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Gravity waves from instantons
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We perform a first principles computation of the spectrum of gravity waves produced in open inflationary
universes. The background spacetime is taken to be the continuation of an instanton saddle point of the
Euclidean no boundary path integral. The two-point tensor correlator is computed directly from the path
integral and is shown to be unique and well behaved in the infrared. We discuss the tensor contribution to the
cosmic microwave background anisotropy and show how it may provide an observational discriminant be-
tween different types of primordial instantons.

PACS number~s!: 98.80.Hw, 04.62.1v, 98.80.Cq
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I. INTRODUCTION

The inflationary universe scenario provides an appea
explanation for the smoothness and flatness of the pre
universe, as well as a mechanism for the origin of den
fluctuations. Until recently it was believed that inflation i
evitably predicted a flatV051 universe. However, in@1# it
was shown that with mild fine-tuning an open universe
also possible. The potential must have a sharp false vac
in which the field is assumed to have become trapped.
field is then assumed to tunnel out via an instanton known
the Coleman–De Luccia instanton@2#, producing a bubble
within which slow roll inflation occurs. The interior of th
bubble produced via the Coleman–De Luccia instanton is
infinite inflating open universe.

Such models provide important counter-examples to
standard folklore but require quite contrived scalar field p
tentials. Recently, however, Hawking and one of us show
that open inflation can occur much more generally. W
found a new class of instantons@3# that exist for essentially
any inflationary potential and provide saddle points of
Euclidean path integral. The continuation of these instant
is similar to that of the Coleman–De Luccia instantons, a
they define initial conditions for open inflationary universe
Although the Hawking-Turok instantons are singular, t
singularity is mild enough for the quantization of perturb
tions to be well posed@3–5#. In this paper we compute th
spectrum of gravity waves for both Coleman–De Luccia a
Hawking-Turok instantons.

This paper is a companion to Ref.@5#, where scalar fluc-
tuations about open inflationary instantons were calcula
Here we perform an analogous calculation for the ten
fluctuations and discuss possible observable signals in
cosmic microwave background~CMB! anisotropy power
spectrum. The calculation is performed in the framework
the Euclidean no boundary proposal due to Hartle and Ha
ing @6#, as discussed in@5#. The correlator is computed in th
Euclidean region where it is uniquely determined by
Gaussian integral, and then analytically continued in the
ordinates of the classical background solution into
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Lorentzian region of interest. Our main result for the tens
correlator~32! is given in a form which is straightforward to
compute numerically. We defer detailed numerical calcu
tions of the CMB anisotropies to a future paper@7# in which
both scalar and tensor contributions for a variety of sca
potentials will be discussed.

There have over the last few years been many pap
exploring similar calculations, mostly making one appro
mation or another@9–11#. Very recently, Garrigaet al. have
independently obtained formulas for the scalar and ten
correlators similar to ours@12,13#. These formulas have bee
numerically implemented in Ref.@14# which gives results for
some examples of Coleman–De Luccia instantons calcul
without approximation.

We feel that the derivation given here is significan
clearer than in those papers, and that our method has se
important conceptual advantages. First, all earlier auth
performed a mode by mode analysis. In this framework, o
requires a prescription for the vacuum state for each per
bation mode and this is taken to be the state in which
positive frequency modes are regular on the lower half of
instanton. This prescription is ratherad hoc. In contrast, our
method is to simply perform the Euclidean no boundary p
integral. This automatically gives a unique Green functio
There is no need for an additional prescription; indeed
posing one is contrary to the spirit of the no boundary p
posal~see the discussion in@5#!. The whole idea of the Eu-
clidean no boundary proposal is that an essentia
topologicalprescription should define the initial state of th
universe. Analyticity arises because the background solu
is a solution of a differential equation. Divergent fluctuatio
modes have infinite Euclidean action and are therefore s
pressed in the path integral. Second, in the matching me
of Garrigaet al., they devote a great deal of effort to dete
mining the action for perturbations in region II, the part
the Lorentzian spacetime exterior to the open universe
gion. This introduces considerable technical complex
since the spatial hypersurfaces used in their canonical q
tization approach are inhomogeneous in region II. Our
proach is to analytically continue directly from the Euclide
region into the open universe. Region II is just a part of t
continuation route with no special significance. Third, as e
phasized in@5#, we deal throughout directly with the rea
space correlator. In this approach ‘‘super-curvature’’ mod
©2000 The American Physical Society14-1
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are automatically included and their relation to the ‘‘su
curvature’’ modes is thereby made clear. A related fac
that we find the real space correlator to be infrared fin
even in perfect de Sitter space, as mentioned below. Fin
Garrigaet al. only give formulas for equal-time correlator
To compute the microwave anisotropies one requires
unequal-time correlator, which we give here. We are a
careful to define the continuation of the conformal time c
ordinate into the Euclidean region, which is not explained
Ref. @14#.

