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Solution to the graceful exit problem in pre-big-bang cosmology
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We examine the string cosmology equations with a dilaton potential in the context of the pre-big-bang
scenario with the desired scale factor duality, and give a generic algorithm for obtaining solutions with
appropriate evolutionary properties. This enables us to find pre-big-bang type solutions with suitable dilaton
behavior that are regular &0, thereby solving the graceful exit problem. However, to avoid fine-tuning of
initial data, an “exotic” equation of state is needed that relates the fluid properties to the dilaton field. We
discuss why such an equation of state should be required for reliable dilaton behavior at late times.

PACS numbsg(s): 04.50+h, 98.80.Cq

I. INTRODUCTION higher order curvature terms, some kind of exotic behavior
of matter is necessary in order to obtain a graceful exit from
In this paper, we investigate the equations of string costhe pre-big-bang phase. N o

mology [1,2] in the string frame, allowing for a dilaton po-  In this paper we follow Gasperiil] by working in the
tential V(). The pre-big-bang scenario is motivated by thestring frame. The relation to the Einstein frame is left for
search for cosmological solutions with @ft)—1/a(—t)  another paper. It should be made clear from the start that our
symmetry in the scale factar(t), which implements an ana- solutions are rather special in the_spectrum_ of pre-big-bang
logue of theT-duality symmetry of M theory. However, one models; those we concentrate on in the main show an exact
must distinguish between symmetries of the equations angcale factor duality in the solutions, and thus we do not con-
those of their solutions. We Iook at cases in whichéhea-  Sider here the more exciting possibility of a phase of early
tionshave such a scale factor symmetry, when solutions malfinetic-dilaton dominated inflation which leads to an early
or may not exhibit the same symmetry, and at cases in whicR"a@s€ which is not radiation dual but is genuinely stringy
the solutions obey the scale factor symmetry, even if the inflationary vacuum. Nevertheless, the set of solutions inves-
equations do not. In the latter case we obtain some solutiorfgated here helps to understand the spectrum of possibilities
that seem to have most of the properties desired in the prévailable within the broad pre-big-bang set of ideas.
big-bang scenario, in that they have the desired scale factor
symmetry, the desired evolution of the dilaton field, and con-
tinuity att=0 of a(t), #(t),#(t) and the Hubble parameter _ . .
H(t)=a(t)/a(t) [but allowing a discontinuity irH(t) and One can determine the general equations of string cosmol-
- . . . . .. ogy by extremizing the lowest order effective action of dila-
¢(t) there, implying a corresponding discontinuity in

dV1d¢], thus providing a solution to the graceful exit prob- ton gravity:
lem[3,4]. However, to obtain the desired dilaton behavior at

II. STRING COSMOLOGY EQUATIONS

recent times, we need to employ an “exotic” equation of 1 1

state as discussed below. =— dflJ' d9*1x\|gle” ¢ R+ (V $)%— 1—2H2+V(¢)
There are “no-go” theorems that exclude such regular 2\

transitions in the presence of a perfect fluid and Kalb-

Ramond sources. A “lowest order” Einstein frame analysis +f dd”x\/HLm, (N)

by [4] discusses graceful exit in generalized phase space, and
derives a set of necessary conditions for transition from a
classical dilaton-driven inflationary pre-big-bang phase to avhere ¢ is the scalar dilatorti=dB (antisymmetric tensor
radiation-dominated era, joined &t 0 in a Planck epoch of field strength, V() is the dilaton potentialy is the funda-
maximal finite curvaturéd(t). They show that a successful mental string length scale, amg, is the Langrangian density
exit requires violation of the null energy conditigNEC).  of other matter sources. To derive string cosmology equa-
Classical sources tend to obey the NEC, but various newions for thed=3, homogeneous, isotropic, conformally flat
kinds of effective sources generating non-singular evolutiorbackground we will follow Gasperiffil] in assumingB=0,
have been considered that do not. Thus, failing invocation o& perfect fluid minimally coupled to the dilaton, and a Bian-
chi type | metric(see Appendix C of1] for detailg. Unlike
Gasperini we assumé(¢) # 0, to obtain the string cosmol-
*Email address: ellis@maths.uct.ac.za ogy equations in the following canonical form:
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02 ' Flat dilaton potential with exotic equation of state
. 2 glP P .9t VOV
H+H"=e 273" He+ 3 2 3 3 To obtain equations of motion preserving the scale factor
symmetry, Eq.(10), we assume the simplest potential,
) o 3p p namely a flat potential
¢=—3Hp+ p*—V-V'+e? 7—5), (4)

V() =k, 11
whereV'=dV/j¢$. When combined, these imply the stan- \yhere « is a constant, and then investigate the behavior of
dard energy conservation equation the universe. In order to reliably obtain proper limiting be-

