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Extra force in brane worlds

Donam Youm*
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

~Received 27 April 2000; published 7 September 2000!

By carefully analyzing the geodesic motion of a test particle in the bulk of brane worlds, we identify an extra
force which is recognized in a spacetime of one lower dimension as a nongravitational force acting on the
particle. Such extra force acts on the particle in such a way that the conventional particle mechanics in one
lower dimension is violated, thereby hinting at the higher-dimensional origin of embedded spacetime in the
brane world scenario. We obtain the explicit equations describing the motion of the bulk test particle as
observed in one lower dimension for general gravitating configurations in brane worlds and identify the extra
nongravitational force acting on the particle measured in one lower dimension.

PACS number~s!: 04.50.1h, 11.25.Mj, 11.27.1d
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I. INTRODUCTION

There has been renewed interest in compactifica
through the nonfactorizable Kaluza-Klein~KK ! metric ansatz
with the warp factor, after Randall and Sundrum~RS!
showed@1–3# that such an unconventional compactificati
of the extra spatial dimensions provides a simple solution
the hierarchy problem of particle physics. A novel and s
prising feature of the RS scenario is that, even if the ex
spatial dimension is infinite in size, Newton’s 1/r 2 law of
four-dimensional gravity is recovered with negligible corre
tion from the massive KK modes of the graviton. The pre
ous works on the gravitational aspects of the RS scen
have attempted to reproduce physics of four-dimensio
gravity up to small corrections beyond the current expe
mental precision in an effort to provide us with evidence t
the RS scenario may be a true description of nature.

Especially, in Refs.@4–6# the geodesic equation for
massless test particle in the bulk of a gravitating configu
tion in the brane world is put into the form of the geode
motion of a massive test particle in the corresponding gra
tating configuration in one lower dimension by parametriz
the geodesic path with an affine parameter associate with
canonical metric in one lower dimension. Such a result
pears to indicate that the bulk geodesic motion is obser
by a four-dimensional observer to reproduce physics of
four-dimensional spacetime. However, as we will s
through careful analysis of the geodesic motion of a t
particle in the bulk spacetime of brane worlds, in general
laws of physics governing the motion of a particle in fou
dimensional spacetime is observed to be violated. Nam
we find that the equation describing the trajectory of a p
ticle as observed in one lower dimension of the brane wo
scenario has an extra force term which is parallel to the
locity of the particle. According to the so-far known fou
dimensional physics, only the component of the extra n
gravitational four-forceFm which is perpendicular to the
particle’s four-velocitydxm/dt can influence the particle’s
motion. Because of such an unusual property which can
be explained by the physics of four-dimensional spaceti
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such an extra force was dubbed in previous literature@7–14#
as the fifth force.~Such extra abnormal force is observed a
in Refs.@15–17# by analyzing the geodesic motion of a te
particle in the five-dimensional Kaluza-Klein theory.! The
so-called fifth force generically exists in the KK theorie
~with constant moduli scalar fields of the extra space! when
the spacetime metric depends on the extra spatial coordin
and the velocity of the particle has nonzero components
both the extra spatial direction and the direction of our th
dimensional space. Therefore, it is inevitable that if our fo
dimensional world is described by the RS scenario the
four-dimensional observer following a test particle along
bulk geodesic path should observe the violation of fo
dimensional law of particle mechanics, since the RS scen
allows dependence of the spacetime metric on the extra
tial coordinate and physical process in the RS scenari
generally higher-dimensional in nature.

The paper is organized as follows. In Sec. II, we surv
relevant aspects of domain wall solutions in and geode
motion of a test particle in the bulk of the RS scenario.
this section, we also discuss well-known facts of parti
mechanics in curved spacetime for the purpose of und
standing the physical implication of the extra force observ
in one lower dimension. Although some aspects of the fi
force were already studied in the previous literature, we f
that its relation to the four-dimensional particle mechan
has not been clearly presented. We hope that the pre
paper will clarify some confusing issues in the fifth forc
We study the bulk geodesic motion of a test particle mov
in general gravitating configurations in brane worlds as
served in one lower dimension for the case correspondin
the KK zero mode bulk graviton in Sec. III and for the ca
of general bulk graviton including the massive KK modes
Sec. IV. In these sections, we also identify the extra force
the particle which is observed in one lower dimension
nongravitational. Conclusions are given in Sec. V.

II. PRELIMINARIES AND GENERAL SETUP

In this section, we prepare for the main topic of this pap
by surveying aspects of domain wall solutions and dynam
of a particle in brane worlds and in general relativity.
©2000 The American Physical Society02-1
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DONAM YOUM PHYSICAL REVIEW D 62 084002
Generally, the spacetime metric1 for a D-dimensional do-
main wall can be put into the following form:

GMNdxMdxN5W~y!hmndxmdxn1dy2, ~1!

where M ,N50,1, . . . ,D21, m,n50,1, . . . ,D22, and
W(y) is the warp factor. In particular, for the domain wa
solution to the field equations of the following bulk action

S5
1

2kD
2 E dDxA2GFRG2

4

D22
]Mf]Mf1e22afLG ,

~2!

the warp factor is given by@1,18–20#

W~y!5S 12
~D22!a2

2

3A D22

4~D21!2a2~D22!2Luyu D 8/(D22)2a2

,

~3!

for aÞ0, and

W~y!5expS 22A L

~D21!~D22!
uyu D , ~4!

for a50. Here, we have imposed the invariance under theZ2
transformationy→2y and chosen the warp to decrease
that the bulk graviton can be localized.

It is the purpose of this paper to study the dynamics o
test particle in the bulk spacetime with the following metr

GMNdxMdxN5Wgmndxmdxn1dy2. ~5!