The paper is organized as follows. In Sec. II we descr
the relevant path integral and the model-dependent Sc¨-
dinger operator which occurs in the Euclidean action. W
show that for singular instantons the singularity acts a
reflecting boundary, fixing Dirichlet boundary conditions f
the perturbation modes@3–5#. The Euclidean tensor cor
relator is computed from the path integral in Sec. III. In th
calculation we need several properties of maximally sy
metric bitensors onS3, which are described in the Appendi
Section IV describes the analytic continuation to the op
universe. Finally, Sec. V is devoted to the Sachs-Wolfe
tegral to determine the contribution of gravitational waves
the CMB anisotropy. Here we comment on possible obs
vational distinctions between Coleman–De Luccia a
Hawking-Turok instantons.

We conclude this Introduction with two technical r
marks. First, the question of discrete ‘‘super-curvatur
modes arises in the tensor calculation just as in the sc
case@5#. Here, however, we find that although the releva
Schrödinger operator possesses a bound state just as in
case of scalar perturbations@5#, here it does not generate
‘‘super-curvature mode.’’ Instead the relevant mode is
time-independent shift in the metric perturbation which m
be gauged away. This is in agreement with Refs.@11,12#.
Second, it has been claimed in much of the previous lite
ture that the spectrum of gravity waves in pure de Si
space is infrared divergent@15,9# but that the divergence
disappears once the existence of the bubble wall is take
account@10#. In our approach we find a different result. N
glecting the gauge mode previously mentioned, the two p
correlator has a well-defined long-wavelength limit even
perfect de Sitter space. We shall investigate this issue fur
in future work.

II. PATH INTEGRAL FOR TENSOR FLUCTUATIONS

In quantum cosmology the basic object is the wave fu
tional C@hi j ,f#, the amplitude for a three-geometry wit
metrichi j and field configurationf. It is formally given by a
path integral

C@hi j ,f#;Ehi j ,f

@Dg#@Df#eiS[g,f] . ~1!

Following Hartle and Hawking@6# the lower limit of the path
integral is defined by continuing to Euclidean time and in
grating over all compact Riemannian metricsg and field con-
figurations f. If one can find a saddle point of Eq.~1!,
namely a classical solution satisfying the Euclidean
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boundary condition, one can in principle at least compute
path integral as a perturbative expansion to any des
power in\.

In this paper, we shall compute the two-point tensor flu
tuation correlator about classical solutions describing the
ginning of open inflationary universes, to first order in\.
The principles are described in@5#, namely that we compute
the correlator in the Euclidean region where the exponeniS
in the path integral becomes2SE52(S01S2), whereSE is
the Euclidean action,S0 is the instanton action andS2 the
action for fluctuations. We shall keep the latter only to se
ond order, this being all that is needed to compute the qu
tum fluctuations to leading order in\. The correlator is then
given by a Gaussian path integral

^t i j ~x!t i 8 j 8~x8!&5

E @Ddg#@Ddf#e2S2t i j ~x!t i 8 j 8~x8!

E @Ddg#@Ddf#e2S2

.

~2!

The Lorentzian correlator is then obtained by analytica
continuing in the coordinates of the background classical
lution, into the open inflating region.

The O(4) symmmetric instantons of interest possess
line element of the formds21b2(s)dV3

2 wheredV3
2 is the

line element onS3. Both Hawking-Turok and Coleman–D
Luccia instantons possess a regular pole which we take t
at s50. As s approaches zero, we haveb(s)→s. The
Coleman–De Luccia instantons have a second regular
whereb→sm2s wheresm is the maximum value ofs. In
contrast Hawking-Turok instantons haveb→(sm2s)1/3 as
s→sm . It is useful in both cases to introduce a conform
spatial coordinate satisfyingdX5ds/b(s), so that the line
element takes the form

ds25b2~X!~dX21dV3
2!. ~3!