. 3H( ) ) havior of the dilaton, we assume that the equation of state
p=—3H(p+p).
2
In a relationship analogous to that between the classical p=g+§e*“’x (12
Friedmann equation and Raychaudhuri equation:
Equation(2) is the first integral of hh0|d§ atl_all timegthis c_ho(ijge, whic; fis nhot invatr]iar}t Iledfar
the duality symmetry, is discussed further in the following
Eg. (3) provided that Eq(4) and Eq.(5) hold. (6)  sections. One can immediately see that at late timespif

—const, as we will show follows from this choice, then this
equation of state simply reduces to radiation plus a constant.
S 'We are interested in getting satisfactory dynamics for
H(t) and ¢(t), or, equivalently, fory(t)=¢. To see when
this occurs, we manipulate the string cosmology equations
(2)—(4) subject to Egs.(11),(12 to obtain the two-
dimensional phase space with coordinatgsH) governed

These four equations will be the basis for the analysis in thi
paper.

One of the primary motivations for the pre-big-bang sce-
nario[5] is that whenV(¢) =0, these equations are invariant
under the following transformation:

a(t)—at)=a (1) @) by the following equations:
2
provided that the dilaton transforms as— ¢=¢—61Ina H:X__2H2+ f, (13
and the energy density and pressure @asp’=a%p, p 6 6
—p'=—pa ® Thus, ifa(t) is a solution, so isa(t) for .
suitable ¢,p,p. Since the string cosmology equations are x=x(x—3H), (14)

also invariant under time reversal symmetry, . . .
the latter following because of the choi¢E?). Having cho-

a(t)eg(t)=a(—t), ®) sen the constant, we can set in?tial conditi_o_nsXQ),HO) at _
t=0, and then extend the solution to positive and negative

the deceleration associated with standard post-big-bang co%lues oft by use of these equations. Fer0, there are no
mology can be associated with an accelerated evolution pridfxed points in the phase plane, and on every trajectory both

to the big bang by the generalized transformation H andx diverge agt|—. For k=0, i.e. no dilaton poten-
tial, there is one fixed point at the origin, but for any initial
a(h)—a(t)=a (-t (9) condition(set att=0), y andH will diverge either as time is

run forward or backward.

The interesting dynamics is obtained wher0. There
are then fixed points af,: (0,J«/12) (a sourcg A_:
(0/k/12) (a sink, B, : (3k,V«/3) (a saddle point and

a()=at)=a (—1). 10 B :(—V3x,—\x/3) (a saddle point In the phase plane
depicted in Fig. 1, we claim the initial conditions in the

However, if we assum¥(¢)+0 as in Eqs(2)—(4), then ~ region | bounded byA, , B, andA_ and the separatrixes
in general the equations are not invariant under the symmado0ining them give satisfactory dynamics of bokh and x
try, Eq. (10), even if the solutions are. We will ook at both Which includey— 0 as|t|—, x>0 for all times, soh(t) is
cases in what follows, but generically allowing a potentialmonotonic,H remains finite, and a “bounce” occurs that
that does not preserve the symmetry. Note that if we assurr@voids the initial singularity. Since region | is bounded by
matter with the sameequation of state before and after fixed points that have coordinates proportional te, in-
=0, then the matter equations also will not be invariant uncreasingx will give one a larger region of initial conditions
der the scale factor symmetry. One has to decide what ithat lead to a nonsingular universe with proper dilaton dy-
more physically meaningful: matter with a universal equa-namics. We can obtain a solution on the boundary of region
tion of state applicable at all times or that whch has a disd (evolving along the line joining\_ to A, which does not
continuous equation of state that preserves this symmetry. liie in |) that is invariant under symmetr(8) by setting xo
what follows, we adopt the first option. We return to discuss=0, Hy=0 at t=0, but this solution, given explicitly by
this choice in the conclusion. a(t) =cosh’¥(\/x/3t), is not invariant under the symmetry

wherea(t) is a solution for suitablep,p,p because(t) is.
The solution hag-duality symmetry if, for each,
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3 : : ; : (2) Choose an equation of state and solve déa) from
; ; ‘ ; Eq. (5);* asa(t) is known, this determines(t).
2r g : ! : (3) EliminateV and V' from Eq. (4) by use of Eqs(2)
f 5 ‘ g and(3) to obtain a differential equation relatindy(t), ¢(t),
L R R [Pl i p(t), and their time derivatives.
5 : A B+ (4) Solve the equation obtained in sté&}) for ¢(t).
0 B- ; ‘ g (5) Substitute the now known functions(t), p(t), and
: 74 ‘ ' H(t) anda(t) into the rearranged version of E®),
1 7 =
V(t)=6H?—e?p—6H p+ ¢? (15)
DE s N N e
4 i i | i to obtainV/(t).
3 2 B 0 ! 2 3 (6) Invert ¢(t) to obtaint(g).
FIG. 1. Phase portrait representing the solution space of Egs. .(7)_ Transform V(t) as f0”0W53V(t):_V(t(¢))_:>V(¢)-
(13),(14) with x>0. This is possible for each range bbn which ¢(t) is mono-

