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Perturbation theory for self-gravitating gauge fields: The odd-parity sector
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A gauge- and coordinate-invariant perturbation theory for self-gravitating non-Abelian gauge fields with the
gauge group S(2) is developed and used to analyze local uniqueness and linear stability properties of
non-Abelian equilibrium configurations. It is shown that all admissible stationary odd-parity excitations of the
static and spherically symmetric Einstein-Yang-Mills soliton and black hole solutions have a total angular
momentum numbel=1, and are characterized by nonvanishing asymptotic flux integrals. Local uniqueness
and stability results with respect to non-Abelian perturbations are also established for the Schwarzschild and
Reissner-Nordstra solutions. Finally, unstable modes witk: 1 are excluded for the static and spherically
symmetric non-Abelian solitons and black holes.

PACS numbsg(s): 04.25.Nx, 04.40-b, 04.70.Bw

I. INTRODUCTION not generalize to space-times containing non-Abelian gauge
fields[12].

Self-gravitating non-Abelian gauge fields admit a rich The above comments suggest that it is (yet) feasible to
spectrum of equilibrium configurations, which is a conse-completely classify the soliton and black hole solutions of
guence of the balance between the gravitational attractiothe stationary EYM equations. In this article we pursue,
and the repulsive nature of the Yang-Mills interaction. Intherefore, a more modest aim. That is, we compute the com-
particular, the static and spherically symmetric non-Abelianplete spectrum ostationary EYM perturbationsf the BK
soliton[1] and black hole solution®] owe their existence to solitons and the corresponding black holes with hair. We do
the nonlinearities oboth general relativity and Yang-Mills so by systematically developing the perturbation theory for
theory. self-gravitating non-Abelian gauge fields with gauge group

On the other hand, the key to the black hole uniquenesSU(2). Following the tradition, we start with the odd-parity
theorems [3] lies in the o-model structure of the sector, and defer the investigation of even-parity perturba-
Einsteir-Maxwell) equations in the presence of a Killing tions to a forthcoming publicatiofi3].
field [4,5]. As this property ceases to exist for self- The gauge- and coordinate-invariant equations derived in
gravitatingnon-Abeliangauge field$6], the classification of this paper describe perturbations of arbitrary spherically
all stationary Einstein-Yang-MillSEYM) soliton and black symmetric EYM configurations, where the stationary and the
hole solutions is necessarily a very difficult task. In particu-dynamical sector can be treated separately if the background
lar, the set of global charggasymptotic flux integrajsno  is static. In order to classify the equilibrium solutions close
longer uniquely characterizes all possible non-Abelian equito the BK solitons and the corresponding black holes, it is
librium configurations. sufficient to considestationaryexcitations. As we shall see,

Induced by the work of Bartnik and McKinnofBK) on  these are naturally analyzed in terms of invariagtric and
non-Abelian solitong1], various new self-gravitating equi- Yang-Mills amplitudes.
librium configurations have been found during the last de- The main results of this paper concern two local unique-
cade. In addition to the abovementioned static and spheriness theorems, applying to the BK solitons and the corre-
cally symmetric black holes with Yang-Mills hafr.e., with  sponding black holes with hair, respectively: We prove that
vanishing Yang-Mills charges but different metric structureall stationary odd-parity excitations of these static and
than the Schwarzschild solutipf2], these include soliton spherically symmetric configurations are parametrized in
and black hole solutions in Skyrme, Higgs, dilaton, and otheterms of infinitesimal asymptotic flux integrals. More pre-
nonlinear field theories coupled to gravigee Ref[7] fora  cisely, we show that the soliton and black hole excitations
review and references found in Ref.[11] are the only stationary, asymptotically flat

Moreover, numerical8] and analytical9] studies have perturbations of the BK solitons and the corresponding black
revealed that non-Abelian static black holes are not necessanoles with hair. In particular, there exist no admissible regu-
ily spherically symmetric—in fact, they need not even belar or black hole perturbations with total angular momentum
axisymmetric[10]. In addition, the nonlinear nature of the numberl>1, while for =1, the unique soliton and black
Yang-Mills interaction enables the existence of stationaryhole excitations are those with infinitesimal electric charge
nonstatic black holes with vanishing Komar angular momen-and/or infinitesimal Komar angular momentdidi]. On the
tum[11]. Also, the usual Lewis-Papapetrou form of the met-perturbative level, the situation is, therefore, similar to the
ric does not necessarily describe all stationary and axisymAbelian case, where the only admissible stationary excita-
metric EYM black holes; that is, tharcularity theorem does tions of the Schwarzschild metric are the Kerr-Newman
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modes. The above results also establish a local version of thepplication we derive a coordinate-invariant version of the
circularity theorem in the odd-parity sector. RW equatior{19]. We finally recall the arguments establish-
In addition to the classification of neighboring equilib- ing the stability of the Schwarzschild metric with respect to
rium configurations, we also discuss sostability issues, vacuum perturbations.
which require the analysis afynamicalperturbations. Un-
fortunately, the gauge-invariant metric perturbations used in
this paper are, in general, not suited to apply spectral analy-
sis, since their evolution is not governed by a standard pul- We are analyzing odd-parity perturbationssgherically
sation operator. In a recent wofk4] we have demonstrated symmetric backgroun@onfigurations. A spherically sym-

how to overcome this problem by usingurvature-based ouic gpacetime MI,g) is a warped product ofM
guantities. A rigorous discussion of dynamical perturbatlonsEM/So(g) and S with metric

within the metric approach is nevertheless possible for some

distinguished cases. These includel EYM perturbations — T+ R20 (1)
of arbitrary background configuratiuons, and arbitrary EYM 9=9 g

perturbations of embedded Abelian configurations. . _

Hence, further results derived in this paper concern thdlereg is the standard metric o8, andg andR denote the
non-Abelian stability (and local uniqueness of the  metric tensor and a real-valued function, respectively, de-
Schwarzschild and the Reissner-NordstrdRN) black  fined on the two-dimensional pseudo-Riemannian orbit space
holes, as well as the stability properties of non-Abelian cony with coordinatex?, say. Here and in the following lower-

figurations with respect tb=1 perturbations. In particular, L - . ~ ~
we show that the Schwarzschild and the RN metric are linS25¢ Latin indicesg=0,1) refer to coordinates orM.g),

early stable with respect to dynamical non-Abelian perturbayv hile capital Lat[n indices A=2,3) refer to the coordinates

tions with| =1 and admit no stationary excitations other than® and ¢ on (?,g). The dimensional reduction of the Ein-

the (embeddeliKerr-Newman modes. In addition, we estab- stein tensor yields

lish the absence of unstable modes of the pulsation equations

governing thd =1 perturbations of the BK solitons and the 1 _ _ 2 ~

corresponding black holes with hair. In this context it is Gab=—Z(ZRAR+(dR,dR)—1)gab— ﬁVaVbRa

worthwhile recalling that unstable Yang-Mills modes with R

odd-parity do exist fol =0 [15]. Also, the RN solution is

known to be unstable with respect to non-Abelian fluctua- 1 ~ .

tions in the sectot=0 [16,17. Gas= 5 (2RAR=RR)gas, 2
The paper is organized as follows. In Sec. Il we briefly

review the gauge-invariant approach to odd-parity gravitay, oo e off-diagonal components vani€h,,=0. The op-

Eggacl,fpfﬁéuﬁggggfﬁﬁge%ev\?) Zg%;dt'igit.elr']nvsaerfnltlld\f/gvaerators with a tilde and the inner prodL(cI~> refer ~to the

present the harmonic decomposition of Yang-Mills fields,iWo-dimensional pseudo-Riemannian metgc and R de-

using a convenient method to parametriz€swalued one notes the Ricci scalar @.

forms in terms of isospin harmonics. Taking advantage of

some powerful tools developed in Appendix D, the linear- B. Coordinate-invariant amplitudes

ized field equations governing arbitrary odd-parity perturba-

tions of spherically symmetric EYM configurations are de- , , X
rived in Sec. IV. ground fields can be expanded in terms of spherical tensor

As first applications, we establish the linear stability andh@monics. For odd-parity perturbations the transverse

the local uniqueness properties of the Schwarzschild and thgpherical vector harmonic,=(* dY) 5 form a basis of vec-
RN solutions with respect to non—AbeIian perturbations intgr fields on S2 while the harmonics%{AsB}Eg(%AsB
Secs. V and VI, respectively. The local uniqueness theorem$% S basis of . fields 8
for the BK solitons and the corresponding black holes are’ "B A)_ are a a5|§ 0 syrrlmetnc tensor fields seg
proven in Sec. VII. Eventually, in Sec. VIII, we establish the Appendix D for details(Here * denotes the Hodge dual with
dynamical stability of these solutions with respect to non-respect to the metrig, and theY'™ are the scalar spherical
spherical perturbations with=1. harmonics, where the angular numbérsind m are sup-
A variety of technical issues, such as the expressions fopressed throughout, i.eY,=Y'" S,= S'Am .) The odd-parity
the linearized Ricci tensor, the integral argument excludingerturbations ofy,,, are, therefore, parametrized in terms of
admissible solutions of certain RW-type equations, some scalar field« and a one fornh=h_dx?,
asymptotic expansions, the introduction of isospin harmon- .
ics, and' the construction of gauge- and coordingte-invariant 80ap=0, 89ap=hpSa. 09ag=2kVaSg, (3
Yang-Mills amplitudes are discussed in Appendixes A—F.

A. Background expressions

Arbitrary perturbations of spherically symmetric back-

wherex andh, depend on the coordinate$ only.
A vector fieldX=X*g,, generating an infinitesimal coor-
In this section we briefly review the gauge-invariant ap-dinate transformation with odd parity is determined by a
proach to odd-parity gravitational perturbatidis]. As an  function f(x?), where

II. GRAVITATIONAL PERTURBATIONS

084001-2



PERTURBATION THEORY FOR SELF-GRAVITATING . .. PHYSICAL REVIEW B2 084001

o bationh coincides with the coordinate-invariant perturbation
X2=0, XAszAz—ZgABSB. (4)  H defined in Eq.(10). [It is obvious from Eq.(5) that the

R ODG always exists and fixes the gauge functfiemiquely]
Hence, fol>1, the correct invariant tensors are obtained by
computinchG';“; in the ODG, and by substituting for h in
the resulting expressions. Fb 1 all perturbations are off-
~ diagonal anyway, and one obtains the correct expressions in
= Oyt Lxtyy - USINg LxGap= SAR?V,(R™?f) andLygag  terms of the invariant quantitgt(R~2h).
=2fV4Sgy, the metric perturbations transform according to  Itis a straightforward task to compus&,,, in the ODG.
Using the formulagA3), (A4), and(A5) derived in Appen-
dix A, Egs.(8) and(9) yield the expressions

Under coordinate transformations induced>Xthe perturba-
tions of a tensor field transform with the Lie derivative of the
corresponding background quantity with respecitodt,,,,

f
R?

h, h, =
k—k+f, QHE‘F b

inv _ Sa var pAv -2 A
In a similar way one obtains the transformation laws for the 9Ghblope™= @ VAR Vip(hgR )]+§hb '
perturbations of the Einstein tensor. Also using the back-
ground propertie§S,,=0 and Z5=GB &5 one finds _ _ . N
8Gihlon=0, GRElopc=V(aSs; V Ny,
B 2y f (12
0Gap— 8Gap+ GaSgR Vb( ;) , (6)
where

8Gag— 0Gpp+ GRV aSg)f. 7)
A=(1-21)(1+2).
One may now use the transformation laws foandhy, to

construct the following coordinate-invariant components:
g P Here we have used the background proper642 GJs5

