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By carefully analyzing the geodesic motion of a test particle in the bulk of brane worlds, we identify an extra
force which is recognized in a spacetime of one lower dimension as a nongravitational force acting on the
particle. Such extra force acts on the particle in such a way that the conventional particle mechanics in one
lower dimension is violated, thereby hinting at the higher-dimensional origin of embedded spacetime in the
brane world scenario. We obtain the explicit equations describing the motion of the bulk test particle as
observed in one lower dimension for general gravitating configurations in brane worlds and identify the extra
nongravitational force acting on the particle measured in one lower dimension.

PACS numbes): 04.50+h, 11.25.Mj, 11.27d

I. INTRODUCTION such an extra force was dubbed in previous literafidrel 4]
as the fifth force(Such extra abnormal force is observed also

There has been renewed interest in compactification Refs.[15—17 by analyzing the geodesic motion of a test
through the nonfactorizable Kaluza-KlgiKK) metric ansatz  particle in the five-dimensional Kaluza-Klein thedrythe
with the warp factor, after Randall and SundrufRS  so-called fifth force generically exists in the KK theories
showed[1-3] that such an unconventional compactification (with constant moduli scalar fields of the extra spasben
of the extra spatial dimensions provides a simple solution tehe spacetime metric depends on the extra spatial coordinates
the hierarchy problem of particle physics. A novel and sur-and the velocity of the particle has nonzero components in
prising feature of the RS scenario is that, even if the extraoth the extra spatial direction and the direction of our three
spatial dimension is infinite in size, Newton'sri/law of  gimensional space. Therefore, it is inevitable that if our four-
four-dimensional gravity is recovered with negligible correc- gimensional world is described by the RS scenario then a
tion from the massive KK modes of the graviton. The previ-or-dimensional observer following a test particle along its
ous works on the gravitational aspects of the RS scenarigy|k geodesic path should observe the violation of four-
have attempted to reproduce physics of four-dimensiong}imensional law of particle mechanics, since the RS scenario
gravity up to small corrections beyond the current experi-y|iows dependence of the spacetime metric on the extra spa-
mental precision in an effort to provide us with evidence thatjs| coordinate and physical process in the RS scenario is
the RS scenario may be a true description of nature. generally higher-dimensional in nature.

Especially, in Refs[4-6] the geodesic equation for a = The paper is organized as follows. In Sec. II, we survey
massless test particle in the bulk of a gravitating configurayg|evant aspects of domain wall solutions in and geodesic
tion in the brane world is put into the form of the geodesicngtion of a test particle in the bulk of the RS scenario. In
motion of a massive test particle in the corresponding gravigpg section, we also discuss well-known facts of particle
tating configuration i_n one Iovyer dimension by par_ametri_zingmechanics in curved spacetime for the purpose of under-
the geodesic path with an affine parameter associate with th§anging the physical implication of the extra force observed
canonical metric in one lower dimension. Such a result apin one lower dimension. Although some aspects of the fifth
pears to indicate that the bulk geodesic motion is observeg e were already studied in the previous literature, we feel
by a four-dimensional observer to reproduce physics of oUghat jts relation to the four-dimensional particle mechanics
four-dimensional spacetime. However, as we will seeyas not been clearly presented. We hope that the present
through careful analysis of the geodesic motion of a teshaner will clarify some confusing issues in the fifth force.
particle in the bulk spacetime of brane worlds, in general thgye study the bulk geodesic motion of a test particle moving
laws of physics governing the motion of a particle in four-j, general gravitating configurations in brane worlds as ob-
dimensional spacetime is observed to be violated. Namelygeryed in one lower dimension for the case corresponding to
we find that the equation describing the trajectory of a paryhe KK zero mode bulk graviton in Sec. Il and for the case
ticle as observed in one lower d|men_S|0r_1 of the brane worldg,s general bulk graviton including the massive KK modes in
scenario has an extra force term which is parallel to the vegec v, In these sections, we also identify the extra force on

locity of the particle. According to the so-far known four- the particle which is observed in one lower dimension as
dimensional physics, only the component of the extra nonyongravitational. Conclusions are given in Sec. V.
gravitational four-forceF# which is perpendicular to the
particle’s four-velocitydx*/dr can influence the particle’s
motion. Because of such an unusual property which cannot Il PRELIMINARIES AND GENERAL SETUP
be explained by the physics of four-dimensional spacetime, '
In this section, we prepare for the main topic of this paper
by surveying aspects of domain wall solutions and dynamics

*Email address: Donam.Youm@cern.ch of a particle in brane worlds and in general relativity.
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Generally, the spacetime metrior a D-dimensional do-  positive value, but one can always apply the affine transfor-

main wall can be put into the following form: mation A—a\+b (a,beR), which leaves the geodesic
M , 5 equations(6) invariant, to bringep=21. In this paper, we
Cundxdx"=My) 7,,,dx*dx"+dy", (D) shall not consider the spacelike geodesics, i.e. efjte — 1
case.

where M,N=0,1,...D-1, u,»=0,1,...D-2, and
WI(y) is the warp factor. In particular, for the domain wall
solution to the field equations of the following bulk action:

1
S= —2f dPx\/-G
2KD

In this paper, we shall reexpress the geodesic equations
(6) for the bulk geodesic motion of a test particle in terms of
quantities of the hypersurface spacetime of one lower dimen-
sion, for the purpose of learning how the bulk geodesic mo-
IndpIMp+e 2P|, tion of the test particle is observed in one lower dimension.

