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Perturbation theory for self-gravitating gauge fields: The odd-parity sector
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A gauge- and coordinate-invariant perturbation theory for self-gravitating non-Abelian gauge fields with the
gauge group SU~2! is developed and used to analyze local uniqueness and linear stability properties of
non-Abelian equilibrium configurations. It is shown that all admissible stationary odd-parity excitations of the
static and spherically symmetric Einstein-Yang-Mills soliton and black hole solutions have a total angular
momentum numberl 51, and are characterized by nonvanishing asymptotic flux integrals. Local uniqueness
and stability results with respect to non-Abelian perturbations are also established for the Schwarzschild and
Reissner-Nordstro¨m solutions. Finally, unstable modes withl 51 are excluded for the static and spherically
symmetric non-Abelian solitons and black holes.

PACS number~s!: 04.25.Nx, 04.40.2b, 04.70.Bw
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I. INTRODUCTION

Self-gravitating non-Abelian gauge fields admit a ri
spectrum of equilibrium configurations, which is a cons
quence of the balance between the gravitational attrac
and the repulsive nature of the Yang-Mills interaction.
particular, the static and spherically symmetric non-Abel
soliton@1# and black hole solutions@2# owe their existence to
the nonlinearities ofboth general relativity and Yang-Mills
theory.

On the other hand, the key to the black hole uniquen
theorems @3# lies in the s-model structure of the
Einstein~-Maxwell! equations in the presence of a Killin
field @4,5#. As this property ceases to exist for se
gravitatingnon-Abeliangauge fields@6#, the classification of
all stationary Einstein-Yang-Mills~EYM! soliton and black
hole solutions is necessarily a very difficult task. In partic
lar, the set of global charges~asymptotic flux integrals! no
longer uniquely characterizes all possible non-Abelian eq
librium configurations.

Induced by the work of Bartnik and McKinnon~BK! on
non-Abelian solitons@1#, various new self-gravitating equi
librium configurations have been found during the last
cade. In addition to the abovementioned static and sph
cally symmetric black holes with Yang-Mills hair~i.e., with
vanishing Yang-Mills charges but different metric structu
than the Schwarzschild solution! @2#, these include soliton
and black hole solutions in Skyrme, Higgs, dilaton, and ot
nonlinear field theories coupled to gravity~see Ref.@7# for a
review and references!.

Moreover, numerical@8# and analytical@9# studies have
revealed that non-Abelian static black holes are not neces
ily spherically symmetric—in fact, they need not even
axisymmetric@10#. In addition, the nonlinear nature of th
Yang-Mills interaction enables the existence of stationa
nonstatic black holes with vanishing Komar angular mom
tum @11#. Also, the usual Lewis-Papapetrou form of the m
ric does not necessarily describe all stationary and axis
metric EYM black holes; that is, thecircularity theorem does
0556-2821/2000/62~8!/084001~24!/$15.00 62 0840
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not generalize to space-times containing non-Abelian ga
fields @12#.

The above comments suggest that it is not~yet! feasible to
completely classify the soliton and black hole solutions
the stationary EYM equations. In this article we pursu
therefore, a more modest aim. That is, we compute the c
plete spectrum ofstationary EYM perturbationsof the BK
solitons and the corresponding black holes with hair. We
so by systematically developing the perturbation theory
self-gravitating non-Abelian gauge fields with gauge gro
SU~2!. Following the tradition, we start with the odd-parit
sector, and defer the investigation of even-parity pertur
tions to a forthcoming publication@13#.

The gauge- and coordinate-invariant equations derive
this paper describe perturbations of arbitrary spherica
symmetric EYM configurations, where the stationary and
dynamical sector can be treated separately if the backgro
is static. In order to classify the equilibrium solutions clo
to the BK solitons and the corresponding black holes, it
sufficient to considerstationaryexcitations. As we shall see
these are naturally analyzed in terms of invariantmetric and
Yang-Mills amplitudes.

The main results of this paper concern two local uniqu
ness theorems, applying to the BK solitons and the co
sponding black holes with hair, respectively: We prove th
all stationary odd-parity excitations of these static a
spherically symmetric configurations are parametrized
terms of infinitesimal asymptotic flux integrals. More pr
cisely, we show that the soliton and black hole excitatio
found in Ref.@11# are the only stationary, asymptotically fla
perturbations of the BK solitons and the corresponding bl
holes with hair. In particular, there exist no admissible reg
lar or black hole perturbations with total angular momentu
number l .1, while for l 51, the unique soliton and blac
hole excitations are those with infinitesimal electric char
and/or infinitesimal Komar angular momentum@11#. On the
perturbative level, the situation is, therefore, similar to t
Abelian case, where the only admissible stationary exc
tions of the Schwarzschild metric are the Kerr-Newm
©2000 The American Physical Society01-1
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modes. The above results also establish a local version o
circularity theorem in the odd-parity sector.

In addition to the classification of neighboring equili
rium configurations, we also discuss somestability issues,
which require the analysis ofdynamicalperturbations. Un-
fortunately, the gauge-invariant metric perturbations used
this paper are, in general, not suited to apply spectral an
sis, since their evolution is not governed by a standard p
sation operator. In a recent work@14# we have demonstrate
how to overcome this problem by usingcurvature-based
quantities. A rigorous discussion of dynamical perturbatio
within themetricapproach is nevertheless possible for so
distinguished cases. These includel 51 EYM perturbations
of arbitrary background configuratiuons, and arbitrary EY
perturbations of embedded Abelian configurations.

Hence, further results derived in this paper concern
non-Abelian stability ~and local uniqueness! of the
Schwarzschild and the Reissner-Nordstro¨m ~RN! black
holes, as well as the stability properties of non-Abelian c
figurations with respect tol 51 perturbations. In particular
we show that the Schwarzschild and the RN metric are
early stable with respect to dynamical non-Abelian pertur
tions with l>1 and admit no stationary excitations other th
the ~embedded! Kerr-Newman modes. In addition, we esta
lish the absence of unstable modes of the pulsation equa
governing thel 51 perturbations of the BK solitons and th
corresponding black holes with hair. In this context it
worthwhile recalling that unstable Yang-Mills modes wi
odd-parity do exist forl 50 @15#. Also, the RN solution is
known to be unstable with respect to non-Abelian fluctu
tions in the sectorl 50 @16,17#.

The paper is organized as follows. In Sec. II we brie
review the gauge-invariant approach to odd-parity grav
tional perturbations and give a coordinate-invariant deri
tion of the Regge-Wheeler~RW! equation. In Sec. III we
present the harmonic decomposition of Yang-Mills field
using a convenient method to parametrize su~2!-valued one
forms in terms of isospin harmonics. Taking advantage
some powerful tools developed in Appendix D, the line
ized field equations governing arbitrary odd-parity pertur
tions of spherically symmetric EYM configurations are d
rived in Sec. IV.

As first applications, we establish the linear stability a
the local uniqueness properties of the Schwarzschild and
RN solutions with respect to non-Abelian perturbations
Secs. V and VI, respectively. The local uniqueness theor
for the BK solitons and the corresponding black holes
proven in Sec. VII. Eventually, in Sec. VIII, we establish th
dynamical stability of these solutions with respect to no
spherical perturbations withl 51.

A variety of technical issues, such as the expressions
the linearized Ricci tensor, the integral argument exclud
admissible solutions of certain RW-type equations, so
asymptotic expansions, the introduction of isospin harm
ics, and the construction of gauge- and coordinate-invar
Yang-Mills amplitudes are discussed in Appendixes A–F

II. GRAVITATIONAL PERTURBATIONS

In this section we briefly review the gauge-invariant a
proach to odd-parity gravitational perturbations@18#. As an
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application we derive a coordinate-invariant version of t
RW equation@19#. We finally recall the arguments establis
ing the stability of the Schwarzschild metric with respect
vacuum perturbations.

A. Background expressions

We are analyzing odd-parity perturbations ofspherically
symmetric backgroundconfigurations. A spherically sym
metric spacetime (M ,g) is a warped product ofM̃
[M /SO~3! andS2 with metric

g5g̃1R2ĝ. ~1!

Here ĝ is the standard metric onS2, andg̃ andR denote the
metric tensor and a real-valued function, respectively,
fined on the two-dimensional pseudo-Riemannian orbit sp
M̃ with coordinatesxa, say. Here and in the following lower
case Latin indices (a50,1) refer to coordinates on (M̃ ,g̃),
while capital Latin indices (A52,3) refer to the coordinate
q and w on (S2,ĝ). The dimensional reduction of the Ein
stein tensor yields

Gab5
1

R2
~2RD̃R1^dR,dR&21!g̃ab2

2

R
¹̃a¹̃bR,

GAB5
1

2
~2RD̃R2R2R̃!ĝAB , ~2!

where the off-diagonal components vanish,GAb50. The op-
erators with a tilde and the inner product^ , & refer to the
two-dimensional pseudo-Riemannian metricg̃, and R̃ de-
notes the Ricci scalar ofg̃.

B. Coordinate-invariant amplitudes

Arbitrary perturbations of spherically symmetric bac
ground fields can be expanded in terms of spherical ten
harmonics. For odd-parity perturbations the transve
spherical vector harmonicsSA[( *̂ dY)A form a basis of vec-

tor fields on S2 while the harmonics¹̂$ASB%[
1
2 (¹̂ASB

1¹̂BSA) are a basis of symmetric tensor fields onS2; see
Appendix D for details.~Here *̂ denotes the Hodge dual wit
respect to the metricĝ, and theYlm are the scalar spherica
harmonics, where the angular numbersl and m are sup-
pressed throughout, i.e.,Y[Ylm, SA[SA

lm .! The odd-parity
perturbations ofgmn are, therefore, parametrized in terms
a scalar fieldk and a one formh5hadxa,

dgab50, dgAb5hbSA , dgAB52k¹̂$ASB% , ~3!

wherek andha depend on the coordinatesxb only.
A vector fieldX5Xm]m generating an infinitesimal coor

dinate transformation with odd parity is determined by
function f (xb), where
1-2
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Xa50, XA5 f SA5
f

R2
ĝABSB . ~4!

Under coordinate transformations induced byX the perturba-
tions of a tensor field transform with the Lie derivative of t
corresponding background quantity with respect toX: dtmn

→dtmn1LXtmn . UsingLXgAb5SAR2¹̃b(R22f ) andLXgAB

52 f ¹̂$ASB% , the metric perturbations transform according

k→k1 f ,
hb

R2
→hb

R2
1¹̃bS f

R2D . ~5!

In a similar way one obtains the transformation laws for
perturbations of the Einstein tensor. Also using the ba
ground propertiesGAb50 and 2GB

A5GD
DdB

A one finds

dGAb→dGAb1GA
BSBR2¹̃bS f

R2D , ~6!

dGAB→dGAB1GD
D¹̂$ASB% f . ~7!

One may now use the transformation laws fork andhb to
construct the following coordinate-invariant components:

dGab
inv[dGab , dGAb

inv[dGAb2hbGA
BSB , ~8!

and, for lÞ1,

dGAB
inv[dGAB2kGD

D¹̂$ASB% . ~9!

We recall that the scalar amplitudek defined in Eq.~3! is not

present forl 51, since then¹̂$ASB% vanishes. However, by
virtue of Eq. ~7!, this also implies thatdGAB is already co-
ordinate invariant.~In fact, dGAB vanishes identically forl
51, as will be shown below.! Hence, for l 51 one needs
only the invariant components defined in Eqs.~8!, which do
not involve the amplitudek.

As the dGmn
inv are invariant under coordinate transform

tions generated byX, the expressions~8! and ~9! will only
involve coordinate-invariant combinations of the one formh
and the scalark. In fact, for lÞ1, dGmn

inv can be expressed i
terms of the manifestly coordinate-invariant one formH, de-
fined by

H[h2R2dS k

R2D . ~10!

This definition is again limited tolÞ1. For l 51, wherek is
absent, we will see that the remaining perturbationh enters
dGmn

inv via the invariant two formd(R22h) only.

C. Coordinate-invariant Einstein tensor

The computation of the coordinate-invariant compone
dGmn

inv is considerably simplified by the following observ
tion: In the gauge where the scalar amplitudek vanishes,
henceforth called the off-diagonal gauge~ODG!, the pertur-
08400
e
-

s

bationh coincides with the coordinate-invariant perturbati
H defined in Eq.~10!. @It is obvious from Eq.~5! that the
ODG always exists and fixes the gauge functionf uniquely.#
Hence, forl .1, the correct invariant tensors are obtained
computingdGmn

inv in the ODG, and by substitutingH for h in
the resulting expressions. Forl 51 all perturbations are off-
diagonal anyway, and one obtains the correct expression
terms of the invariant quantityd(R22h).

It is a straightforward task to computedGmn in the ODG.
Using the formulas~A3!, ~A4!, and~A5! derived in Appen-
dix A, Eqs. ~8! and ~9! yield the expressions

dGAb
invuODG5

SA

R2 H ¹̃a@R4¹̃ [b~ha]R
22!#1

l

2
hbJ ,

dGab
invuODG50, dGAB

invuODG5¹̂$ASB% ¹̃bhb ,
~11!

where

l[~ l 21!~ l 12!.