SGIV=6G,,, 6GRY=056Gs,—h,GESs, (8)  and the fact thabGg= 6Gag in the ODG. Sincehy, coin-
cides with the invariant amplitudd,, in the ODG, we may
and, forl#1, replaceh, by H, in the above expressions, which makes
_ . them manifestly coordinate invariant for-1. Forl=1 the
SGNE= 6Gag— KGBV{ASB}. (9  second term in the expression féGL vanishes, and,

appears only via the coordinate-invariant expression

We recall that the scalar amplitudedefined in Eq(3) is not $[b(ha]R72)- We therefore end up with the manifestly

present forl=1, since thenﬁ{ASB} vanishes. However, by coordinate-invariant expressions
virtue of Eq.(7), this also implies thatG g is already co-
ordinate invariant(In fact, §G,g vanishes identically fot

=1, as will be shown below.Hence, forl=1 one needs sGav=0, 5Gi£\é:_dTH%{ASB} (12
only the invariant components defined in E¢®, which do
not involve the amplitudex. and

As the 6G};, are invariant under coordinate transforma-
tions generated by, the expressiongd) and (9) will only
involve coordinate-invariant combinations of the one fdrm
and the scalak. In fact, forl # 1, §GJ} can be expressed in
terms of the manifestly coordinate-invariant one fdinde-

. S
5GLr\“gdxb=2—$2{dT[R4d(R’2H)]+)\H}, (13)

fined by ) . . i .
which are valid for all values df, provided thaH is defined
P according to EQ.(10) for 1>1, and according tdH=h
H=h—Rd R (100 for I=1. Hered'=%d* denotes the codifferential operator
for p forms on M,g), e.g., d'TH=-V3H,, (d'dH),
This definition is again limited tb# 1. Forl=1, wherex is  _5yay H
[b'1a] -

absent, we will see that the remaining perturbatioenters

i : : - The linearized Bianchi identity implies that the Einstein
6G,,, via the invariant two fornd(R™“h) only.

equation for 5GI% is a consequence of the equation for
o o 5Gap - In fact, the first equation is the integrability condition
C. Coordinate-invariant Einstein tensor for the second one, as is obvious for vacuum perturbations:

The computation of the coordinate-invariant componentdA\pplying the codifferential toRzéGi,L“g:O yields d"H=0,
8GY) is considerably simplified by the following observa- that is, 5Gg=0. (For =1 this integrability condition is
inv

tion: In the gauge where the scalar amplitudevanishes, void, in agreement with the fact thaG,z vanishes identi-
henceforth called the off-diagonal gau@@DG), the pertur-  cally.)
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D. Local uniqueness and linear stability scalar potentialb, defined byH =% d(R®), satisfy the same
of the Schwarzschild metric equation will be explained at the end of Sec. \| B.
As an application we consider vacuum perturbations of The positivity of the RW potential fok+ 1 follows from
the Schwarzschild metric. The relevant equation for the oddthe general expressioii2) for G,,, which yields the

parity sector was first derived by Regge and Whe@RW)  coordinate-independent vacuum background equaRaiR
[19], and brought in a gauge-invariant form by Gerlach and+(dR,dR)=1. By virtue of this, Eq(15) assumes the form
Senguptg 18]. A gauge-invariant approach which is based
on the Hamiltonian formalism was given by Moncr(€0]. [~ NA+Vgy]¥=0,

The linear stability of the Schwarzschild metric follows
from the dynamical behavior of vacuum fluctuations. In or-with
der to establish thimcal uniquenesgroperty one also has to
exclude all stationary perturbations other than the Kerr
mode. While the stationary perturbations do not need to be
normalizable, they are, however, subject to certain boundary

cond_itions following from asymptotic flatnes_s and regula(ityandNEwR,d R). Hence Vgy is positive for finite values of
requirements. Both stationary and dynamical perturbationg if dR is spacelike and=2.

must be analyzed separately in the sectord andl=1. We may now use standard Schwarzschild coordinates
The vacuum perturbations with odd parity are obtainedandt, defined by
from Eq. (13), which yields

N
Vew= E[S(N—l)-l—l(l +1)]

- 1
1 R(r,t)=r, g=-NSdt’®+ —dr?, (16)
_d’r N

4
=2 R*d

H
|| = (14)

R2

to cast the RW equation into its well-known form. For a
This equation holds for all values dfand comprises the Schwarzschild background with mabtwe haveN(r)=1
complete information. The usual way to derive the RW equa—2M/r, S(r)=1, NA=— g7+ Ng,Ns,, and thus
tion from Eq. (14) is to decompose the one forid with
respect to Schwarzschild coordinatds-H,dt+H,dr, and
to use the integrability condition to eliminaltg . This yields
an equation forH, alone, which is then cast into a wave
equation for the function (¥ 2M/r)H, /r. This can also be with dr,=N"dr. For|=2 the potential is non-negative in
achieved in a coordinate-invariant way as follows: Using thethe domain of outer communications, and vanishes only as-
integrability conditiond"™H =0 to introduce the scalar poten- ymptotically. Therefore, Eq(17) admits no unstable dy-
tial ® according toH =* d(R®), one may integrate E¢14). namical modes. Furthermore, well-behaved stationary modes
This yields Eq.(15) below for the potentiad instead of#’.  with =2 can also be excluded in a rigorous manner by

Here we proceed in a different way, which is also coor-applying the argument given in Appendix B.

dinate invariant. The basic observation is that in two dimen- It remains to discuss the perturbations witk 1, for
sions the field strength two form assigned to a one form isvhich Eq. (15) is immediately seen to admit the solution
equivalent to a scalar field. We therefore introduce the scalal/R. Sincex=0, we may also directly integrate E¢L4),
field ¥ according to which yields

=

? 5
E—P'F—Z ¥=0, (17)

6M
|(|+1)—T

*

H
R

— 6M7§
a1,

¥=R%d

3 . , where @M is a constant of integration. At this point it is
where the factoR® turns out to be convenient. Applying the important to recall that fot=1 the one formH=h is not

operator *d on Eq.(14) and using the above definition yields coordinate invariant, but transforms according Ho—H

the wave equation +R2d(f/R?). This implies that the solution of the homoge-
neous part of the above equation is a pure gauge. Hence,
with respect to Schwarzschild coordinates, the only admis-
sible solution of the perturbation equatiofstationary and
nonstationaryis H=2a(M/r)dt. Using thatSy=0 andsS,

= —sird for I=1 andm=0, one finds with Eq(3)

—~A+RA V=0, (15)

1)+)\
R/ R?

where the two-dimensional Laplacian of a functionAig
=—d'd¥, and where we have usediti’=d'd*. Equation 2M

(15) is the coordinate-invariant version of the RW equation. 09t,= —aTstq?,

In fact, it generalizes the RW equation, since it is not re-

stricted to perturbations of static background configurationsyhich describes the Kerr metric in first order of the rotation
[The fact that the RW functiol?=R3* d(R™2H) and the parametera. In conclusion, we have established the well-
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known result that the only physically admissible odd-parity,\hered=%d*  and Aw= —d'dw=VaV.w. The Einstein
vacuumperturbation of the Schwarzschild metric lies in the equationsG =,8’7TGT are obtained afrom the formulas
sectorl =1 and describes the stationary Kerr mode. %) and(zé) ;\Iso usinét'llifl‘zo one finds

: n=0,

Ill. PERTURBATIONS OF YANG-MILLS FIELDS 1.

. . 2~ ~ 2

=0.0R— =V.VyR=G — | 2w wp— =
We are interested in perturbations of spherically symmet- Zgab R P R? amb Zgab
ric EYM solitons and black holes which give rise to odd-

parity metric excitations. Before deriving the gauge- and 2-1)?
. : ) : x| 2wwe+ ——— ||, (22
coordinate-invariant expressions for the stress-energy tensor R?
and the YM equations, we briefly recall some features of the
background configurations. 1. (W2—1)2
1- EA(R?) = GT. (23

A. Einstein-Yang-Mills background configurations

The spherically symmetric EYM background configura- Equations (21)—(23) are the spherically symmetric EYM
tions are assumed to be purely magng#it], but not neces- equations in coordinate-invariant form. In the static case we
sarily static. The metric is given by E¢L), while the gauge may evaluate these expressions for the mefti®, which
potential is parametrized in terms of a scalar fiel@x")  yields (a prime denoting the derivative with respectrjo
onM,
w2—1
2

%(NSV\/)'ZW (24)

A=(1-w)*dr,, (18 r

wherer,=7-€,. Here ther,= 0 /(2i) are the s(2) genera-  for the YM equation(21), and, withN(r)=1—2m(r)/r,
tors, e, is the radial unit vector i3, and theo, are the

constant Cartesian Pauli matrices. The total exterior deriva- , G (w?—1)? '
tive of the vector valued functiore, is bAgA (with A m== 2 +2N(W)7, (29
=3,¢), implying that
g’ w’ 2
dr,=7yd9+ 7,sindde. §=ZG( r) (26)

(see Appe'ndlx D for fjeta};I}sS|nce7-r is an eigenfunction of for Eq. (23) and for the trace-free part of EQR2), respec-
the spherical Laplaciarg*dr,=—27,d(}, the background tjely. Two special Abelian solutions to Eq&24)—(26) are

field strengthF=dA+A/\A, becomes the Schwarzschild metrien(r)=M=const, S=1, w=1,
R and the Reissner-Nordstro(RN) metric with massM and
F=—dw/A*dr +(W?—1)7,dQ. (19 unit magnetic charge\=1—2M/r+G/r?, S=1, w=0.

_ . _ Asymptotically flatnon-Abeliansolutions with finite en-
Using this expression, the components of the stress-energytgy and nontrivial gauge fields are the solitons found by
tensorTM,,=(1/477)Tr{FWF‘j—%gWFaﬁFaﬁ},with respect Bartnik and McKinnon[1], and the corresponding black

to the background metri(l) become holes with haif2]. They are obtained by numerical methods
and by analyzing the local solutions at the singular points of
1 1. (W?—1)2 Egs. (24)—(26), that is, at the originr=0, the horizon
Tap= IR 2WaWp— 2 Gap| 2ZWW*+ il N(ry)=0, and at infinityr =. The local background solu-
4 tions are given in Appendix C, since their behavior will be
L (W12 crut():ial to the existence of regular singular points of the per-
W= turbation equations.
Tas= AnRE 9™ Tar=0, (20)
B. Gauge- and coordinate-invariant Yang-Mills perturbations
where w,=V,w, and where T} denotes the normalized In Appendix D we construct a convenient basis of2u
trace Tf Tf}: 1. valued spherical harmonic one-forms. The odd-parity pertur-

The background YM equatio@* F=d*F+[A,*F]=0, bations of the YM potential are then given in terms of two
one formsa and B, and three scalar fieldg, v, and o,

is obtained from the expression F*=—*dwAdr, =
overM,

+R™3(W?—1)7,*1, using the fact thatlz, commutes with
*dr,, and[d7,,7. ]=*d7, . One finds o1 -
SAUTD=X a4+ X8+ urdY+vYdr,+oVX,, (27)
2_
ZW:WW 1, (21)  WwhereX;, X,, and X3 are a scalar basis of &)-valued
R? spherical harmonics
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_ _AB_ v _AB_ ¢ mations. The linearized EYM equations involve, however,
Xi=Y7, Xo=graVeY, Xa=7"7aVeY, only the gaugeand coordinate-invariant combinations

while Y=Y'™ denote the ordinary spherical harmoni¢Ehe
antisymmetric tensom,g is defined by %"= 756%) As a=a+ ﬂ EEbJrWﬂ’ (32
usual, the caseb=1 andl=0 must be treated separately: R? R?

For =1, one hasvX{=Y=—y(=Udr,, implying that »

-2
and o combine to a single amplitude. Hence, andd(R"*h), as we shall see |ater.

For | =0 there exist no metric perturbations in the odd-
SAU=D=X o+ X,B8+ ur,dY+vYdr, . (28)  Pparity sector, and the YM perturbations are comprised within
a single gauge-invariant one foray defined in Eq{(ES),
In contrast to the gravitational sector, the odd-parity YM
sector is not empty fot=0. As Y!=?) is constant,dA is 890,9=0, sAl=O=ra (33

parametrized in terms of the one fornand the functiorv, o ) )
The one-forma is singular at points where vanish.