@ In previous related workfst—6], the bulk geodesic motion is

reparametrized by an affine parameteassociated with the

the warp factor is given bj1,18—2q four-dimensional metric given by, ,, namely the one sat-
isfying the following:

» 4
¢ DpD-2

(D-2)a?
Wy)=|1-——F—— dx* dx”
2 —€p-1=0u—= = (8)
dn dh
D_> 8/(D—2)2a?
X \/4(D — 1)—a2(D—2)2A|y|) , whereep 1= 1,0, respectively, for a timelike and a lightlike
motion observed in one lower dimension. On the other hand,
3 as the bulk test particle follows its geodesic path, it generally
passes through one hypersurface to another. We note that the
fora#0, and induced metric on the hypersurface at a specific valugisf
A given byE;WEW(y)gM,,. Therefore, it appears that the natu-
W(y)=exn< -2/ WM), (4)  ral choice for the affine parametar (or the standard clock

on the hypersurface that follows the particle in its maotion
for a=0. Here, we have imposed the invariance undeZthe for the motion _observed on _tl‘(eomovmg hypersurface is
transformationy— —y and chosen the warp to decrease soln€ One satisfying the following:

that the bulk graviton can be localized. dx dx?
It is the purpose of this paper to study the dynamics of a —ep_1=W(Y)0,,—= —. (9)

test particle in the bulk spacetime with the following metric: PdN dh
GundxMdxN=1g,,dx“dx"+dy?. (5)  However, one might argue thatsatisfying Eq.(8) actually

) ) ) ) o . corresponds to the affine parameter for the motion as ob-
Th!s metric generically describes any gra\(|tat|onal configuserved on the hypersurfage-y,= const, say the TeV brane
ration in brane worlds. The geodesic motion of a test parys ¢ world, atfixed distance from the Planck brane yat

ticle, i.e., the motion of a particle which is acted on by the _ g Namely, the affine parameteryaty, is defined by
gravitational force only, is described by the following geo- ' 0

desic equations: dx® dx”

—€p_1= W M xP, — =, 10
43R . dxM g D-1 (¥0)9,,(X",¥0) o (10
anz Fhuwg =0 © .
and by applying the affine transformatian—W(yo) =¥,
one can bring this to the forr) in the case whemw,,, is

/ ) - __independent of the extra spatial coordingteBut we, as
the metricGyyy and\ is an affine parameter for the geodesic heingg adapted to sense only the four- or lower-dimensional

pathx"(x). In addition, the metric compatibility along the phenomena, are incapable of looking into the extra spatial
geodesic path requires that direction to observe objects in a different four-dimensional
dsM gy dxt dx” [ dy)2 hypersurface. Any object on a d.if.fergnt four—gjimgnsional hy-
(_> ) persurface cannot be observed; it simply exists in a different
dA four-dimensional universe which cannot be observed. So, the
geodesic equations conveniently put into a four-dimensional
form in terms of a new affine parameter in Rg#-6] actu-
ally do not describe the trajectory of a test particle observed
in one lower dimension, as one might naively assume al-
though Refs[4-6] do not explicitly state that the bulk geo-
desic motion can be observed by an observer on the TeV
In this paper, we use the mostly positive conventionbrane. However, in the following we shall also consider the
(—+---+) for the metric signature. case associated with a choice of the affine parameter defined

WherelA“,'?,,,\l is the Christoffel symbofof the second kingfor

“eo=Cun g g Mgy

whereep=1,0, respectively, for a massive test partiGle.,
a timelike geodesjcand a massless test parti¢les., a null
geodesit. For a timelike geodesiep actually can take any
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by Eg.(8), as well as the one defined by HE), just for the  parametei is an affine parameter for the timelike motion as

purpose of studying the generall bulk geodesic motion aIS‘i?)bserved in one lower dimension,Nfis related to the bulk
within the framework of the previous works. affine parameteX as

In obtaining the equations for the particle motion ob-

served in one lower dimension, we assume that the affine dr\ 2 dy)\?
parameten for the spacetime in one lower dimensions is a K) :W_(ﬁ) ' (15
smooth function of the affine parameterfor the bulk geo-
desic motionx = f(\). First, for\ defined in Eq(8), which  for case 1, and
we refer to as “case 1,” the relatia(T) for the bulk geodesic ) 5
motion is rewritten in terms of the new paramekens (d_)‘) :1_(ﬂ) (16)
dx dx)
dx* dx” . (d)\)z (dy)2
Opp—= —==— el —=| +|—=| |. @1 for case 2.
dn dh dx dx In the following sections, we will see that from the per-

5 spective of an observer in one lower dimension a bulk test
Second, foix defined in Eq(9), which we refer to as “case particle appears to be under the influence of an abnormal

2,” Eq. (7) is rewritten in terms ol as non-gravitational force. So, it would be useful to discuss
some aspects of dynamics of particles in general relativity to

dx® dx” dn\ 2 [dy)?2 better understand physical implication of such extra force.