Here we have used the background property 2GB
A5GD

DdB
A

and the fact thatdGAB
inv5dGAB in the ODG. Sincehb coin-

cides with the invariant amplitudeHb in the ODG, we may
replacehb by Hb in the above expressions, which mak
them manifestly coordinate invariant forl .1. For l 51 the
second term in the expression fordGAb

inv vanishes, andhb

appears only via the coordinate-invariant express

¹̃ [b(ha]R
22). We therefore end up with the manifest

coordinate-invariant expressions

dGab
inv50, dGAB

inv52d†H¹̂$ASB% ~12!

and

dGAb
invdxb5

SA

2R2
$d†@R4d~R22H !#1lH%, ~13!

which are valid for all values ofl, provided thatH is defined
according to Eq.~10! for l .1, and according toH[h

for l 51. Hered†[ *̃ d*̃ denotes the codifferential operato

for p forms on (M̃ ,g̃), e.g., d†H52¹̃aHa , (d†dH)b

52¹̃a¹̃ [bHa] .
The linearized Bianchi identity implies that the Einste

equation fordGAB
inv is a consequence of the equation f

dGAb
inv . In fact, the first equation is the integrability conditio

for the second one, as is obvious for vacuum perturbatio
Applying the codifferential toR2dGAb

inv50 yields d†H50,
that is, dGAB

inv50. ~For l 51 this integrability condition is
void, in agreement with the fact thatdGAB

inv vanishes identi-
cally.!
1-3



o
dd

n
ed

r
o
er
b
a
ity
on

e

ua

e

th
-

or
en

al

e
s

n
re
n

s

a

n
as-

-
des
by

n

s

-
nce,
is-

on
ll-

O. SARBACH, M. HEUSLER, AND O. BRODBECK PHYSICAL REVIEW D62 084001
D. Local uniqueness and linear stability
of the Schwarzschild metric

As an application we consider vacuum perturbations
the Schwarzschild metric. The relevant equation for the o
parity sector was first derived by Regge and Wheeler~RW!
@19#, and brought in a gauge-invariant form by Gerlach a
Sengupta@18#. A gauge-invariant approach which is bas
on the Hamiltonian formalism was given by Moncrief@20#.

The linear stability of the Schwarzschild metric follows
from the dynamical behavior of vacuum fluctuations. In o
der to establish thelocal uniquenessproperty one also has t
exclude all stationary perturbations other than the K
mode. While the stationary perturbations do not need to
normalizable, they are, however, subject to certain bound
conditions following from asymptotic flatness and regular
requirements. Both stationary and dynamical perturbati
must be analyzed separately in the sectorsl .1 andl 51.

The vacuum perturbations with odd parity are obtain
from Eq. ~13!, which yields

1

R2
d†FR4dS H

R2D G1l
H

R2
50. ~14!

This equation holds for all values ofl and comprises the
complete information. The usual way to derive the RW eq
tion from Eq. ~14! is to decompose the one formH with
respect to Schwarzschild coordinatesH5Htdt1Hrdr, and
to use the integrability condition to eliminateHt . This yields
an equation forHr alone, which is then cast into a wav
equation for the function (122M /r )Hr /r . This can also be
achieved in a coordinate-invariant way as follows: Using
integrability conditiond†H50 to introduce the scalar poten
tial F according toH5 *̃ d(RF), one may integrate Eq.~14!.
This yields Eq.~15! below for the potentialF instead ofC.

Here we proceed in a different way, which is also co
dinate invariant. The basic observation is that in two dim
sions the field strength two form assigned to a one form
equivalent to a scalar field. We therefore introduce the sc
field C according to

C[R3*̃ dS H

R2D ,

where the factorR3 turns out to be convenient. Applying th
operator *˜d on Eq.~14! and using the above definition yield
the wave equation

F2D̃1RD̃S 1

RD1
l

R2GC50, ~15!

where the two-dimensional Laplacian of a function isD̃C

[2d†dC, and where we have used *˜dd†5d†d*̃ . Equation
~15! is the coordinate-invariant version of the RW equatio
In fact, it generalizes the RW equation, since it is not
stricted to perturbations of static background configuratio
@The fact that the RW functionC[R3*̃ d(R22H) and the
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scalar potentialF, defined byH5 *̃ d(RF), satisfy the same
equation will be explained at the end of Sec. V B.#

The positivity of the RW potential forlÞ1 follows from
the general expression~2! for Gab , which yields the
coordinate-independent vacuum background equationRD̃R
1^dR,dR&51. By virtue of this, Eq.~15! assumes the form

@2ND̃1VRW#C50,

with

VRW[
N

R2
@3~N21!1 l ~ l 11!#

andN[^dR,dR&. Hence,VRW is positive for finite values of
R if dR is spacelike andl>2.

We may now use standard Schwarzschild coordinater
and t, defined by

R~r ,t !5r , g̃52NS2dt21
1

N
dr2, ~16!

to cast the RW equation into its well-known form. For
Schwarzschild background with massM we haveN(r )51
22M /r , S(r )51, ND̃52] t

21N] rN] r , and thus

F ]2

]t2
2

]2

]r !
2

1
N

r 2 S l ~ l 11!2
6M

r D GC50, ~17!

with dr![N21dr. For l>2 the potential is non-negative i
the domain of outer communications, and vanishes only
ymptotically. Therefore, Eq.~17! admits no unstable dy
namical modes. Furthermore, well-behaved stationary mo
with l>2 can also be excluded in a rigorous manner
applying the argument given in Appendix B.

It remains to discuss the perturbations withl 51, for
which Eq. ~15! is immediately seen to admit the solutio
1/R. Sincel50, we may also directly integrate Eq.~14!,
which yields

dS H

R2D 5a
6M

R4
*̃ 1,

where 6aM is a constant of integration. At this point it i
important to recall that forl 51 the one formH[h is not
coordinate invariant, but transforms according toH→H
1R2d( f /R2). This implies that the solution of the homoge
neous part of the above equation is a pure gauge. He
with respect to Schwarzschild coordinates, the only adm
sible solution of the perturbation equations~stationary and
nonstationary! is H52a(M /r )dt. Using thatSq50 andSw

52sin2q for l 51 andm50, one finds with Eq.~3!

dgtw52a
2M

r
sin2q,

which describes the Kerr metric in first order of the rotati
parametera. In conclusion, we have established the we
1-4
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known result that the only physically admissible odd-par
vacuumperturbation of the Schwarzschild metric lies in t
sectorl 51 and describes the stationary Kerr mode.

III. PERTURBATIONS OF YANG-MILLS FIELDS

We are interested in perturbations of spherically symm
ric EYM solitons and black holes which give rise to od
parity metric excitations. Before deriving the gauge- a
coordinate-invariant expressions for the stress-energy te
and the YM equations, we briefly recall some features of
background configurations.

A. Einstein-Yang-Mills background configurations

The spherically symmetric EYM background configur
tions are assumed to be purely magnetic@21#, but not neces-
sarily static. The metric is given by Eq.~1!, while the gauge
potential is parametrized in terms of a scalar fieldw(xb)
on M̃ ,

A5~12w! *̂ dt r , ~18!

wheret r[t•er . Here thetk[sk /(2i ) are the su~2! genera-
tors, er is the radial unit vector inR3, and thesk are the
constant Cartesian Pauli matrices. The total exterior der
tive of the vector valued functioner is ûAeA ~with A
5q,w), implying that

dt r5tqdq1tw sinqdw.

~see Appendix D for details.! Sincet r is an eigenfunction of
the spherical Laplacian,d*̂ dt r522t rdV, the background
field strengthF5dA1A`A, becomes

F52dw` *̂ dt r1~w221!t rdV. ~19!

Using this expression, the components of the stress-en
tensorTmn5(1/4p)Tr$FmaFn

a2 1
4 gmnFabFab%, with respect

to the background metric~1! become

Tab5
1

4pR2 F2wawb2
1

2
g̃abS 2wcw

c1
~w221!2

R2 D G ,

TAB5
1

4pR2
gAB

~w221!2

2R2
, TAb50, ~20!

where wa[¹̃aw, and where Tr$% denotes the normalize
trace Tr$t i

2%51.
The background YM equation,D* F[d* F1@A,* F#50,

is obtained from the expression *F52 *̃ dw`dt r

1R22(w221)t r *̃ 1, using the fact thatdt r commutes with
* dt r , and@dt r ,t r #5* dt r . One finds

D̃w5w
w221

R2
, ~21!
08400
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where d†5 *̃ d*̃ , and D̃w52d†dw5¹̃a¹̃aw. The Einstein
equations,Gmn58pGTmn , are obtained from the formula
~2! and ~20!. Also usingTm

m50, one finds

1

2
g̃abR̃2

2

R
¹̃a¹̃bR5G

2

R2 F2wawb2
1

2
g̃ab

3S 2wcw
c1

~w221!2

R2 D G , ~22!

12
1

2
D̃~R2!5G

~w221!2

R2
. ~23!

Equations ~21!–~23! are the spherically symmetric EYM
equations in coordinate-invariant form. In the static case
may evaluate these expressions for the metric~16!, which
yields ~a prime denoting the derivative with respect tor )

1

S
~NSw8!85w

w221

r 2
~24!

for the YM equation~21!, and, withN(r )[122m(r )/r ,

m85
G

2 F ~w221!2

r 2
12N~w8!2G , ~25!

S8

S
52G

~w8!2

r
~26!

for Eq. ~23! and for the trace-free part of Eq.~22!, respec-
tively. Two special Abelian solutions to Eqs.~24!–~26! are
the Schwarzschild metricm(r )5M5const , S51, w51,
and the Reissner-Nordstro¨m ~RN! metric with massM and
unit magnetic charge,N5122M /r 1G/r 2, S51, w50.

Asymptotically flatnon-Abeliansolutions with finite en-
ergy and nontrivial gauge fields are the solitons found
Bartnik and McKinnon @1#, and the corresponding blac
holes with hair@2#. They are obtained by numerical metho
and by analyzing the local solutions at the singular points
Eqs. ~24!–~26!, that is, at the originr 50, the horizon
N(r H)50, and at infinityr 5`. The local background solu
tions are given in Appendix C, since their behavior will b
crucial to the existence of regular singular points of the p
turbation equations.

B. Gauge- and coordinate-invariant Yang-Mills perturbations

In Appendix D we construct a convenient basis of su~2!-
valued spherical harmonic one-forms. The odd-parity per
bations of the YM potential are then given in terms of tw
one formsa and b, and three scalar fieldsm, n, and s,
over M̃ ,

dA( l .1)5X1a1X2b1mt rdY1nYdt r1s¹̂X2 , ~27!

where X1 , X2, and X3 are a scalar basis of su~2!-valued
spherical harmonics
1-5
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X15Yt r , X25ĝABtA¹̂BY, X35ĥABtA¹̂BY,

while Y[Ylm denote the ordinary spherical harmonics.~The
antisymmetric tensorĥAB is defined by *ˆ ûA5ĥB

AûB.! As
usual, the casesl 51 and l 50 must be treated separatel

For l 51, one has¹̂X2
( l 51)52Y( l 51)dt r , implying that n

ands combine to a single amplitude. Hence,

dA( l 51)5X1a1X2b1mt rdY1nYdt r . ~28!

In contrast to the gravitational sector, the odd-parity Y
sector is not empty forl 50. As Y( l 50) is constant,dA is
parametrized in terms of the one forma and the functionn,

dA( l 50)5t ra1ndt r . ~29!

One may now study the behavior ofdA under gauge
transformationsdA→dA1Dx, and under coordinate trans
formationsdA→dA1LXA. Here D is the gauge covarian
derivative with respect to the background connection~18!, x
is an su~2!-valued scalar field with odd parity, andLX is the
Lie derivative with respect to the infinitesimal vector fieldX
defined in Eq.~4!. Considering both gauge and coordina
transformations, the following results are established in A
pendix E.

For l .1 the metric perturbations are originally param
etrized in terms of the functionk and the one formh, while
the YM amplitudes are given by two one formsa andb and
three functionsm, n, ands. Using the complete gauge an
coordinate freedom, the entire set of perturbations reduce
three one forms,H, A, and B, and one functionC, all of
which are invariant under both coordinate and gauge tra
formations. Adopting the ODG (k50) and the YM gauge
m5s50, the quantitiesH, A, B, and C, coincide with the
original amplitudesh, a, b, and n. @See Eqs.~E6! and
~E12!.# Hence, all physically relevant perturbations withl
.1 are given by

dgAB
( l .1)5dgab

( l .1)50, dgAb
( l .1)5HbSA ,

dA( l .1)5X1A1X2B1CYdt r , ~30!

with gauge- and coordinate-invariant amplitudesH, A, B, and
C. The ODG for the metric perturbations, together with t
YM gaugem5s50 will be called the off-diagonal standar
gauge~ODSG! henceforth. In the ODSG all gravitational an
YM perturbations coincide with the correspondin
coordinate- and gauge-invariant quantities.