SAU=0= 7 o+ vdr, . (29

. IV. THE PERTURBATION EQUATIONS
One may now study the behavior &A under gauge

transformationssA— SA+ Dy, and under coordinate trans-  In this section we give the equations governing the odd-
formations SA— A+ LyxA. Here D is the gauge covariant parity perturbations of a spherically symmetric soliton or
derivative with respect to the background connectib®), y black hole EYM background configuration. The amplitudes
is an sui2)-valued scalar field with odd parity, angj, is the ~ are parametrized in terms of the gravitational one fd#m
Lie derivative with respect to the infinitesimal vector fiedd the YM one formsA, B, and the YM scala€. All amplitudes
defined in Eq.(4). Considering both gauge and coordinateare gauge and coordinate invariant and, as we are not intro-
transformations, the following results are established in Apducing specific coordinates, the resulting equations are not
pendix E. limited to static background configurations. The derivations
For I>1 the metric perturbations are originally param- are considerably simplified by adopting the ODSG and by
etrized in terms of the functior and the one forn, while  taking advantage of the &) harmonics constructed in Ap-
the YM amplitudes are given by two one formsandB and ~ pendix D. However, as the computations are still lengthy, we
three functionsu, v, ando. Using the complete gauge and discuss only the basic steps in Secs. IVA, IVB, and IVC
coordinate freedom, the entire set of perturbations reduces for |>1, =1 and =0, respectively, and give a self-
three one formsH, A, and B, and one functiorC, all of  contained compilation of the results in Sec. IV D.
which are invariant under both coordinate and gauge trans-
formations. Adopting the ODGK=0) and the YM gauge A. Equations for I>1
u=0=0, the quantitiedH, A, B, andC, coincide with the
original amplitudesh, «, B, and v. [See Egs.(E6) and
(E12.] Hence, all physically relevant perturbations with
>1 are given by

For I>1 we may proceed in the ODSG for which the
metric and the YM perturbations coincide with the gauge-
and coordinate-invariant amplitudés A, B, andC:

59y V=HySa,
5g(l>1)_5g(l>1)_0’ 59,(A|JJ>1):HbSA- 9Aab =

SAMD=X,A+X,B+CYdr,, (30) SAID=X,A+X,B+CYdr,. (34)

with gauge- and coordinate-invariant amplituétesA, B, and We start by computing the coordinate-invariant stress-
C. The ODG for the metric perturbations, together with theenergy tensor. According to Eg&) and(9) we have
YM gaugep=o=0 will be called the off-diagonal standard ) )
gauge(ODSG henceforth. In the ODSG all gravitational and SToy=0Tgn°,  STRs=05TRe", (35
YM perturbations coincide with the corresponding
coordinate- and gauge-invariant quantities. an

Forl=1 the metric perturbations are already off-diagonal
and there exists a gauge for which the YM scalarand v
vanish, and the remaining amplitudes, and B, coincide
with the two gauge-invariant one fornasandb, defined in
Eqg. (E4). The perturbations are therefore given by

STR= TR~ HeTaSe, (36)

since k=0 andH,=h, in the ODG. ThesT,, consist of
perturbations arising from variations with respect to the met-

ric and the YM fieldsoT ,,= 6T, + aT,,, Where
dgh =095 V=0, 59y V=hySy, 1_[1
84T, =——Tr=F zF*fsg,,
SAU=D=X,a+X,b, (31) 9'n 4o [4 B u

wherea andb are gauge invariant, but neither the metric nor
the YM perturbations are invariant under coordinate transfor-

Fo FB__g,uV aF )5ga,8]
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In the ODSG the linearized field strengi-=D 6A, is
obtained from the formulé&34) for SA!~Y). Recalling thaD
is the gauge covariant derivative with respect to the back
ground potential(18), one finds, also using the identities
(D3),

SFIZD =X dA+X,dB—X;CdQ—BAVX,
+(WB=A)A7dY+(dC—wWA)AYdr, .
(37)

Using this, as well as the expressidr®) for the background
field strengthF and the formulag34) for the metric pertur-
bations, we end up with

inv_i

STIN=0, &TRE=;—(B.AW)2V Sy, (39
and
inv SA 2 2
AbT 2 (W*=1)(A,—WBy) + R%(dB)paw*— Cwj,
a

(W?—1)2

- (39

+(H,dw)wb—(<dw,dw>+ Hy

where we recall that all amplitudes are gauge and coordinate

invariant. Here and in the following we use the obvious no-
tationsw?=g2°V,w and(, ) for the inner product with re-
spect tog, e.g.,(H,dw)=g3°H,V w. [There is no factor 1/2

in front of the last term in Eq(39), since, according to Egs.
(200 and (36), &Tap and 8T, differ by the term
(8m) 'R™*(W?—1)?H,S, in the ODG]

The Einstein equationsG)},=87G4T,,,, are now ob-
tained from the above expressions and the form@dsand
(13) for 66'11“;. We have already argued that th&E) equa-
tion,

d™H=—4G(B,dw), (40)

is a consequence of thé\b) equations and the linearized
Bianchi identity. While this was obvious for vacuum pertur-

bations, one now needs the YM equations given below to

verify this fact. Hence, the only independent Einstein

equation is the one for the coordinate-invariant metric one

form H,
H w2—
d'| R*d =~ +AH=4G(Ww?*—1)| A—wB— H
+4G[* (R2dB+dw/A\H)*dw
—Cdw], (41)

PHYSICAL REVIEW B2 084001

where we also recall that=(l—-1)(1+2). Here we have
used the identities (H,dw)dw—(dw,dw)H="*(dw
AH)*dw and dB),,w°dx?=(* dB)* dw.

The linearized YM equations also involve perturbations
of both YM and metric fields. The latter arise from the varia-
tion of the Hodge dual if(D*F)=0, and yield the terms
on the right-hand side of the following general expression:

-3

=

whereF,,=F{,89,;,. Since the dual of this is an equation
between one forms, and since the odd-parity space of one-
forms is five dimensional for>1, we obtain five equations.
Again, the computation is considerably simplified in the
ODSG for which we may use the gauge-invariant perturba-
tions given in Eqs(34). As expected, it turns out that two
YM equations can be obtained from the remaining ones. Us-
ing the tools developed in Appendix D, we eventually end up
with the following set of equations for the one formAs B,

and the scala€:

D*5F+[6A,*F]=2D*]-'—d( )/\*F,

dT(R?dA)+ [N +2(W?+1)JA—2[ N +2]wB

2

w

—2wdC+2Cdw=(A+2)——H, (42)
d"(R?dB) — 2wA+ [\ +(w?+1)]B+dC
w?—1
=d"(HAdw)—w———H, (43)
R2
C=R2d"B—(dw,H). (44)

The remaining two YM equations are the integrability con-
ditions for Eqgs.(42) and (43). Also using Eq.(44), these
become

t 1-w? |
d' A+ ——H|=—2(B.dw), (45)
and
~ ) C
AC—[N+(w +1)]§
(dw,H)
=2(A,dw)—wd'A+[\+2] (46)

R2

Since Egs.(40), (45), and (46) are consequences of the
remaining equations, the complete system of perturbation
equations consists of the three coupled equatiddy (42),
and (43) for the three gauge- and coordinate-invariant one
formsA, B, andH, whereC is given by Eq.(44). It will also
turn out to be convenient to write these equations in terms of

the one formsA andB, defined by

084001-7
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— H
A=A+ —,
R2

_ H
B=B+w_, (47)

in terms of which Eqgs(41), (42), and(43) assume the form

d"(R*F)+\H
=4G[(RZ Fg)*dw— Cdw+ (w2~ 1)(A—wB)],
(48)
— _ _H
dT(R?F ) +\ A—2wB+w2¥)
= —2(W2+1)A+4wB—2Cdw+ 2wdC, (49)
df(R%Fg) + )\ E—wi
=2wA— (W?+1)B—-dC, (50)
with
Cc=R¥ dB—wd' Ll (51)
- |

Here we have introduced the two forrs,, Fg, andFy,
which are defined in terms d¢f, A, andB as follows:

FAEdK_FH, FBEdE_WFH,

H
Fu=d =2’ (52)

i.e., FA=dA, Fg=dB+dw/\R 2H. The three equations

(48)—(50) for the invariant one form#, B, andH, with C
according to Eq(51), govern all physical odd-parity pertur-

PHYSICAL REVIEW B2 084001

SFU=D=X,da+ X,db+(wb—a)\rdY

+(b—wa)/AYdr,. (54
Formally, this is also obtained from the expressi8i) for
sF(=1 py substitutinga for A, b for B and by settingC

=0, where one also has to uS&§ == —-y(=Udr, ; see
Appendix D for details. Hence, the invariant stress-energy
tensor forl=1 is obtained from the expressioi38) and
(39 for I>1 by applying these substitutions and by replac-
ing h for H. This yields

|nv 0 5va O
and
ST dxP=——"[ (w2~ 1)(a—wb) +R*(* db)* dw]
7R
7 % (w?—1)
+ > (dW/\h) dW—Th Sa.

The coordinate invariance of the last expression becomes

manifest by writing it in terms of the one formes and b
given in Eq.(32). One finds

—1)(a—wh)

|nvd Xb — SA
47R?

- h
A% db—wd( —)
RZ

*dw, (55)

4

where the metric perturbation enters only via the invariant
two form d(R™2h).

It is now obvious that the complete set of linearized EYM
equations in terms of the gaugad coordinate-invariant am-
plltudesa andb is obtained from Eqs(48)—(50), by substi-

tuting A—a, B—b, andC—0. As we also have to substi-

bations withl>1. We shall now argue that these equationstute H—h, the left-hand side(LHS) of Egs. (48)—(50)

hold for =1 as well, provided that one se&=0.

B. Equations for |=1

Forl=1 the metric perturbations are off-diagonal and de-

scribed by the one forrh, while the YM potential is param-
etrized in terms of two one formas andb,
59 =hpSa,

SAU=Y=X a+X;,b. (53

Although a andb are gauge invariant, they are not invariant

under coordinate transformations, and neitheh.isAs the

would, at a first glance, involve the non-coordinate-invariant
amplitudeh. However, sincex=0 for | =1, the terms in-
volving h itself vanish identically. We also point out that the
algebraic equatiofbl) for C is not present fot=1, because
the basis of one forms is reduced by one dimension. The
complete set of perturbation equations in the selctat thus
assumes the surprisingly simple form

df(R*F}) —4G[(RZ Fp)* dw+ (w?—1)(a—wb)]=0,

d(R?F,) + 2(W?+1)a—4wb=0,

linearized YM and Einstein equations are coordinate invari-

ant, these will only involve the gauge and coordinate invari-

ant one formsa andb defined in Eq.(32).