WO, —==— eD( —~) (T) } (120  Although we assume the spacetime to be four-dimensional in

dx di dx dx the discussion in the following paragraphs, our discussion

holds for arbitrary spacetime dimensions without modifica-
The parametek is an affine parameter for the motion ob- tion of equations.

served in one lower dimension, if Eq4.1) and(12), respec- In terms of the relativistic four-vector notation, the fol-
tively, take the form¢8) and(9), i.e., the RHS's are either 0 lowing classical Newton’s second law of mechanics plus the
or —1. work-energy relatior{the law of conservation of energy

We now discuss the condition for being an affine pa- dp dT
rameter. First, for a massless test particle,#£0), the F= @ d F-v, v

RHS’s of Egs.(11) and(12) can be 0 or—1, depending on

the motion of a test particle along tlyedirection. When the whereF is the force on the particlg=mov=my(dx/dt) is

test particle is confined to move along the longitudinal direc-, : - L
tions of the domain wél [i.e., dy/d\=0 and therefore the momentum of the particle with the inertial masg, and

~ ~ T is the kinetic energy of the particle, is written as
dy/d\=(dN/d\)(dy/dN)=0], the RHS’s of Eqs(11) and
(12) are zero, corresponding to the lightlike motion as ob- dp,
served in one lower dimension. In this case, one can choose dr e (18)
A=\ as an affine parameter for the motion observed in one
lower dimension, as can be seen from E(sl) and (12).  wherep*=mg(dx*/d7) is the contravariant components of
When they component of the velocity of the massless testthe four-momentum of a particle with the rest mags 7 is
particle is nonzerdi.e., dy/d\ #0), its motion is observed the proper time defined frondr?=— 7,,dx4dx”, F,
in one lower dimension as timelike if the following is satis- =[ —F-(dx/d7),F(dt/d7)], and &*)=(t,x). In curved

fied: spacetime with metrig,,,, Eq.(18) is modified to
Dp* dp* dx?
dy 2 —_— K pT=F*
(dX) - (13 dr —dr Tlerg PR (19

in the contravariant notation, or
for case 1, and
P
dy|? dr ~dr 2k a7 P e (20
—| =1, (14)
dx

in the covariant notation, whetg,,, is the Christoffel sym-
, , bol of the second kind for the metrg;,, . Here,F, andp*
for case 2, for which cases the RHS's of E@kl) and(12) e defined in the same way as in the flat spacetime case
are —1. Second, for a massive test particle;E1), the except that the proper time is now defined fromdr2=
—g,,dx“dx".
First, we show that a purely mechanical nongravitational

2From Eq.(28) with ep=0, one can see that such bulk geodesicfour-force F# acts on a particle perpendicularly to its four-

motion is possible for a massless test particle. velocity dx*/dr. By taking the covariant derivative of
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g.,(dx“/d7)(dx’/d7)=—1 along the particle trajectory As expected, when the particle is free, i.e., when only gravi-

x*(7), one can see thag,,D(dx*/d7)/d7(dx"/d7)=0. tational force is acted on the particl&{=0), the particle

This implies thatg,,F*(dx*/d7)=g,,(Dp*/d7)(dx"/d7) will execute geodesic motion. Second, when the fdfée

=mqg,,(D/d7)(dx*/d7)(dx"/d7)=0. has nonzero parallel component, i.e., whag is not con-
Next, we consider the possibility that the four-fore¢  served, the equation for the particle trajector$(r) takes

has nonzero component parallel to the four-velodikf¢/dr.  the following form:

In deriving the relationg,,,F#(dx"/d7)=0 in the previous

paragraph, we assumed that the proper nmassf the par- d2x# dx? dx” F* FP dx? dx*
ticle is constant in time. Had we considered the possibility WJF ZZE F:m_oJrgP"m_oF a7’ (25
that my changes with time, we would instead have obtained
dx” Dp* dx” which can be obtained from Egd.9) and(21). We note that
9uF" 57 =9 g7 dr the RHS of Eq.(25) is perpendicular to the four-velocity
T T T . . .
dx*/dr, implying that only the perpendicular component of
D [dx*)\dx” dmg  dx* dx” F# influences the motion of the particle. In other words, if
= mog“”d_r(F) dr + a7 v g7 dr F* is parallel todx*/d, then the particle will just follow the
geodesic patlisince the RHS of Eq(25) vanishes for this
dmg casg while its mass will change with time according to the
T dr 2D yelation (23). This result also shows that according to the

particle mechanics of four-dimensional general relativity the
Therefore, the existence of parallel component of the forcextra nongravitational force term in the equation for the par-
F* implies nonconservation of the proper masgof a par- ticle trajectory cannot have a nonzero component parallel to
ticle. Generally, the change in the proper mass of a particl¢he four-velocity of the particle.
occurs when there exist some nonmechanical external forces
which cause such change. To take into ac_:count the a('jditionalml DYNAMICS IN THE KALUZA-KLEIN ZERO MODE
nonmechanical forces, one has to modifyin the following SPACETIME
way:
In this section, we consider the case wiggp in the bulk
_E. d_x_ ﬂ (22) metric (5) does not depend on the extra spatial coordiyate
dr dr’ In this case, the bulk test particle is regarded as being under
the influence of the Kaluza-Klein zero mode of graviton
where the first term on the RHS is the mechanical work don@nly.
by the mechanical forcE per unit time and the second term  The geodesic equatior6), with the bulk metric given by
is the heat or nonmechanical energy developed per unit timég. (5) with g,,,=9,,,(x”), take the following forms:
The extra term is added to take into account the contribution