For l 51 the metric perturbations are already off-diagon
and there exists a gauge for which the YM scalarsm andn
vanish, and the remaining amplitudes,a and b, coincide
with the two gauge-invariant one formsa andb, defined in
Eq. ~E4!. The perturbations are therefore given by

dgAB
( l 51)5dgab

( l 51)50, dgAb
( l 51)5hbSA ,

dA( l 51)5X1a1X2b, ~31!

wherea andb are gauge invariant, but neither the metric n
the YM perturbations are invariant under coordinate trans
08400
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mations. The linearized EYM equations involve, howev
only the gauge-and coordinate-invariant combinations

ā[a1
h

R2
, b̄[b1w

h

R2
, ~32!

andd(R22h), as we shall see later.
For l 50 there exist no metric perturbations in the od

parity sector, and the YM perturbations are comprised wit
a single gauge-invariant one forma, defined in Eq.~E8!,

dgmn
( l 50)50, dA( l 50)5t ra. ~33!

The one-forma is singular at points wherew vanish.

IV. THE PERTURBATION EQUATIONS

In this section we give the equations governing the o
parity perturbations of a spherically symmetric soliton
black hole EYM background configuration. The amplitud
are parametrized in terms of the gravitational one formH,
the YM one formsA, B, and the YM scalarC. All amplitudes
are gauge and coordinate invariant and, as we are not in
ducing specific coordinates, the resulting equations are
limited to static background configurations. The derivatio
are considerably simplified by adopting the ODSG and
taking advantage of the su~2! harmonics constructed in Ap
pendix D. However, as the computations are still lengthy,
discuss only the basic steps in Secs. IV A, IV B, and IV
for l .1, l 51 and l 50, respectively, and give a self
contained compilation of the results in Sec. IV D.

A. Equations for lÌ1

For l .1 we may proceed in the ODSG for which th
metric and the YM perturbations coincide with the gaug
and coordinate-invariant amplitudesH, A, B, andC:

dgAb
( l .1)5HbSA ,

dA( l .1)5X1A1X2B1CYdt r . ~34!

We start by computing the coordinate-invariant stre
energy tensor. According to Eqs.~8! and ~9! we have

dTab
inv5dTab

ODG, dTAB
inv5dTAB

ODG, ~35!

and

dTAb
inv5dTAb

ODG2HbTA
BSB , ~36!

sincek50 andHa5ha in the ODG. ThedTmn consist of
perturbations arising from variations with respect to the m
ric and the YM fieldsdTmn5dgTmn1dATmn , where

dgTmn52
1

4p
TrH 1

4
FabFabdgmn

1S Fm
aFn

b2
1

2
gmnFg

aFbgD dgabJ

1-6



ck
s

na
o

.

d
r-
t

in
n

ns
a-

n:

n
ne-

.
e

ba-
o
Us-
up

n-

e
tion

ne

s of

PERTURBATION THEORY FOR SELF-GRAVITATING . . . PHYSICAL REVIEW D62 084001
and

dATmn5
1

4p
TrH Fn

adFam1Fm
adFan2

1

2
gmnFabdFabJ .

In the ODSG the linearized field strengthdF5DdA, is
obtained from the formula~34! for dA( l .1). Recalling thatD
is the gauge covariant derivative with respect to the ba
ground potential~18!, one finds, also using the identitie
~D3!,

dF ( l .1)5X1dA1X2dB2X3CdV2B`¹̂X2

1~wB2A!`t rdY1~dC2wA!`Ydt r .

~37!

Using this, as well as the expression~19! for the background
field strengthF and the formulas~34! for the metric pertur-
bations, we end up with

dTab
inv50, dTAB

inv5
1

4p
^B,dw&2¹̂$ASB% , ~38!

and

dTAb
inv5

SA

4pR2 F ~w221!~Ab2wBb!1R2~dB!baw
a2Cwb

1^H,dw&wb2S ^dw,dw&1
~w221!2

R2 D HbG , ~39!

where we recall that all amplitudes are gauge and coordi
invariant. Here and in the following we use the obvious n

tationswa[g̃ab¹̃bw and ^ , & for the inner product with re-

spect tog̃, e.g.,^H,dw&[g̃abHa¹̃bw. @There is no factor 1/2
in front of the last term in Eq.~39!, since, according to Eqs
~20! and ~36!, dTAb

inv and dTAb differ by the term
(8p)21R24(w221)2HbSA in the ODG.#

The Einstein equationsdGmn
inv58pGdTmn

inv , are now ob-
tained from the above expressions and the formulas~12! and
~13! for dGmn

inv . We have already argued that the (AB) equa-
tion,

d†H524G^B,dw&, ~40!

is a consequence of the (Ab) equations and the linearize
Bianchi identity. While this was obvious for vacuum pertu
bations, one now needs the YM equations given below
verify this fact. Hence, the only independent Einste
equation is the one for the coordinate-invariant metric o
form H,

d†FR4dS H

R2D G1lH54G~w221!FA2wB2
w221

R2
HG

14G@ *̃ ~R2dB1dw`H ! *̃ dw

2Cdw#, ~41!
08400
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where we also recall thatl[( l 21)(l 12). Here we have
used the identities ^H,dw&dw2^dw,dw&H5 *̃ (dw

`H) *̃ dw and (dB)abw
bdxa5( *̃ dB) *̃ dw.

The linearized YM equations also involve perturbatio
of both YM and metric fields. The latter arise from the vari
tion of the Hodge dual ind(D* F)50, and yield the terms
on the right-hand side of the following general expressio

D* dF1@dA,* F#52D* F2dS dA2g̃

A2g̃
D `* F,

whereFmn[F [m
s dgn]s . Since the dual of this is an equatio

between one forms, and since the odd-parity space of o
forms is five dimensional forl .1, we obtain five equations
Again, the computation is considerably simplified in th
ODSG for which we may use the gauge-invariant pertur
tions given in Eqs.~34!. As expected, it turns out that tw
YM equations can be obtained from the remaining ones.
ing the tools developed in Appendix D, we eventually end
with the following set of equations for the one formsA, B,
and the scalarC:

d†~R2dA!1@l12~w211!#A22@l12#wB

22wdC12Cdw5~l12!
w221

R2
H, ~42!

d†~R2dB!22wA1@l1~w211!#B1dC

5d†~H`dw!2w
w221

R2
H, ~43!

C5R2d†B2^dw,H&. ~44!

The remaining two YM equations are the integrability co
ditions for Eqs.~42! and ~43!. Also using Eq.~44!, these
become

d†FA1
12w2

R2
HG522^B,dw&, ~45!

and

D̃C2@l1~w211!#
C

R2

52^A,dw&2wd†A1@l12#
^dw,H&

R2
. ~46!

Since Eqs.~40!, ~45!, and ~46! are consequences of th
remaining equations, the complete system of perturba
equations consists of the three coupled equations~41!, ~42!,
and ~43! for the three gauge- and coordinate-invariant o
formsA, B, andH, whereC is given by Eq.~44!. It will also
turn out to be convenient to write these equations in term
the one formsĀ and B̄, defined by
1-7
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Ā[A1
H

R2
, B̄[B1w

H

R2
, ~47!

in terms of which Eqs.~41!, ~42!, and~43! assume the form

d†~R4FH!1lH

54G@~R2*̃ FB! *̃ dw2Cdw1~w221!~Ā2wB̄!#,
~48!

d†~R2FA!1lS Ā22wB̄1w2
H

R2D
522~w211!Ā14wB̄22Cdw12wdC, ~49!

d†~R2FB!1lS B̄2w
H

R2D
52wĀ2~w211!B̄2dC, ~50!

with

C5R2Fd†B̄2wd†S H

R2D G . ~51!

Here we have introduced the two formsFA , FB , andFH ,
which are defined in terms ofH, Ā, andB̄ as follows:

FA[dĀ2FH , FB[dB̄2wFH ,

FH[dS H

R2D , ~52!

i.e., FA5dA, FB5dB1dw`R22H. The three equations
~48!–~50! for the invariant one formsĀ, B̄, andH, with C
according to Eq.~51!, govern all physical odd-parity pertur
bations withl .1. We shall now argue that these equatio
hold for l 51 as well, provided that one setsC50.

B. Equations for lÄ1

For l 51 the metric perturbations are off-diagonal and d
scribed by the one formh, while the YM potential is param-
etrized in terms of two one formsa andb,

dgAb
( l 51)5hbSA , dA( l 51)5X1a1X2b. ~53!

Although a andb are gauge invariant, they are not invaria
under coordinate transformations, and neither ish. As the
linearized YM and Einstein equations are coordinate inv
ant, these will only involve the gauge and coordinate inva
ant one formsā and b̄ defined in Eq.~32!.

The perturbation equations forl 51 are obtained from the
equations forl .1 as follows: The linearized field strengt
two form dF5DdA for the background potential~18! and
the perturbation~53! becomes
08400
s

-

t

i-
i-

dF ( l 51)5X1da1X2db1~wb2a!`t rdY

1~b2wa!`Ydt r . ~54!

Formally, this is also obtained from the expression~37! for
dF ( l .1) by substitutinga for A, b for B and by settingC

50, where one also has to use¹̂X2
( l 51)52Y( l 51)dt r ; see

Appendix D for details. Hence, the invariant stress-ene
tensor for l 51 is obtained from the expressions~38! and
~39! for l .1 by applying these substitutions and by repla
ing h for H. This yields

dTab
inv50, dTAB

inv50

and

dTAb
inv dxb5

SA

4pR2
@~w221!~a2wb!1R2~ *̃ db! *̃ dw#

1
SA

4pR2 F *̃ ~dw`h! *̃ dw2
~w221!2

R2
hGSA .

The coordinate invariance of the last expression beco
manifest by writing it in terms of the one formsā and b̄
given in Eq.~32!. One finds

dTAb
invdxb5

SA

4pR2
~w221!~ ā2wb̄!

1
SA

4p
*̃ Fdb̄2wdS h

R2D G *̃ dw, ~55!

where the metric perturbation enters only via the invari
two form d(R22h).

It is now obvious that the complete set of linearized EY
equations in terms of the gaugeandcoordinate-invariant am-
plitudesā and b̄ is obtained from Eqs.~48!–~50!, by substi-
tuting Ā→ā, B̄→b̄, andC→0. As we also have to substi
tute H→h, the left-hand side~LHS! of Eqs. ~48!–~50!
would, at a first glance, involve the non-coordinate-invaria
amplitudeh. However, sincel50 for l 51, the terms in-
volving h itself vanish identically. We also point out that th
algebraic equation~51! for C is not present forl 51, because
the basis of one forms is reduced by one dimension. T
complete set of perturbation equations in the sectorl 51 thus
assumes the surprisingly simple form

d†~R4Fh!24G@~R2*̃ Fb! *̃ dw1~w221!~ ā2wb̄!#50,

d†~R2Fa!12~w211!ā24wb̄50,

d†~R2Fb!22wā1~w211!b̄50,
~56!

where ā and b̄ are the gauge- and coordinate-invariant o
forms given in Eq.~32!, in terms of which the two formsFh ,
Fa andFb are defined by
1-8
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Fh[dS h

R2D , Fa[dā2Fh , Fb[db̄2wFh .

C. Equations for lÄ0

For l 50 there exist no metric perturbations with odd pa
ity, and dA can be expressed in terms of a single gau
invariant one form

dgmn
( l 50)50, dA( l 50)5t ra.

The field strength is obtained by settingY51, B50, C50
in the expression~37! for dF ( l .1), and by substitutinga for
A,

dF ( l 50)5t rda2wa`dt r .

The correct perturbation equation is now obtained from
~49! by settingB̄5C5H50, wherel522 for l 50. Also
substitutinga for Ā, Eqs.~49! and ~52! yield

d†~R2Fa!12w2a50, with Fa[da. ~57!

D. Summary

All odd-parity perturbations of spherically symmetric, n
necessarily static EYM configurations are governed by
three equations

d†~R4FH!1lH

54G@~R2*̃ FB! *̃ dw2Cdw1~w221!~Ā2wB̄!#,
~58!

d†~R2FA!1lS Ā22wB̄1w2
H

R2D
522~w211!Ā14wB̄22Cdw12wdC, ~59!

d†~R2FB!1lS B̄2w
H

R2D
52wĀ2~w211!B̄2dC, ~60!

for the three gauge- and coordinate-invariant one formsĀ,
B̄, andH, wherel[( l 21)(l 12),

C[~12d0
l 2d1

l !R2Fd†B̄2wd†S H

R2D G , ~61!

and

FH[dS H

R2D , FA[dĀ2FH , FB[dB̄2wFH .

The above equations are valid for all values ofl, where only
Eq. ~59! with H5B̄50 is present forl 50. However, the
08400
-
-

.

e

expressions for the gauge- and coordinate-invariant am
tudes in terms of the original metric and YM perturbatio
are different forl .1, l 51, andl 50, respectively; see Ap-
pendix E.

l .1: The original metric perturbations are described b
one formh and a functionk, while the YM perturbations are
given in terms of two one formsa andb, and three functions
m, n, ands:

dgab50, dgAbdxb5hSA , dgAB52k¹̂$ASB% ,

dA5X1a1X2b1mt rdY1nYdt r1s¹̂X2 .