The perturbation equations fb=1 are obtained from the
equations fol>1 as follows: The linearized field strength
two form §F=D A for the background potentidll8) and
the perturbatior(53) becomes

df(R%F,)—2wa+ (w?+1)b=0,
(56)

wherea andb are the gauge- and coordinate-invariant one
forms given in Eq(32), in terms of which the two formEy,,
F, andF, are defined by
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h . o expressions for the gauge- and coordinate-invariant ampli-
Fhsd<—2), F,=da—F,, Fp=db—wF,. tudes in terms of the original metric and YM perturbations
R are different forl>1, =1, andl =0, respectively; see Ap-
pendix E.
C. Equations for =0 I>1: The original metric perturbations are described by a

one formh and a functiork, while the YM perturbations are

For|=0 there exist no metric perturbations with odd par- _. . .
. : . given in terms of two one forms and g, and three functions
ity, and A can be expressed in terms of a single gauge*

invariant one form p, v, ando:
590,9=0, sAI=0=7a, 89a0=0, 0gadX=hSy, O0ne=2kV xSy,
_The field stren_gth is obtainelglby settivg=1, B_=0_, C=0 SA=X a+ X8+ urdY+ derr+a%X2.
in the expressiori37) for SF!~1) and by substituting for
A, In terms of these amplitudes the invariant quantities appear-
SE1=0— ~ da—wardr ing in Egs.(58)—(60) are, according to Appendix E,
—Tr - re
The correct peLturbation equation is now obtained from Eq. A=a+ ﬂz_d ,U,+W0'+W2£2) '
(49) by settingB=C=H=0, wherex=—2 for |=0. Also R R
substitutinga for A, Egs.(49) and (52) yield
_ h K
d'(R?F,)+2w?a=0, withF,=da. (57) BEﬂ+WE—d U+W§),
D. Summary p
All odd-parity perturbations of spherically symmetric, not H=h-Rd E) : (62
necessarily static EYM configurations are governed by the
three equations |=1: The original metric perturbations are described by
dT(R4F )+ \H the one formh, while the YM perturbations are given in
H terms of two one forms andg, and two functiongx andv:
_ e \F A wWR
=4G[(R* FB)*dw—CdW+(w2—1)(A—WB)],(58) 80ap=0, gapdX°=hS,, 89ap=0,
H o=Xia+X,B+urdY+vYdr,. (63
tR2 A oW B2
d'(RFa) +A| A-2wWB+w RZ) The invariant quantities now are
= —2(W2+ 1)A+4wB—2Cdw+2wdC, (59 LI W dd
A a+ d ]
R? 1-w?
d'(R?Fg) +\ §—wi
B R2 g ﬂ+ h d W/.L_ 14
= wW— — ,
o - R? 1—w?
=2wA—(w?+1)B—dC, (60)
. H=h. (64)
for the three gauge- and coordinate-invariant one foAms
B, andH, wherex=(1—1)(I +2) [=0: There exist no metric perturbations, and the YM
’ ' ' perturbations are given in terms of a one form,and a
. H function v:
C=(1- 68— &)R? d'B—wd' =11 (62)
R SA=T1,a+vdT,.
and In terms ofa and v the invariant quantityA is given by
H — - _ v
FHEd % y FAEdA_FH, FBEdB_WFH A=a—d W), (65)

The above equatig\s are valid for all valued,ovhere only  and, as mentioned above, the correct perturbation equation is
Eq. (59) with H=B=0 is present fol=0. However, the Eq. (59 with A\=—-2, C=0, B=0, andH=0.
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V. NON-ABELIAN STABILITY AND LOCAL UNIQUENESS 1 3M 4G v,
OF THE REISSNER-NORDSTROM SOLUTION —A+ = N+2— —+ — - )
r r r A
For w=0 the static, spherically symmetric EYM equa-
tions (24)—(26) admit the RN solution with unit magnetic 1[{—3M 4G\ <\I'H>
” . : + = =0 69
charge. The stability and local uniqueness properties of the 3 \/ﬁ aM W, (69

RN metric with respect to non-Abelian perturbations are,
therefore, obtained from Eqé8)—(60), which decouple into The above equation was first obtained by Moncrief by

two sets foryv=0. The first set, involving the one fornts different meang20]. Since the off-diagonal part of the po-
andA only, is obtained from Eq€58) and(59), tential is symmetric and constant, H§9) can be decoupled.
Using the non-negativity oN(r), as well as the regularity
R“d(i conditionM =G, the eigenvalues of the potential are found
R2 to be positive, implying the absence of unstable modes. Tak-
ing advantage of the argument presented in Appendix B,
stationarymodes are excluded as wdlThe eigenvalues of
+()\+2)Kzo forl=1. (66) the potential are positive for finite and behave as$(l
+1)r 24+0(r %) for r—, implying that the asymptoti-
- cally finite solutions behave as'.] Hence, there exist nei-
Sincew=0, the remaining equation fd does not contain ther unstable modes nor admissible stationary solutions to

the amplitudesH and A. Using C=R2?d'B for I>1 andC  Egs.(66) for I>1.

d’ +N\H=—4GA,

_ H
df| R2dd| A— —
R2

=0 for =1, we have In order to discuss the non-Abelian part of the perturba-
o . o tions we introduce the scalar fieldd;=R%*dB and II,
d"(R?dB)+d(R?'B)+ (A +1)B=0 forl>1, (67) =R2d'B. In terms of these, Eq67) assumes the form
d'(R%dB)+B=0 forl=1. (68) *dIl,+dIl,+ (A +1)B=0, (70)

SinceA is the gauge- and coordinate-invariant version ofwhich can also be viewed as the Hodge decomposition of the

the amplitude in front of the isospin harmoniesY', Eqs.  one formB (see the comments belpwApplying the opera-
(66) govern the Abelian part of the perturbations, that is,;5.s%q andd'=%d* to this, it is immediately seen thét,
Einstein-Maxwell perturbatiois of the RN metric. In contrast ;|4 11, are subject to the same equation, namely,

to this, Egs.(67) and(68) for B are not present in the Abe-
lian case, and describe non-Abelian perturbations of the RN ~ A+1

metric with|>1 andl =1, respectively. —AIL+ ?Hi , 1=1,2, (71

A. Perturbati ith I>1 .
ertrbations wi where we recall thakh=(1—-1)(I1+2). With respect to the

We sta_lrt with Eqs(66) dgscribing_the Abe_Ii_an part of the static RN backgroundR(r,t)=r, ?]: N(—dt2+drf), with
perturbations. F_or>1 the integrability conditions for these N(r)=1-2M/r+G/r2 anddr,=dr/N, one has
equations ard"A=0 andd"H=0, implying the existence of
two scalar fields¥, andW¥ ,, defined by 2 g2 I(1+1)—1

- - —2——2+N(r)—2 Hi=0. (72)
*d(RY,)=A\H, *d¥,=/4GA. ate ar; r

Substituting¥, and ¥ , for H andA in Egs.(66), and inte- Since the operator is positive, unstable modes are absent.
grating both equations yields the following coupled waveFurthermore, well-behaved stationary solutions are excluded

equations for the scalar fieldg, and W , : as well, since the potential is of the type required to apply the
argument given in Appendix BAlso note that the one form
_ dr! JAGN B is obtained directly fronll; andll, by Eq.(70).]
AV,=|Rd |t v+ 3 Py, As we shall continue to use the above method, it is worth-
R R R while noticing the following: In two dimensions an arbitrary
one-form#, say, gives rise to two scalar fields=d’¢ and
Ky, = VAGA A+2 +E g,=*d#. On the other hand, the Hodge decomposition of a
AR TP R R4 one form in two dimensions involves two different scalar

fields =df,+*df, (provided that the harmonic part van-
For w=0 the background equation(23) becomes ishes. If 6 is subject to a linear wave equation, then the
R3d"(dR/R?)=3(dR,dR)— 1+ G/R?. Using this and intro- latter gives rise to aralgebraic relation between the two
ducing standard Schwarzschild coordinafesr, (dR,dR) different parametrizations, although the two scalar pairs are
=N=1-2M/r+G/r?, yields defined on different differential levelgThis is also the rea-
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son why, in Sec. Il D, we have obtained the same RW equa-

2M G\
tion (15) for ¥ and®, defined by¥ =R% d(H/R?) andH O0gt,=al —— = Sinf,
=*d(R®d), respectively]

a
B. Perturbations with =1 A= =, cosddt,
r

Defining I1,=%* R?dB as forl >1, Eq.(68) for B reduces
to;dH1+§=0. Applying the operator d yields the same which is the Kerr—Newman excitation of the magnetically
equation forIT, as before, that is, Eq71), where nowl ~ charged RN metric. In order to see this, we compute
—1. As the potential remains positive for: 1, we conclude  the electncz field,  6E=—6F(d;,-)=—D5A(d,")
that Eq.(68) admits neither unstable modes nor admissible=27d(cosd¥r?), where we have useBr,=0 andw=0.
stationary perturbations, which establishes the stability anél€nce
the local uniqueness of the RN metric with respect to non- i
Abelian odd-parity perturbations. SE——ra 5'”’3dﬁ+ 2 COSﬁdr

It remains to consider Eq$66) for =1, i.e., forA=0. ' r2 r3 '
As these equations are also present in the Abelian case, we
will recover the absence of unstable modes, while the onl\Since the magnetic field of the background solutioBis
stationary perturbations are those describing the Kerr—7,(*dQ)(éd;,-)=—7,(1/r?)dr [see Eq.(19) for w=0],
Newman excitations of the RN solution. This is seen as folwe obtain indeed the magnetically charged Kerr-Newman
lows: ForA =0 the only integrability condition for Eq$66) solution in first order of the rotation parameter
is dTA=0. Using this to define the scalar fie¥ according
to C. Perturbations with 1=0

We recall that forw=0 the gauge-invariant one forin
introduced in Eq(E8) is not defined. Instead, we defire
=« andC=v, wherea and v parametrizeSA!=% accord-
ing to Eq.(29). Under an infinitesimal gauge transformation
parametrized by, A transforms according t&— A+df,,

FAw=A, (73)

Egs.(66) can be integrated, which yields

4 H hile C remains invariant. Repeating th ts given i
R%dl 2| £ acw—6M 74y While C remains invariant. Repeating the arguments given in
d R? G 6Ma, 749 Sec. IV C, the perturbation equations fe=0 andl=0 be-
come
~ ~ [ H F(R24 A) —
R2 A\If+*d(;) —2¥=0, (75) d*(R°dA)=0,
~ 1
where @M a is a constant of integration, and where we have —AC-—C=0. (76)

used the fact tha¥ is defined up to a constant in order to r

neglect the second constant of integration. Eliminating they i, respect to Schwarzschild coordinates the solution to the
gravitational perturbatioi from the above equations yields first equation isA=(qg/r)dt plus a pure gauge term, whege

the following inhomogeneous wave equation for is a constant of integration. The perturbation of the gauge
potential become$A= 7,(g/r)dt, which gives rise to a ra-

~ 2 4G 6Ma i i f
A — = _ dial electric field
R2 R4 R4
. . . SE=—r1, ﬂdr.
As the operator on the LHS is positive, we conclude again r2

that there are no unstable modes. Using standard Schwarz-
schild coordinateR=r, N=1—2M/r+G/r2, we haveA Hence, we obtain the embedded magnetic RN solution with
=—N"192+4,Ng,, and the inhomogeneous problem ad-infinitesimal electric charge. (Note that the metric remains

mits the particular solution? =a/r. By virtue of Eq.(74)  unchanged in first order af.) _ _

and definition(73) this yields, up to a gauge, Equation(76), which governs the non-Abelian amplitude
C admits unstable modes, since the potential is negative. In
order to see this, one can use the “trial” function

— N
H=a(N-1)dt, A=a—dt
r 1
C(r)==(r=ry)
Recalling that forl=1 andm=0 one haség,y=0, d9a, '

= —Hgsin® and 5A=(A—H/r?)X,+(B—wH/r?)X,, we  and writeN(r)=(r —rp,)(r —ro)/r2, wherery, is the radius
find with w=0 andB=0 of the event horizon. A little calculatiofl6] gives
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o

which is negative. Furthermoré&js normalizable, and hence ( ~

C
NC'?— —|d , operator on either of the above equations, yields a wave

S
2 r? 420}, equation for the scalar field'B alone,

1 C>:fr:

2) 7ry+5rc tion is dTA=0. Using this, and applying the codifferential
r=——
;

Eq. (76) admits at least one bound state. The RN solution is
thusunstablein the | =0 sector with respect to non-Abelian
perturbations.

In conclusion, we have shown that the RN solution is
stable with respect to both Abelisand non-Abelian odd-

2 24T
R2 HBZO, HBER d B. (79)

Since the integrability condition implies that the scalig
=R?d"A vanishes, it remains to find the equations for the
parity perturbations for all=1. Forl =0, the RN solution is f!eld strengthsdA and_dB, or, equivalently, for the scalar
unstable with respect to non-Abelian perturbations. Also, thdi€!ds ¥ a and¥g, defined by

only physically admissible stationary modes are the Abelian

ones, describing electric Kerr-Newmah=(1) and RN (
=0) excitations of the magnetic RN metric.

V,=*R%dA, WYz=\+2*R%dB.