For Hawking-Turok instantons we define

X[E
s

sm ds8

b~s8!
. ~4!

so X50 corresponds to the singular pole andX→` to the
regular pole. For Coleman–De Luccia instantonsX may be
conveniently defined by*s

s tds8/b(s8), where s t is the
value of sigma for whichb is a maximum, and thenX ranges
from 2` to 1`. We write the perturbed line element an
the scalar field as

ds25b2~X!@~112A!dX21SidxidX1~g i j 1hi j !dxidxj #,

f5f0~X!1df. ~5!

and decomposeSi andhi j as follows@16#:

hi j 5
1

3
hg i j 12S ¹ i¹ j2

g i j

3
D3DE12F ( i u j )1t i j ,
4-2
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GRAVITY WAVES FROM INSTANTONS PHYSICAL REVIEW D62 083514
Si5Bu i1Vi . ~6!

HereD3 is the Laplacian andu j the covariant derivative on
the three-sphere. With respect to reparametrizations of
three-sphere,h, B and E are scalars,Vi and Fi are diver-
genceless vectors andt i j is a transverse traceless symmet
tensor.

One may expand the spatial part of each of these spr
fields in terms of a complete set of harmonics, labeled by
eigenvalueslp5p21(r 11) of the Laplacian onS3. Here
p5 in andn is an integer. In general the decomposition o
metric perturbationhi j into a scalar, vector and tensor part
unique. Hence one can writeE, Fi and t i j back in terms of
hi j @16,17#. For scalarps

2524 and vectorpv
2524 harmon-

ics, however, the decomposition is not unique and there
pears a degeneracy between scalar- or vector-type pertu
tions and pt

250 and pt
2521 tensor modes respectively

Treatment of the former is complicated by the involveme
of the scalar field@5#, but the latter mode is unambiguous
pure gauge. We will return to this point in Sec. IV.

The Euclidean action is

S5
1

2kE d4xAgS 2R1
1

2
¹mf¹mf1V~f! D

2
1

kE d3xAgK, ~7!

where the surface term is needed to remove second de
tives. Substituting the decomposition~6! into the action~7!,
we keep all terms to second order. The scalar, vector
tensor quantities decouple. The scalar perturbations are s
ied in Ref.@5#. The vector perturbations are uninteresting
first order in\ since they are forced to be zero by the E
stein constraints. The tensor perturbations give the follow
second order positive Euclidean action:

S25
1

8kE d4xAgb2~ t8 i j t i j8 1t i j ukt i j uk12t i j t i j !, ~8!

where the prime denotes differentiation with respect to
conformal coordinateX. If one performs the rescalingt̃ i j
5b(X)t i j and integrates by parts, one obtains

S25
1

8kE d4xAg t̃ i j ~K̂132D3! t̃ i j

2
1

8k F E d3xAg t̃ i j t̃
i j

b8

b
~X!G ~9!

where the Schro¨dinger operator

K̂52
d2

dX2
1

b9

b
21[2

d2

dX2
1U~X!. ~10!

The form of the potentialU(X) is shown in Fig. 1 for
Euclidean de Sitter space~i.e. a four-sphere!, as well as ex-
amples of a Coleman–De Luccia instanton and a Hawki
Turok instanton. The operatorK̂ has in all three cases
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positive continuum starting at eigenvaluep250, as well as a
single bound statet̃ i j 5b(X)qi j (V) at p5 i .

For singular instantons the surface terms in Eq.~9! play a
crucial role. The potentialU(X)→21/4X2 as X→0. The
eigenmodes ofK̂ thus behave asX1/2 or X1/2ln X near the
singularity. The latter modes contribute positive infinity
the surface terms in Eq.~9!, and are therefore suppressed
the path integral. Hence we see that as in the scalar case@5#,
the path integral unambiguously specifies the allowed fl
tuation modes as those which vanish at the singularity.