In terms of these amplitudes the invariant quantities app
ing in Eqs.~58!–~60! are, according to Appendix E,

Ā[a1
h

R2
2dS m1ws1w2

k

R2D ,

B̄[b1w
h

R2
2dS s1w

k

R2D ,

H[h2R2dS k

R2D . ~62!

l 51: The original metric perturbations are described
the one formh, while the YM perturbations are given in
terms of two one formsa andb, and two functionsm andn:

dgab50, dgAbdxb5hSA , dgAB50,

d5X1a1X2b1mt rdY1nYdt r . ~63!

The invariant quantities now are

Ā[a1
h

R2
2dS m2wn

12w2 D ,

B̄[b1w
h

R2
2dS wm2n

12w2 D ,

H[h. ~64!

l 50: There exist no metric perturbations, and the Y
perturbations are given in terms of a one form,a and a
function n:

dA5t ra1ndt r .

In terms ofa andn the invariant quantityĀ is given by

Ā[a2dS n

wD , ~65!

and, as mentioned above, the correct perturbation equatio
Eq. ~59! with l522, C50, B̄50, andH50.
1-9
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V. NON-ABELIAN STABILITY AND LOCAL UNIQUENESS
OF THE REISSNER-NORDSTRÖM SOLUTION

For w[0 the static, spherically symmetric EYM equ
tions ~24!–~26! admit the RN solution with unit magneti
charge. The stability and local uniqueness properties of
RN metric with respect to non-Abelian perturbations a
therefore, obtained from Eqs.~58!–~60!, which decouple into
two sets forw[0: The first set, involving the one formsH
and Ā only, is obtained from Eqs.~58! and ~59!,

d†FR4dS H

R2D G1lH524GĀ,

d†FR2dS Ā2
H

R2D G1~l12!Ā50 for l>1. ~66!

Sincew[0, the remaining equation forB̄ does not contain
the amplitudesH and Ā. Using C5R2d†B̄ for l .1 andC
50 for l 51, we have

d†~R2dB̄!1d~R2d†B̄!1~l11!B̄50 for l .1, ~67!

d†~R2dB̄!1B̄50 for l 51. ~68!

SinceĀ is the gauge- and coordinate-invariant version
the amplitude in front of the isospin harmonicst rY

l , Eqs.
~66! govern the Abelian part of the perturbations, that
Einstein-Maxwell perturbations of the RN metric. In contra
to this, Eqs.~67! and ~68! for B̄ are not present in the Abe
lian case, and describe non-Abelian perturbations of the
metric with l .1 andl 51, respectively.

A. Perturbations with lÌ1

We start with Eqs.~66! describing the Abelian part of th
perturbations. Forl .1 the integrability conditions for thes
equations ared†Ā50 andd†H50, implying the existence o
two scalar fieldsCH andCA , defined by

*̃ d~RCH![AlH, *̃ dCA[A4GĀ.

SubstitutingCH andCA for H andĀ in Eqs.~66!, and inte-
grating both equations yields the following coupled wa
equations for the scalar fieldsCH andCA :

D̃CH5FRd†S dR

R2 D 1
l

R2GCH1
A4Gl

R3
CA ,

D̃CA5
A4Gl

R3
CH1Fl12

R2
1

4G

R4 GCA .

For w50 the background equation~23! becomes
R3d†(dR/R2)53^dR,dR&211G/R2. Using this and intro-
ducing standard Schwarzschild coordinatesR5r , ^dR,dR&
5N5122M /r 1G/r 2, yields
08400
e
,

f

,
t

N

F2D̃1
1

r 2 S l122
3M

r
1

4G

r 2 D G S CH

CA
D

1
1

r 3 S 23M A4Gl

A4Gl 3M
D S CH

CA
D 50. ~69!

The above equation was first obtained by Moncrief
different means@20#. Since the off-diagonal part of the po
tential is symmetric and constant, Eq.~69! can be decoupled
Using the non-negativity ofN(r ), as well as the regularity
condition M>G, the eigenvalues of the potential are foun
to be positive, implying the absence of unstable modes. T
ing advantage of the argument presented in Appendix
stationarymodes are excluded as well.@The eigenvalues of
the potential are positive for finiter and behave asl ( l
11)r 221O(r 23) for r→`, implying that the asymptoti-
cally finite solutions behave asr 2 l .# Hence, there exist nei
ther unstable modes nor admissible stationary solution
Eqs.~66! for l .1.

In order to discuss the non-Abelian part of the perturb
tions we introduce the scalar fieldsP1[R2*̃ dB̄ and P2

[R2d†B̄. In terms of these, Eq.~67! assumes the form

*̃ dP11dP21~l11!B̄50, ~70!

which can also be viewed as the Hodge decomposition of
one formB̄ ~see the comments below!. Applying the opera-
tors *̃d andd†[ *̃ d*̃ to this, it is immediately seen thatP1
andP2 are subject to the same equation, namely,

2D̃P i1
l11

R2
P i , i 51,2, ~71!

where we recall thatl5( l 21)(l 12). With respect to the
static RN background,R(r ,t)5r , g̃5N(2dt21dr!

2), with
N(r )5122M /r 1G/r 2 anddr!5dr/N, one has

F ]2

]t2
2

]2

]r !
2

1N~r !
l ~ l 11!21

r 2 GP i50. ~72!

Since the operator is positive, unstable modes are abs
Furthermore, well-behaved stationary solutions are exclu
as well, since the potential is of the type required to apply
argument given in Appendix B.@Also note that the one form
B̄ is obtained directly fromP1 andP2 by Eq. ~70!.#

As we shall continue to use the above method, it is wor
while noticing the following: In two dimensions an arbitrar
one-formu, say, gives rise to two scalar fieldsg1[d†u and
g2[ *̃ du. On the other hand, the Hodge decomposition o
one form in two dimensions involves two different scal
fields u[d f11 *̃ d f2 ~provided that the harmonic part van
ishes!. If u is subject to a linear wave equation, then t
latter gives rise to analgebraic relation between the two
different parametrizations, although the two scalar pairs
defined on different differential levels.@This is also the rea-
1-10
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son why, in Sec. II D, we have obtained the same RW eq
tion ~15! for C andF, defined byC5R3*̃ d(H/R2) andH

5 *̃ d(RF), respectively.#

B. Perturbations with lÄ1

DefiningP1[ *̃ R2dB̄ as for l .1, Eq.~68! for B̄ reduces
to *̃dP11B̄50. Applying the operator *˜d yields the same
equation forP1 as before, that is, Eq.~71!, where nowl
51. As the potential remains positive forl 51, we conclude
that Eq.~68! admits neither unstable modes nor admissi
stationary perturbations, which establishes the stability
the local uniqueness of the RN metric with respect to n
Abelian odd-parity perturbations.

It remains to consider Eqs.~66! for l 51, i.e., for l50.
As these equations are also present in the Abelian case
will recover the absence of unstable modes, while the o
stationary perturbations are those describing the K
Newman excitations of the RN solution. This is seen as
lows: Forl50 the only integrability condition for Eqs.~66!

is d†Ā50. Using this to define the scalar fieldC according
to

*̃ dC[Ā, ~73!

Eqs.~66! can be integrated, which yields

R4*̃ dS H

R2D 14GC56Ma, ~74!

R2F D̃C1 *̃ dS H

R2D G22C50, ~75!

where 6Ma is a constant of integration, and where we ha
used the fact thatC is defined up to a constant in order
neglect the second constant of integration. Eliminating
gravitational perturbationH from the above equations yield
the following inhomogeneous wave equation forC:

F2D̃1
2

R2
1

4G

R4 GC5
6Ma

R4
.

As the operator on the LHS is positive, we conclude ag
that there are no unstable modes. Using standard Schw
schild coordinatesR5r , N5122M /r 1G/r 2, we haveD̃
52N21] t

21] rN] r , and the inhomogeneous problem a
mits the particular solutionC5a/r . By virtue of Eq. ~74!
and definition~73! this yields, up to a gauge,

H5a~N21!dt, Ā5a
N

r 2
dt.

Recalling that forl 51 andm50 one hasdgaq50, dgaw

52Ha sin2q and dA5(Ā2H/r 2)X11(B̄2wH/r 2)X2, we
find with w50 andB̄50
08400
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dgtw5aS 2M

r
2

G

r 2D sin2q,

dA5
a

r 2
t r cosqdt,

which is the Kerr-Newman excitation of the magnetica
charged RN metric. In order to see this, we comp
the electric field, dE52dF(] t ,•)52DdA(] t ,•)
5at rd(cosq/r2), where we have usedDt r50 and w50.
Hence

dE52t raS sinq

r 2
dq1

2 cosq

r 3
dr D .

Since the magnetic field of the background solution isB5
2t r(* dV)(] t ,•)52t r(1/r 2)dr @see Eq.~19! for w50#,
we obtain indeed the magnetically charged Kerr-Newm
solution in first order of the rotation parametera.

C. Perturbations with lÄ0

We recall that forw50 the gauge-invariant one forma
introduced in Eq.~E8! is not defined. Instead, we defineA
5a andC5n, wherea andn parametrizedA( l 50) accord-
ing to Eq.~29!. Under an infinitesimal gauge transformatio
parametrized byf 1 , A transforms according toA→A1d f1,
while C remains invariant. Repeating the arguments given
Sec. IV C, the perturbation equations forw50 andl 50 be-
come

d*̃ ~R2dA!50,

2D̃C2
1

r 2
C50. ~76!

With respect to Schwarzschild coordinates the solution to
first equation isA5(q/r )dt plus a pure gauge term, whereq
is a constant of integration. The perturbation of the gau
potential becomesdA5t r(q/r )dt, which gives rise to a ra-
dial electric field

dE52t r

q

r 2
dr.

Hence, we obtain the embedded magnetic RN solution w
infinitesimal electric chargeq. ~Note that the metric remain
unchanged in first order ofq.!

Equation~76!, which governs the non-Abelian amplitud
C admits unstable modes, since the potential is negative
order to see this, one can use the ‘‘trial’’ function

C~r !5
1

r 2
~r 2r H!

and writeN(r )5(r 2r H)(r 2r C)/r 2, wherer H is the radius
of the event horizon. A little calculation@16# gives
1-11
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K CU2D̃2
1

r 2UCL 5E
r H

` S NC822
C2

r 2 D dr52
7r H15r C

420r H
4

,

which is negative. Furthermore,f is normalizable, and henc
Eq. ~76! admits at least one bound state. The RN solution
thusunstablein the l 50 sector with respect to non-Abelia
perturbations.

In conclusion, we have shown that the RN solution
stable with respect to both Abelianand non-Abelian odd-
parity perturbations for alll>1. For l 50, the RN solution is
unstable with respect to non-Abelian perturbations. Also,
only physically admissible stationary modes are the Abe
ones, describing electric Kerr-Newman (l 51) and RN (l
50) excitations of the magnetic RN metric.

VI. NON-ABELIAN STABILITY AND LOCAL
UNIQUENESS OF THE SCHWARZSCHILD SOLUTION

The Schwarzschild metric solves the spherically symm
ric EYM background equations withw51. As the stress-
energy tensor is quadratic in the field strength, the grav
tional perturbations decouple in first order for all values ol,
and are governed by the RW equation for vacuum pertu
tions. The remaining equations, describing Abelian and n
Abelian perturbations of the Schwarzschild metric, admit
unstable modes, and, forl .1, no acceptable stationary ex
citations either. Forl 51 the only stationary YM perturbation
is the RN mode in the Abelian sector.

A. Perturbations with lÌ1

The gauge- and coordinate-invariant one formsĀ, B̄, and
H given in Eqs.~62! for l .1 are well defined forw51. The
perturbations are, therefore, governed by Eqs.~58!–~60!,
where Eq.~58! decouples forw51 and reduces to the usu
equation describing the vacuum perturbations of
Schwarzschild metric

d†FR4dS H

R2D G1lH50. ~77!

In Sec. II D we have already recalled that this equation
mits neither unstable nor well-behaved stationary soluti
for l .1.

In order to discuss the nonvacuum perturbations of
Schwarzschild metric, it is more convenient to resort to
original one formsA5Ā2H/R2 and B5B̄2wH/R2, used
in Sec. IV to derive the perturbation equations. In terms oA
andB, Eqs.~59! and ~60! become, forw51,

d†~R2dA!22d~R2d†B!1~l14!A22~l12!B50,

d†~R2dB!1d~R2d†B!22A1~l12!B50.
~78!

The above system is equivalent to four coupled equations
four scalar fields. In order to decouple these equations c
pletely, we note the following: The terms withB and d†B
can be eliminated, which shows that the integrability con
08400
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tion is d†A50. Using this, and applying the codifferentia
operator on either of the above equations, yields a w
equation for the scalar fieldd†B alone,

S 2D̃1
l12

R2 D PB50, PB[R2d†B. ~79!