tonic [if it is not monotonic on some range &fin general

(10). A drawback of all these models is that inflation will not V(¢) will not be well defined because it will not be single
stop att>0, but as discussed in the Conclusion, the string’aluéd for the corresponding values ¢f. _

cosmology equations derived in Sec. Il do not apply to the Thus, providedé(t) determined from steg3) is mono-
present cosmological regime without modification, so it istonic, we find aV(¢) that corresponds to a given monotonic
possible that a radiation dominated evolution started after thinction a(t). Because we have now satisfied E(S, (2)
time when these equations no longer applied. In any case thd the equation obtained in step), the latter depending
gives a specific family of solutions where the equations dis€ssentially on Eq(4), it follows from statement6) that Eq.
play the desired symmetr{10) but the solutions do not— (3) will be true also, so we have satisfied all the equations of

which is not very surprising, given the prevalence of brokenthe theory for this matter descriptidaf. [6]); hence we have
symmetries in physics. a solution of the desired form.

Alternatively, we can give an algorithm for determining a
dilaton potential V(¢) that produces a desired dilaton
IIl. OBTAINING DESIRED DYNAMICS evolutiorf ¢(t) by proceeding in the same way as above,
FROM A DILATON POTENTIAL except for minor changes: replace stap by the following:

In this section, we generalize the method introduced by (1') Specify the desired monotonic function for the dila-
Ellis and Madseri6] through which they obtain a classical N ¢(t), in step(2), leavep in the formp(a), and replace
scalar potential associated with a specifigd) in the stan-  Step(4) by _ o
dard gravitational equations. No field has been observed that (4') solve the equation obtained in stepf@r a(t) [or for
coincides with a dilaton potenti&d( ¢), so we assume that it ] .
is a freely disposable function. We show that by a suitable The rest of the algorithm is as before. _
choice ofV(¢) one can obtain almost any behavior ) _ Finally, note that we can carry out these procedures piece-
or, alternatively, forg(t). We first present an algorithm for Wise: for example we can specig(t) for some range of
determiningV/( ) from a desireda(t) or a desiredp(t), and _and ¢(t) for some adjoining range df or.d.lfferent behav-
then present an analytically smooth solvable example. Thirs for a(t) for different ranges of, then join the solutions
solution illustrates our main point, but has little physical rel- together, ensuring thai(t), H(t), ¢(t) and x(t) are con-
evance[although it does satisfy the symmetf§0)]. In the  tinuous where these ranges meet.
following section we use these methods to obtain two solu-
tions that resemble the standard “pre-big-bang scenario,”
but with continuity ofa(t) and H(t) and with satisfactory
dynamics of¢(t). The associated dilaton potentials ae To demonstrate the procedure, we give a simple analyti-
hoc because they are derived from the desired behavior oally solvable example with a pure scalar field, i p
the universe, rather than from a field theory model; as dis=0. Consider an exponential expansion as in classical infla-
cussed in many inflationary and quintessence studies, seéon,
e.g.,[7,8].

B. Exponential scale factor behavior with no matter

a(t)=e"=H=w, H=0, (16)
A. Algorithms

We proceed by providing the followingeneral algorithm

l . . . ’ "
e . . If the equation of state is a function d or V', these quantities
for determining a dilaton potentidd( ¢) that produces a de- a a

then will have to be eliminated using Eq&) and(3) before solving

sireda(t): Eq. (5).
(1) Specify a desired monotonic function for_the scale 2t s important to note that one has freedom to choose afty
parameter(t), consequently determining(t) andH(t), or ¢(t), not both.
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wherew is a positive constant. This solution has the desiredactor symmetry(10). Note that we have shifted the origin of

symmetry(10). time in each branch from that customarily used, in order to
In this case the differential equation fe¥(t) takes the geta smooth evolution throudk-0; this of course makes no
form difference to the desired physical behavior, for we can
B i choose the origin of time to be wherever we wégahd the
¢=Ho (17 equations are invariant under time translatieat’ =t-+c).

Although the power law inflation ends with the scale-factor
valuea(0)=1, required by continuity together with the sym-
. metry (10), the solution has sufficient inflation for any pur-
b(t)= o+ @(ewt_ 1), (18) pose because it involves an infinite numberdbldings (it
w starts with the asymptotical vallee=0 ast— —x).

