentialV not equal to zero, and
used it to obtain ‘‘pre-big-bang’’ solutions that seem to ha
close to the desired properties. In the first case conside
the choice of the exact radiation equation of state~24! at all
times leads to a very unstable situation where extreme fi
tuning of initial conditions is required to attain the desir
results, and indeed there may be no initial data leading to
desired behavior in both the forward and backward dir
tions of time. In the second case we impose an ‘‘exoti
equation of state~30! that links the fluid behavior to the
potential in a way that generalizes the perfect fluid equat
of state, and we obtain solutions of the desired type with

FIG. 5. The dilaton potentialV(f) as a function of timef. We
assume thata(0)51, f(0)50 andx(0)50.25 and take the den
sity r(t) to have valuer(`)50 at timet5`. The potentialV(f)
is continuous at all times, but non-differentiable atf50. For f
→2`, V(f) is asymptotically zero. To the right off50, the
potential starts atV'20.005 and goes to zero from below asf
goes to ln 2, then increases to1` asf→`. Aroundf5 ln 2, both
V(f) and its gradientV8(f) are zero. As timet→1`, the dilaton
field asymptotes to a constant value of ln 2 in our model. The d
ton potentialV(f) approximates a fixed value of 0 asf→ ln 2
asymptotically for large positive times.
4-7
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ELLIS, ROBERTS, SOLOMONS, AND DUNSBY PHYSICAL REVIEW D62 084004
the need for fine-tuning the initial data set att50.
This equation of state looks strange, and the resul

matter behavior is certainly unusual, but we have no so
handle to use in restricting equations of state in this early
and we suggest thatit is essential to choose such an equati
if one wants the solution to reliably tend to the ‘‘classica
form at late times. This is because of the form of the equ
tion for f̈; if we do not setb50, whereb is defined by Eq.
~29!, then almost always that desired classical state will
be attained, because of Eq.~28!, but settingb50, which
leads to the desired behavior, leads immediately to our ‘‘
otic’’ equation of state. Insofar as that equation of state a
resulting behavior are unsatisfactory, this indicates thatthere

is a problem with the form of the equation forf̈, which
comes directly from the standard variational principle e
ployed in the context of the pre-big-bang scenario. The re
edy probably lies in finding other scenarios with alternat
forms of the variational principle, leading to other equatio
for f̈.

This is also indicated because the present form of
equations does not accommodate ordinary matter, the p
being that the above analysis applies even if there is no
laton potential. SupposeV50; then Eq.~28! remains true,
but now

b5efS 3p

2
2

r

2D , ~47!

so a reliable approach of the dilaton to a classical solutio
late times, requiringb50, demands the radiation equation
state~24!; a baryon dominated epoch is not allowed.3 This is
usually dealt with by stating that Eqs.~2!–~5! do not apply at
late times in the history of the universe — a different set of
equations is to be used then, and the solutions for early ti
obtained from Eqs.~2!–~5! must be suitably joined to tha
late time evolution. However, given the vision of M theo
as representing the fundamental theory of gravity, it sho
be able to describe that epoch too; this apparently requ
some modified scenario and associated variational princ
~note that although we have discussed the issue in the s
frame, it also arises in essentially the same form in the E
stein frame!. In any case, whether one accepts this argum
or not, given the standard variational principle and equatio
we argue that the ‘‘exotic’’ equation of state implied by se
ting b50 is necessaryto give the desired behavior; whe
adopted, it enables obtaining that behavior reliably~i.e. it
eliminates the need for extreme fine-tuning of data sett
50).

However, one should note here that we have perhaps b
somewhat extreme in imposing this equation of state at
times. It is only really needed, in our approach, near the t
of the turnaround, and one could obtain far more gene
behaviors by modifying what we have here in that lig

3Although of course by the algorithm given above we can sim
late a matter dominated phase by a suitable choice of the pote
V.
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what is required is that the quantityb must go to zero in the
period when the dilaton is stabilized. It has also been poin
out to us that it is not clear why the deviation from its va
ishing point should be absorbed completely in the press
and then promoted into the conservation equation; ot
models of the transition@10–12# successfully stabilize the
dilaton at late times without this requirement, with sugge
tions for classical and quantum corrections in the effect
action taking the place of the exotic fluid. Hence our pr
posal must just be seen as one of a range of possibilitie
this regard.

Because we have not made the usual separation of
solution into a ‘‘1’’ and a ‘‘2 ’’ branch, it is not immedi-
ately clear why these solutions are not ruled out by the ‘‘n
go’’ theorems involving a dilaton potential@3#; this is pre-
sumably because those theorems exclude fluids with
equation of state we have assumed. We also have not ex
ined the relation of these string-frame solutions to the co
sponding Einstein-frame versions. These issues await in
tigation.
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APPENDIX PRE-BIG-BANG EVOLUTION
FOR RADIATION

For given r0, it is convenient to definey5 2
3 efr0 and

change variables to (t,y,x). Equations~27! for t.0 become

ẏ5xy, ẋ5
y21

~ t11!2
1

x

2~ t11!
, ~A1!