III. EUCLIDEAN GREEN FUNCTION

To evaluate the path integral~2!, we first look for the

Green functionGE
i ji 8 j 8 of the operator in Eq.~9!. The Euclid-

ean fluctuation correlator~2! will then be given by

b21(X)b21(X8)GE
i ji 8 j 8 . The Euclidean Green function satis

fies

1

4k
~K̂132D3!GEi8 j 8

i j
~X,X8,V,V8!

5d~X2X8!g21/2d i j
i 8 j 8~V2V8!. ~11!

If we think of the scalar product as defined by integrati
over S3 and summation over tensor indices, then the rig
hand side is the normalized projection operator onto tra

FIG. 1. PotentialU(X) occurring in the Schro¨dinger operator
governing tensor perturbations about the various instanton solut
discussed in the text. The dashed line shows the potential for aS4

instanton corresponding to perfect de Sitter space, whereU(X)
522/cosh2(X). The upper solid line shows the potential for
Coleman–De Luccia instanton, where2`,X,`, and the lower
solid line that for a Hawking-Turok instanton, with the singulari
indicated by the vertical dotted line. The potentials have be
shifted inX so their minima coincide. All three are very similar t
the right of the minimum. To the left, the Hawking-Turok potenti
diverges as one approaches the singularity. The potential is re
tionless in theS4 case, weakly reflecting in the Coleman–De Lucc
case and totally reflecting in the Hawking-Turok case.
4-3
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THOMAS HERTOG AND NEIL TUROK PHYSICAL REVIEW D62 083514
verse traceless tensors onS3. Since the eigenmodes of th
Laplacian form a complete basis, we can write the last te
as

g21/2d i j
i 8 j 8~V2V8!

5(
k

(P5e,o
(
l 52

k

(
m52 l

l

qPlm
(k) i j ~V!qi 8 j 8

(k),Plm
~V8!* ~12!

where onS3 we have

D3qPlm
(k) i j 5lkqPlm

(k) i j ~13!

with lk52k(k12)12. Here P5$e,o% labels the parity,
the angular momentum onS3 takes the valuesk
52,3,4, . . . and 2< l<k and2 l<m< l are the usual quan
tum numbers on the two-sphere. Note that (l>2) because a
spin-2 field has no monopole or dipole components. T
eigenmodes are normalized by the condition

E Agd3xqPlm
(k) i j qP8 l 8m8 i j

(k8)* 5dkk8dPP8d l l 8dmm8 . ~14!

The set of eigenmodes forms a representation of the s
metry groupSO(4) of the manifold. It follows in particular
that the sum overP, l andm defines a maximally symmetri
bitensor@18#

W(k) i 8 j 8
i j

~m!5(Plm
qPlm

(k) i j ~V!qi 8 j 8
(k)Plm

~V8!* ~15!

which depends only on the geodesic distancem(V,V8) be-
tween the two points onS3. The Green functionGEi8 j 8

i j can
only be a function ofm(V,V8) if it is to be invariant under
isometries of the three-sphere. Note that the indicesi , j lie in
the tangent space over the pointV while the indicesi 8, j 8 lie
in the tangent space over the pointV8. The general form of
the bitensorW(k) i 8 j 8

i j appearing in tensor fluctuation correl
tors has been obtained by Allen@19# and is given in the
Appendix below. Here we note already that in terms of
label p5 i (k11)5 in, the bitensor onS3 has precisely the
same formal expression as the corresponding object onH3.
Since we would like to analytically continue our result f
the Euclidean two-point correlator into the open universe,
will use the labelp5 in from now on. We now return to Eq
~11! for the Euclidean Green function.

By substituting the following ansatz for the Green fun
tion,

GEi8 j 8
i j

~m,X,X8!54k (
p5 in

Gp~X,X8!W(p) i 8 j 8
i j

~m!, ~16!

into Eq. ~11! and noting that in terms ofp5 in, we have
lp5p213, we obtain an equation for the model-depend
part of the Green function:

~K̂2p2!Gp~X,X8!5d~X2X8!. ~17!

Let us first discuss the case of singular instantons.
solution to Eq.~17! is
08351
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Gp~X,X8!5
1

Dp
@Cp

1~X!Cp
2~X8!Q~X2X8!