Using Eq.(17) and Eq.(15) we obtain

a monotonic function as required, and A. Pre-big-bang behavior with radiation equation of state
V(t)=6w>— 6¢oweWt+ ¢§e2Wt. (19 First we assume the radiation equation of state holds at all
times, that is,
After inserting the inverted equatidi8),

t(¢)=_log ;( ¢ ot W") , (20
0 which, using Eqs(5) and(22),(23), implies
into Eq.(19), one obtains -
%19 p(E)=pol t+1)72 (25
: 2
V(¢)=w2( b—3— o+ $o —3w?2 (21)  Wherepg is a positive constant and+t” refers to the post-
W big-bang era, “~t” to the pre-big-bang era. Notice that both

which is simply a quadratic potential plus a constant. Clearly’ @1dp are continuous at=0.

the behavior forp(t) is unphysical since(t) — o instead of The equation forp now takes the form

asymptoting to a constant. However, this gives a transparent >

example where even though the scale factor symm@gy b=—-e%p+Hep+2H. (26)
is broken in the equationbecauseV(¢) is not constart 3

the solution obeys that symmetry.
y y y Substituting in Eqs(22) and(25), we could not find an ana-

lytical solution to Eq.(26), so we investigate the three di-
mensional phase space with coordinateg(x), given from

In this section we try to use the methods just explained td=gs.(26),(22),(23),(25) by
obtain solutions that resemble the “pre-big-bang scenario”
but with satisfactory dynamics of(t) and a continuous L .2 </> =2 X _ 1
transition from the pre-big-bang to post-big-bang phases. In b=x, x= 3© po(£t+1)7"+ 2(*t+1) +(+t+1)2’
these examples, we seek solutions that evolve from a string N (27)
perturbative vacuum, i.¢d—0 ande?— 0 (no interactiony
to the present scenario whegé, which acts as the coupling where the top sign holds fdr>0 and the bottom sign far
constant, asymptotes to a constant. We will assume the fol<0. We can set initial data at=0, and then investigate the
lowing behavior of the universe: phase plane orbits as we run the trajectory forward and back-

ward in time in such a way that and ¢ are continuous
a(t)=(t+1)*2 t=0=H(t)= =—— (22) throught=0. Thenj( is discontinuous there, but we have no
2(t+1) problem in joining the solutions far>0 andt<O.

Fort>0, there is an exceptional integral cury@) given
by (t, $o,0), whered,=In(3/2p,); this is the only integral
curve with a fixed value o andy. Note that settinghy and
2(—t+1) (23 Xxo determines the initial point in the phase space, and speci-

fying po determines the location of this exceptional curve. In

determininga(t) for t<0. Botha(t) andH(t) are continu- the 2-dimensional sub-spacds-const with coordinates

ous att=0 with a(0)=1, H(0)=1/2, butH(t) is not con-  (¢,x), the curvey(t) has coordinatesd,,0) for all t, and
tinuous there. represents a set of saddle points parametrised By get
This behavior, which is essentially radiation dominatedexactly the desired dilaton dynamics in the futupg>0,
evolution of the universe for positive times and power-lawe?— consts y—0 ast—x), one must restrict the initial
inflation for negative times, is motivated by the “pre-big- conditions g, xo) to start precisely on the stable branch of
bang” scenario introduced ifb], and exactly obeys the scale these saddle points, which intersects the surfae® in a

IV. “PRE-BIG-BANG” BEHAVIOR

determininga(t) for t=0, and by the symmetr{10),

a(t)=(—t+1)" Y2 t<0=H(t)=
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single curve(0,y.(x),x) passing through the exceptional the last example arises pecausg of our choic;e of equgtion of
point 702(0,:50,0) (for more details, see Appendix )A state, as can be seen by inspection of @j.which we write
However, there is actually slightly more freedom than this innow as
finding physically relevant initial conditions because if a tra-

- 2
jectory starts close enough to the stable brafizh not ex- X=73Hx X8, 28
actly on i9, then the trajectory will stay close to the fixed yhere
point for an arbitrarily long period of time befor¢ and y
diverge, and this may suffice for physical purposes even if b 3p p
the solution eventually divergdsf. the discussion of inter- p=-V-V'te PR (29)

mediate isotropisation ifi9]). Nevertheless, the physically

relevant set of solutions is very unstable and requires very As mentioned before, we want to obtaéf— constant,
precise fine-tuning, in order to obtain the desired dilaton dy4.e. y—0, at late times, which implie8—0 in Eq. (28). If
namics, lying in a small open neighborhofd of the curve  we choose the radiation equation of state as in the last ex-
$o="+(x0) in the initial data set at=0. Indeed we have ample[Eq. (24)], thenp=—V—V'. Therefore, requiring
found it very difficult to obtain numerical solutions with the —0 ast— ¢ puts a heavy restriction on the dilaton potential,

desired behavior because of this instability. namelyV—e~ at late times. Consequently, there is a fine-
Fort<O0 there are no points with a fixed value@fandy  tuning problem if you use the radiation equation of state.
(because we assumg>0). To get the desired dilaton dy- !N the present example, we assurfie-0 for all times,

namics in the pasty>0, e?—0 ast— —s) one must fur- which from Eq.(28) demands the exotic equation of state

ther restrict the initial conditions, the problem being that Eq.