Applying the operator 8 on Egs.(78) then yields the system

VI. NON-ABELIAN STABILITY AND LOCAL 1 N+4 —2\N+2\ ][ W,
UNIQUENESS OF THE SCHWARZSCHILD SOLUTION A+ = =0, (80
RZ2\ —2J\+2 N+2 Ty

The Schwarzschild metric solves the spherically symmet-
ric EYM background equations wittw=1. As the stress- which can be diagonalized, since the potential is symmetric
energy tensor is quadratic in the field strength, the gravitaand constant. The eigenvalues are
tional perturbations decouple in first order for all values,of
and are governed by the RW equation for vacuum perturba-
tions. The remaining equations, describing Abelian and non- A+3EVAN+9=
Abelian perturbations of the Schwarzschild metric, admit no
unstable modes, and, fér-1, no acceptable stationary ex- Having solved Eqg(79) and(80), the expressions for the one
citations either. Fok=1 the only stationary YM perturbation formsA andB in terms of the scalar fields are obtained from

(1+1)(1+2),
1(1-1).

is the RN mode in the Abelian sector. the original equation$798):
A. Perturbations with 1>1 1. 2
o A:_K*d Yo+ ——Vg |,
The gauge- and coordinate-invariant one fon$3, and VA+2

H given in Eqs(62) for | >1 are well defined fow=1. The
perturbations are, therefore, governed by E@8)—(60), B
where Eq.(58) decouples foww=1 and reduces to the usual  AMA+2)

equation describing the vacuum perturbations of the
Schwarzschild metric
H )
R? Since the operators in Eq&Z9) and(80) are positive, we
conclude, also using the argument given in Appendix B, that

In Sec. Il D we have already recalled that this equation adthe Schwarzschild solution admits neither unstable nor sta-
mits neither unstable nor well-behaved stationary solutiongionary non-Abelian odd-parity modes with-1.

for [>1.

In order to discuss the nonvacuum perturbations of the
Schwarzschild metric, it is more convenient to resort to the
original one formsA=A—H/R? and B=B—wH/R?, used For w=1 Eq. (_58) decouples for all vqlues olf.. Thg
in Sec. IV to derive the perturbation equations. In terma.of Vacuum perturbations of the Schwarzschild metric wlith

+2dITg

d’| R*d +AH=0. (77

B. Perturbations with =1

andB, Egs.(59) and (60) become, fow=1, =1 are, therefore_, governed by E’G{.?)_ with A=0.We have _
already recalled in Sec. Il D that this equation cannot give
d"(R?dA)—2d(R?*d'B)+ (A +4)A—2(A+2)B=0, rise to unstable modes, while it admits the well-behaved sta-
tionary solutionH = (2aM/r)dt, giving rise to the Kerr ex-
d"(R?dB) +d(R?d"B) — 2A+ (A +2)B=0. citation of the Schwarzschild metric
(79 M
The above system is equivalent to four coupled equations for 0Gte=~ aTS'nzﬁ' (81)

four scalar fields. In order to decouple these equations com-
pletely, we note the following: The terms witB and d'B In order to analyze the YM sector, we first note that the
can be eliminated, which shows that the integrability condi-gauge-invariant quantities introduced in E¢g4) for |=1
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are not well defined ifw=1. Hence, thd =1 perturbations C. Perturbations with [=0
Iggtrhvif;h:r/%rlziihwebgggggggi;%%u;;etﬁ essgrﬂzlxzst:sem' The relevant perturbation equation is E§9) with B
for 1>1, that is, by Eqs(E6). Hencea=a—du, b=8,and =H=0, w=1 andA=-2. The amplitudeA=A is gauge
c=v—pu, where the one forms, 8 and the scalarg, »  Invariant and, by virtue of Eq65), wgll-deflneq. Equaypn
parametrizeSA(=1) according to Eq(28). Since the gauge (59 .b_ecoTesdT(deA)JrZA_:O. l.Jsmg.the |ntegrgb|I|ty
fields vanish on the background, all YM amplitudes are co-conditiond'A=0, the scalar fieldV is defined according to
ordinate invariant, and it remains to consider their behaviol? =R? dA, in terms of which Eq(59) becomes

under gauge transformations. By virtue of E@s1) and(E2)

¢ remains invariant, whereasandb transform according to
a—a+df,, b—b+df,. Repeating the arguments given in
Sec. IV B, the perturbation equations far=1 and|=1
eventually become

.2
—A+¥)‘P=O, (84)

which admits neither unstable nor acceptable stationary so-
lutions. (Note that the RN excitations with=0 of the

T R2d4) — Chy—
d'(R°da)—2dc+4(a—b)=0, Schwarzschild metric lie in thevenparity secton.

d"(R?db)+dc—2(a—b)=0,
VIl. STATIONARY PERTURBATIONS OF NON-ABELIAN

RZdT(a— b)+c=0, SOLITONS AND BLACK HOLES

) ) Having analyzed the complete set of non-Abelian odd-
wherec, da, db, and (@—b) are gauge invariant. Subtract- parity perturbations (stationary and dynamical of the
ing the first from the second equation, and using the thirdschwarzschild and the RN solutions, we now turn to the
one to eliminatec, we obtain an equation for the one form general case, that is, to non-Abelian perturbations of static
(b—a). This is decoupled in the usual way, that is, by intro- non-Abelian background configurations. The discussion of

ducing two scalar fields according to the corresponding perturbation equations is a considerably
more involved task, since the techniques used above cannot
c,=R%d"(b—a), CZERZ;d(b—a). be applied ifw is not constant. Our primary goal in this

section is to classify alktationaryodd-parity perturbations
Applying the operatorng and *d on the equation for I of both the BK solitond1] and the static, spherically sym-
—a) yields the following wave equations fay andc,: metric EYM black holeg2].
In the stationary case, the excitations of a spherically
symmetric EYM background decouple into two Sturm-
c,=0. (82 Liouville problems, governing the electric and the magnetic
perturbations, respectively. The particular cesd was ana-
) N lyzed in Refs.[22] and[11] by different means. There we
Since the operators are positive, we may use the standafhyve shown that the electric sector gives rise to a two param-
argument to conclude that Eq®2) admit neither unstable eter family of slowly rotating and / or electrically charged
nor well-behaved stationary modes. Hencgs=c,=0, im-  pjack hole excitations, and to a one-parameter family of
plying thata=b and c=0. It therefore remains to solve slowly rotating, electrically charged solitons. In this section
d(R% da)=0 for the gauge-invariant scalar fieldla. With  we generalize these results as follows: We show thatfior
respect to Schwarzschild coordinates, the resulaisb  values ofl=1 the electric perturbations are governed by a
=(qg/r)dt plus gauge terms, whemrpis a constant of inte- three-channel Sturm-Liouville problem, while the magnetic
gration. Now usingr=a+du, B=b, andv=c+u in Eq.  sector is described by a single Sturm-Liouville equation for
(28) gives SAU=V=aX;+bX,+cYdr,+d(uX,), and thus, 1>1 and is trivial forl=1. A careful analysis then reveals

Cl=0,

~ 2 ~ 6
_A+E —A+;

with c=0, a=b=(q/r)dt andX;+ X,=17,, that neither the electric nor the magnetic sector admit well-
defined stationary soliton or black hole excitationd 1.
q This establishes the result that the only stationary odd-parity
oA= Tzfdt modes of the BK solitons and EYM black holes are the ones
found in Ref.[11] for |=1.
plus a pure gauge term. UsingF =D SA=dsA for w=1, It turns out to be convenient to parametrize the two-
this gives rise to the electric field dimensional background metrigin terms of the radial co-
ordinatep, defined such thag becomes conformally flat,
5E=—rz%dr. (83
r

~ 1
g=—NSdt’+ Tdri=o(—dt’+dp?), (85)

The solutiongd81) and(83) describe the Kerr-Newman exci-
tation of the Schwarzschild metric in first order of the rota-with o(p)=N(r)S?*(r) and dr=NSdp. [The coordinatep
tion parametern and the electric chargg generalizes the coordinate used in the Schwarzschild or
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the RN case. We also note thatt=—dp and o* (dt
Adp)=—1.] The invariant one form#\, B, andH are ex-
panded with respect tbandp, e.g.,

PHYSICAL REVIEW B2 084001

the transformation between the twe 1 sets of equations is
not algebraic, because the original formulation given in Ref.
[22] was based on the generalized twist potential.

Since Eq.(86) hasregular singularpoints at the origin,
r=0, at the horizonyr =r [whereN(ry)=0], and at infin-
ity, r=o0, it is possible to compute the number of stationary

Since we restrict ourselves to statlonary perturbatlons thﬁ]odes Applying the standard thec(see e.g., Ret23]) we

coefficientsH,, H, etc., are functions ofy only. As we

will now discuss the local solution spaces.

shall argue below, the equations involving the zero compo-

nents, henceforth called electric perturbations, decouple from
the equations for the one components, henceforth called

magnetic perturbations.

A. The electric sector

The electric perturbation equations involve the amplitudesy= — (I + 2),

Hg, Ag, andBg only. [For =1, we may takeHy=hg, Ag
=ag, and By=b,, since, by virtue of Egs(5), (E4) and
(E12), these amplitudes are invariant undgationarycoor-
dinate transformationk.Using the fact thafd'(R?dA)],

=—4d,(0” R?25 ,Ao) for stationary perturbations of a static

background, the zero components of Ed4), (42), and(43)

may be cast into the following three-channel Sturm-Liouville

equation:

(—dr?9+Kag— oK'+ L+P)v=0, (86)

wherev=(Hq/V4Gr,Aq/{,Bg), {=V\+2, and where the
differential operatow is defined by

~1d 1d

“odp sar
with r andp according to Eq(85). The 3x3 matricesK, L
andP are given in terms of the background fielsN, and

o=S?N. The only nonvanishing matrix element &f is
Kiz= v4Grow, while the symmetric matricels and P are

2N+ sym sym
L=£ 0 N+2(1+w?) sym
T 0 —2{w A+ (1+w?)
(87)
and
(W?—1)?
4G—+ZGU(&W) sym sym
r2
1 1-w?
P=— V4G{ » 0 sym
g
w?—1
VAGw 0 0
(88)

The formally self-adjoint equatiof86) holds for all values
of I=1. (In particular, forl=1 it is equivalent to the Sturm-
Liouville equation derived in Ref22], which was shown to
admit the stationary modes mentioned abpl/E. However,

1. The solution space at the origin

The leading order behavior of the solutions to E&f) in
the vicinity of the origin is determined by the centrifugal
barrier L, as can be seen from the expansig@64) of the
background quantities. The solutions behave liRewhere
—(1+1), 1, I or [+1. Hence, the
space of regular solutions et 0 isthreedimensional for all
values ofl =1. The expansion becomes

v(r)=d;r' ! g,+2||+1[2(|+2)b+1]br e_+0(r 3)}
+dyr! eo+2|zflre +O(r 2)}
+dar' e, +O(1)], (89)
whereey,=(1,0,0),e, =(0,{,—1), ande_=(0,{,1 + 1), and

d;, d,, andd; are constants, and whebeis the fixed con-
stant appearing in the expansiof3l) of the background
solutions.

2. The solution space at infinity

The asymptotic expansioni€2) of the background quan-
tities show that the leading order behavior of the solutions to
Eq. (86) is again completely determined hy The solutions
behave ag“®, where againa=—-(1+2), —(1+1),
—1,1,orl+1. The space of asymptotically flat solutions is,
therefore three dimensional fol>1, andfour dimensional
for I=1. Forl=1 the asymptotic expansion is found to be

| 1
o ogr) LG )
r? r?

2M
1+(1—7)T)e++(9 (90)

C2
r

e_+

eo+(9

1
r2) |

The constant, is proportional to the total angular mo-
mentum 8J, while ¢, and c; are proportional to the
asymptotic value of the electric YM potentiatb., and the
electric YM chargesQ., respectively: Using the above ex-
pansion in the expressiorig1) for the linearized local Ko-
mar integrals, we findwith *Fg=0"%(B{+w'Hy/R?),
etc],

C1
Cot —
Oy

v(r)=

5Qe(F %)~ € 7C1,  8I(F—%)~ SynoCs.