This metric generically describes any gravitational config
ration in brane worlds. The geodesic motion of a test p
ticle, i.e., the motion of a particle which is acted on by t
gravitational force only, is described by the following ge
desic equations:

d2xR

dl2 1ĜMN
R dxM

dl

dxN

dl
50, ~6!

whereĜMN
R is the Christoffel symbol~of the second kind! for

the metricGMN andl is an affine parameter for the geodes
path xM(l). In addition, the metric compatibility along th
geodesic path requires that

2eD5GMN

dxM

dl

dxN

dl
5Wgmn

dxm

dl

dxn

dl
1S dy

dl D 2

, ~7!

whereeD51,0, respectively, for a massive test particle~i.e.,
a timelike geodesic! and a massless test particle~i.e., a null
geodesic!. For a timelike geodesic,eD actually can take any

1In this paper, we use the mostly positive conventi
(21•••1) for the metric signature.
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positive value, but one can always apply the affine trans
mation l→al1b (a,bPR), which leaves the geodesi
equations~6! invariant, to bringeD51. In this paper, we
shall not consider the spacelike geodesics, i.e., theeD521
case.

In this paper, we shall reexpress the geodesic equat
~6! for the bulk geodesic motion of a test particle in terms
quantities of the hypersurface spacetime of one lower dim
sion, for the purpose of learning how the bulk geodesic m
tion of the test particle is observed in one lower dimensi
In previous related works@4–6#, the bulk geodesic motion is
reparametrized by an affine parameterl̃ associated with the
four-dimensional metric given bygmn , namely the one sat
isfying the following:

2eD215gmn

dxm

dl̃

dxn

dl̃
, ~8!

whereeD2151,0, respectively, for a timelike and a lightlik
motion observed in one lower dimension. On the other ha
as the bulk test particle follows its geodesic path, it genera
passes through one hypersurface to another. We note tha
induced metric on the hypersurface at a specific value ofy is
given byg̃mn[W(y)gmn . Therefore, it appears that the nat
ral choice for the affine parameterl̃ ~or the standard clock
on the hypersurface that follows the particle in its motio!
for the motion observed on the~comoving! hypersurface is
the one satisfying the following:

2eD215W~y!gmn

dxm

dl̃

dxn

dl̃
. ~9!

However, one might argue thatl̃ satisfying Eq.~8! actually
corresponds to the affine parameter for the motion as
served on the hypersurfacey5y05const, say the TeV brane
of our world, atfixed distance from the Planck brane aty
50. Namely, the affine parameter aty5y0 is defined by

2eD215W~y0!gmn~xr,y0!
dxm

dl̃

dxn

dl̃
, ~10!

and by applying the affine transformationl̃→W(y0)21/2l̃,
one can bring this to the form~8! in the case whengmn is
independent of the extra spatial coordinatey. But we, as
beings adapted to sense only the four- or lower-dimensio
phenomena, are incapable of looking into the extra spa
direction to observe objects in a different four-dimension
hypersurface. Any object on a different four-dimensional h
persurface cannot be observed; it simply exists in a differ
four-dimensional universe which cannot be observed. So,
geodesic equations conveniently put into a four-dimensio
form in terms of a new affine parameter in Refs.@4–6# actu-
ally do not describe the trajectory of a test particle obser
in one lower dimension, as one might naively assume
though Refs.@4–6# do not explicitly state that the bulk geo
desic motion can be observed by an observer on the T
brane. However, in the following we shall also consider t
case associated with a choice of the affine parameter defi
2-2



ls

b-
fin
a

b-

ec

b
o

on

es

s-

as

r-
est
mal
ss
to

ce.
l in
ion
a-

l-
the

f

ase

nal
r-
f

sic

EXTRA FORCE IN BRANE WORLDS PHYSICAL REVIEW D62 084002
by Eq. ~8!, as well as the one defined by Eq.~9!, just for the
purpose of studying the general bulk geodesic motion a
within the framework of the previous works.

In obtaining the equations for the particle motion o
served in one lower dimension, we assume that the af
parameterl̃ for the spacetime in one lower dimensions is
smooth function of the affine parameterl for the bulk geo-
desic motion:l̃5 f (l). First, for l̃ defined in Eq.~8!, which
we refer to as ‘‘case 1,’’ the relation~7! for the bulk geodesic
motion is rewritten in terms of the new parameterl̃ as

gmn

dxm

dl̃

dxn

dl̃
52W 21F eDS dl

dl̃
D 2

1S dy

dl̃
D 2G . ~11!

Second, forl̃ defined in Eq.~9!, which we refer to as ‘‘case
2,’’ Eq. ~7! is rewritten in terms ofl̃ as

Wgmn

dxm

dl̃

dxn

dl̃
52F eDS dl

dl̃
D 2

1S dy

dl̃
D 2G . ~12!

The parameterl̃ is an affine parameter for the motion o
served in one lower dimension, if Eqs.~11! and~12!, respec-
tively, take the forms~8! and~9!, i.e., the RHS’s are either 0
or 21.