. ) . . . . p 2
(27) is an inhomogeneous equation fpwith a time-varying p=-+-e 4V+V’) (30)
source functior{albeit a source function that decays away as 3 3
t—*x). We can obtain the desired behavior i
=Z%e%py<1, i.e. po<In(3/2p,) (details are given in Ap-
pendix A). This is a sufficient condition; there will be a
wider domainD_ of initial data att=0, containing this set, B . . -
which will ensure that at early enough times the desired be- P(t):f 2He #(12H¢+6H - 3¢?)dt (31)
havior is attained.

To get a satisfactory solution for all time, for a given which allows the density to go through zero and become
choice ofp,, one must set the initial conditions to lie in both negative. We discuss this equation further in the Conclusion.
D, andD_, so the crucial issue is whether they intersect or  The differential equation that relatei(t) to ¢(t) is sim-
not. We have not attained finality on this point. It may bePply Ed. (28) with 3=0:
that the “no-go” theorems with a potentiéB] imply that . .
they do not intersect, but this implication is not entirely ¢=—3Hop+ ¢, (32
clear, as the conditions of those theorems may not corre- ) ) )
spond precisely to the conditions we contemplate here. IFOr arbitrarya(t), this can be solvedwith ag=1 and xo
they do intersect, we can attain the desired behayiet0 = ¢o) by
ande?—0 when time runs backward as well aé— const t
as time runs forward and, in principle, one can obtain a con- _ 4 —3
tinuousV(¢) associated with the unstable solution described e do— A(D]=1 Xofoa (Hdt. (339
above because every function is continuous on the right hand
side of Eq.(15). Furthermore ¢(t) is monotonic and con- For the specific case given by Eq&22),(23) we obtain from
tinuous, and therefore invertible, so one can complete stethis the analytical solution
(6) of the algorithm set out in Sec. Il A. However, attaining
such solutions will require extreme fine-tuning of the initial B(t)=+ o= In[1—2x[1—(1+1) 7| (34)
data, and this is very difficult to do because one does not
know where the stable branch of the saddle point intersect®r t>0 and
t=0. Thus, if such solutions do exist, the extreme fine- 5
tuning required for their initial data makes them seem im- _ _ _fXor, o s
practicable as cosmologies despite their other desirable prop- P(O="+ o= In|1 5 [1-(1-9] (35
erties.

at all times[note that Eq(12) is the special case resulting
whenV’=0]. Using this equation of state implies

for t<O0. Inverting Eq.(34) we obtain

B. “Pre-big-bang” behavior with exotic equation of state Ax3e?(9=%0)

t(¢)=

Finally, we assume the identical “pre-big-bang” behavior [(1—2xo)e? %0—17? -
of the last exampléEqs(22),(23)], but we obtain a stable
solution with a different equation of state. The instability in and inverting Eq(35) we obtain

(36)
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5

-5
-10 - - 10

FIG. 2. Phase portrait representing the solution space of Eq.

(38).

(37

5e?” 0—5+2x,]¥®
t(p)=1-|————| .

2X0

Now we can solve Eq31) to obtainp(a) and sop(t) (see
Appendix B for one particular cageand substitute our re-
sults into Eq(15) to obtain the dilaton potentid(¢) that is

PHYSICAL REVIEW [B2 084004

which itself goes to zero as—o. If we specify the initial
conditions att=0 such thatg, is free and & y,<3<C.
>0, then as we run the trajectories forward in tijpe> 0. In
this case, for large positive values of Eq. (39) will be
approximately

1

=~ >0 (41)
X 2C, ty/2t

[note that(t) is monotonic fort>0 becausg>0 on these
trajectories. Let T, be such that Eq(41) is valid for all t
>T,>0. Then, fort>T,,

_ 1 [TV2-t-1?)

C.\2

1
— = dt+
ancm@ or.

+ by (42)

Thus ast— oo, for all X, ¢(t)— a constant value, say.,,

and expp(t)—exp(p.). (Note that it is essential to check this
result even thoughy—0; cf. the discussion below of what
happens as— —). If we specify the initial conditions at
t=0 such thatp, is free and; < yo<C, <0, as we run the

associated with our specified “pre-big-bang” behavior. Thistrajectories forward in time, theg—« ast—ty given by
is straightforward but tedious, and results in very complexi+ C_ \t,+1=0, that isto=[(2x0)%>—1]/(2xo—1)%. In
analytic expressionghe real complexity coming through the this case for large values gf Eqg.(38) can be approximated
expressions forp(t) that occur as a consequence of theas follows:

choice of the exotic equation of statdRather than giving

these analytic expressions, we give a graph of the potential 3

for one particular case in Fig. 2.