Furthermore, the above expansion, together with the defini-
tion (53) and 6® = 5A(4d,), shows thatdd.. is proportional
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to cq. It is worthwhile recalling that, in contrast to the Abe-
lian casegcy cannot be “gauged away.” This is also obvious
form the fact that the expression féF involves an asymp-
totically vanishing term proportional t@y/r, unless for
w=1.

3. The solution space at the horizon

Using the background expansiof@3) at the horizon, the
solutions to Eq(86) behave asr(—ry)“, where the eigen-
values arex=0 anda=1, and the multiplicity is 3 in both
cases. Forr=0 the three eigenvectors may pick up logarith-

PHYSICAL REVIEW B2 084001

5. Black hole excitations

Applying the same argument as in the soliton case, we
conclude that Eq(86) admits atwo dimensional intersection
space of global solutions fdr=1, since the local solution
spaces at the horizon and at infinity are four dimensional.
The solutions give rise to the black hole excitations found in
Ref.[11], which are parametrized by their total angular mo-
mentumdaJ an their electric YM chargéQ. .

For|>1 there exist again no generic solutions, since the
solution spaces at the horizon and at infinity are three dimen-
sional only. It therefore remains to exclude nongeneric solu-

mic terms in next-to-leading order, which destroy the regu-{ions, which we shall do next.

larity of the horizon. A careful analysis shows that the num-
ber of linearly independent combinations of eigenvectors,

which pick up a logarithmic terms in next-to-leading order is
equal to the rank of the symmetric matrix

(W= 1)
)\+4G—2 sym sym
M
1-w?
S=| aG¢ r Ho N +2(1+w?) sym .
H
w?—1
J4Gwy, Hr — 2wy A+ 1+w3
H

which is proportional to the leading order term lof- P in
r—ry. The determinant 0§, is given by

detS;=A[A2+(3—wZ)A+2(1—-w?)2+8GGZ],

where we recall thatwy=w(ry) and GHEWH(WE|
—1)/ry. This shows that the rank @&, is three forl>1,
while one may also verify that the rank is two foe1.
Hence, all solutions withu=0 must be excluded, unless

=1, in which case there exists one acceptable eigenvector.

The physical space of solutions ratr, is, thereforethree
dimensional fol >1 andfour dimensional fol =1.

4. Soliton excitations

Since the BK background is continuous, and since th
perturbation equations are linear with continuous coefficien
for 0<r<, the local solutiong89) and(90) admit exten-
sions to the semiopen interval®,~) and (0], respec-
tively. Since, forl =1, these solution subspaces are three an
four dimensional, respectively,
solutions issix dimensional, we conclude that the intersec-

tion space is generically one dimensional. Hence, there existﬁ
(at least one global solution, describing the rotating chargedt

solitons found in Ref[11].

Forl>1. the intersection space is generically trivial, since
the solution spaces are three dimensional at both the origin
andinfinity. Hence, there exist no generic soliton excitations

for I>1. In fact,nongenericsolutions are excluded as well,
as we shall prove below.

t

6. Absence of nongeneric solutions fo1

Our aim is to show that Eq86) with the boundary con-
ditions discussed above admits neither soliton nor black hole
solutions forl>1. We do so by casting Eq86) into the
form required to apply the argument outlined in Appendix B.
This is achieved by performing the linear transformation
=Tu, which yields N

(—0Ad+S)u=0, (97
whereA is symmetric and positive, whil§ is symmetric and
positive semidefinite. The linear transformatibis given by
T=Tq°T,, where

0O 0 O

T,=diagr,1,1), T,=1-yac| ¥ 0 0
w 0 O

[Note that the components af= T*12 coincide with the
amplitudes introduced in Eq47): V4Gu,=Hy/r?, fu,
=Ag+Hy/r?, us=Bg+wHy/r2] The Sturm-Liouville
equation(86) now assumes the desired for(@1), with the
symmetric matricedA=r2TToT, S=T,0ST,, where

Ar2+4G(W?—1)2 sym sym
3= 1 VAG{(1-w?)  A+2(1+w?) sym
g
VAGW(W2—1) —2{w A+ 14+w?

dtis not hard to see that the mati$is positive for all values

f 1>1 and positive semidefinite fdr=1. Furthermore, by
virtue of the expansions given above for 1, the boundary
term u-Adu vanishes at the origin, at the horizon, and at

dpfinity. Both soliton and black hole solutions are, therefore,
and since the total space ggxcluded as a consequence of the argument given in Appen-

dix B.

We emphasize that the boundary terms at infinity and at
e horizon do give nonvanishing contributiond # 1. The
positive operator in Eq(91) is, therefore, self-adjoint only
for 1>1.

7. Conclusion

We have proven the followintpcal uniqueness theorems

for odd-parity perturbations in the electric sector: The only
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stationary, asymptotically fldilack holesolutions which are Equation(93) has regular singular points at the origR,

infinitesimally close to the static, spherically symmetric =0, at the horizonN=(dR,dR)=0, at infinity, R=%, and

EYM black holes are the rotating and/or electrically chargedat all points wherew’ vanishes.(For the one-node back-

excitations in thel=1 sector. The onlysoliton solutions  ground solutions this is only the case at the origin and at

which are infinitesimally close to the BK solitons are theinfinity.) In order to conclude that Eq93) generically ad-

electrically charged excitations in the=1 sector. mits neither acceptable soliton nor black hole excitations, it
These results are in agreement with the non-Abelian stais sufficient to discuss the regular singular points at the

ticity theorem[24], which asserts that spacetime is static andooundaries in leading order.

purely magnetic if the combinatiofJ—Tr{®,.Q.} van-

ishes, wherd},, is the angular velocity of the horizon: For 1. Soliton excitations

=1, nonstatic solitons and black holes can exist, while, for Using the expansion&C1) for the BK background at the
I>1, there is no contribution td and Q. [see the general origin shows that the fundamental solutions to F2g) be-
formulas(F1)], implying that the nonstatic and electric con- have ag'*2 andr!~'. Sincel>1, the subspace of solutions
tributionsHo, Ao, andB, must vanish. giving rise to finite metric perturbations is, therefore, one
dimensional at the origin. In the asymptotic region one uses
B. The magnetic sector the expansiongC2) to conclude that the fundamental solu-
tions behave as™' "2 andr' "1, implying that the subspace

For stationary perturbations one haA=-—o"’A;, of bounded solutions is again one dimensional. Generic soli-
where here and in the following a prime denotes differentia- u utl IS aga ' : : ! !

tion with respect to the radial coordinate defined in Eq. ton excitations are, therefore, excluddd@he subspace of

(85). Since the background is static, one also hAsdw) bouno_led sqlutions at the inner poirvts_=0 turn out to_be
DA o . two dimensional. It is, however, generically not possible to
=o¢ “w'A;. Hence, the gravitational constrai@0) and the h th luti ; —0 andr= at th intsw’
YM constraints(45), (46), as well as Eq(44) involve only Tatc € solutions from=1 andr: at the pointsw
the one components &, B, andH. It is, therefore, possible =0 such that the amplitud8 is continuous.
to express the YM amplitude,; , B;, andC in terms of the 2 Black hole excitations
gravitational perturbatiom: '
Using the horizon expansiot€3) shows that the funda-
5 R2\H, mental solutions to Eq(93) behave asr(—ry)° and ¢
Alz(W _1+%)¥’ —ry)2. The first solution is physically unacceptable, since it
contains logarithmic terms which imply that the functiGn
diverges as —ry. Hence, the physical subspaces at the ho-
1 rizon and at infinity are one dimensional, implying that black
H hole excitations do not exist in the generic case.
So far, we were not able to exclude non-generic solutions
, by rigorous means: The first problem is that the potential in
R* [H] Eq. (93) is not manifestly positivdalthough numerical in-
1G V vestigation suggest that this is the dadeurthermore, the
(92) boundary term arising in the integral argument given in Ap-
pendix B does not vanish at points whevé=0. It is, how-
Using the above expressions and the circumstance th&Ver clear that the potential is positivel iis big enough. In
(d'[R*d(H/R?)]), vanishes for stationary perturbations of at_h|s case the integral argument applles, at least for excita-
static background, the one-component of the gravitationall©ns Of the background solutions with one node.
equation(41) yields the following Sturm-Liouville equation

1

C:__ W’Hl+
o2

. 3. Conclusion
for Hy:
SinceH, parametrizes thaoncircular part of the metric,
d 1 d [I(I+1)—2w?]o—4Gw'2 we have shown that there exists no noncircular deformations
i i ds H,=0, in the odd-parity sector. This completes the classification of
p w'?dp R?w'?

the stationary odd-parity excitations of the BK solitons and
the corresponding non-Abelian black holes. The only physi-
, cally admissible non-Abelian stationary odd-parity excita-
where we recall thatv’ =dw/dp=NSdwdr. tions of these configurations are the rotating, electrically
The above equation holds for-1 only. Forl=1 the  charged solitons and the two-parameter family of black holes
perturbations are governed by Eq&6). Since the one- found in Ref.[11]. All modes lie in the electric part of the
components of the first terms m_theie equations vanish fodiistinguished sectdr=1.
stationary perturbations, we obtaan=b;=0, provided that
w?—1 does not vanish everywhere. Now using the fact that
there exists a gauge for whidt), vanishes ifl =1, we con-
clude that magnetic excitations cannot exist ferl. (The Stationary perturbations need to be analyzed in order to
casew?’=1, |=1 has already been discussed in Sec. VI B. find equilibrium solutions which are infinitesimally neigh-

(93

VIIl. DYNAMICAL PERTURBATIONS
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bored to known static configurations, or to establish local In the remainder of this section we present the distin-
uniqueness results. The lineatability properties of static guished caseb=0 andl=1. In these situations the pertur-
background solutions are, however, describesdystation-  bation equations can be written in the desired form, since
ary perturbations. In order to study their dynamical behaviorgravity can be decoupled fde= 1, while for|=0 only YM

by means of spectral theory, it is necessary to cast the peperturbations are present in the odd-parity sector.

turbation equations into a systemmilsationequations, that

is, into a wave equation whose spatial partfiamally) self- A. The pulsation equation for |=0

adjoint. Using the static EYM soliton or black hole back-

ground, our task is, therefore, to write the perturbation equa- ~© SPherically symmetric perturbations the pulsation
tions (58)—(61) in the form equation is obtained from Eg57),

2 d'(R°da)+2w’a=0,
—+tA

pre u=0, (94)

for the gauge-invariant YM amplituda= a—d(v/w); see
Eqg. (E8). This amplitude is not regular at points whenre

where A is a self-adjoint operator, containing spatial deriva-vanishes.(The case wherev vanishes identically WaSZdIS-
tives up to second order. For perturbations of the Schwarz&usged in Sec. V CIntroducing the regular one formv“a
child and RN black holes this was achieved in E@9), =W a+vdw—wdy, and defining the potentiab by the
(72), (79), and(80). For perturbations of non-Abelian back- equationw?a="*d(w®), we find
ground configurations, however, one needs to proceed differ-
ently:

Forl=0 (i.e., for radial perturbationsthe above task was
achieved in Ref[15], where it was shown that the static,

spherically symmetric BK solitons, and EYM black holes \yhere we have also used the background YM equ&@dhn
have exactlyn unstable radial modes in the odd-parity sector,rqr 5 static background we may assume a time dependence

n being the number of nodes of. , of the form expiwt), which yields
For =1, we will show below that the metric perturba-

—AD+

dw dw
2 o =0,

+1 2+1
wow) TRy

tions decouple, and that the perturbation equations can be 52 w? o
cast into a wave equation for the remaining YM perturba- - t2— +—2(W2+ 1) |®=w?d, (95
tions, where the operatod is symmetric and positive. This ap R

will establish the absence of unstable odd-parity modes in . ) o )
the sectoll = 1. where a prime denotes the differentiation with respeg,to