1Cp
2~X!Cp

1~X8!Q~X82X!#, ~18!

where Cp
2(X) is the solution to the Schro¨dinger equation

that goes asX1/2 asX→0 andCp
1(X) is the solution going

as eipX5e2nX as X tends to infinity. The factorDp is the
WronskianCp

28Cp
12Cp

18Cp
2 of the two solutions.

We shall ultimately be interested in re-expressing this
lution as an integral over real values ofp in order to continue
it to the open universe. To do so we must extend the so
tions Cp

6 defined above atp5 in into the complexp plane.
Cp

2(X) becomesCp(X), defined for all complexp to be the
solution which tends toX1/2 asX→0. Being a solution of a
regular differential equation this is analytic for finitep in the
complexp plane. On the other hand,Cp

1(X) is the analytic
continuation ofgp(X), defined on the realp axis to be the
solution tending toeipX asX→`. This is the Jost function
and is analytic in the upper halfp plane@20#. The two solu-
tions may be expressed in terms of each other as

Cp~X!5apgp~X!1a2pg2p~X!, ~19!

and their WronskianDp5Cp8gp2gp8Cp522ipa2p , inde-
pendent ofX. This too is analytic in the upper halfp plane.
Zeros ofa2p in the upper halfp plane correspond to norma
izable bound states. They can only occur on the imaginap
axis, and in the case of interest here the only zero in
upper halfp plane is atp5 i . This zero corresponds to th
bound state mentioned above. ForX.X8 we have the Green
function as a discrete sum:

GE
i ji 8 j 8~m,X,X8!

54k (
p53i

1 i`
i

2pa2p
Cp

1~X!Cp
2~X8!W(p)

i j i 8 j 8~m!. ~20!

For regular Coleman–De Luccia instantons a similar p
cedure may be followed. HereX ranges from2` to 1` and
we define the two linearly independent mode functio
gp

left(X), which tends toe2 ipX as X→2`, and gp
right(X),

which tends toeipX as X→`. These can be shown to b
orthogonal and analytic in the upper halfp plane. As X
→1`, we have gp

left(X)→cpeipX1dpe2 ipX. Hence, the
Wronskian Dp5gp

left8gp
right2gp

right8gp
left522ipdp and the

Green functionGE
i ji 8 j 8(m,X,X8) may be expressed in a form

analogous to that for singular instantons.
Before proceeding to the analytic continuation, let

demonstrate that our Euclidean Green functions are reg
at the regular pole. This is a nontrivial check because
coordinatess and X are singular there, and the rescalin
becomes divergent too,b(X);s21;e1X. In the largeX,X8
limit, Eq. ~20! becomes
4-4
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GRAVITY WAVES FROM INSTANTONS PHYSICAL REVIEW D62 083514
GE
i ji 8 j 8~m,X,X8!52k (

n53

`
1

n S e2n(X2X8)1
ain

a2 in
e2n(X1X8)D

3W( in)
i j i 8 j 8~m!. ~21!

For n>3 the Gaussian hypergeometric functionsF(31n,3

2n,7/2,z) that constitute the bitensorW(n)
i j i 8 j 8 have a series

expansion that terminates, and they essentially reduce to
genbauer polynomialsCn23

(3) (122z). Using then the identity
@21#

(
l 50

`

Cl
n~x!ql5~122xq1q2!2n ~22!

with q5e2(X6X8), one easily sees that the sum~21! indeed
converges.

We have the Euclidean Green function defined as an
finite sum~20!. We wish to represent it as an integral overp.
To do so we must extend the summand into the upper hap
plane. We have already defined the wave functions for
complexp but we need to extend the bitensor as well. Wh
the Green function is expressed as a discrete sum, it invo

the bitensorW(p)
i j i 8 j 8(m) evaluated atp5 in with n integral. At

these values ofp, the bitensor is regular at both coincide
and opposite points onS3, that is atm50 andm5p. How-
ever, if we extendp into the complex plane, we lose regu
larity at m50. This is clear from Eq.~11!. For if we distort
the p integral to run along the real axis, and use the co
pleteness relation for the eigenfunctionsCp(X), it follows

that W(p)
i j i 8 j 8(m) obeys a differential equation with a del

function source atm50 ~see the discussion of the scalar ca

in @5#!. Similarly, when we extendW( in)
i j i 8 j 8(m) into the com-

plex p plane, we must maintain regularity atm5p, since
there is no delta function source there.