To discuss the relevant initial conditions, it is instructive

to look at the phase plan@ig. 2 with coordinates f(, x),
where y= ¢ is governed by the equation

) 3
X=X +x° (38
where we again use to represent>0 and— to represent
t<0. One can easily see that=0 (= y=0) is an attractor,
and represents a physically uninteresting solution wfth
=const. Alsoy=3/2(£t+1) is a nullcline, characterizing
the other points wherg=0. This curve starts at (3) and
drops symmetrically away to zero &s>*+~. Now we can
solve EQ.(38) analytically fort>0, finding

1
C2(t+1)(1+C . \t+ 1)

X (39

whereC, =(1/2x,—1) is positive iff yq<<1/2. The separa-

=x=x’=x=1Ut—to). (43)

X5+ 1)

The solution diverges as—t, and the approximation, Eq.
(41), never applies. This behavior conforms to that implied
by Eqg.(34), and may be seen clearly on the phase plane.

If we run the trajectories backward in time, starting from
initial data with x>0, they will cross the nullcline and then
drop to zero, never becoming negative becaysed is an
exceptional solution of the equations. Theit) is mono-
tonic fort<<O also becausg>0 on these trajectories. Solv-
ing Eq. (38) analytically fort<0 gives

(t—1)J—t+1

5
X2 (2t 1) V—tr14C_

(44)

whereC_= (5/2)(0— 1). This expression goes to zero for all
C_>—1, corresponding toy,> 0 (note that it does not

matter if C_ is positive or negative For large negative its
value, for allC_, will be approximately

trix between the solutions that diverge and those that go

asymptotically to zero as— is the special solution with
C.. =0 which goes through (), that is,

1
X~ 2(t+1)

(40)

5
x=dg/dt=——

o1 (45)

Let T_ be such that Eq45) is valid fort<T_<0. Then, for
t<T_,
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r3
3 F2.8
F2.6
25 Eoa
2 F2.2
at Eo
1.57 F1.8
) :1 :}otential
0.5 F1.2
T T T T T T T T T T T T T T T T T T T 1
-10 5 i 5 10 B
time £0.8
F0.6
FIG. 3. The evolution of the scalefacta(t) as a function of "
timet, with a(0)=1, over the time intervgl—10,10. For negative Eoo
timest=<0, there is power-law inflatiort=0, followed by a radia-

tion dominated phase of expansion for positive tirge. - = 2 - ! dilaton

t 5
oo=[ [~

T 512
_) | (46)

FIG. 5. The dilaton potentiaV(¢) as a function of timep. We

dt+¢r = E|n(T—) +pr —=expo(t) assume that(0)=1, ¢(0)=0 and_X(O):O.ZS and take_ the den-
- 2 t - sity p(t) to have valuep(e°) =0 at timet=cc. The potentiaM(¢)
is continuous at all times, but non-differentiable g&0. For ¢
——o, V(¢) is asymptotically zero. To the right ap=0, the
potential starts at/~ —0.005 and goes to zero from below é&s
goes to In 2, then increases 1o~ as ¢— . Around ¢=In 2, both

Thus ast— — o, for all x , ¢(t)— —= even thoughy—0, V(¢) and its gradienV’(¢) are zero. As time— + o, the dilaton
0

L . . field asymptotes to a constant value of In 2 in our model. The dila-
Qnd eXP‘f’(t,)—’.O’ which is the dynamics we desifé], and ton potentialV(¢) approximates a fixed value of 0 as—In2
indeed is |nd|cated already by EEB5). The value on_ asymptotically for large positive times.
corresponding to the separatrix, E40), is C_=4, which

does not give any special behavior for0. _go negative for some values 0£0. It is unclear if this

. Typical results of the integrations for this case are giverghoyid be regarded as a serious defect of the model or not,

in Figs. 3-5. ) remembering that with the unusual equation of state adopted,
In summary, one gets a stable solution fer §y<1/2,as e properties of matter are different than usual, and in par-

one can see from the phase plane, with good “pre-big-bang'ijcyjar the speed of sound will no longer be given by the

behavior and the desired dynamics i(t) for both large g3l expression. This needs further investigation. What is

and smallt. The shape of the potential is a bit unusual, butgjeqr js that these solutions are not physically reliable as
results directly from the specific request(_eq _ pre—blg.—pang —+ (see below; and they will have to be joined on to
evolution, Eqs.(22),(23), and the chosen initial conditions. some other solution to give an adequate model of the uni-

Smoothing out that behavior at=0, so that the solution yerse with ordinary matter behavior at late times. However,
departs from the “radiation” form Eq(22) at very early  5q giscussed below, that problem occurs in the entire family

times while preserving the symmet(0), will result in @ ¢ hre_pig-hang models, and so is not restricted to the models
smoothed out potentiadV(¢); we can choos&(t) in this  ~ynsidered here.