In the 2-dimensional sub-spacest5const with coordinates
(y,x); the curveg(t) has coordinates (1,0) for allt, and
represents a set of saddle points parametrized byt. To get
exactly the desired dilaton dynamics in the future (x.0,
ef→const⇒x→0 as t→`), one must restrict the initia
conditions (y0 ,x0) to start precisely on the stable branch
these saddle points, which intersects the surfacet50 in a
curve „0,g1(x),x… passing through the exceptional poi
g05(0,1,0). One can obtain approximate solutions by
writing the second equation of Eqs.~A1! in the form

S x

~11t !1/2D .

5
y21

~ t11!5/2
.

Supposey is almost constant fort.T1 , implying thatx is
close to zero then. Then we can integrate to get

t.T1⇒x52
2

3

y21

11t
1C1A11t

-
ial
4-8
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whereC1 determines the magnitude ofx at time T1 . The
first part decays away as desired, but the second part g
with time unlessC150; this is the fine-tuning required t
attain the desired behavior ofx.

To investigatet,0, it is again convenient to definey
5 2

3 efr0 and change variables to (t,y,x). The equations for
t,0 become

ẏ5xy, ẋ5y~2t11!21
x

2~2t11!
1

1

~2t11!2
,

~A2!

implying that ẋ.0 for all t,0; hencex necessarily de-
creases at all times in the past. The problem is that it
become negative, becausex50 is not an invariant set of the
equation. We want a solution wherex remains positive for
all time so thatf decreases for all time; this means we ne
x to go to a positive value or zero, but not to become ne
tive, andy to go to zero. As in the previous case one c
obtain approximate solutions by rewriting the second eq
tion of Eqs.~A2! in the form

„x~12t !1/2
…

.5
1

~2t11!3/2
@11y~2t11!4#.

Suppose

y~2t11!4!1 for t,T2 . ~A3!

Then we can ignore the second term on the right and i
grate to get

t,T2⇒x5
2

12t
1

C2

A12t
,

y5y0

1

~12t !2
exp~22C2A12t !

whereC2 , y0 represent the magnitude ofx,y at time T2 .
This decays away as desired, and consistently preserve
inequality ~A3! for all earlier times because the exponent
always dominates the power law terms. The question the
whether for suitable initial conditions we can attain this
equality at some timeT2 , requiring y(T2)!(12T2)24.
We can satisfy this withT250 if y05 2

3 ef0r0!1, i.e. f0
! ln(3/2r0).

APPENDIX B: DENSITY EVOLUTION WITH EXOTIC
EQUATION OF STATE

The ‘‘pre-big-bang’’ evolution~22!,~23! impliesH andḢ
in terms ofa:

t>0: H~a!5
1

2a2
, Ḣ~a!5

21

2a4
, ~B1!
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t<0: H~a!5
a2

2
, Ḣ~a!5

a4

2
. ~B2!

Assuming the exotic equation of state~30! implied by setting
b50 at all times, from~33! we find w in terms ofa

t>0: exp@f~a!#5exp~f0!
a

a~122x0!12x0
, ~B3!

t<0: exp@f~a!#5exp~f0!
a5/2

a5/2S 12
2

5
x0D1 2

5
x0

,

~B4!

and from Eqs.~39!,~44! we find x in terms ofa,

t>0: x~a!5
x0

a2~2x01~122x0!a!
, ~B5!

t<0: x~a!52
5ax

0

2x
0
1~522x

0
!a5/2

. ~B6!

A particularly simple case occurs whenx05 1
4 . Then

t>0: exp@f~a!#5exp~f0!
2a

a11
, ~B7!

t<0: exp@f~a!#5exp~f0!
10a5/2

9a5/211
~B8!

and

t>0: x~a!5
1

2a2~11a!
, ~B9!

t<0: x~a!52
5a

2~119a5/2!
.

~B10!

Now r(t) is determined by Eq.~31!; using the above
expressions, fort.0 andx05 1

4 this becomes

dr

da
52

3

a5
2

3

4a6~11a!

which can be solved to give

r~a!5C1
3

20a5
1

9

16a4
1

1

4a3
2

3

8a2
1

3

4a
1

3

4
lnS a

11aD .

This implies r(t)→C1 107
80 2 3

4 ln 25C10.81764 . . . as t
→01 and r(t)→C as t→`; hence choosingC50, r(t)
→0.81764 . . . ast→01 and r(t)→0 as t→`. Also p/r
→1/3 ast→`. The expression forV(w) in this case follows
on putting this into Eq.~15! and using Eqs.~36!, ~22!, and
the various expressions above. Similar~more complicated!
expressions can be obtained fort,0.
4-9
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