We now discuss the condition forl̃ being an affine pa-
rameter. First, for a massless test particle (eD50), the
RHS’s of Eqs.~11! and ~12! can be 0 or21, depending on
the motion of a test particle along they direction. When the
test particle is confined to move along the longitudinal dir
tions of the domain wall2 @i.e., dy/dl50 and therefore
dy/dl̃5(dl/dl̃)(dy/dl)50], the RHS’s of Eqs.~11! and
~12! are zero, corresponding to the lightlike motion as o
served in one lower dimension. In this case, one can cho
l̃5l as an affine parameter for the motion observed in
lower dimension, as can be seen from Eqs.~11! and ~12!.
When they component of the velocity of the massless t
particle is nonzero~i.e., dy/dlÞ0), its motion is observed
in one lower dimension as timelike if the following is sati
fied:

S dy

dl̃
D 2

5W, ~13!

for case 1, and

S dy

dl̃
D 2

51, ~14!

for case 2, for which cases the RHS’s of Eqs.~11! and ~12!
are 21. Second, for a massive test particle (eD51), the

2From Eq.~28! with eD50, one can see that such bulk geode
motion is possible for a massless test particle.
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parameterl̃ is an affine parameter for the timelike motion
observed in one lower dimension, ifl̃ is related to the bulk
affine parameterl as

S dl

dl̃
D 2

5W2S dy

dl̃
D 2

, ~15!

for case 1, and

S dl

dl̃
D 2

512S dy

dl̃
D 2

, ~16!

for case 2.
In the following sections, we will see that from the pe

spective of an observer in one lower dimension a bulk t
particle appears to be under the influence of an abnor
non-gravitational force. So, it would be useful to discu
some aspects of dynamics of particles in general relativity
better understand physical implication of such extra for
Although we assume the spacetime to be four-dimensiona
the discussion in the following paragraphs, our discuss
holds for arbitrary spacetime dimensions without modific
tion of equations.

In terms of the relativistic four-vector notation, the fo
lowing classical Newton’s second law of mechanics plus
work-energy relation~the law of conservation of energy!:

F5
dp

dt
,

dT

dt
5F•v, ~17!

whereF is the force on the particle,p5m0v5m0(dx/dt) is
the momentum of the particle with the inertial massm0 , and
T is the kinetic energy of the particle, is written as

dpm

dt
5Fm , ~18!

wherepm5m0(dxm/dt) is the contravariant components o
the four-momentum of a particle with the rest massm0 , t is
the proper time defined fromdt252hmndxmdxn, Fm
5@2F•(dx/dt),F(dt/dt)#, and (xm)5(t,x). In curved
spacetime with metricgmn , Eq. ~18! is modified to

Dpm

dt
[

dpm

dt
1Grs

m dxr

dt
ps5Fm, ~19!

in the contravariant notation, or

Dpm

dt
[

dpm

dt
2

1

2

]grs

]xm

dxr

dt
ps5Fm , ~20!

in the covariant notation, whereGrs
m is the Christoffel sym-

bol of the second kind for the metricgmn . Here,Fm andpm

are defined in the same way as in the flat spacetime c
except that the proper timet is now defined fromdt25
2gmndxmdxn.

First, we show that a purely mechanical nongravitatio
four-force Fm acts on a particle perpendicularly to its fou
velocity dxm/dt. By taking the covariant derivative o
2-3
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DONAM YOUM PHYSICAL REVIEW D 62 084002
gmn(dxm/dt)(dxn/dt)521 along the particle trajectory
xm(t), one can see thatgmnD(dxm/dt)/dt(dxn/dt)50.
This implies thatgmnFm(dxn/dt)5gmn(Dpm/dt)(dxn/dt)
5m0gmn(D/dt)(dxm/dt)(dxn/dt)50.

Next, we consider the possibility that the four-forceFm

has nonzero component parallel to the four-velocitydxm/dt.
In deriving the relationgmnFm(dxn/dt)50 in the previous
paragraph, we assumed that the proper massm0 of the par-
ticle is constant in time. Had we considered the possibi
that m0 changes with time, we would instead have obtain

gmnFm
dxn

dt
5gmn

Dpm

dt

dxn

dt

5m0gmn

D

dt S dxm

dt D dxn

dt
1

dm0

dt
gmn

dxm

dt

dxn

dt

52
dm0

dt
. ~21!

Therefore, the existence of parallel component of the fo
Fm implies nonconservation of the proper massm0 of a par-
ticle. Generally, the change in the proper mass of a part
occurs when there exist some nonmechanical external fo
which cause such change. To take into account the additi
nonmechanical forces, one has to modifyF0 in the following
way:

F052F•
dx

dt
2Q

dt

dt
, ~22!

where the first term on the RHS is the mechanical work d
by the mechanical forceF per unit time and the second ter
is the heat or nonmechanical energy developed per unit t
The extra term is added to take into account the contribu
from the nonmechanical energy so that the energy can
conserved in the system under consideration. Meanwhile
remaining components ofFm take the same form as th
above, i.e.,~the curved space analog of! Newton’s second
law of mechanicsF5dp/dt continues to hold. So, from Eqs
~21! and ~22!, we obtain

dm0

dt
5QS dt

dt D 2

, ~23!

namely, the proper mass is converted into the nonmechan
energy and vice versa.

Finally, we discuss the motion of a particle under t
influence of an extra nongravitational forceFm in curved
spacetime. First, whenFm acts on the particle perpendicu
larly to its four-velocitydxm/dt, i.e., the proper massm0 of
the particle is constant in time, from Eqs.~19! and ~20! we
obtain the following equations for the particle trajecto
xm(t):

d2xm

dt2 1Grs
m dxr

dt

dxs

dt
5

Fm

m0
,

d2xm

dt2 2
1

2

]grs

]xm

dxr

dt

dxs

dt
5

Fm

m0
. ~24!
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As expected, when the particle is free, i.e., when only gra
tational force is acted on the particle (Fm50), the particle
will execute geodesic motion. Second, when the forceFm

has nonzero parallel component, i.e., whenm0 is not con-
served, the equation for the particle trajectoryxm(t) takes
the following form:

d2xm

dt2 1Grs
m dxr

dt

dxs

dt
5

Fm

m0
1grs

Fr

m0

dxs

dt

dxm

dt
, ~25!

which can be obtained from Eqs.~19! and~21!. We note that
the RHS of Eq.~25! is perpendicular to the four-velocity
dxm/dt, implying that only the perpendicular component
Fm influences the motion of the particle. In other words,
Fm is parallel todxm/dt, then the particle will just follow the
geodesic path@since the RHS of Eq.~25! vanishes for this
case# while its mass will change with time according to th
relation ~23!. This result also shows that according to t
particle mechanics of four-dimensional general relativity t
extra nongravitational force term in the equation for the p
ticle trajectory cannot have a nonzero component paralle
the four-velocity of the particle.