way so thatH(t) and henceV(¢) are continuous at=0.
Initial conditions can be set so that the matter has the desired
late time behaviorp/p—1/3, p—0. However, it then has

oC

t

V. DISCUSSION

unusual behavior at early times in that bettandh=p+p We have given examples making very clear the distinc-
tion between the equations and the solution having the de-
167 sired “pre-big-bang” symmetry. We have given a broad
1.4 method of attaining the desired string cosmology solutions
127 when there is a dilaton potenti& not equal to zero, and

used it to obtain “pre-big-bang” solutions that seem to have
close to the desired properties. In the first case considered,
the choice of the exact radiation equation of si@4 at all
times leads to a very unstable situation where extreme fine-
02] tuning of initial conditions is required to attain the desired
‘ , : , results, and indeed there may be no initial data leading to the
20 o 10 20 desired behavior in both the forward and backward direc-
e tions of time. In the second case we impose an “exotic”
FIG. 4. The function eXps(t)] as a function of timet, with equation of statg30) that links the fluid behavior to the
a(0)=1, ¢(0)=0 and x(0)=0.25. Here expp(t)] increases potential in a way that generalizes the perfect fluid equation
monotonically from O at tim¢= —co to 2 att=+oo. of state, and we obtain solutions of the desired type without

exp(phi) g g1
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the need for fine-tuning the initial data settatO. what is required is that the quantiyymust go to zero in the
This equation of state looks strange, and the resultingperiod when the dilaton is stabilized. It has also been pointed
matter behavior is certainly unusual, but we have no solicbut to us that it is not clear why the deviation from its van-
handle to use in restricting equations of state in this early erdashing point should be absorbed completely in the pressure,
and we suggest thitis essential to choose such an equationand then promoted into the conservation equation; other
if one wants the solution to reliably tend to the “classical” models of the transitiofil0—12 successfully stabilize the
form at late timesThis is because of the form of the equa- dilaton at late times without this requirement, with sugges-
tion for ¢; if we do not setB=0, whereg is defined by Eq. tions for classical and quantum corrections in the effective
(29), then almost always that desired classical state will nofiction taking the place of the exotic fluid. Hence our pro-
be attained, because of E(8), but settingB3=0, which ~ Posal must just be seen as one of a range of possibilities in
leads to the desired behavior, leads immediately to our “exhis regard. _
otic” equation of state. Insofar as that equation of state and Because we have not made the usual separation of our
resulting behavior are unsatisfactory, this indicates tivete ~ Solution into a *+” and a " —" branch, it is not immedi-
is a problem with the form of the equation faf, which ately clear why these solutions are not ruled out by the “no-

comes directly from the standard variational principle em-3¢  theorems involving a dilaton potentig8]; this is pre-

ployed in the context of the pre-big-bang scenario. The remSumably because those theorems exclude fluids with the

edy probably lies in finding other scenarios with alternativeSduation of state we have assumed. We also have not exam-

forms of the variational principle, leading to other equationsIned the relatlon_of these stnn_g-frame SOIu.t'()nS to the_ corre-
for & sponding Einstein-frame versions. These issues await inves-

L - tigation.
This is also indicated because the present form of theg

equations does not accommodate ordinary matter, the point

being that the above analysis applies even if there is no di- ACKNOWLEDGMENTS
laton potential. Suppos¥=0; then Eq.(28) remains true, We thank M. Gasperini, A. Coley, and R. Tavakol, for
but now helpful comments, and particularly J. Lidsey for helpful dis-
cussions. D.R. wishes to thank Elaine Kuok for her patience
B:e‘b(B—p _ 3) 47) in checking many of the calculations in this paper. We thank
2 2] the NRF(South Africa and Queen Mary College, London,
for financial support.
so a reliable approach of the dilaton to a classical solution at
late times, requiringd=0, demands the radiation equation of APPENDIX PRE-BIG-BANG EVOLUTION
state(24); a baryon dominated epoch is not allow&this is FOR RADIATION
usually dealt with by stating that Eq®)—(5) do not apply at
late times in the history of the univers— a different set of For given py, it is convenient to defing=35e’p, and

equations is to be used then, and the solutions for early timeghange variables ta fy, ). Equations27) for t>0 become
obtained from Eqs(2)—(5) must be suitably joined to that

late time evolution. However, given the vision of M theory . . y—1 X

as representing the fundamental theory of gravity, it should =Xy, x= (t+1)2 + 2(t+1)’
be able to describe that epoch too; this apparently requires

some modified scenario and associated variational principlﬁ1 the 2-dimensional sub-spaces const with coordinates