F():

from the nonmechanical energy so that the energy can be d?xr dx* dx” W' dx’ dy
conserved in the system under consideration. Meanwhile, the WﬂLFfwK ax T an P (26)

remaining components of, take the same form as the
above, i.e.,(the curved space analog)dflewton’s second

2 v
law of mechanic$=dp/dt continues to hold. So, from Egs. 2’2_ }W’g dﬁ d_xzo 27)
(21) and(22), we obtain dxs 2 “7dN dh '
dmg dt)2 b , ,
—=0|—], (23) wherel'7 , is the Christoffel symbol for the metrig,,, and
dr dr W'=dWl/dy. By using the relation(7), one can put the

namely, the proper mass is converted into the nonmechanic?;(icomponent geodesic equati@v) into the following form:

energy and vice versa.

Finall i i i dy 1w dy)®

y, we discuss the motion of a particle under the b — ED+(_) }:0. (29)
influence of an extra nongravitational forée¢* in curved d\= 2w dx

spacetime. First, wheR# acts on the particle perpendicu-

larly to its four-velocitydx*/dr, i.e., the proper mass,, of A. Case 1

the particle is constant in time, from Eq4.9) and (20) we ) ) )
obtain the following equations for the particle trajectory In this subsection, we study the motion of the bulk test

X“(7): particle as observed in one lower dimension with the space-
5 time metricg,,,=g,.,(x").
d_x“ﬂw dx? dx” _F# First, we consider the geodesic motion of a massless par-
dr? o dr dr mg’ ticle in the bulk spacetime, i.e., thep=0 case. When
a2, 14dg,, dx’ dx’ F dy/d\=0, by choosingh=\ as an aff_ine para_tmetgr, one
—f-Z Zpe 77 TR K (24) can put thex’-component bulk geodesic equati(@6) into
dr® 2 ox* dr dr mq the following form:
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d2x? ) dx* dx” massmg in D-dimensional bulk spacetime with the metric
dx2 +Fwﬁﬁ_0' (29 (5) appears in D—1)-dimensional embedded spacetime
with the metricg,,, to have mass given 15,21
So, the test particle’s motion is observed in one lower dimen- _
sion with the metricg,,, as the lightlike geodesic motion. =R d—)\—m _[dy 2] -1z
Next, when they component of the velocity of the test par- R dx '
ticle is nonzero(i.e., dy/d\ #0), from Egs.(13) and (28)

with ep=0, one can see that the parameterand X\ are  Where we used Eq15). So, as the test particle executes its
related as geodesic motion with the nonzerg-component velocity

dy/dX, its mass appears to change with the following rate

(33

~ 71 ~
dx d [dx from the (O — 1)-dimensional perspective:
i | — == —1/2yA
(dx ax ( dx) W 30 ~
dmy - W' dy
which can be solved by e Moy a (34)

dX —w-t 31 From EQgs.(29) and (34), we obtain the following equation
dn : (31) describing the conservation of energy and Newton’s second

law of mechanics irD —1 dimensions:
By using Egs. (13) and (30), one can express the
xP-component bulk geodesic equati¢®6) in terms of the DP“_dp“+ L O ~ W' dy dx*
(D—1)-dimensional affine parametkr The resulting equa- dx  dx P dx P W ax dx '
tion also takes the fornf29). To summarize, a massless test
particle moving in the bulk spacetime with the metff3 is  wherep”=my(dx*/dX) is theD —1 momentum of the par-
observed in one lower dimension with the mewig,(x”) to  ticle. This implies that from the @ — 1)-dimensional per-
be (i) afree masslesparticle if the motion of the test particle spective the particle is under the influence of the extra non-
is confined along the longitudinal directions of the domaing ayitational velocity dependent forcd#=—my(W'/

wall and(ii) a free massivearticle if they component of its W) (dy/dX) (dx“/dX). This extra force does not influence

yelocity is nonzero. This is just a generalization of the reSUIIthe motion of the particle, because it acts parallelly to the
in Ref.[4] to the case of an arbitrary warp fact¥ and an '

arbitrary gravitating configuration with the metrig,(x?) ~ Particle’sD—1 velocitydx*/dA [cf. Eq.(25)], butis respon-
within the brane world(See also Ref6] for the generaliza- sible for the change of the inertial masyg, of the particle
tion to the case of multicodimensional brane world. [from the ©—1)-dimensional perspectiyeThe intuitive
Second, we consider the geodesic motion of a massiveeason is that the effect of the forEeon the particle velocity
bulk test particle, i.e., thep=1 case. By using the relation v=dx/dt is canceled by the effect of the inertial mass
(15), one can reexpress thecomponent geodesic equation change with time orv. Although the extra force is gravita-