Since the integrability condition implies that the scalarPA
[R2d†A vanishes, it remains to find the equations for t
field strengthsdA and dB, or, equivalently, for the scala
fields CA andCB , defined by

CA[ *̃ R2dA, CB[Al12*̃R2dB.

Applying the operator *˜d on Eqs.~78! then yields the system

F2D̃1
1

R2 S l14 22Al12

22Al12 l12
D G S CA

CB
D 50, ~80!

which can be diagonalized, since the potential is symme
and constant. The eigenvalues are

l136A4l195H ~ l 11!~ l 12!,

l ~ l 21!.
.

Having solved Eqs.~79! and~80!, the expressions for the on
formsA andB in terms of the scalar fields are obtained fro
the original equations~78!:

A52
1

l
*̃ dS CA1

2

Al12
CBD ,

B52
1

l~l12! F *̃ dS 2CA1
l14

Al12
CBD

1ldPBG .

Since the operators in Eqs.~79! and~80! are positive, we
conclude, also using the argument given in Appendix B, t
the Schwarzschild solution admits neither unstable nor
tionary non-Abelian odd-parity modes withl .1.

B. Perturbations with lÄ1

For w51 Eq. ~58! decouples for all values ofl. The
vacuum perturbations of the Schwarzschild metric withl
51 are, therefore, governed by Eq.~77! with l50. We have
already recalled in Sec. II D that this equation cannot g
rise to unstable modes, while it admits the well-behaved
tionary solutionH5(2aM/r )dt, giving rise to the Kerr ex-
citation of the Schwarzschild metric

dgtw52a
2M

r
sin2q. ~81!

In order to analyze the YM sector, we first note that t
gauge-invariant quantities introduced in Eqs.~E4! for l 51
1-12
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arenot well defined ifw51. Hence, thel 51 perturbations
of the Schwarzschild background require a special treatm
For w51 andl 51 we definea, b andc in the same way as
for l .1, that is, by Eqs.~E6!. Hence,a5a2dm, b5b, and
c5n2m, where the one formsa, b and the scalarsm, n
parametrizedA( l 51) according to Eq.~28!. Since the gauge
fields vanish on the background, all YM amplitudes are
ordinate invariant, and it remains to consider their behav
under gauge transformations. By virtue of Eqs.~E1! and~E2!
c remains invariant, whereasa andb transform according to
a→a1d f2 , b→b1d f2. Repeating the arguments given
Sec. IV B, the perturbation equations forw51 and l 51
eventually become

d†~R2da!22dc14~a2b!50,

d†~R2db!1dc22~a2b!50,

R2d†~a2b!1c50,

wherec, da, db, and (a2b) are gauge invariant. Subtrac
ing the first from the second equation, and using the th
one to eliminatec, we obtain an equation for the one for
(b2a). This is decoupled in the usual way, that is, by intr
ducing two scalar fields according to

c1[R2d†~b2a!, c2[R2*̃ d~b2a!.

Applying the operatorsd† and *̃d on the equation for (b
2a) yields the following wave equations forc1 andc2:

S 2D̃1
2

R2D c150, S 2D̃1
6

R2D c250. ~82!

Since the operators are positive, we may use the stan
argument to conclude that Eqs.~82! admit neither unstable
nor well-behaved stationary modes. Hence,c15c250, im-
plying that a5b and c50. It therefore remains to solv
d(R2*̃ da)50 for the gauge-invariant scalar field *˜da. With
respect to Schwarzschild coordinates, the result isa5b
5(q/r )dt plus gauge terms, whereq is a constant of inte-
gration. Now usinga5a1dm, b5b, andn5c1m in Eq.
~28! givesdA( l 51)5aX11bX21cYdt r1d(mX1), and thus,
with c50, a5b5(q/r )dt andX11X25tz ,

dA5tz

q

r
dt

plus a pure gauge term. UsingdF5DdA5ddA for w51,
this gives rise to the electric field

dE52tz

q

r 2
dr. ~83!

The solutions~81! and~83! describe the Kerr-Newman exc
tation of the Schwarzschild metric in first order of the ro
tion parametera and the electric chargeq.
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C. Perturbations with lÄ0

The relevant perturbation equation is Eq.~59! with B̄

5H50, w51 andl522. The amplitudeA5Ā is gauge
invariant and, by virtue of Eq.~65!, well-defined. Equation
~59! becomesd†(R2dA)12A50. Using the integrability
conditiond†A50, the scalar fieldC is defined according to
C[R2*̃ dA, in terms of which Eq.~59! becomes

S 2D̃1
2

R2D C50, ~84!

which admits neither unstable nor acceptable stationary
lutions. ~Note that the RN excitations withl 50 of the
Schwarzschild metric lie in theevenparity sector.!

VII. STATIONARY PERTURBATIONS OF NON-ABELIAN
SOLITONS AND BLACK HOLES

Having analyzed the complete set of non-Abelian od
parity perturbations ~stationary and dynamical! of the
Schwarzschild and the RN solutions, we now turn to t
general case, that is, to non-Abelian perturbations of st
non-Abelian background configurations. The discussion
the corresponding perturbation equations is a consider
more involved task, since the techniques used above ca
be applied ifw is not constant. Our primary goal in thi
section is to classify allstationaryodd-parity perturbations
of both the BK solitons@1# and the static, spherically sym
metric EYM black holes@2#.

In the stationary case, the excitations of a spherica
symmetric EYM background decouple into two Sturm
Liouville problems, governing the electric and the magne
perturbations, respectively. The particular casel 51 was ana-
lyzed in Refs.@22# and @11# by different means. There we
have shown that the electric sector gives rise to a two par
eter family of slowly rotating and / or electrically charge
black hole excitations, and to a one-parameter family
slowly rotating, electrically charged solitons. In this secti
we generalize these results as follows: We show that forall
values ofl>1 the electric perturbations are governed by
three-channel Sturm-Liouville problem, while the magne
sector is described by a single Sturm-Liouville equation
l .1 and is trivial for l 51. A careful analysis then reveal
that neither the electric nor the magnetic sector admit w
defined stationary soliton or black hole excitations ifl .1.
This establishes the result that the only stationary odd-pa
modes of the BK solitons and EYM black holes are the on
found in Ref.@11# for l 51.

It turns out to be convenient to parametrize the tw
dimensional background metricg̃ in terms of the radial co-
ordinater, defined such thatg̃ becomes conformally flat,

g̃52NS2dt21
1

N
dr25s~2dt21dr2!, ~85!

with s(r)[N(r )S2(r ) and dr[NSdr. @The coordinater
generalizes the coordinater ! used in the Schwarzschild o
1-13
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the RN case. We also note that *˜dt52dr and s *̃ (dt
`dr)521.# The invariant one formsA, B, andH are ex-
panded with respect tot andr, e.g.,

H[H0dt1H1dr.

Since we restrict ourselves to stationary perturbations
coefficientsH0 , H1, etc., are functions ofr only. As we
shall argue below, the equations involving the zero com
nents, henceforth called electric perturbations, decouple f
the equations for the one components, henceforth ca
magnetic perturbations.

A. The electric sector

The electric perturbation equations involve the amplitud
H0 , A0, andB0 only. @For l 51, we may takeH05h0 , A0
5a0, and B05b0, since, by virtue of Eqs.~5!, ~E4! and
~E11!, these amplitudes are invariant understationarycoor-
dinate transformations.# Using the fact that@d†(R2dA)#0
52]r(s21R2]rA0) for stationary perturbations of a stat
background, the zero components of Eqs.~41!, ~42!, and~43!
may be cast into the following three-channel Sturm-Liouvi
equation:

~2]r 2]1K]2]KT1L1P!v50, ~86!

wherev[(H0 /A4Gr,A0 /z,B0), z[Al12, and where the
differential operator] is defined by

][
1

s

d

dr
5

1

S

d

dr
,

with r andr according to Eq.~85!. The 333 matricesK, L
andP are given in terms of the background fieldsw, N, and
s5S2N. The only nonvanishing matrix element ofK is
K135A4Gr]w, while the symmetric matricesL andP are

L5
1

s S 2N1l sym sym

0 l12~11w2! sym

0 22zw l1~11w2!
D ,

~87!

and

P5
1

s S 4G
~w221!2

r 2
12Gs~]w!2 sym sym

A4Gz
12w2

r
0 sym

A4Gw
w221

r
0 0

D .

~88!

The formally self-adjoint equation~86! holds for all values
of l>1. ~In particular, forl 51 it is equivalent to the Sturm
Liouville equation derived in Ref.@22#, which was shown to
admit the stationary modes mentioned above@11#. However,
08400
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the transformation between the twol 51 sets of equations is
not algebraic, because the original formulation given in R
@22# was based on the generalized twist potential.!

Since Eq.~86! has regular singularpoints at the origin,
r 50, at the horizon,r 5r H @whereN(r H)50#, and at infin-
ity, r 5`, it is possible to compute the number of stationa
modes. Applying the standard theory~see, e.g., Ref.@23#! we
will now discuss the local solution spaces.

1. The solution space at the origin

The leading order behavior of the solutions to Eq.~86! in
the vicinity of the origin is determined by the centrifug
barrier L, as can be seen from the expansions~C1! of the
background quantities. The solutions behave liker a, where
a52( l 12), 2( l 11), 2 l , l 21, l or l 11. Hence, the
space of regular solutions atr 50 is threedimensional for all
values ofl>1. The expansion becomes

v~r !5d1r l 21Fe21
l 21

2l 11
@2~ l 12!b11#br2e21O~r 3!G

1d2r lFe01
2b

2l 11
r e21O~r 2!G

1d3r l 11@e11O~r !#, ~89!

wheree05(1,0,0),e15(0,z,2 l ), ande25(0,z,l 11), and
d1 , d2, andd3 are constants, and whereb is the fixed con-
stant appearing in the expansions~C1! of the background
solutions.

2. The solution space at infinity

The asymptotic expansions~C2! of the background quan
tities show that the leading order behavior of the solutions
Eq. ~86! is again completely determined byL: The solutions
behave asr a, where againa52( l 12), 2( l 11), 2 l , l
21, l, or l 11. The space of asymptotically flat solutions
therefore,threedimensional forl .1, andfour dimensional
for l 51. For l 51 the asymptotic expansion is found to b

v~r !5S c01
c1

r D Fe21OS log r

r 2 D G1
c2

r 2 Fe01OS 1

r 2D G
1

c3

r 3 F S 11~12g!
2M

r De11OS 1

r 2D G . ~90!

The constantc2 is proportional to the total angular mo
mentum dJ, while c0 and c1 are proportional to the
asymptotic value of the electric YM potentialdF` and the
electric YM chargedQe , respectively: Using the above ex
pansion in the expressions~F1! for the linearized local Ko-
mar integrals, we find@with *̃ FB5s21(B081w8H0 /R2),
etc.#,

dQe~r→`!;em•tc1 , dJ~r→`!;dm0c2 .

Furthermore, the above expansion, together with the de
tion ~53! anddF5dA(] t), shows thatdF` is proportional
1-14
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to c0. It is worthwhile recalling that, in contrast to the Abe
lian case,c0 cannot be ‘‘gauged away.’’ This is also obviou
form the fact that the expression fordF involves an asymp-
totically vanishing term proportional toc0 /r , unless for
w51.

3. The solution space at the horizon

Using the background expansions~C3! at the horizon, the
solutions to Eq.~86! behave as (r 2r H)a, where the eigen-
values area50 anda51, and the multiplicity is 3 in both
cases. Fora50 the three eigenvectors may pick up logarit
mic terms in next-to-leading order, which destroy the reg
larity of the horizon. A careful analysis shows that the nu
ber of linearly independent combinations of eigenvecto
which pick up a logarithmic terms in next-to-leading order
equal to the rank of the symmetric matrix

S15S l14G
~wH

2 21!2

r H
2

sym sym

A4Gz
12wH

2

r H

l12~11wH
2 ! sym

A4GwH

wH
2 21

r H

22zwH l111wH
2

D ,

which is proportional to the leading order term ofL1P in
r 2r H . The determinant ofS1 is given by

detS15l@l21~32wH
2 !l12~12wH

2 !218GGH
2 #,

where we recall that wH[w(r H) and GH[wH(wH
2

21)/r H . This shows that the rank ofS1 is three forl .1,
while one may also verify that the rank is two forl 51.
Hence, all solutions witha50 must be excluded, unlessl
51, in which case there exists one acceptable eigenve
The physical space of solutions atr 5r H is, therefore,three
dimensional forl .1 andfour dimensional forl 51.

4. Soliton excitations

Since the BK background is continuous, and since
perturbation equations are linear with continuous coefficie
for 0,r ,`, the local solutions~89! and ~90! admit exten-
sions to the semiopen intervals@0,̀ ) and (0,̀ #, respec-
tively. Since, forl 51, these solution subspaces are three
four dimensional, respectively, and since the total space
solutions issix dimensional, we conclude that the interse
tion space is generically one dimensional. Hence, there e
~at least! one global solution, describing the rotating charg
solitons found in Ref.@11#.