Forl>1, we were not able to derive symmetric equations2nd Now®=®(p). In order to overcome the difficulty that
in terms of the gauge-invariant amplitudess A, B, and C. the potential is singular at points whesevanishes, one may

However, a system of hyperbolic equations can be obtaineBerform the following supersymmetric transformation: First,
as follows: By virtue of Eqs(40), (44), and (45) one can the operator on the LHS can be factorized and written as

t : t :
express the time derivatives of the electric componehgs ~ Q Q. With Q and Q" according to
Ag, and By in terms of the magnetic componerts, A4,

B,, andC and their first spacial derivatives. Equatiqdd), Q= E iw+ u, Qf= _Wi E +u,
(42), (43), and (46) then yield a hyperbolic system of the W dp dp W
form
whereu is subject to the differential equation
* ok avlu=o ul’ 20w
T2 oo TRy TVIU=D, 2 2_27
a2 gp2  dp —w (v? +uc= o (96)

where u comprises the magnetic components)
=(H,,A;,B;,C), and where the radial coordinateis de-

fined as in EQq.(85). Unfortunately, neither the first order there is a one-to-one correspondence betwbemd ¥, pro-
derivatives nor the potentidl are formally self-adjoint. vided thatw=0. Furthermore W is normalizable ifd is

In Ref.[14] we have argued that the gauge-invariant am- rmalizable, and vice versa, sindel,¥)=(Qd,Qd)

plitudes used in the present paper are not suited to descrilﬂl@ TOD By = 0D b
dynamical perturbations, an exception being vacuum gravity <$h QQ, '>_th< ’bl>. = 2y d
or self-gravitating Abelian fields. In order to obtain a sym- € equivalent problemQQ™Y = w™¥, reads

metric wave equation one needs to introduce amplitudes )

which are adapted to th&taticity rather than the spherically _ ‘9_+ 1(3W2_ 1)+2u' | = w2W (97)
symmetry of the background. In terms of these new, ap? 2 '
curvature-basedamplitudes, the odd-parity pulsation equa-

tions can be cast into the desired fori®4), as we have where now the potential is regular, provided thas a regu-
shown in Ref[14]. lar solution of Eq.(96). Since the function

One may then write Eq95), Q'Q® = »?®d, in terms of ¥
=Q®, which yields QQ'"¥=w?¥. Since w’®=Q"¥,
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P~
Yo=wexp[ u(p)dp
Po

satisfiesQ™¥,=0, it is a solution to Eq(97) for «=0. The
key observation in Ref.15] is that there exists a solution to
Eq. (96) such thatu/w? andu’ are regular andV, is nor-
malizable. Since the factaw causes¥ to have exactlyn
nodes ( being the number of nodes wf), this establishes
the fact that the transformed pulsation equati®n admits
exactly n unstable modes.

It remains to show that each unstable mode of @Qq)

PHYSICAL REVIEW B2 084001

wherec, is a constant, anfidenotes the background quantity
f=(R%2G+1+2w?) 1. Using this expression foF in
Egs.(56) yields the symmetric, inhomogeneous equation

o) o) e

for the gauge- and coordinate-invariant YM amplitud_es

andb. The 2x 2 matricesG andF are symmetric and given
in terms of the background quantities by

d'| Gd (99

can be realized by a regular choice of the original amplitudes

a andw. In order to.see this, we first note that for~ 0 the fR2 4w’ +R?/G —4w
inverse transformation becomes G= T( —aw 4+ 2R%G | »
1
W®=;(—W‘I"+W'\I’+Wu‘1’), 14w2  —2w
F:( —2w 1+w2) :
implying that the gauge-invariant combinatiarta is regu-

lar. Finally, one adopts theemporal gaugea;=0, with re-

spect to which Eq(95) yields whereF is positive definite fow?# 1. (The casev=1 was

already discussed in Sec. VI)B.

The one forms andb may be expanded with respect to
Schwarzschild coordinatésand p,

(g) Edt+Bd
—| =Edt+ ,
b P

where E and B represent the gauge-invariant electric and

J _20’ ®
5QP—EW s

implying that «, is regular. Using¥? =Qd=w"}(wd)’
+ud, as well as theé component ofv?a=*d(wd) in the
temporal gauge, gives

J u magnetic YM fields, respectively. Using this in E(8)
E”_‘P_ WW(I)' gives, for a static background
This establishes the existence of exactlynstable modes of a1 , - 9 f
the original perturbation equations, singev can be chosen dp S C(E' =B) |+ FE_CO_p owf)’
to be regular, implying that is regular.
Jfr .
B. The pulsation equation forl=1 % ;G(E —-B)|+FB=0,

We now show that fof=1 the gravitational perturbations

can be expressed in terms of the YM perturbations, whicRyhere the dot and the prime denote differentiations with re-
yields a pulsation equation for the YM amplitudes. Thespect tot and p, respectively. In particular, for stationary
?gg)v |tat||onal_amt?1l|tuddw %r)terts Fhe pertturbatmtl;\_ e?_ugtlons perturbationsE=B=0, we recover the facts that the electric
(zr;y Via ine coordinate-invariant combinationy, and the magnetic perturbations decouple, and Biatan-
=d(R™“h). The crucial observation is that the second plus;

. . . : ) e ishes.
2w times the third minus @ times the first equation in Eq. For dynamical perturbations a homogeneous pulsation
(56) yields the conservation law

equation of the desired form is obtained as follows: Differ-
entiating the first equation with respect t@nd the second

d’ one with respect tp yields the relation

2G

1
— —R*F,+R3(F + 2wa)} =0.

Recalling the definitions=,=da—Fj, and F,=db—wF, FE=(FB)",

we find after integrating the above equation

200;1>
R2 '

where we have also taken advantage of the fact that the back-
ground is static. Using this to eliminate from the second
equation, we obtain the following two-channel wave equa-
tion with formally self-adjoint spatial part:

F.=f| da+2wdb+
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w2+2  —3w
3w 2w?+1

&2 9 o2 d o o
gtz TdpT dpT R2

or3,.=0, oI .=5"gscRMV,R,

ST%c=h?V Sy, oI, =S"Vh,,

4G 55 1 0
+§U(1—W ) 0 0 QB and
=0, (99 ST %gc= SBaad(V[chd]_hdR_lch)a
whereQ satisfiesF = Q?, C2rADS
Q Q 5FABc: hCR 2gADV[BSD]1
1 —W o _1l/v = = _1l/v
Q: W 1] Wflel’e V[bha]=§(Vbha—Vahb) and V{bha}=§(Vbha

+V,hy). It is now a straightforward task to compute the

) . _ ) " eperturbed Ricci tensor in the ODG. UsiniR,z= ol 4.

Since the spatial operator is symmetric and positive, we _ ST* one finds e
conclude that the spherically symmetric EYM solitons and auip’
black holes have no unstable odd-parity excitations in the =~ 2
sectorl =1. ORap=0, ORAg=Vh,V(sSg), (A1)

and
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APPENDIX A: LINEARIZED RICCI —i(RZRJr(dR, dR)hy . (A2)
AND EINSTEIN TENSORS R?

In this Appendix we give the expressions for the linear-|, order to simplify the expression faiR,, we take advan-
ized Christoffel symbols and the Ricci and Einstein tensors

As we have argued in Sec. Il C, it is sufficient to compute the’[age of the background equation®) to write RAR

perturbations in the ODG. The Christoffel symbols for an*+{(dRdR)=1-3g*°R,g. Also using the transversality of
arbitrary(not necessarily statispherically symmetric space- the spherical vector harmoniog’ BV ,Sz=0, we find
time are
. 20°VcV(aSg =~ (A9),=1(1+1)S,,
1—‘ bC: 0, FaBC: 0,
which we apply in the second term of E&\2). Finally using
. B the fact thatéGap= 6Rap— 3 Sahpg**R,,, in the ODG, we
Mge=T"gc, T%e=T?.. obtain (with the identity RZg%°R,,=g*BGs=R2GE) the
result
5= 0gR VR, I'gc=—0scRVR, Sa [~ 5 hy
3Gav=ry VARV p(hgR™ )]+ 5 (\+R?Gg) [,
whereV denotes the covariant derivative operator with re- (A3)

spect to the two-dimensional meticdefined in Eq.(1). In
the ODG the metric perturbatior{8) and their inverse be- which holds in the ODG. The expression 166G 5g follows

come from the fact that in the ODGGag= 6Rag,
8ap= 09°= 8gpp= 69""=0, 8Gap=V(4Sg;V ;. (A4)
50ap=hpSa,  0gAP= — hoSA Eventually, §G,p= 6Rap— SR 20.,0"BoRg in the ODG,

which vanishes by virtue of Eq§A1) and the transversality

. . . .. _of the spherical vector harmonics.
where all indices are raised with the background metric, i.e., P

hP=g2h, andS"=g"BS; =R 2g"BS; . Using this, and the 5G,p=0. (A5)
background metriq1), the perturbed Christoffel symbols,

or*,g= %g“”(&gw;BJr 09610~ Yap:), become in the The ODG expression#3)—(AS5) together with Eqs(8) and
ODG (9) evaluated in the ODG yield the desired formu(ag).
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APPENDIX B: STATIONARY SOLUTIONS
OF RW-TYPE EQUATIONS

We discuss the conditions under which the stationary

RW-type differential equation

V=0, (B1)

{—arN(r)&ﬁizV(r)
r

admits only the trivial solution. The potentigl(r) and the
function N(r) are assumed to be non-negative for<r
<o, and to have analytical expansions of the form
N(r)=Ny(r—rg)+0(r—ry)?, V(r=Vy+O(r—ry)
in the vicinity of the horizorr, and
N(=1+0(r"Y, V)=1(1+1)+0(r™

asr—oo, wherel>0, N;#0, V#0. [In particular, the RW

equation(17) meets the above conditions, and so does the
Zerilli equation, describing vacuum perturbations with even
parity.] Under the above conditions the differential equation

(B1) has regular singular poinf®3] at r=ry andr=co,
implying that¥ behaves as

| Palr=rn),
~llog(r—ry)Qi(r—ry), for r—ry
and
B r'Py(rh,
QY Hlog(n)r 'Qa(r Y, for r—ee.

Here, theP; A(x) andQ, , 5(x) are locally convergent power
series withP; 0)#0 andQ, ,(0)#0.

For non-negativéN(r) andV(r) the standard integral ar-
gument

dr

f2 2, L 2
0= | | N(aW)2+ SV
r r

r 1
:f z( ~ NGV + SV | Wdr+ [NW 5, P2,
r r

implies that Eq.(B1) has only the ftrivial solutio’=0,
provided that the boundary term vanishes in the limit

PHYSICAL REVIEW B2 084001

APPENDIX C: EINSTEIN-YANG-MILLS BACKGROUND
SOLUTIONS

In this Appendix we recall the behavior of the static,
spherically symmetric soliton and black hole solutions to the
EYM equations(24)—(26) at the singular pointgsee, e.g.,
Ref. [25]): In the vicinity of the origin one hagwith G
=1)

N(r)=1-4b%r2+0(r?%),
S(r)=S[1+4b2r2+0(r%)],
w(r)=1—br2+0(r%), (C1

with parameter$= — 1w”(0) andS,>0. In the asymptotic

regime one finds
N(r)=1-2Mr~*+0(r?),
S(r)=1+0(r" %,

w(r)==*[1-y2Mr '+0(r %],
(€2

with parameterd/l and y. Finally, in the vicinity of the ho-
rizon the behavior is given by

F
N<r>=r—:(r—rH>+0<r—rH>2,

2

(T O —ry)? |,
ALY

S(r)st 1+

Gy 5
w(r)=wy+ F—(r—rH)+O(r—rH) ,
H
(C3
where Fy=1—(w3—1)%r3 and Gpu=wy,(w3—1)/ry.
Here, the free parameters amg=w(ry) andS,.
APPENDIX D: SU(2)-VALUED HARMONIC ONE FORMS

We construct a basis of &)-valued spherical harmonic
one forms which transform canonically under the angular
momentum operatad, defined by

I T=iL,T,

where T is a tensor field over thepherically symmetric
(pseudoyRiemannian manifoldN1,g). Here Ly denotes the

—Ty and rp—c. In particular, this is the case if the |je derivative with respect to an infinitesimal rotatidhon
asymptotic flainess and regularity conditions imply that they) [1n particular, for infinitesimal rotations ift® about the

solutions withQ; andQ, must be excluded.