(28) (with ep=1) in terms of the new parametaras fol- tional !n natgre from theD-dim.ensionaI perspective, @(
lows: —1)-dimensional observer will sense that some nonme-

chanical nongravitational force causes the inertial nmags

(35

d?y W' [dy 2+ Lv—o (3p  Of the particle to be converted into the heat energy and vice
ax2z  Wldx 7 versa. Such heat energy generated per unit time is
Making use of Egs(15) and (32), one can again put the ﬂ:_ﬁq K’d_y (36)
xP-component bulk geodesic equatig@d6) into the form dx oW dt’

(29). So, we see that a massive test particle moving in the

bulk spacetime with the metri®) is observed in one lower according to Eq(23).

dimension with the metrig,,,(x”) to be afree massive par-

ticle. This result extends the previous studjds-6] on the B. Case 2

geodesic motion in brane worlds to include the case of a

massive test particléNote, even if some aspects of the geo- ; . X

desic motion Fc))f a massive test particle in l:?rane worldsghavgart'de. as obse.r’\“/ed on tiieomoving hypersurface with the

been previously studied, it has never been shown that th@Pacetime metrig,,,=(y)g,.,(x"). _

geodesic motion of anassivetest particle in the bulk space- First, we consider the bulk geodesic motion of a massless

time is observed in one lower dimension as the motion of @article (ep=0). When the motion of the test particle is

free massivearticle) confined along the longitudinal directions of the domain wall
Just by looking at Eq(29), it appears from the lower- (i.e., dy/d\=0), one can choosk=\ as an affine param-

dimensional perspective that the particle is under the influeter on the hypersurfacey=const to express the

ence of the gravitational fielg,,,(x”), only. However, thisis  x”-component bulk geodesic equatigi2$) in the following

not the case, as we explain in the following. A test particle ofform:

In this subsection, we study the motion of a bulk test
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d?xP - dx* dx” their curved space generalizatjan four-dimensional space-

a2 +Ffwﬁﬁ:0’ (37 time imply that only an orthogonalto the four-velocity
dx*/dr of the particle component of nongravitational force

F# influences the motion of the particle. However, as can be

- ) ) f seen from Eqs(40) and (42) for the trajectoryx”(X) of the
:bwguvg‘”d Wr? ”sed the ffact th%%&;‘- SO% its motchJn particle [as observed on the comoving hypersurfage
observed on the hypersurfage=const is that of a massless =y(X\)], the particle’s motion is additionally influenced by

free particle. A nontrivial result arises when the massless te%e extra force terrfthe RHS's of Eqs(40) and(42)] which
particle has a nonzerg component for its velocity. From d

Egs.(14) and (28) with e5=0, one can see that the param- 'S parallel to its velocitydx?/dX. Existence of such an ab-
~ ’ normal force term implies violation of four-dimensional
etersh and\ are related as

physics and therefore can be an implication of the existence

where I'/,, is the Christoffel symbol for the metrig,,

g dy 1 of extra spatial dimension&ince such a force term cannot
(_) —~(—) =—-—, (38)  be explained by the known four-dimensional physidSr

dA dx | dA 2w maybe it is due to the wrong choice of frame, since we have

. seen in the previous subsection that in the metric frame of
which can be solved by case 1 such an abnormal force term does not exist. The au-
~ thor does not yet have a clear understanding of which metric

d_)\:W—1/2 (39) frame is the correct choice for the spacetime in one lower

d\ ' dimension. However, as we will see in the following section,

] ) ) when g, depends on the extra spatial coordingtethe
So, the bulk geodesic equatid@6) for the x”-component  y»_component equation for the particle trajectéexpressed

motion is rewritten in terms of the new paramekeas in terms ofX) has the extra abnormal force term for both
20p oy A case 1 and case 2. So, it seems inevitable that the abnormal
X 5 did_":_lﬁd_x (400  force term in general exists for natural choices of metric
N A~ N . . . ~
dA dr dr 2 W d\ frame, i.e., those associated wil, andg,,=Vg,,,. Due
The bulk desi i faf | ficl it to the extraordinary property of such an abnormal force term,
€ bulk geodesic motion or a iree massiess particie wi rlhe previous literatur§7—14] dubbed the extra force as the
honzeroy-component for~ its velocity is thErefore observed fifth force. Actually, it should not be regarded as the viola-
on the hypersurfacg=y(\) with the metricg,,, as the mo-  tjon of the four-dimensional physics, since such contradic-
tion of a massive particle which is under the |an_uence of_thedon arises because we attempt to interpret the phenomenon
extra nongravitational force as well as the gravitational fieldyhich is higher-dimensional in nature from the perspective
E]W. of lower dimensional physics. We, as beings incapable of
Second, we consider the massive bulk test partielg ( sensing higher-dimensional spacetime, are apt to regard the
=1). By using Eq(16), one can reexpress tlyecomponent higher-dimensional physical process as violation of four-
geodesic equatioii28) (with ep=1) in terms of the new dimensional physics. Anyhow, in the following we recon-

parameten as struct the equation for the energy conservation and Newton’s
second law of mechanics in the spacetime of one lower di-
dy 1w dy\2 mension from the equations for the particle trajectory to see
ﬁjL 2w _(ﬁ) }:0 (41) any p_hysical implication of the extra force in one lower di-
mension.
The x’-component geodesic equatio®6) can be put into On the hypersurfacey=y(\) with the metric g,,
the following simplified form in terms of the new parameter =WVg,,, a bulk test particle with mass, appears to have
X by applying Eqs(16) and (41): mass given by
2yp “ M ’ o ~ d 271-1/2
d~X +T° déd—iz—lmﬂ (42) Mo=Mg 1_(—3/) } , (43)
dx2 M dk dh 2 Wdkdx dr