For l .1. the intersection space is generically trivial, sin
the solution spaces are three dimensional at both the o
and infinity. Hence, there exist no generic soliton excitatio
for l .1. In fact,nongenericsolutions are excluded as wel
as we shall prove below.
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5. Black hole excitations

Applying the same argument as in the soliton case,
conclude that Eq.~86! admits atwo dimensional intersection
space of global solutions forl 51, since the local solution
spaces at the horizon and at infinity are four dimension
The solutions give rise to the black hole excitations found
Ref. @11#, which are parametrized by their total angular m
mentumdJ an their electric YM chargedQe .

For l .1 there exist again no generic solutions, since
solution spaces at the horizon and at infinity are three dim
sional only. It therefore remains to exclude nongeneric so
tions, which we shall do next.

6. Absence of nongeneric solutions for lÌ1

Our aim is to show that Eq.~86! with the boundary con-
ditions discussed above admits neither soliton nor black h
solutions for l .1. We do so by casting Eq.~86! into the
form required to apply the argument outlined in Appendix
This is achieved by performing the linear transformationv
5Tu, which yields

~2]A]1S!u50, ~91!

whereA is symmetric and positive, whileS is symmetric and
positive semidefinite. The linear transformationT is given by
T5T1+T2, where

T15diag~r ,1,1!, T2512A4GS 0 0 0

1/z 0 0

w 0 0
D .

@Note that the components ofu5T21v coincide with the

amplitudes introduced in Eq.~47!: A4Gu15H0 /r 2, zu2
5A01H0 /r 2, u35B01wH0 /r 2.# The Sturm-Liouville
equation~86! now assumes the desired form~91!, with the
symmetric matricesA5r 2TT+T, S5T2

T+S̃+T2, where

S̃5
1

s S lr 214G~w221!2 sym sym

A4Gz~12w2! l12~11w2! sym

A4Gw~w221! 22zw l111w2
D .

It is not hard to see that the matrixS̃ is positive for all values
of l .1 and positive semidefinite forl 51. Furthermore, by
virtue of the expansions given above forl .1, the boundary
term u•A]u vanishes at the origin, at the horizon, and
infinity. Both soliton and black hole solutions are, therefo
excluded as a consequence of the argument given in Ap
dix B.

We emphasize that the boundary terms at infinity and
the horizon do give nonvanishing contributions ifl 51. The
positive operator in Eq.~91! is, therefore, self-adjoint only
for l .1.

7. Conclusion

We have proven the followinglocal uniqueness theorem
for odd-parity perturbations in the electric sector: The on
1-15
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stationary, asymptotically flatblack holesolutions which are
infinitesimally close to the static, spherically symmet
EYM black holes are the rotating and/or electrically charg
excitations in thel 51 sector. The onlysoliton solutions
which are infinitesimally close to the BK solitons are t
electrically charged excitations in thel 51 sector.

These results are in agreement with the non-Abelian
ticity theorem@24#, which asserts that spacetime is static a
purely magnetic if the combinationVHJ2Tr$F`Qe% van-
ishes, whereVH is the angular velocity of the horizon: Fo
l 51, nonstatic solitons and black holes can exist, while,
l .1, there is no contribution toJ and Qe @see the genera
formulas~F1!#, implying that the nonstatic and electric co
tributionsH0 , A0, andB0 must vanish.

B. The magnetic sector

For stationary perturbations one hasd†A52s21A18 ,
where here and in the following a prime denotes differen
tion with respect to the radial coordinater, defined in Eq.
~85!. Since the background is static, one also has^A,dw&
5s21w8A1. Hence, the gravitational constraint~40! and the
YM constraints~45!, ~46!, as well as Eq.~44! involve only
the one components ofA, B, andH. It is, therefore, possible
to express the YM amplitudesA1 , B1, andC in terms of the
gravitational perturbationH1:

A15S w2211
R2

2GDH1

R2
,

B15
1

4Gw8
H18 ,

C52
1

s Fw8H11
R2

4G S H18

w8
D 8G .

~92!

Using the above expressions and the circumstance
„d†@R4d(H/R2)#…1 vanishes for stationary perturbations of
static background, the one-component of the gravitatio
equation~41! yields the following Sturm-Liouville equation
for H1:

F2
d

dr

1

w82

d

dr
1

@ l ~ l 11!22w2#s24Gw82

R2w82 GH150,

~93!

where we recall thatw85dw/dr5NSdw/dr.
The above equation holds forl .1 only. For l 51 the

perturbations are governed by Eqs.~56!. Since the one-
components of the first terms in these equations vanish
stationary perturbations, we obtainā15b̄150, provided that
w221 does not vanish everywhere. Now using the fact t
there exists a gauge for whichhr vanishes ifl 51, we con-
clude that magnetic excitations cannot exist forl 51. ~The
casew251, l 51 has already been discussed in Sec. VI!
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Equation~93! has regular singular points at the origin,R
50, at the horizon,N5^dR,dR&50, at infinity, R5`, and
at all points wherew8 vanishes.~For the one-node back
ground solutions this is only the case at the origin and
infinity.! In order to conclude that Eq.~93! generically ad-
mits neither acceptable soliton nor black hole excitations
is sufficient to discuss the regular singular points at
boundaries in leading order.

1. Soliton excitations

Using the expansions~C1! for the BK background at the
origin shows that the fundamental solutions to Eq.~93! be-
have asr l 12 andr 12 l . Sincel .1, the subspace of solution
giving rise to finite metric perturbations is, therefore, o
dimensional at the origin. In the asymptotic region one u
the expansions~C2! to conclude that the fundamental sol
tions behave asr 2 l 22 and r l 21, implying that the subspace
of bounded solutions is again one dimensional. Generic s
ton excitations are, therefore, excluded.~The subspace o
bounded solutions at the inner pointsw850 turn out to be
two dimensional. It is, however, generically not possible
match the solutions fromr 50 and r 5` at the pointsw8
50 such that the amplitudeC is continuous.!

2. Black hole excitations

Using the horizon expansions~C3! shows that the funda
mental solutions to Eq.~93! behave as (r 2r H)0 and (r
2r H)2. The first solution is physically unacceptable, since
contains logarithmic terms which imply that the functionC
diverges asr→r H . Hence, the physical subspaces at the
rizon and at infinity are one dimensional, implying that bla
hole excitations do not exist in the generic case.

So far, we were not able to exclude non-generic solutio
by rigorous means: The first problem is that the potentia
Eq. ~93! is not manifestly positive~although numerical in-
vestigation suggest that this is the case!. Furthermore, the
boundary term arising in the integral argument given in A
pendix B does not vanish at points wherew850. It is, how-
ever, clear that the potential is positive ifl is big enough. In
this case the integral argument applies, at least for exc
tions of the background solutions with one node.

3. Conclusion

SinceH1 parametrizes thenoncircular part of the metric,
we have shown that there exists no noncircular deformati
in the odd-parity sector. This completes the classification
the stationary odd-parity excitations of the BK solitons a
the corresponding non-Abelian black holes. The only phy
cally admissible non-Abelian stationary odd-parity exci
tions of these configurations are the rotating, electrica
charged solitons and the two-parameter family of black ho
found in Ref.@11#. All modes lie in the electric part of the
distinguished sectorl 51.

VIII. DYNAMICAL PERTURBATIONS

Stationary perturbations need to be analyzed in orde
find equilibrium solutions which are infinitesimally neigh
1-16
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bored to known static configurations, or to establish lo
uniqueness results. The linearstability properties of static
background solutions are, however, described bynonstation-
ary perturbations. In order to study their dynamical behav
by means of spectral theory, it is necessary to cast the
turbation equations into a system ofpulsationequations, that
is, into a wave equation whose spatial part is~formally! self-
adjoint. Using the static EYM soliton or black hole back
ground, our task is, therefore, to write the perturbation eq
tions ~58!–~61! in the form

F ]2

]t2
1AGu50, ~94!

whereA is a self-adjoint operator, containing spatial deriv
tives up to second order. For perturbations of the Schwa
child and RN black holes this was achieved in Eqs.~69!,
~71!, ~79!, and~80!. For perturbations of non-Abelian back
ground configurations, however, one needs to proceed di
ently:

For l 50 ~i.e., for radial perturbations!, the above task was
achieved in Ref.@15#, where it was shown that the stati
spherically symmetric BK solitons, and EYM black hole
have exactlyn unstable radial modes in the odd-parity sect
n being the number of nodes ofw.

For l 51, we will show below that the metric perturba
tions decouple, and that the perturbation equations can
cast into a wave equation for the remaining YM perturb
tions, where the operatorA is symmetric and positive. This
will establish the absence of unstable odd-parity modes
the sectorl 51.

For l .1, we were not able to derive symmetric equatio
in terms of the gauge-invariant amplitudesH, A, B, andC.
However, a system of hyperbolic equations can be obtai
as follows: By virtue of Eqs.~40!, ~44!, and ~45! one can
express the time derivatives of the electric componentsH0 ,
A0, and B0 in terms of the magnetic componentsH1 , A1 ,
B1, andC and their first spacial derivatives. Equations~41!,
~42!, ~43!, and ~46! then yield a hyperbolic system of th
form

F ]2

]t2
2

]2

]r2
1K

]

]r
1VGu50,

where u comprises the magnetic components,u
5(H1 ,A1 ,B1 ,C), and where the radial coordinater is de-
fined as in Eq.~85!. Unfortunately, neither the first orde
derivatives nor the potentialV are formally self-adjoint.

In Ref. @14# we have argued that the gauge-invariant a
plitudes used in the present paper are not suited to des
dynamical perturbations, an exception being vacuum gra
or self-gravitating Abelian fields. In order to obtain a sym
metric wave equation one needs to introduce amplitu
which are adapted to thestaticity rather than the sphericall
symmetry of the background. In terms of these ne
curvature-basedamplitudes, the odd-parity pulsation equ
tions can be cast into the desired form~94!, as we have
shown in Ref.@14#.
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In the remainder of this section we present the dist
guished casesl 50 and l 51. In these situations the pertu
bation equations can be written in the desired form, sin
gravity can be decoupled forl 51, while for l 50 only YM
perturbations are present in the odd-parity sector.

A. The pulsation equation for lÄ0

For spherically symmetric perturbations the pulsati
equation is obtained from Eq.~57!,

d†~R2da!12w2a50,

for the gauge-invariant YM amplitudea5a2d(n/w); see
Eq. ~E8!. This amplitude is not regular at points wherew
vanishes.~The case wherew vanishes identically was dis
cussed in Sec. V C!. Introducing the regular one formw2a
5w2a1ndw2wdn, and defining the potentialF by the
equationw2a5 *̃ d(wF), we find

2D̃F1F2K dw

w
,
dw

w L 1
1

R2
~w211!GF50,

where we have also used the background YM equation~21!.
For a static background we may assume a time depend
of the form exp(ivt), which yields

F2
]2

]r2
12

w82

w2
1

s

R2
~w211!GF5v2F, ~95!

where a prime denotes the differentiation with respect tor,
and nowF[F(r). In order to overcome the difficulty tha
the potential is singular at points wherew vanishes, one may
perform the following supersymmetric transformation: Fir
the operator on the LHS can be factorized and written
Q†Q, with Q andQ† according to

Q5
1

w

]

]r
w1u, Q†52w

]

]r

1

w
1u,

whereu is subject to the differential equation

2w2S u

w2D 8
1u25

2sw2

R2
. ~96!

One may then write Eq.~95!, Q†QF5v2F, in terms ofC
[QF, which yields QQ†C5v2C. Since v2F5Q†C,
there is a one-to-one correspondence betweenF andC, pro-
vided thatvÞ0. Furthermore,C is normalizable ifF is
normalizable, and vice versa, sincêC,C&5^QF,QF&
5^Q†QF,F&5v2^F,F&.

The equivalent problem,QQ†C5v2C, reads

F2
]2

]r2
1

s

R2
~3w221!12u8GC5v2C, ~97!

where now the potential is regular, provided thatu is a regu-
lar solution of Eq.~96!. Since the function
1-17
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C05w expE
r0

r

u~ r̃ !dr̃

satisfiesQ†C050, it is a solution to Eq.~97! for v50. The
key observation in Ref.@15# is that there exists a solution t
Eq. ~96! such thatu/w2 and u8 are regular andC0 is nor-
malizable. Since the factorw causesC0 to have exactlyn
nodes (n being the number of nodes ofw), this establishes
the fact that the transformed pulsation equation~97! admits
exactlyn unstable modes.

It remains to show that each unstable mode of Eq.~97!
can be realized by a regular choice of the original amplitu
a andn. In order to see this, we first note that forvÞ0 the
inverse transformation becomes

wF5
1

v2
~2wC81w8C1wuC!,

implying that the gauge-invariant combinationw2a is regu-
lar. Finally, one adopts thetemporal gauge, a t50, with re-
spect to which Eq.~95! yields

]

]t
ar5

2s

R2
wF,

implying that ar is regular. UsingC5QF5w21(wF)8
1uF, as well as thet component ofw2a5 *̃ d(wF) in the
temporal gauge, gives

]

]t
n5C2

u

w
wF.