III. DYNAMICS IN THE KALUZA-KLEIN ZERO MODE
SPACETIME

In this section, we consider the case whengmn in the bulk
metric ~5! does not depend on the extra spatial coordinaty.
In this case, the bulk test particle is regarded as being un
the influence of the Kaluza-Klein zero mode of gravito
only.

The geodesic equations~6!, with the bulk metric given by
Eq. ~5! with gmn5gmn(xr), take the following forms:

d2xr

dl2 1Gmn
r

dxm

dl

dxn

dl
1

W8

W
dxr

dl

dy

dl
50, ~26!

d2y

dl2 2
1

2
W8gmn

dxm

dl

dxn

dl
50, ~27!

whereGmn
r is the Christoffel symbol for the metricgmn and

W8[dW/dy. By using the relation~7!, one can put the
y-component geodesic equation~27! into the following form:

d2y

dl2 1
1

2

W8

W FeD1S dy

dl D 2G50. ~28!

A. Case 1

In this subsection, we study the motion of the bulk te
particle as observed in one lower dimension with the spa
time metricgmn5gmn(xr).

First, we consider the geodesic motion of a massless
ticle in the bulk spacetime, i.e., theeD50 case. When
dy/dl50, by choosingl̃5l as an affine parameter, on
can put thexr-component bulk geodesic equation~26! into
the following form:
2-4
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EXTRA FORCE IN BRANE WORLDS PHYSICAL REVIEW D62 084002
d2xr

dl̃2
1Gmn

r
dxm

dl̃

dxn

dl̃
50. ~29!

So, the test particle’s motion is observed in one lower dim
sion with the metricgmn as the lightlike geodesic motion
Next, when they component of the velocity of the test pa
ticle is nonzero~i.e., dy/dlÞ0), from Eqs.~13! and ~28!

with eD50, one can see that the parametersl and l̃ are
related as

S dl̃

dl
D 21

d

dl̃
S dl̃

dl
D 52W 21/2W8, ~30!

which can be solved by

dl̃

dl
5W 21. ~31!

By using Eqs. ~13! and ~30!, one can express th
xr-component bulk geodesic equation~26! in terms of the
(D21)-dimensional affine parameterl̃. The resulting equa-
tion also takes the form~29!. To summarize, a massless te
particle moving in the bulk spacetime with the metric~5! is
observed in one lower dimension with the metricgmn(xr) to
be~i! a free masslessparticle if the motion of the test particl
is confined along the longitudinal directions of the doma
wall and~ii ! a free massiveparticle if they component of its
velocity is nonzero. This is just a generalization of the res
in Ref. @4# to the case of an arbitrary warp factorW and an
arbitrary gravitating configuration with the metricgmn(xr)
within the brane world.~See also Ref.@6# for the generaliza-
tion to the case of multicodimensional brane world.!

Second, we consider the geodesic motion of a mas
bulk test particle, i.e., theeD51 case. By using the relatio
~15!, one can reexpress they-component geodesic equatio
~28! ~with eD51) in terms of the new parameterl̃ as fol-
lows:

d2y

dl̃2
2

W8

W S dy

dl̃
D 2

1
1

2
W850. ~32!

Making use of Eqs.~15! and ~32!, one can again put the
xr-component bulk geodesic equation~26! into the form
~29!. So, we see that a massive test particle moving in
bulk spacetime with the metric~5! is observed in one lowe
dimension with the metricgmn(xr) to be afreemassive par-
ticle. This result extends the previous studies@4–6# on the
geodesic motion in brane worlds to include the case o
massive test particle.~Note, even if some aspects of the ge
desic motion of a massive test particle in brane worlds h
been previously studied, it has never been shown that
geodesic motion of amassivetest particle in the bulk space
time is observed in one lower dimension as the motion o
free massiveparticle.!

Just by looking at Eq.~29!, it appears from the lower
dimensional perspective that the particle is under the in
ence of the gravitational fieldgmn(xr), only. However, this is
not the case, as we explain in the following. A test particle
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massm0 in D-dimensional bulk spacetime with the metr
~5! appears in (D21)-dimensional embedded spacetim
with the metricgmn to have mass given by@15,21#

m̃05m0

dl̃

dl
5m0FW2S dy

dl̃
D 2G21/2

, ~33!

where we used Eq.~15!. So, as the test particle executes
geodesic motion with the nonzeroy-component velocity
dy/dl̃, its mass appears to change with the following ra
from the (D21)-dimensional perspective:

dm̃0

dl̃
52m̃0

W8

W
dy

dl̃
. ~34!