So, the geodesic motion of a free massive particle in the bulkvhere we used Eq16). By applying Eq.(41), we obtain the
spacetime is observed on the hypersurfipegy(X) with the ~ following mass change rate with as observed on theo-

metric g,,, as the motion of a massive particle under themoving hypersurface:
additional influence of an extra nongravitational force. For

both the massive and massless test particle cases, the extra dmp _ my W' dy (42
force term exists in Eqg40) and (42) for the particle mo- a2 WaN’

tion, if the x? component of its velocity is nonzero, and acts

on the particle parallell to its four velocityx?/dX. From EQgs.(42) and (44), we obtain the following equation

We have seen in the previous section that Newton’s sedadescribing the conservation of energy and Newton’s second
ond law of mechanics and the conservation of endemyd  law on the hypersurface:
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Dp* dp* - dx? -~ W dydx* The xP-component geodesic equatiohb) takes the follow-

—=——+ —pT=- — = =, i ied:

o L'ty P Mo & dn (45 ing form after Eqs(13) and (48) are applied:

2 v

which has the same form as E®5) for case 1. So, in both gﬂp dij di :EW—qu/d_)f’_ W~ Vzgeo
cases the particle appears to be under the influence of thex?  “"dx dx 2 dx
eftra forcia of the same for.rTF“= —mo(W {W)(dy/ . 1 71/2dxp dxo T dx
d\)(dx#/d\). However, the motions of the particle are dif- + EW — —= | = 9yNV,.)-
ferent for the two cases, because the nmaghanges with dh dA ] dh
different rates due to different choices of the (49

(D—1)-dimensional metric. For case 2, the particle mechan- ) . ) )
ics of one lower dimension appear to be violated, whereaghe bulk geodesic motion of the massless particle with

for case 1 they are not. dy/d\#0 is therefore observed in one lower dimension as
the motion of a massive particle under the additional influ-
IV. DYNAMICS IN GENERAL SPACETIME ence of the extra nongravitational force, unlike the case of

_ _ _ _ the KK zero mode metrig,,, as discussed in the previous
In this section, we consider the case witgn in the bulk  section. The extra force term on the RHS of E49) has

metric (5) depends on the extra spatial coordinptén this  hoth parallel and perpendicular components given by
case, a bulk test particle is regarded as being under the in-

fluence of both the zero and the massive KK modes of gravi- 1| ..~ ., dx* dx*| dy dx”
ton. We will see that the massive KK modes of graviton fﬁ)_ﬁ W W AW ay(Wgﬂv)Kﬁ ax dx
induce the perpendicular component of the extra fértdor
both cases 1 and 2, and the parallel component of the force dx? dx?T dx
term even for case 1. fr=— W—1/29pa+w—1/2_)i 4 4(9 Vg,

The bulk geodesic equatior(§), with the bulk metric dh dx |[dx VT
given by Eq.(5) with g,,=g,,(x",y), take the following (50)
forms:

These vanish wheg,,, is independent of the extra spatial
d2x? ) dx* dx” 1 po dx* dy coordinatey, implying that the extra force is due to the mas-
oz g o TW 9B gn ~ O sive KK modes of graviton.

(46) Second, for a massive bulk test partickg, € 1), by using
, Eqg. (15 one can express thg-component bulk geodesic
dy 1 dx* dx” equation(47) in terms ofX as
w2 28w g g =0 @4n
d\Z 27V TR AN d)
_ N _ o d?y 1w [dy\? 1 dy\?
The consistency condition for the geodesic motion in the =2 owl ] T2 W—|—=
bulk expressed in terms of an affine parametefa new dA dx dA
parameteh = f(\)] takes the same form@) [(11) and(12)] ’
hat th : d d . dx* dx
except that the metrig,,, now depends oy. XW 9, (Wg,,,)—= —==0. (51)
dn dh
A. Case 1

p_ i I -
In this subsection, we study the geodesic motions of él’hex cgmponent~bulk geodesic equatl.(ntﬁ) can be ex
bulk test particle as observed in one lower dimension witrPressed in terms of as follows by applying Eqs(15) and

r

the spacetime metrig,,,(x",y). 51):
First, we consider a massless test partielg=0) in the 2 Y ,

bulk spacetime. For the trivial case of the geodesic motioM+Fp d_)iﬂ d)i :E K d_X d_)ip_

with dy/d\ =0, the motion is observed in one lower dimen- dx>  “"dX dx 2 W dx d\

sion to be that of a massless free particle under the influence

of gravitational fieldg,,, only. Whendy/d\#0, by using , 1 dx” dx?|dy dx*
f ; ; _ X It e == —=
Egs. (13) and (47), one obtams~ the following relation be g 24 % ldx o
tween the two parameteksand\:
XAy WGy )- (52
- ~ y o
dh| "t d [dX !
dn] o gy \dh So, the bulk geodesic motion of a massive test particle is
observed in one lower dimension as the motion of a massive
dx* dx” particle under the additional influence of the extra nongravi-