As an example, stationary solutions of the RW equation
(17) with 1=2 can be excluded as follows: The variation

of the curvature components SRm% . dx°A\dxd

=2R2d(H/R2)§[BSA] must be bounded, implying that/R
must remain bounded as well. Hence, the solution Withis
not admissible, and neither is the one wih, unlessl =1.

x axis, we definel,=Jx, , where ) s= €rs.]
Using the commutator relations
[‘]X ,d]=0, (Dl)

[‘]X’;]:Oi [Jx,dr]=0,

whereX is an infinitesimal rotation, and hence a Killing field
for g, it is not difficult to see that
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vdr, dY, -—*dY

form a basis of spherical harmonime formswith total an-
gular momenturml, where Y=Y'" are the standardcalar

PHYSICAL REVIEW 32 084001
Furthermore, one has

—FYXg+ VXo+ (1 +1)Y dr,=0. (D4)

spherical harmonics. Indeed, these one forms are linearly iBY Virtue of these identities one may also use the one forms

dependent fot >0, while for =0, Y is constant and only
Y dr survives. The reduction

@ b,
=0

®D1=D0®3D1@3D2@ oy,

where theD, denote the S(2)-irreducible subspaces, shows
that the one forms found above are complete.

The dual basis, C;=Ye,, C,=3"BVyYex, C,
=7"BV Ye, is a linear combination of the standavector
harmonics(see, e.g. Refl26]). (Here and in the following,
e, denote the standard basis fieldshot €, is the radial unit
vector, ande, is a basis ofs? with dual basis#”. The anti-
symmetric tensom,g is defined by "= 756%.) Since the
operatord is parity preserving, while the operatorig parity
reversing,C, andC, haveevenparity, while C3=g"BS,eg
has odd parity. Here Sy= %AB%BY denote the transverse

spherical vector harmonicg*BVzS,=0.

In order to construct $@)-valued spherical harmonics, we
use the isometrg, — 7, to identify R® with su2), where the
standard inner product di® corresponds to the normalized
inner product T&=— 2 tr on sy2). Vector-valued tensors are
identified with si2)-valued tensors, and the operatbris
defined by the exterior derivativ@ for vector-valued forms

a=a'v;: da=v;Da'=v;(da'+ |/ \al), where o] is the

Ydr,, 7,dY, VX, instead ofdX,, dX,, *dX,, or the one

formsY*dr,, 7,*dY, *VX, instead of dX;, *dX,, dXs.
In fact, the new sets turn out to be more convenient in order
to derive the perturbation equations.

In conclusion, the 9)-valued spherical harmonic basis
one forms with odd parity are

X,dr, X,dr, Ydr,, 7dY, VX,, (D5
while the even parity basis one forms are
Xidr, Yidr, r5dY, *VX,. (D6)

This is, however, only true fok>1. Forl=1 andl=0 the
above fields are not linearly independent. Ferl the di-
mensions of both the odd and the even parity sectors are
reduced by one, sinc& ,VgY(=V=—g,pY!=1 implies

VXy= BV AV Y 7c 8= — Y740"=— Y dr, . Forl =0, Yis
constant, and hencg,, X3, anddY vanish. Specially, in the
even parity case onlydr, survives, which yields the spheri-
cally symmetric magnetic Witten ansatz for the gauge poten-
tial. The reduction

@ b
|1=0

®D1® D1:3D0€B7D1@9D2®9D3@ e

Riemannian connection with respect to the standard metrighows the completeness of the(Zuvalued spherical har-

on IR3. (With respect to the standard basis=e¢,, one has

w} =0, and thusDa=da, whereas, with respect to the basis

vectorse, and e,, one findsw?=#", wj=—gash® and
wh=wh.) The basis of s{2)-valued spherical harmonics be-
comes
X1:Y7'r y XzzéABTA%BY, X3: ;]ABTA%BY,
(D2)

that is,X;=C ;- 7, whereX; and X, haveodd parity, while
X3 hasevenparity.
A basis of si2)-valued spherical harmoniane formsis

monic one forms.

It is also worthwhile noticing that the odd-parity expan-
sion(3) of the metric perturbations can be obtained by “low-
ering the inner index” and symmetrizing the one for(B):

Xzdr=g"BS,rgdr— 8g=Sa(dre 04+ # @ dr),
Y*d7r,=Yra786%— 89=0,
r*dY=7,S,0"— 8g=Sa(dr® #*+ # o dr),

* %XZZ éBCTB%CsAbA—) 5g: %{ASB}’éA(g ’éB.

now obtained by the same procedure as above: Using the

commutator relationéD1), with d generalized as above, one
obtains the nine basis vectodsX,, *dX,, X.dr. The de-

composition da= r;Da' =V a— 7,005/ \a” of the total
exterior derivative of a vector valued formtangential toS?
now yields the identities

dX;=Ydr,+ 7dY,
dX,=VX,— 7.dY,

dXs=VXs+ 7, *dY. (D3)

In a similar manner the even-parity metric expansion can be
obtained from thdodd-parity one forms(D5).

APPENDIX E: INVARIANT YANG-MILLS
PERTURBATIONS

In this Appendix we construct the gauge- and coordinate-
invariant amplitudes parametrizing the perturbations of the
YM potential SA. Starting with Eqs(27), (28), and(29), our
aim is to show that the physical perturbations forl, |
=1 andl=0 are given by the expressiori30), (31), and
(33), respectively.
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Under YM gauge transformations one has b=g—do,

0A— oA+ Dy, c=v—W(u+wo) for 1>1, (E6)
whereD is the gauge covariant derivative with respect to the
background connectiof18), and y denotes the g@)-valued

scalar field parametrizing the gauge freedom. For odd paritz

perturbationsy is given in terms of two functions ol

It is again obvious from Eq4E1) and(E3) that there exists

gauge for whichu and o vanish, and that the remaining
mplitudesa, B, and v coincide with the gauge-invariant
quantitiesa, b, andc in this gauge. Hence, without loss of

=X+ X, generality, we may set

whereX; andX, are the odd-parity scalar isospin harmonics SAUZD=X a+X,b+cYdr, (E7)
defined in Eq(D2). . . . .
Now using the identitiegD3) and (D4) one findsDX, and considen, b, andc as gauge-invariant amplitudes.

. Forl=0, 6A is parametrized in terms of the one fomn
=7dY+wYdr,, DX,=VX,—wrdY, the amplitudes de-

i ! and the functionr, which transform according ter— «
fined in Egs.(27) and (28) are found to behave as follows +df, and v— v+f,w, respectively. The amplitudes com-
under gauge transformations:

bine into a gauge-invariant one form

a—a+dfy,

14
aEa—d<—) for1=0, (E8)
ﬂ_)ﬁ—i_dev w
u—u+fi—fow for 1=1 wherea coincides witha in the gauge for which vanishes.
(E1) Note however that the one forenis singular at points where
the functionw vanishes.[In particular,a connot be con-
and structed for the RN background whesér)=0.] In terms of
h
v vt+fw—tf, forl=1, aone has
(E2) SAI=0=ra. (E9

+ . . . .
vyt iw, So far we have parametrize¥h in terms of gauge-invariant

(E3) amplitudes or, more precisely, in terms of amplitudes which
coincide with gauge-invariant amplitudes in a certain gauge.
For =1, one can introduce two gauge-invariant oneHowever, these quantities are not yet invariant under infini-

oc—o+f, for [>1.

formsa andb, say, tesimal coordinate transformations on the background. As
the linearized Einstein and YM equations are invariant under
=W these transformations, they will involve only coordinate-
a=a—d 1—w2) invariant combinations of the above amplitudes. In order to
w find these combinations, it remains to study the behavior of
the gauge-invariant amplitudes b, andc under the trans-
v—Ww i
b=4+d K1 for 1= 1, formation
1-w

(E4) OA— SA+ LyA,

which are well defined unless the background configurationwhereA is the background connection given in E#8), and

is the Schwarzschild black holey=1. The transformation Ly denotes the Lie derivative with respect to the infinitesi-
laws (E1) and(E2) imply that there exists a gauge for vyhich mal vector fieldX* = _fR725K‘nAB%BY, defined in Eq(4).
the scalarsu and v vanish. Moreover, the above definitions In terms of the coordinate freedofnone finds

show that in this gauge the one formsand 8 coincide with

the gauge invariant one-fornasandb. Since the perturbation f A f
equations are gauge invariant, we may thus parametrize LyxA=(1-W)| — (7,dY+VX,)+ X,d _> )
SAU=1 in terms of the two gauge-invariant one foraand R? R?

bonM,
(The most efficient way to establish this is to writg,
SAU=D =X a+X;b. (ED  =diy+ixd, and to useiydQ=-R 2fdY and iy*dr,
R 2fX,.)

For 1>1, we may proceed in a similar way and introduce
two gauge-invariant one forms and one gauge-invariant fuanh
tion as follows:

The transformation properties of the one formsg and
e functionsu, v ando defined in Eq(27) are now imme-

diately obtained.[For I=1 one has to replac& X, by
a=a—d(u+wo), —Ydr, and to use Eq28) instead of Eq(27).] Forl>1, the
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gauge-invariant quantitieE6) transform as follows under For =1 the gauge- and coordinate-invariant YM ampli-
coordinate transformations generated>y tudes are obtained by comparing the transformation laws
(E11) with the transformation propertis) of the metric per-

f 5 turbation h, h—h+R?d(R™2f). This yields the invariant
a—a—d —(1—-w?) |, e '
R? quantitiesa andb, defined by
f a=a+ - bebrw (E13
b—b+ Edw, a=a R2’ = WRZ.
f 5 APPENDIX F: LINEARIZED FLUX INTEGRALS
c—C— Qw(l—w ) for I>1, (E10

The Komar expressions for the local electric and magnetic
charges, the local mass and the local angular momentum of a

while the transformation laws for the quantiti€s4) become stationary spacetime are given by the following flux integrals

f over a sphere with radiug:
a—a—d| —/,
R R)= ! J *F R)= ! f F
Qe( )_477_ S ’ Qm( )_477 S 1
f
b%b—wd(ﬁ) for 1=1. (E11) 1
M(R)=~g—5 | _*(dg\dx*),
(There exist no allowed coordinate transformations in the =
odd-parity sector if =0.) Forl>1, one may eventually use
the transformation propertp) of the metric perturbatior, JR)=———| *(dg,,/\dx).
k— k+f, to introduce the following gaugend coordinate- 167G Jsq

invariant amplitudes: _ _ o
Using the expression80) and(31) for the gravitational and
K the YM perturbations, the linearized flux integrals are found
, BEb—EdW, to be

_ K 2
A=a+d| s (1-w?)

5Qm(R)=8M(R)=0,
K K
C=c+—w(1l-w?), HEh—RZd(—), - -
R? R? 8Qu(R)~ 8,161 TR2(*Fpo+2*Fp),
(E12 -

.
where we have also recalled the definitioh0) of the 6J(R)~ 8116moR™ Fyy., (FD)
coordinate-invariant metric perturbation one fokh In the .

ODG («k=0) these gauge and coordinate-invariant ampli-VNer€€o=(0.0.1), €. =(+11.0), andFy, Fa, andFg are
tudes coincide with the gauge-invariant amplitudes, c, ~ defined in Eq(52). Here we have also used the orthogonality
andh, which reduce to the original amplitudes 3, y, and  Of the spherical harmonic&™ and the expansion®,

hin the ODSG k=pu=0=0). ~Y'Me,, andS"~g(dY'™,dY9).
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