From Eqs.~29! and ~34!, we obtain the following equation
describing the conservation of energy and Newton’s sec
law of mechanics inD21 dimensions:

Dpm

dl̃
[

dpm

dl̃
1Grs

m dxr

dl̃
ps52m̃0

W8

W
dy

dl̃

dxm

dl̃
, ~35!

wherepm5m̃0(dxm/dl̃) is theD21 momentum of the par-
ticle. This implies that from the (D21)-dimensional per-
spective the particle is under the influence of the extra n
gravitational velocity dependent forceFm52m̃0(W 8/
W)(dy/dl̃)(dxm/dl̃). This extra force does not influenc
the motion of the particle, because it acts parallelly to
particle’sD21 velocitydxm/dl̃ @cf. Eq.~25!#, but is respon-
sible for the change of the inertial massm̃0 of the particle
@from the (D21)-dimensional perspective#. The intuitive
reason is that the effect of the forceF on the particle velocity
v5dx/dt is canceled by the effect of the inertial ma
change with time onv. Although the extra force is gravita
tional in nature from theD-dimensional perspective, a (D
21)-dimensional observer will sense that some nonm
chanical nongravitational force causes the inertial massm̃0
of the particle to be converted into the heat energy and v
versa. Such heat energy generated per unit time is

Q
dt

dl̃
52m̃0

W8

W
dy

dt
, ~36!

according to Eq.~23!.

B. Case 2

In this subsection, we study the motion of a bulk te
particle as observed on the~comoving! hypersurface with the
spacetime metricg̃mn5W(y)gmn(xr).

First, we consider the bulk geodesic motion of a massl
particle (eD50). When the motion of the test particle
confined along the longitudinal directions of the domain w
~i.e., dy/dl50), one can choosel̃5l as an affine param
eter on the hypersurfacey5const to express the
xr-component bulk geodesic equations~26! in the following
form:
2-5
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d2xr

dl̃2
1G̃mn

r
dxm

dl̃

dxn

dl̃
50, ~37!

where G̃mn
r is the Christoffel symbol for the metricg̃mn

5Wgmn and we used the fact thatG̃mn
r 5Gmn

r . So, its motion
observed on the hypersurfacey5const is that of a massles
free particle. A nontrivial result arises when the massless
particle has a nonzeroy component for its velocity. From
Eqs.~14! and ~28! with eD50, one can see that the param
etersl and l̃ are related as

S dl̃

dl
D 21

d

dl̃
S dl̃

dl
D 52

1

2

W8

W , ~38!

which can be solved by

dl̃

dl
5W 21/2. ~39!

So, the bulk geodesic equation~26! for the xr-component
motion is rewritten in terms of the new parameterl̃ as

d2xr

dl̃2
1G̃mn

r
dxm

dl̃

dxn

dl̃
52

1

2

W8

W
dxr

dl̃
. ~40!

The bulk geodesic motion of a free massless particle w
nonzeroy-component for its velocity is therefore observ
on the hypersurfacey5y(l̃) with the metricg̃mn as the mo-
tion of a massive particle which is under the influence of
extra nongravitational force as well as the gravitational fi
g̃mn .

Second, we consider the massive bulk test particleeD
51). By using Eq.~16!, one can reexpress they-component
geodesic equation~28! ~with eD51) in terms of the new
parameterl̃ as

d2y

dl̃2
1

1

2

W8

W F12S dy

dl̃
D 2G50. ~41!

The xr-component geodesic equations~26! can be put into
the following simplified form in terms of the new paramet
l̃ by applying Eqs.~16! and ~41!:

d2xr

dl̃2
1G̃mn

r
dxm

dl̃

dxn

dl̃
52

1

2

W8

W
dy

dl̃

dxr

dl̃
. ~42!

So, the geodesic motion of a free massive particle in the b
spacetime is observed on the hypersurfacey5y(l̃) with the
metric g̃mn as the motion of a massive particle under t
additional influence of an extra nongravitational force. F
both the massive and massless test particle cases, the
force term exists in Eqs.~40! and ~42! for the particle mo-
tion, if the xr component of its velocity is nonzero, and ac
on the particle parallell to its four velocitydxr/dl̃.

We have seen in the previous section that Newton’s s
ond law of mechanics and the conservation of energy~and
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their curved space generalization! in four-dimensional space
time imply that only an orthogonal~to the four-velocity
dxm/dt of the particle! component of nongravitational forc
Fm influences the motion of the particle. However, as can
seen from Eqs.~40! and ~42! for the trajectoryxr(l̃) of the
particle @as observed on the comoving hypersurfacey

5y(l̃)], the particle’s motion is additionally influenced b
the extra force term@the RHS’s of Eqs.~40! and~42!# which
is parallel to its velocitydxr/dl̃. Existence of such an ab
normal force term implies violation of four-dimension
physics and therefore can be an implication of the existe
of extra spatial dimensions~since such a force term canno
be explained by the known four-dimensional physics!. Or
maybe it is due to the wrong choice of frame, since we ha
seen in the previous subsection that in the metric frame
case 1 such an abnormal force term does not exist. The
thor does not yet have a clear understanding of which me
frame is the correct choice for the spacetime in one low
dimension. However, as we will see in the following sectio
when gmn depends on the extra spatial coordinatey, the
xr-component equation for the particle trajectory~expressed
in terms of l̃) has the extra abnormal force term for bo
case 1 and case 2. So, it seems inevitable that the abno
force term in general exists for natural choices of met
frame, i.e., those associated withgmn and g̃mn5Wgmn . Due
to the extraordinary property of such an abnormal force te
the previous literature@7–14# dubbed the extra force as th
fifth force. Actually, it should not be regarded as the vio
tion of the four-dimensional physics, since such contrad
tion arises because we attempt to interpret the phenome
which is higher-dimensional in nature from the perspect
of lower dimensional physics. We, as beings incapable
sensing higher-dimensional spacetime, are apt to regard
higher-dimensional physical process as violation of fo
dimensional physics. Anyhow, in the following we reco
struct the equation for the energy conservation and Newto
second law of mechanics in the spacetime of one lower
mension from the equations for the particle trajectory to
any physical implication of the extra force in one lower d
mension.