1 1
— _ _W71/2wl + E1/‘/71/2(5’)/(1/\29#1})

2 tational force, also unlike the case gfindependenyg,,, .

dr dr The extra force term on the RHS of E?2) has both the
(48) parallel and the perpendicular components given by
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o 1w Wt oW dx* dx*| dy dx? —myW~tg#*(dxe/dX)ay(Vg,,) (dyldX). Also, with a
(i 2| W yOMOw) = dx dx |dx dX choice of the metric framéw, the same holds true as ex-
pected, as we will see in the following subsection. Note, the
., o e dx dx dy dxﬂ abnormgl force term is not due to the wrong chdioé pa-
fl==W 9"+ —= dx d)\ dx d>\ Iy Who)- rameter\ describing motion observed b —1 dimensions,

(53) since we have fixe€up to affine transformationshe param-

eterX through the D — 1)-dimensional affine conditions)

As expected, these vanish whey, is independent of. and(9). So, the massive KK modes of graviton not only give
We now obtain the expression for the ext@a{1)-force 3 small correction to Newton’s 7 law of four-dimensional
F# acting on the particle from theX(—1)-dimensional per-  gravity but also cause violation of the four-dimensional laws
spective. The bulk test particle of masy, is observed to  of physics, which can be an indication that our four-
have massm, given by Eq.(33) from the perspective of dimensional world is embedded in higher-dimensional

(D—1)-dimensional spacetime with the metgg,. By us-  spacetime.
ing Eg. (51), one obtains the following rate of mass change If we take the viewpoint that laws of physics in

spacetime: we have to take the metrg,, for which the equation for the
_ _ particle trajectory does not have an abnormal force term as
dmg  mof . 1 dx* dx” dy the physical metric of the§ —1)-dimensional spacetime.
K‘ T WoEW = Iy W)= ax d)\ ax With the choice of such a metric, according to E2{1), the

(54  (D—1)-dimensional masm, should change with an affine

. . . parametei as
From Egs.(52) and (54), we obtain the following equation

describing the conservation of energy and Newton’s second d?}o _ dx”

law of mechanics irD—1 dimensions: —=—0.F'—=, (59
d\ d\

Dp# dp* dx? dx? dy

T EKJFFM—DU_ —meW ™ g’“’—ﬁy(Wgyp) e wheremg=mg(d\/d)), the parametex is defined through
(55) the relatlongw(dx"/d)\)(dx”/d)\)——1 F# is the extra
nongravitational force observed ih—1 dimensions, and of

The extra forcéF* on the RHS of Eq(55) has both parallel course the parameter is defined through Eq(7) with ep

and orthogonal components given by =1.In the case wherg,,, is independent of, such a physi-
d o dx dv dx cal metric is given byg,,=gd,,. For a generay-dependent
Fi= MW 1 — Ay )_y_ g.» it does not seem clear whether a simple and natural
dx dx form of the physical metrig,,, that satisfies this equation
exists.
x# dx”
Fi= —moW’l gt —= —=
dn dA
dv dx? 3If one chooses a nonaffine parameter to describe the motion of a
_X —a,0MVg,,). (56) particle, the abnormal force term also occurs in the equation for
dx dx 7 g particle trajectory. To see this, we consider the following geodesic

equation for a free particle, whose motion is under the influence of

As expected, wheg,,, does not depend oy F/{' vanishes the gravitational force only:
andF(* takes the form of the RHS of E¢35). P P

Even with the choice of the metric by,, for the (D X +TP did_xz (57
—1)-dimensional spacetime, which it has been previously ds* " #vds ds
regarded as the natural canonical choice for the
(D—1)-dimensional spacetime embedded in brane WOHdSwheres is an affine parameter. If we take a new parameter
the motion of the particle observed in the —f(s) to parametrize the motion of the particle, then the above
(D—1)-dimensional spacetime appears to be under the aé;_eodesm equations transform to the following form:
ditional influence of the abnormal force term, which cannot d2x? dx“ dx” d%/d dx?
be explained by laws of physics D—1 dimensions, if the St ==="=—=-
metric g,, depends on the extra spatial coordingte ds ds ds  (d¥/ds)” ds
Namely, Eqs(49) and(52) describing the particle trajectory gq, through nonaffine transformation one induces an extra velocity
x*(\) observed in one lower dimension have nonzero paraldependent fictitious force term-[(dZ%s/ds?)/(ds/ds)?](dx¢/ds)
lel component force terrfy and the mass chang®4) with X parallel to the four-velocitydx”/ds of the particle. Equatiori58)
is not in accordance with the conventional form(4) for a  also shows that the geodesic equatitBig are invariant only under
given extra nongravitational force F#= the affine transformations—s=as+b, a,beR.

(59
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The xP-component bulk geodesic equati@t6) takes the fol-

In this subsection, we study the geodesic motion of a buloWwing form after Eqs(16) and (63) are applied:

test particle as observed in ttfieomoving hypersurfacey
=y(X) with the metricg,,, = W(y)g,.,(X",y).