(note that although we have discussed the issue in the strlr@ x); the curvey(t) has coordinates (1,0) for af] and
frame, it also arises in essentially the same form in the Ein'refare,sents a set of saddle points paramétrize(ﬂ Bp get

stein fra_mé. In any case, Whe}hgr one accepts this argumenéxactly the desired dilaton dynamics in the futupg>0
or not, given the standard variational principle and equations :

that the “exotic” i f state implied b ¢ e?—consts y—0 ast—o), one must restrict the initial
we argue that the “exolic™ equation of state Implied by SEt- ., qitiong ¢/0.x0) to start precisely on the stable branch of
ting B=0 is necessaryto give the desired behavior; when

adopted, it enables obtaining that behavior reliaflg. it these saddle points, which intersects the surtac® in a
eliminates the need for extreme fine-tuning of data sdt at curve (0,7, (x),x) passing through the exceptional point

~0) v0=(0,1,0). One can obtain approximate solutions by re-

However, one should note here that we have perhaps beé’\r/1mlng the second equation of Eq#1) in the form

somewhat extreme in imposing this equation of state at all

times. It is only really needed, in our approach, near the time

of the turnaround, and one could obtain far more general

behaviors by modifying what we have here in that light;
Supposey is almost constant for>T, , implying that y is
close to zero then. Then we can integrate to get

(A1)

_ oyl
(t+1)52

X
(1+1)12

3Although of course by the algorithm given above we can simu-
late a matter dominated phase by a suitable choice of the potential
V.

2y—1

t>T+:>X= - § m+C+ V1+t

084004-8



SOLUTION TO THE GRACEFUL EXIT PROBLEM IN . ..

whereC, determines the magnitude gfat time T, . The

first part decays away as desired, but the second part grows
with time unlessC, =0; this is the fine-tuning required to

attain the desired behavior gf

To investigatet<<0, it is again convenient to defing
=2e?%p, and change variables to,y, ). The equations for
t<0 become

X 1
2(—t+1)+(—t+1)2'
(A2)

y=xy, x=y(—t+1)%+

implying thatj(>0 for all t<0; hencey necessarily de-

PHYSICAL REVIEW 62 084004

2

a . a
t<0: H(a)= 7, H(a)= (B2)

4
7 .
Assuming the exotic equation of std®0) implied by setting
B=0 at all times, from(33) we find ¢ in terms ofa

a
t=0: ex;{¢(a)]=exp(¢>0)a(1_2)(0)+ZXO, (B3)

5/2

t<0: exg ¢(a)]=exp(¢o)

creases at all times in the past. The problem is that it caR,g from Eqs(39),(44) we find y in terms ofa

become negative, becauge=0 is not an invariant set of the
equation. We want a solution whegeremains positive for

all time so thaty decreases for all time; this means we need
x to go to a positive value or zero, but not to become nega-
tive, andy to go to zero. As in the previous case one can
obtain approximate solutions by rewriting the second equa-

tion of Egs.(A2) in the form

1
()((1—t)1/2)'=(_,[—:,,,2[1+)/(—'[+ .

+1)
Suppose

y(—t+1)%<1 for t<T_. (A3)

Then we can ignore the second term on the right and inte-

grate to get

t<T __2 + -
T e
1

(1-1)?

exp—2C_y1-t)

Y=Yo

whereC_, y, represent the magnitude gfy at timeT_.

2 1
a®’? 1=5X0|t5X0
(B4)
X0
t=0: x(a)= ’ (B5)
a?(2xo+(1-2x0)a)
5a)(0
t<0: yx(a)=-— : (B6)
2x,+(5-2x,)a%"
A particularly simple case occurs wha= ;. Then
o _ 22 B7
t=0: exff p(a)]=expl o) 7, (B7)
10a5/2
t=<0: exp[¢(a)]=exp(¢>o)_9a5/2+1
(B8)
and
t=0: x(a)=-——5——, B9
M= e =
t<0: x(a) -
< : a ==
X 2(1+9a%?)
(B10)

Now p(t) is determined by Eq(31); using the above

This decays away as desired, and consistently preserves tegpressions, fot>0 andy,=3% this becomes

inequality (A3) for all earlier times because the exponential
always dominates the power law terms. The question then is
whether for suitable initial conditions we can attain this in-

equality at some timé _, requiring y(T_)<<(1-T_) %
We can satisfy this withT_=0 if y,=3e%0p,<1, i.e. ¢,
<In(3/2py).

APPENDIX B: DENSITY EVOLUTION WITH EXOTIC
EQUATION OF STATE

The “pre-big-bang” evolution(22),(23) impliesH andH
in terms ofa:

(B1)

dp 3 3

da g5 4a%(1+a)

which can be solved to give

=C+ 3 + + ! 3 + 3 +3| 2
PR Ct o Teat a2 sat da 4M\1val
This implies p(t)—C+ 3 —2In2=C+0.8176... ast

—0, and p(t)—»C ast—o; hence choosingC=0, p(t)

—0.817@ ... ast—0, andp(t)—0 ast—o. Also p/p

—1/3 ast— . The expression fov(¢) in this case follows
on putting this into Eq(15) and using Eqs(36), (22), and
the various expressions above. Simi(atore complicated
expressions can be obtained ter 0.
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