On the hypersurfacey5y(l̃) with the metric g̃mn

5Wgmn , a bulk test particle with massm0 appears to have
mass given by

m̃05m0F12S dy

dl̃
D 2G21/2

, ~43!

where we used Eq.~16!. By applying Eq.~41!, we obtain the
following mass change rate withl̃ as observed on the~co-
moving! hypersurface:

dm̃0

dl̃
52

m̃0

2

W8

W
dy

dl̃
. ~44!

From Eqs.~42! and ~44!, we obtain the following equation
describing the conservation of energy and Newton’s sec
law on the hypersurface:
2-6
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Dpm

dl̃
[

dpm

dl̃
1G̃rs

m dxr

dl̃
ps52m̃0

W8

W
dy

dl̃

dxm

dl̃
, ~45!

which has the same form as Eq.~35! for case 1. So, in both
cases the particle appears to be under the influence o
extra force of the same formFm52m̃0(W8/W)(dy/
dl̃)(dxm/dl̃). However, the motions of the particle are d
ferent for the two cases, because the massm̃0 changes with
different rates due to different choices of th
(D21)-dimensional metric. For case 2, the particle mech
ics of one lower dimension appear to be violated, wher
for case 1 they are not.

IV. DYNAMICS IN GENERAL SPACETIME

In this section, we consider the case whengmn in the bulk
metric ~5! depends on the extra spatial coordinatey. In this
case, a bulk test particle is regarded as being under the
fluence of both the zero and the massive KK modes of gr
ton. We will see that the massive KK modes of gravit
induce the perpendicular component of the extra forceFm for
both cases 1 and 2, and the parallel component of the f
term even for case 1.

The bulk geodesic equations~6!, with the bulk metric
given by Eq.~5! with gmn5gmn(xr,y), take the following
forms:

d2xr

dl2 1Gmn
r

dxm

dl

dxn

dl
1W 21grs]y~Wgsm!

dxm

dl

dy

dl
50,

~46!

d2y

dl2 2
1

2
]y~Wgmn!

dxm

dl

dxn

dl
50. ~47!

The consistency condition for the geodesic motion in
bulk expressed in terms of an affine parameterl @a new
parameterl̃5 f (l)] takes the same forms~7! @~11! and~12!#
except that the metricgmn now depends ony.

A. Case 1

In this subsection, we study the geodesic motions o
bulk test particle as observed in one lower dimension w
the spacetime metricgmn(xr,y).

First, we consider a massless test particle (eD50) in the
bulk spacetime. For the trivial case of the geodesic mot
with dy/dl50, the motion is observed in one lower dime
sion to be that of a massless free particle under the influe
of gravitational fieldgmn only. Whendy/dlÞ0, by using
Eqs. ~13! and ~47!, one obtains the following relation be
tween the two parametersl and l̃:

S dl̃

dl
D 21

d

dl̃
S dl̃

dl
D

52
1

2
W 21/2W81

1

2
W 21/2]y~Wgmn!

dxm

dl̃

dxn

dl̃
.

~48!
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The xr-component geodesic equation~46! takes the follow-
ing form after Eqs.~13! and ~48! are applied:

d2xr

dl̃2
1Gmn

r
dxm

dl̃

dxn

dl̃
5

1

2
W 21/2W8

dxr

dl̃
2FW 21/2grs

1
1

2
W 21/2

dxr

dl̃

dxs

dl̃
G dxm

dl̃
]y~Wgrm!.

~49!

The bulk geodesic motion of the massless particle w
dy/dlÞ0 is therefore observed in one lower dimension
the motion of a massive particle under the additional infl
ence of the extra nongravitational force, unlike the case
the KK zero mode metricgmn as discussed in the previou
section. The extra force term on the RHS of Eq.~49! has
both parallel and perpendicular components given by

f i
r5

1

2 FW 21/2W81W 21/2]y~Wgmn!
dxm

dl̃

dxm

dl̃
G dy

dl̃

dxr

dl̃
,

f'
r 52FW 21/2grs1W 21/2

dxr

dl̃

dxs

dl̃
G dxm

dl̃
]y~Wgsm!.

~50!

These vanish whengmn is independent of the extra spati
coordinatey, implying that the extra force is due to the ma
sive KK modes of graviton.

Second, for a massive bulk test particle (eD51), by using
Eq. ~15! one can express they-component bulk geodesi
equation~47! in terms ofl̃ as

d2y

dl̃2
2

1

2

W8

W S dy

dl̃
D 2

2
1

2 FW2S dy

dl̃
D 2G

3W 21]y~Wgmn!
dxm

dl̃

dxn

dl̃
50. ~51!

The xr-component bulk geodesic equation~46! can be ex-
pressed in terms ofl̃ as follows by applying Eqs.~15! and
~51!:

d2xr

dl̃2
1Gmn

r
dxm

dl̃

dxn

dl̃
5

1

2

W8

W
dy

dl̃

dxr

dl̃
2W 21

3Fgrs1
1

2

dxr

dl̃

dxs

dl̃
Gdy

dl̃

dxm

dl̃

3]y~Wgsm!. ~52!

So, the bulk geodesic motion of a massive test particle
observed in one lower dimension as the motion of a mas
particle under the additional influence of the extra nongra
tational force, also unlike the case ofy-independentgmn .
The extra force term on the RHS of Eq.~52! has both the
parallel and the perpendicular components given by
2-7
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f i
r5

1

2 FW8

W 1W 21]y~Wgmn!
dxm

dl̃

dxm

dl̃
G dy

dl̃

dxr

dl̃
,

f'
r 52W 21Fgrs1

dxr

dl̃

dxs

dl̃
Gdy

dl̃

dxm

dl̃
]y~Wgsm!.