First, we consider the case of a free massless bulk particle

(ep=0). Whendy/d\ =0, one can put the”-component
geodesic equatiof#6) to the form(37). Whendy/d\ #0, by

using Eqgs.(14) and(47), one can see that the affine param-

eters\ and\ are related as
dX| " d(dk) 1
N gxlan =59y (NV3,)

dx* dx”
dhx dx

(60)

Applying Egs.(14) and (60), one can put th&”-component
bulk geodesic equatiof#6) into the following form in terms

d2xp ~, dx* dx”

—— + — =
da2  “"dh dh

_ |y p0+1dxf’dx” dydx“ﬁ(w )
T2 x| ax ax e

(64)

So, the geodesic motion of a massive particle in the bulk
spacetime with the metriS) is observed on thécomoving
hypersurfacey=y(\) as the motion of a massive particle
under the additional influence of the extra nongravitational
force. As in the massless test particle case, the extra force

term on the RHS of Eq(64) has both parallel and perpen-

of the new parametex: : :
dicular components given by

2 v

d°x” - dx* dx , 1(9 W )dy dx* dx” dx?
<2 mr T == V)= T = T = =
dx dx dx [= 2% SR aX 0
W-lgro 4 1dxP dx” dx“a (W) dse d v d

=— g 5= = |—= Oop)s xP dx” xH

2ax dx | dx VO fr=—| 2 pigee| L2 g, (65)
61) d\x d\ d\x d\

-~ ) - As expected, wheg,, is independent of, f takes the form
where I'¥ , is the Christoffel symbol for~the metrig,,,, of the RHS of Eq(42) andf? vanishes.

=W(Y)9,.,(x",y) and we used the fact th&f, ,=T"* . So, We now obtain the expression for the extra nongravita-
the geodesic motion of a massless free particle in the bulkional (D—1)-force F* observed on thécomoving hyper-
spacetime with the metri(5) is observed on thecomoving  syrfacey=y(X). A bulk test particle with masm, is mea-

hypersurfacey=y(X) as the motion of a massive particle syred on the hypersurfage=y(X) to have massn, given
under the additional influence of the extra nongravitationaly Eq.(43). By using Eq.(63), we obtain the following mass
force. Unlike the case of thg-independeng,,,, the extra e .

force term on the RHS of E@61) is no Iongeruparallel to the change withk as observed on the hypersurface:
(D—1)-velocitydx’/d\ of the test particle. The parallel and dmg My

perpendicular components of the extra force term are given pe

dx* dx” dy
= 5 ay(
by dA

V)T~ T~ = 66
Iu )d)\ dx dx (€5
dx* dx” dx?

dX dX X

So, from Egs.(64) and (66), we obtain the equation
Dp“/dX =F*# which has the same fori®5) as case 1. How-
ever, since we have chosen a differebt- 1)-dimensional
metric, the expressions for the parallel and perpendicular
components of# are instead given by

1
p—_

dx? dx”

fr=—|— — + W 1igro dﬁa(w )
* dx dXx 9w Yo

~ dx? dx” dy dx*
(62) FﬁL: My—= —=dyWG,0) = —=
. . dx dA d\ dh
As expected, the perpendicular componéhtvanishes and
the parallel Componerﬁ{‘) takes the form of the RHS of Eqg.
(40), wheng,,, is independent of, implying that the per-
pendicular component is due to the massive KK modes of
graviton. o “ .
Second, we consider the case of a massive bulk test paﬁi fXEeCttid’ ;Nheg“thﬁ mF\c,ilt_a'p;endent g;f' F1 vanishes and
ticle (ep=1). By using Eg.(16), one can put the Fj takes the form ot the of Eg5).
y-component geodesic equatidds) into the following form

in terms of a new parametar.

~ B dx* dx”|dy dx?
Ff:—mo w 1g‘”+—~ —|—= —=
d\ d\ [dN dA

dy(VG,,).  (67)

V. CONCLUSIONS

In this paper, we carefully studied the geodesic motions of
a test particle in the bulk spacetime of general gravitating
configurations in the RS scenario as observed in the embed-

d’y 1

dz2 2

dy)za(w )dx”dx”_o
ax) | S T

(63
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ded spacetime of one lower dimension. We presented thdimensional world. So, one can test the RS scenario by de-
explicit equations describing such particle motion perceivedecting inconsistency with the four-dimensional physics such
by an observer in one lower dimension and the explicit formsas the one present in this paper. However, one has to note
of the extra force on the particle measured in one lowethat since the current RS scenario assumes that the motion of
dimension. Such equations and extra forces are inconsistedtdinary matter in ourvisible) universe is confined within
with laws of particle mechanics in one lower dimension.the TeV brane, which is assumed to be dixad distance
Such incons_istenc_y does not mean the violation of physics iom the Planck brane, due to a yet unknown nongravita-
one lower dimension, but results from our effort to interpretjonal mechanism, the extra force discussed in this paper will

the physical process which is higher-dimensional in naturg s pe detected by the lower-dimensional observers on the
with physics of one lower dimension. The RS model as-(

. . . isible) TeV brane of the current RS model. The extra force
sumes that the extra spatial dimension is noncompact, ar[{i\{

therefore generically physical phenomena in the RS mode scussed in this paper can be measured only by an observer

have to show higher-dimensional character, which is Obyvho follows a test particle with the nonzero velocity compo-

served to be inconsistent with physics of our four-nent along the extra spatial direction.
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