This establishes the existence of exactlyn unstable modes o
the original perturbation equations, sinceu/w can be chosen
to be regular, implying thatn is regular.

B. The pulsation equation for lÄ1

We now show that forl 51 the gravitational perturbation
can be expressed in terms of the YM perturbations, wh
yields a pulsation equation for the YM amplitudes. T
gravitational amplitudeh enters the perturbation equation
~56! only via the coordinate-invariant combinationFh
5d(R22h). The crucial observation is that the second p
2w times the third minus 2G times the first equation in Eq
~56! yields the conservation law

d†F2
1

2G
R4Fh1R2~Fa12wFb!G50.

Recalling the definitionsFa5dā2Fh and Fb5db̄2wFh ,
we find after integrating the above equation

Fh5 f S dā12wdb̄1
2c0

R2
*̃ 1D ,
08400
s

h

s

wherec0 is a constant, andf denotes the background quanti
f [(R2/2G1112w2)21. Using this expression forFh in
Eqs.~56! yields the symmetric, inhomogeneous equation

d†FGdS ā

b̄
D G1FS ā

b̄
D 52c0*̃ dS f

2w f D ~98!

for the gauge- and coordinate-invariant YM amplitudesā

andb̄. The 232 matricesG andF are symmetric and given
in terms of the background quantities by

G5
f R2

4 S 4w21R2/G 24w

24w 412R2/GD ,

F5S 11w2 22w

22w 11w2D ,

whereF is positive definite forw2Þ1. ~The casew[1 was
already discussed in Sec. VI B.!

The one formsā and b̄ may be expanded with respect
Schwarzschild coordinatest andr,

S ā

b̄
D 5Edt1Bdr,

where E and B represent the gauge-invariant electric a
magnetic YM fields, respectively. Using this in Eq.~98!
gives, for a static background

2
]

]r F 1

s
G~E82Ḃ!G1FE5c0

]

]r S f

2w f D ,

2
]

]t F 1

s
G~E82Ḃ!G1FB50,

where the dot and the prime denote differentiations with
spect tot and r, respectively. In particular, for stationar
perturbations,Ė5Ḃ50, we recover the facts that the electr
and the magnetic perturbations decouple, and thatB van-
ishes.

For dynamical perturbations a homogeneous pulsa
equation of the desired form is obtained as follows: Diffe
entiating the first equation with respect tot and the second
one with respect tor yields the relation

FĖ5~FB!8,

where we have also taken advantage of the fact that the b
ground is static. Using this to eliminateĖ from the second
equation, we obtain the following two-channel wave equ
tion with formally self-adjoint spatial part:
1-18
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F ]2

]t2
2Q

]

]r
Q22

]

]r
Q1

s

R2 S w212 23w

23w 2w211D
1

4G

R4
s~12w2!2S 1 0

0 0D GQB

50, ~99!

whereQ satisfiesF5Q2,

Q5S 1 2w

2w 1 D .

Since the spatial operator is symmetric and positive,
conclude that the spherically symmetric EYM solitons a
black holes have no unstable odd-parity excitations in
sectorl 51.
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APPENDIX A: LINEARIZED RICCI
AND EINSTEIN TENSORS

In this Appendix we give the expressions for the line
ized Christoffel symbols and the Ricci and Einstein tenso
As we have argued in Sec. II C, it is sufficient to compute
perturbations in the ODG. The Christoffel symbols for
arbitrary~not necessarily static! spherically symmetric space
time are

G bc
A 50, G Bc

a 50,

G BC
A 5Ĝ BC

A , G bc
a 5G̃ bc

a ,

G Bc
A 5dB

AR21¹̃cR, G BC
a 52ĝBCR¹̃aR,

where ¹̃ denotes the covariant derivative operator with
spect to the two-dimensional metricg̃ defined in Eq.~1!. In
the ODG the metric perturbations~3! and their inverse be
come

dgab5dgab5dgAB5dgAB50,

dgAb5hbSA , dgAb52hbSA,

where all indices are raised with the background metric,
hb[g̃abha andSA[gABSB[R22ĝABSB . Using this, and the
background metric~1!, the perturbed Christoffel symbols
dG ab

m 5 1
2 gmn(dgan;b1dgbn;a2dgab;n), become in the

ODG
08400
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dG bc
a 50, dG BC

A 5SAĝBCRha¹̃aR,

dG BC
a 5ha¹̂$BSC% , dG bc

A 5SA¹̃$bhc% ,

and

dG Bc
a 5SBg̃ad~¹̃ [chd]2hdR21¹̃cR!,

dG Bc
A 5hcR

22ĝAD¹̂ [BSD] ,

where ¹̃ [bha][
1
2 (¹̃bha2¹̃ahb) and ¹̃$bha%[

1
2 (¹̃bha

1¹̃ahb). It is now a straightforward task to compute th
perturbed Ricci tensor in the ODG. UsingdRab5dGab;m

m

2dGam;b
m , one finds

dRab50, dRAB5¹̃aha¹̂$ASB% , ~A1!

and

dRAb5
SA

R2
¹̃a@R4¹̃ [b~ha]R

22!#1
hb

R2
ĝBC¹̂C¹̂ [ASB]

2
SA

R2
~RD̃R1^dR , dR&!hb . ~A2!

In order to simplify the expression fordRAb we take advan-
tage of the background equations~2! to write RD̃R

1^dR,dR&512 1
2 ĝABRAB . Also using the transversality o

the spherical vector harmonics,ĝAB¹̂ASB50, we find

2ĝBC¹̂C¹̂ [ASB]52~D̂S!A5 l ~ l 11!SA ,

which we apply in the second term of Eq.~A2!. Finally using
the fact thatdGAb5dRAb2 1

2 SAhbgmnRmn in the ODG, we
obtain ~with the identity R2g̃abRab5ĝABGAB5R2GB

B) the
result

dGAb5
SA

R2 H ¹̃a@R4¹̃ [b~ha]R
22!#1

hb

2
~l1R2GB

B!J ,

~A3!

which holds in the ODG. The expression fordGAB follows
from the fact that in the ODGdGAB5dRAB ,

dGAB5¹̂$ASB%¹̃
bhb . ~A4!

Eventually, dGab5dRab2 1
2 R22g̃abĝ

ABdRAB in the ODG,
which vanishes by virtue of Eqs.~A1! and the transversality
of the spherical vector harmonics.

dGab50. ~A5!

The ODG expressions~A3!–~A5! together with Eqs.~8! and
~9! evaluated in the ODG yield the desired formulas~11!.
1-19
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APPENDIX B: STATIONARY SOLUTIONS
OF RW-TYPE EQUATIONS

We discuss the conditions under which the station
RW-type differential equation

F2] rN~r !] r1
1

r 2
V~r !GC50, ~B1!

admits only the trivial solution. The potentialV(r ) and the
function N(r ) are assumed to be non-negative forr H,r
,`, and to have analytical expansions of the form

N~r !5N1~r 2r H!1O~r 2r H!2, V~r !5VH1O~r 2r H!

in the vicinity of the horizonr H , and

N~r !511O~r 21!, V~r !5 l ~ l 11!1O~r 21!

as r→`, wherel .0, N1Þ0, VÞ0. @In particular, the RW
equation~17! meets the above conditions, and so does
Zerilli equation, describing vacuum perturbations with ev
parity.# Under the above conditions the differential equati
~B1! has regular singular points@23# at r 5r H and r 5`,
implying thatC behaves as

C5H P1~r 2r H!,

log~r 2r H!Q1~r 2r H!, for r→r H

and

C5H r 2 l P2~r 21!,

r l 11Q2~r 21!1 log~r !r 2 lQ3~r 21!, for r→`.

Here, theP1,2(x) andQ1,2,3(x) are locally convergent powe
series withP1,2(0)Þ0 andQ1,2(0)Þ0.

For non-negativeN(r ) andV(r ) the standard integral ar
gument

0<E
r 1

r 2S N~] rC!21
1

r 2
VC2D dr

5E
r 1

r 2S 2] rN] rC1
1

r 2
VC D Cdr1@NC] rC# r 1

r 2,

implies that Eq.~B1! has only the trivial solutionC50,
provided that the boundary term vanishes in the limitr 1
→r H and r 2→`. In particular, this is the case if th
asymptotic flatness and regularity conditions imply that
solutions withQ1 andQ2 must be excluded.

As an example, stationary solutions of the RW equat
~17! with l>2 can be excluded as follows: The variatio
of the curvature components dRABcd

inv dxc`dxd

52R2d(H/R2)¹̂ [BSA] must be bounded, implying thatC/R
must remain bounded as well. Hence, the solution withQ1 is
not admissible, and neither is the one withQ2, unlessl 51.
08400
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APPENDIX C: EINSTEIN-YANG-MILLS BACKGROUND
SOLUTIONS

In this Appendix we recall the behavior of the stati
spherically symmetric soliton and black hole solutions to
EYM equations~24!–~26! at the singular points~see, e.g.,
Ref. @25#!: In the vicinity of the origin one has~with G
51)

N~r !5124b2r 21O~r 4!,

S~r !5S0@114b2r 21O~r 4!#,

w~r !512br21O~r 4!, ~C1!

with parametersb52 1
2 w9(0) andS0.0. In the asymptotic

regime one finds

N~r !5122Mr 211O~r 22!,

S~r !511O~r 24!,

w~r !56@12g2Mr 211O~r 22!#,
~C2!

with parametersM andg. Finally, in the vicinity of the ho-
rizon the behavior is given by

N~r !5
FH

r H
~r 2r H!1O~r 2r H!2,

S~r !5SHF11
2GH

2

r HFH
2 ~r 2r H!1O~r 2r H!2G ,

w~r !5wH1
GH

FH
~r 2r H!1O~r 2r H!2,

~C3!

where FH512(wH
2 21)2/r H

2 and GH5wH(wH
2 21)/r H .

Here, the free parameters arewH[w(r H) andSH .

APPENDIX D: SU„2…-VALUED HARMONIC ONE FORMS

We construct a basis of su~2!-valued spherical harmonic
one forms which transform canonically under the angu
momentum operatorJ, defined by

JXT[ iLXT,

where T is a tensor field over thespherically symmetric
~pseudo-!Riemannian manifold (M ,g). HereLX denotes the
Lie derivative with respect to an infinitesimal rotationX on
M. @In particular, for infinitesimal rotations inR3 about the
xk axis, we defineJk[JXk

, where (Xk) rs[ekrs .#
Using the commutator relations

@JX ,d#50, @JX , *̂ #50, @JX ,dr#50, ~D1!

whereX is an infinitesimal rotation, and hence a Killing fiel
for g, it is not difficult to see that
1-20
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Ydr, dY, 2 *̂ dY

form a basis of spherical harmonicone formswith total an-
gular momentuml, where Y[Ylm are the standardscalar
spherical harmonics. Indeed, these one forms are linearly
dependent forl .0, while for l 50, Y is constant and only
Ydr survives. The reduction

S %
l 50

`

Dl D ^ D15D0% 3D1% 3D2% •••,

where theDl denote the SU~2!-irreducible subspaces, show
that the one forms found above are complete.

The dual basis, C1[Yer , C2[ĝAB¹̂BYeA , C3

[ĥAB¹̂BYeA is a linear combination of the standardvector
harmonics~see, e.g. Ref.@26#!. ~Here and in the following,
ek denote the standard basis fields ofR3, er is the radial unit
vector, andeA is a basis ofS2 with dual basisûA. The anti-
symmetric tensorĥAB is defined by *ˆ ûA5ĥB

AûB.! Since the

operatord is parity preserving, while the operator *ˆ is parity
reversing,C1 andC2 haveevenparity, whileC35ĝABSAeB

has odd parity. Here SA[ĥAB¹̂BY denote the transvers

spherical vector harmonics,ĝAB¹̂BSA50.
In order to construct su~2!-valued spherical harmonics, w

use the isometryek↔tk to identify R3 with su~2!, where the
standard inner product onR3 corresponds to the normalize
inner product Tr[22 tr on su~2!. Vector-valued tensors ar
identified with su~2!-valued tensors, and the operatord is
defined by the exterior derivativeD for vector-valued forms
a5a iv i : da5v iDa i5v i(da i1v j

i `a j ), where v j
i is the

Riemannian connection with respect to the standard me
on R3. ~With respect to the standard basis,v i5ei , one has
v j

i 50, and thusDa5da, whereas, with respect to the bas

vectorser and eA , one findsv r
A5 ûA, vA

r 52ĝABûB, and

vB
A5v̂B

A .! The basis of su~2!-valued spherical harmonics be
comes

X15Yt r , X25ĝABtA¹̂BY, X35ĥABtA¹̂BY,
~D2!

that is,Xj[C j•t, whereX1 andX2 haveodd parity, while
X3 hasevenparity.