~53!

As expected, these vanish whengmn is independent ofy.
We now obtain the expression for the extra (D21)-force

Fm acting on the particle from the (D21)-dimensional per-
spective. The bulk test particle of massm0 is observed to
have massm̃0 given by Eq. ~33! from the perspective o
(D21)-dimensional spacetime with the metricgmn . By us-
ing Eq. ~51!, one obtains the following rate of mass chan
with l̃ as observed in the embedded (D21)-dimensional
spacetime:

dm̃0

dl̃
52

m̃0

2 FW 21W82W 21]y~Wgmn!
dxm

dl̃

dxn

dl̃
Gdy

dl̃
.

~54!

From Eqs.~52! and ~54!, we obtain the following equation
describing the conservation of energy and Newton’s sec
law of mechanics inD21 dimensions:

Dpm

dl̃
[

dpm

dl̃
1Grs

m dxr

dl̃
ps52m̃0W 21gmn

dxr

dl̃
]y~Wgnr!

dy

dl̃
.

~55!

The extra forceFm on the RHS of Eq.~55! has both parallel
and orthogonal components given by

F i
m5m̃0W 21

dxr

dl̃

dxs

dl̃
]y~Wgrs!

dy

dl̃

dxm

dl̃
,

F'
m52m̃0W 21Fgmn1

dxm

dl̃

dxn

dl̃
G

3
dy

dl̃

dxr

dl̃
]y~Wgnr!. ~56!

As expected, whengmn does not depend ony, F'
m vanishes

andF i
m takes the form of the RHS of Eq.~35!.

Even with the choice of the metric bygmn for the (D
21)-dimensional spacetime, which it has been previou
regarded as the natural canonical choice for
(D21)-dimensional spacetime embedded in brane wor
the motion of the particle observed in th
(D21)-dimensional spacetime appears to be under the
ditional influence of the abnormal force term, which cann
be explained by laws of physics inD21 dimensions, if the
metric gmn depends on the extra spatial coordinatey.
Namely, Eqs.~49! and~52! describing the particle trajector
xm(l̃) observed in one lower dimension have nonzero pa
lel component force termf i

r and the mass change~54! with l̃
is not in accordance with the conventional formula~21! for a
given extra nongravitational force Fm5
08400
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2m̃0W 21gmn(dxr/dl̃)]y(Wgnr)(dy/dl̃). Also, with a
choice of the metric frameg̃mn , the same holds true as ex
pected, as we will see in the following subsection. Note,
abnormal force term is not due to the wrong choice3 of pa-
rameterl̃ describing motion observed inD21 dimensions,
since we have fixed~up to affine transformations! the param-
eter l̃ through the (D21)-dimensional affine conditions~8!
and~9!. So, the massive KK modes of graviton not only gi
a small correction to Newton’s 1/r 2 law of four-dimensional
gravity but also cause violation of the four-dimensional la
of physics, which can be an indication that our fou
dimensional world is embedded in higher-dimension
spacetime.

If we take the viewpoint that laws of physics i
(D21)-dimensional spacetime should not be violated, th
we have to take the metricḡmn for which the equation for the
particle trajectory does not have an abnormal force term
the physical metric of the (D21)-dimensional spacetime
With the choice of such a metric, according to Eq.~21!, the
(D21)-dimensional massm̄0 should change with an affine
parameterl̄ as

dm̄0

dl̄
52ḡmnFm

dxn

dl̄
, ~59!

wherem̄05m0(dl̄/dl), the parameterl̄ is defined through
the relation ḡmn(dxm/dl̄)(dxn/dl̄)521, Fm is the extra
nongravitational force observed inD21 dimensions, and of
course the parameterl is defined through Eq.~7! with eD
51. In the case wheregmn is independent ofy, such a physi-
cal metric is given byḡmn5gmn . For a generaly-dependent
gmn , it does not seem clear whether a simple and natu
form of the physical metricḡmn that satisfies this equatio
exists.

3If one chooses a nonaffine parameter to describe the motion
particle, the abnormal force term also occurs in the equation
particle trajectory. To see this, we consider the following geode
equation for a free particle, whose motion is under the influence
the gravitational force only:

d2xr

ds2 1Gmn
r

dxm

ds

dxn

ds
50, ~57!

where s is an affine parameter. If we take a new parametes̃
5 f (s) to parametrize the motion of the particle, then the abo
geodesic equations transform to the following form:

d2xr

ds̃2
1Gmn

r
dxm

ds̃

dxn

ds̃
52

d2s̃/ds2

~ds̃/ds!2

dxr

ds̃
. ~58!

So, through nonaffine transformation one induces an extra velo

dependent fictitious force term2@(d2s̃/ds2)/(ds̃/ds)2#(dxr/ds̃)

parallel to the four-velocitydxr/ds̃ of the particle. Equation~58!
also shows that the geodesic equations~57! are invariant only under

the affine transformationss→ s̃5as1b, a,bPR.
2-8
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B. Case 2

In this subsection, we study the geodesic motion of a b
test particle as observed in the~comoving! hypersurfacey
5y(l̃) with the metricg̃mn5W(y)gmn(xr,y).

First, we consider the case of a free massless bulk par
(eD50). Whendy/dl50, one can put thexr-component
geodesic equation~46! to the form~37!. Whendy/dlÞ0, by
using Eqs.~14! and ~47!, one can see that the affine param
etersl and l̃ are related as

S dl̃

dl
D 21

d

dl̃
S dl̃

dl
D 5

1

2
]y~Wgmn!

dxm

dl̃

dxn

dl̃
. ~60!