A basis of su~2!-valued spherical harmonicone formsis
now obtained by the same procedure as above: Using
commutator relations~D1!, with d generalized as above, on
obtains the nine basis vectorsdXk , *̂ dXk , Xkdr. The de-

composition da5t iDa i5¹̂a2t r ĝABûB`aA of the total
exterior derivative of a vector valued forma tangential toS2

now yields the identities

dX15Ydt r1t rdY,

dX25¹̂X22t rdY,

dX35¹̂X31t r *̂ dY. ~D3!
08400
n-

ic

he

Furthermore, one has

2 *̂ ¹̂X31¹̂X21 l ~ l 11!Ydt r50. ~D4!

By virtue of these identities one may also use the one fo

Ydt r , t rdY, ¹̂X2 instead ofdX1 , dX2 , *̂ dX3, or the one

forms Y*̂ dt r , t r *̂ dY, *̂ ¹̂X2 instead of *ˆ dX1 , *̂ dX2 , dX3.
In fact, the new sets turn out to be more convenient in or
to derive the perturbation equations.

In conclusion, the su~2!-valued spherical harmonic bas
one forms with odd parity are

X1dr, X2dr, Ydt r , t rdY, ¹̂X2 , ~D5!

while the even parity basis one forms are

X3dr, Y*̂ dt r , t r *̂ dY, *̂ ¹̂X2 . ~D6!

This is, however, only true forl .1. For l 51 and l 50 the
above fields are not linearly independent. Forl 51 the di-
mensions of both the odd and the even parity sectors

reduced by one, since¹̂A¹̂BY( l 51)52ĝABY( l 51) implies

¹̂X25ĝBC¹̂A¹̂BYtCûA52YtAûA52Ydt r . For l 50, Y is
constant, and henceX2 , X3, anddY vanish. Specially, in the
even parity case only *ˆ dt r survives, which yields the spheri
cally symmetric magnetic Witten ansatz for the gauge pot
tial. The reduction

S %
l 50

`

Dl D ^ D1^ D153D0% 7D1% 9D2% 9D3% •••

shows the completeness of the su~2!-valued spherical har-
monic one forms.

It is also worthwhile noticing that the odd-parity expa
sion~3! of the metric perturbations can be obtained by ‘‘low
ering the inner index’’ and symmetrizing the one forms~D6!:

X3dr5ĝABSAtBdr→dg5SA~dr ^ ûA1 ûA
^ dr !,

Y*̂ dt r5YtAĥB
AûB→dg50,

t r *̂ dY5t rSAûA→dg5SA~dr ^ ûA1 ûA
^ dr !,

*̂ ¹̂X25ĝBCtB¹̂CSAûA→dg5¹̂$ASB%û
A

^ ûB.

In a similar manner the even-parity metric expansion can
obtained from the~odd-parity! one forms~D5!.

APPENDIX E: INVARIANT YANG-MILLS
PERTURBATIONS

In this Appendix we construct the gauge- and coordina
invariant amplitudes parametrizing the perturbations of
YM potentialdA. Starting with Eqs.~27!, ~28!, and~29!, our
aim is to show that the physical perturbations forl .1, l
51 and l 50 are given by the expressions~30!, ~31!, and
~33!, respectively.
1-21
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Under YM gauge transformations one has

dA→dA1Dx,

whereD is the gauge covariant derivative with respect to
background connection~18!, andx denotes the su~2!-valued
scalar field parametrizing the gauge freedom. For odd pa
perturbationsx is given in terms of two functions onM̃ ,

x5 f 1X11 f 2X2 ,

whereX1 andX2 are the odd-parity scalar isospin harmon
defined in Eq.~D2!.

Now using the identities~D3! and ~D4! one findsDX1

5t rdY1wYdt r , DX25¹̂X22wt rdY, the amplitudes de-
fined in Eqs.~27! and ~28! are found to behave as follow
under gauge transformations:

a→a1d f1 ,

b→b1d f2 ,

m→m1 f 12 f 2w for l>1
~E1!

and

n→n1 f 1w2 f 2 for l 51,
~E2!

n→n1 f 1w,

s→s1 f 2 for l .1. ~E3!

For l 51, one can introduce two gauge-invariant o
forms a andb, say,

a[a2dS m2wn

12w2 D ,

b[b1dS n2wm

12w2 D for l 51,

~E4!

which are well defined unless the background configura
is the Schwarzschild black hole,w51. The transformation
laws ~E1! and~E2! imply that there exists a gauge for whic
the scalarsm andn vanish. Moreover, the above definition
show that in this gauge the one formsa andb coincide with
the gauge invariant one-formsa andb. Since the perturbation
equations are gauge invariant, we may thus parame
dA( l 51) in terms of the two gauge-invariant one formsa and
b on M̃ ,

dA( l 51)5X1a1X2b. ~E5!

For l .1, we may proceed in a similar way and introdu
two gauge-invariant one forms and one gauge-invariant fu
tion as follows:

a[a2d~m1ws!,
08400
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b[b2ds,

c[n2w~m1ws! for l .1. ~E6!

It is again obvious from Eqs.~E1! and~E3! that there exists
a gauge for whichm and s vanish, and that the remainin
amplitudesa, b, and n coincide with the gauge-invarian
quantitiesa, b, andc in this gauge. Hence, without loss o
generality, we may set

dA( l .1)5X1a1X2b1cYdt r , ~E7!

and considera, b, andc as gauge-invariant amplitudes.
For l 50, dA is parametrized in terms of the one forma

and the functionn, which transform according toa→a
1d f1 and n→n1 f 1w, respectively. The amplitudes com
bine into a gauge-invariant one form

a[a2dS n

wD for l 50, ~E8!

wherea coincides witha in the gauge for whichn vanishes.
Note however that the one forma is singular at points where
the function w vanishes.@In particular, a connot be con-
structed for the RN background wherew(r )[0.# In terms of
a one has

dA( l 50)5t ra. ~E9!

So far we have parametrizeddA in terms of gauge-invarian
amplitudes or, more precisely, in terms of amplitudes wh
coincide with gauge-invariant amplitudes in a certain gau
However, these quantities are not yet invariant under infi
tesimal coordinate transformations on the background.
the linearized Einstein and YM equations are invariant un
these transformations, they will involve only coordinat
invariant combinations of the above amplitudes. In order
find these combinations, it remains to study the behavio
the gauge-invariant amplitudesa, b, and c under the trans-
formation

dA→dA1LXA,

whereA is the background connection given in Eq.~18!, and
LX denotes the Lie derivative with respect to the infinite

mal vector fieldXm52 f R22dA
mĥAB¹̂BY, defined in Eq.~4!.

In terms of the coordinate freedomf, one finds

LXA5~12w!F f

R2
~t rdY1¹̂X2!1X2dS f

R2D G .

~The most efficient way to establish this is to writeLX

5diX1 i Xd, and to use i XdV52R22f dY and i X*̂ dt r
5R22f X2.!

The transformation properties of the one formsa, b and
the functionsm, n ands defined in Eq.~27! are now imme-

diately obtained.@For l 51 one has to replace¹̂X2 by
2Ydt r and to use Eq.~28! instead of Eq.~27!.# For l .1, the
1-22
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gauge-invariant quantities~E6! transform as follows unde
coordinate transformations generated byX:

a→a2dF f

R2
~12w2!G ,

b→b1
f

R2
dw,

c→c2
f

R2
w~12w2! for l .1, ~E10!

while the transformation laws for the quantities~E4! become

a→a2dS f

R2D ,

b→b2wdS f

R2D for l 51. ~E11!

~There exist no allowed coordinate transformations in
odd-parity sector ifl 50.! For l .1, one may eventually us
the transformation property~5! of the metric perturbationk,
k→k1 f , to introduce the following gaugeand coordinate-
invariant amplitudes:

A[a1dF k

R2
~12w2!G , B[b2

k

R2
dw,

C[c1
k

R2
w~12w2!, H[h2R2dS k

R2D ,

~E12!

where we have also recalled the definition~10! of the
coordinate-invariant metric perturbation one formH. In the
ODG (k50) these gauge and coordinate-invariant am
tudes coincide with the gauge-invariant amplitudesa, b, c,
andh, which reduce to the original amplitudesa, b, g, and
h in the ODSG (k5m5s50).
.

/

08400
e

-

For l 51 the gauge- and coordinate-invariant YM amp
tudes are obtained by comparing the transformation la
~E11! with the transformation property~5! of the metric per-
turbation h, h→h1R2d(R22f ). This yields the invariant
quantitiesā and b̄, defined by

ā[a1
h

R2
, b̄[b1w

h

R2
. ~E13!

APPENDIX F: LINEARIZED FLUX INTEGRALS

The Komar expressions for the local electric and magn
charges, the local mass and the local angular momentum
stationary spacetime are given by the following flux integr
over a sphere with radiusR:

Qe~R!5
1

4pESR

* F, Qm~R!5
1

4pESR

F,

M ~R!52
1

8pGE
SR

* ~dgtm`dxm!,

J~R!5
1

16pGE
SR

* ~dgwm`dxm!.

Using the expressions~30! and~31! for the gravitational and
the YM perturbations, the linearized flux integrals are fou
to be

dQm~R!5dM ~R!50,

dQe~R!;d l1em•tR2~ *̃ FA12*̃FB!,

dJ~R!;d l1dm0R4*̃ FH , ~F1!

wheree05(0,0,1),e65(71,i ,0), andFH , FA , andFB are
defined in Eq.~52!. Here we have also used the orthogonal
of the spherical harmonicsYlm and the expansionser

;Y1mem andSw
lm;ĝ(dYlm,dY10).
v,

in

lf-
@1# R. Bartnik and J. McKinnon, Phys. Rev. Lett.61, 141 ~1988!.
@2# M. S. Volkov and D. V. Gal’tsov, JETP Lett.50, 346 ~1989!;

H. P. Künzle and A. K. M. Masood-ul-Alam, J. Math. Phys
31, 928 ~1990!; P. Bizon, Phys. Rev. Lett.64, 2844~1990!.

@3# M. Heusler, Black Hole Uniqueness Theorems~Cambridge
University Press, Cambridge, England, 1996!.

@4# P. O. Mazur, Gen. Relativ. Gravit.16, 211 ~1984!; Phys. Lett.
A 100, 341 ~1984!.

@5# G. Neugebauer and D. Kramer, Ann. Phys.~Leipzig! 24, 62
~1969!.

@6# M. Heusler, URL http://www.livingreviews.org/Articles
Volume1/

@7# M. S. Volkov and D. V. Gal’tsov, Phys. Rep.319, 1 ~1999!.
@8# B. Kleihaus and J. Kunz, Phys. Rev. Lett.79, 1595~1997!.
@9# S. A. Ridgway and E. J. Weinberg, Gen. Relativ. Gravit.27,
1017 ~1995!.

@10# S. A. Ridgway and E. J. Weinberg, Phys. Rev. D52, 3440
~1995!.

@11# O. Brodbeck, M. Heusler, N. Straumann, and M. Volko
Phys. Rev. Lett.79, 4310~1997!.

@12# M. Heusler, inBlack Holes: Theory and Observation, edited
by F.W. Hehl, C. Kiefer, and R.J.K. Metzler, Lecture Notes
Physics No. 514~Springer, Berlin, 1998!.

@13# O. Sarbach and M. Heusler, ‘‘Perturbation theory for se
gravitating gauge fields II: The even-parity sector’’~in prepa-
ration!.

@14# O. Brodbeck, M. Heusler, and O. Sarbach, Phys. Rev. Lett.84,
3033 ~2000!.
1-23



ry
.

.

i,

O. SARBACH, M. HEUSLER, AND O. BRODBECK PHYSICAL REVIEW D62 084001
@15# M. S. Volkov, in Proceedings of the Workshop ‘‘Geomet
and Integrable Models,’’ edited by P. N. Pyatov and S. N
Solodukhin~World Scientific, Singapore, 1996!, pp. 55–77.

@16# M. S. Volkov and D. V. Gal’tsov, Phys. Lett. B341, 279
~1995!.

@17# K. Lee, V. P. Nair, and E. J. Weinberg, Phys. Rev. Lett.68,
1100 ~1992!.

@18# U. H. Gerlach and U. K. Sengupta, Phys. Rev. D19, 2268
~1979!; 22, 1300~1980!.

@19# T. Regge and J. Wheeler, Phys. Rev.108, 1063~1957!.
@20# V. Moncrief, Ann. Phys.~N.Y.! 88, 323 ~1974!; Phys. Rev. D

9, 2707~1974!; 12, 1526~1975!.
08400
@21# A. A. Ershov and D. V. Gal’tsov, Phys. Lett. A138, 160
~1989!; 150, 159 ~1990!.

@22# O. Brodbeck and M. Heusler, Phys. Rev. D56, 6278~1997!.
@23# W. Walter, Ordinary Differential Equations~Springer, New

York, 1998!.
@24# D. Sudarsky and R. M. Wald, Phys. Rev. D47, R5209~1993!.
@25# P. Breitenlohner, P. Forga´cs, and D. Maison, Commun. Math

Phys.165, 141 ~1994!.
@26# D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonski

Quantum Theory of Angular Momentum~World Scientific,
Singapore, 1988!.
1-24