Applying Eqs.~14! and ~60!, one can put thexr-component
bulk geodesic equation~46! into the following form in terms
of the new parameterl̃:

d2xr

dl̃2
1G̃mn

r
dxm

dl̃

dxn

dl̃

52FW 21grs1
1

2

dxr

dl̃

dxs

dl̃
Gdxm

dl̃
]y~Wgsm!,

~61!

where G̃mn
r is the Christoffel symbol for the metricg̃mn

5W(y)gmn(xr,y) and we used the fact thatG̃mn
r 5Gmn

r . So,
the geodesic motion of a massless free particle in the b
spacetime with the metric~5! is observed on the~comoving!
hypersurfacey5y(l̃) as the motion of a massive partic
under the additional influence of the extra nongravitatio
force. Unlike the case of they-independentgmn , the extra
force term on the RHS of Eq.~61! is no longer parallel to the
(D21)-velocitydxr/dl̃ of the test particle. The parallel an
perpendicular components of the extra force term are gi
by

f i
r5

1

2
]y~Wgmn!

dxm

dl̃

dxn

dl̃

dxr

dl̃
,

f'
r 52Fdxr

dl̃

dxs

dl̃
1W 21grsG dxm

dl̃
]y~Wgsm!.

~62!

As expected, the perpendicular componentf'
r vanishes and

the parallel componentf i
r takes the form of the RHS of Eq

~40!, when gmn is independent ofy, implying that the per-
pendicular component is due to the massive KK modes
graviton.

Second, we consider the case of a massive bulk test
ticle (eD51). By using Eq. ~16!, one can put the
y-component geodesic equations~47! into the following form
in terms of a new parameterl̃:

d2y

dl̃2
2

1

2 F12S dy

dl̃
D 2G]y~Wgmn!

dxm

dl̃

dxn

dl̃
50. ~63!
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Thexr-component bulk geodesic equation~46! takes the fol-
lowing form after Eqs.~16! and ~63! are applied:

d2xr

dl̃2
1G̃mn

r
dxm

dl̃

dxn

dl̃

52FW 21grs1
1

2

dxr

dl̃

dxs

dl̃
Gdy

dl̃

dxm

dl̃
]y~Wgsm!.

~64!

So, the geodesic motion of a massive particle in the b
spacetime with the metric~5! is observed on the~comoving!
hypersurfacey5y(l̃) as the motion of a massive partic
under the additional influence of the extra nongravitatio
force. As in the massless test particle case, the extra f
term on the RHS of Eq.~64! has both parallel and perpen
dicular components given by

f i
r5

1

2
]y~Wgmn!

dy

dl̃

dxm

dl̃

dxn

dl̃

dxr

dl̃
,

f'
r 52Fdxr

dl̃

dxs

dl̃
1W 21grsG dy

dl̃

dxm

dl̃
]y~Wgsm!. ~65!

As expected, whengmn is independent ofy, f i
r takes the form

of the RHS of Eq.~42! and f'
r vanishes.

We now obtain the expression for the extra nongrav
tional (D21)-forceFm observed on the~comoving! hyper-
surfacey5y(l̃). A bulk test particle with massm0 is mea-
sured on the hypersurfacey5y(l̃) to have massm̃0 given
by Eq.~43!. By using Eq.~63!, we obtain the following mass
change withl̃ as observed on the hypersurface:

dm̃0

dl̃
5

m̃0

2
]y~Wgmn!

dxm

dl̃

dxn

dl̃

dy

dl̃
. ~66!

So, from Eqs. ~64! and ~66!, we obtain the equation
Dpm/dl̃5Fm which has the same form~55! as case 1. How-
ever, since we have chosen a different (D21)-dimensional
metric, the expressions for the parallel and perpendicu
components ofFm are instead given by

F i
m5m̃0

dxr

dl̃

dxs

dl̃
]y~Wgrs!

dy

dl̃

dxm

dl̃
,

F'
m52m̃0FW 21gmn1

dxm

dl̃

dxn

dl̃
Gdy

dl̃

dxr

dl̃
]y~Wgnr!. ~67!

As expected, whengmn is independent ofy, F'
m vanishes and

F i
m takes the form of the RHS of Eq.~45!.

V. CONCLUSIONS

In this paper, we carefully studied the geodesic motions
a test particle in the bulk spacetime of general gravitat
configurations in the RS scenario as observed in the em
2-9
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ded spacetime of one lower dimension. We presented
explicit equations describing such particle motion perceiv
by an observer in one lower dimension and the explicit for
of the extra force on the particle measured in one low
dimension. Such equations and extra forces are inconsis
with laws of particle mechanics in one lower dimensio
Such inconsistency does not mean the violation of physic
one lower dimension, but results from our effort to interp
the physical process which is higher-dimensional in nat
with physics of one lower dimension. The RS model a
sumes that the extra spatial dimension is noncompact,
therefore generically physical phenomena in the RS mo
have to show higher-dimensional character, which is
served to be inconsistent with physics of our fou
s
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dimensional world. So, one can test the RS scenario by
tecting inconsistency with the four-dimensional physics su
as the one present in this paper. However, one has to
that since the current RS scenario assumes that the motio
ordinary matter in our~visible! universe is confined within
the TeV brane, which is assumed to be at afixed distance
from the Planck brane, due to a yet unknown nongrav
tional mechanism, the extra force discussed in this paper
not be detected by the lower-dimensional observers on
~visible! TeV brane of the current RS model. The extra for
discussed in this paper can be measured only by an obse
who follows a test particle with the nonzero velocity comp
nent along the extra spatial direction.
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