The condition of regularity atp imposed by the differen-
tial equation for the Green function is sufficient to unique

specify the analytic continuation ofW( in)
i j i 8 j 8(m) into the com-

plex p plane. To see this, we note from the Appendix that
bitensor involves coefficient functionsa and b which are
hypergeometric functions of the variablez5cos2(m/2). For
coincident points,z51 but for antipodal pointsz50. There
are two independent solutions of the hypergeometric eq
tion, namelya(z) and a(12z). They are related by the
transformation formula~Eq. @15.3.6# in @27#!

FIG. 2. Contour for the Euclidean correlator.
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2F1S 31 ip,32 ip,
7

2
,zD

5~2coshpp!2F1S 31 ip,32 ip,
7

2
,12zD

1

GS 7

2DGS 5

2D
G~31 ip !G~32 ip !

~12z!25/2
2F1

3S 1

2
2 ip,

1

2
1 ip,2

3

2
,12zD .

Notice that for the eigenvalues of the Laplacian onS3, i.e.
p5 in (n>3), the second term on the right-hand side va
ishes. In this case the two choices are simply related
(21)n11 and they are both regular for allm. Since F(1
2z)→1 for coincident points, we take this solution in E
~20!. But when we express the discrete sum~20! as a contour
integral, to maintain regularity of the integrand atm5p we
need to replaceF(12z) by a term F(z)(21)n11,
and then continue the latter term to2(coshpp)21

2F1(3

1ip,32 ip, 7
2 ,z).

Now we write the sum in Eq.~20! as an integral along a
contour C1 encircling the pointsp53i ,4i , . . . ,Ni on the
imaginaryp axis, whereN tends to infinity. Using the ana
lytic properties of the terms in the discrete sum extended
the complexp plane we have, forX.X8,

GE
i ji 8 j 8~m,X,X8!5kE

C1

dp

psinhpp

gp~X!cp~X8!

a2p
W(p)

i j i 8 j 8~m!

~23!

whereW(p)
i j i 8 j 8(m) is defined in the Appendix, Eqs.~A6!, but

with a(z) replaced by2a(z). The explicit expressions fo
a and b may be obtained from Eqs.~A10! and ~A11! by

settingx5 im. To verify Eq. ~23! note thatW(p)
i j i 8 j 8(m) and

the factorsgp , Cp and a2p
21 are analytic in the complexp

plane in the required region. Introduce 15coshpp/coshpp
into the integral. Then note that cothpp has residuep21 at
every integer multiple of i. The remaining factor of
(coshpp)21 is what is needed to convert2a(z) into a(1
2z), according to Eq.~22!. A similar formula relatesb(z) to
b(12z).

We now distort the contour for thep integral to run along
the realp axis ~Fig. 2!. At large imaginaryp the integrand
decays exponentially and the contribution vanishes in
limit of large N. However, as we deform the contour towar
the real axis we encounter two poles in the sinh21pp factor,
the latter atp5 i becoming a double pole due to the simp
zero of a2p . For the p52i pole, we note that it follows

directly from the the normalization factorQp that W(2i )
i j i 8 j 8

50. Indirectly, this is a consequence of the fact that spi
perturbations do not have a monopole or dipole compon
At p5 i we have a double pole. However, the bound st
wave function is just proportional tob(X) and the metric
tensor perturbationt i j 5b21(X) t̃ i j is therefore independen
4-5
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THOMAS HERTOG AND NEIL TUROK PHYSICAL REVIEW D62 083514
of X. The latter coordinate continues to conformal time in t
open universe, and it follows that the metric perturbation
time independent and will not contribute to the Sachs-Wo
formula ~37!. However, to understand this mode mo
deeply, recall that forp2521 a degeneracy appears betwe
p2521 tensor-type perturbations andpv

2524 vector-type
perturbations@11#. To be more precise, the tracelesss tra
verse tensorsqi j

( i )plm may be constructed from the vector ha
monics Vi

(2i )plm by symmetrized covariant differentiation
One therefore hasqi j

plm(p2521)5V( i u j )
plm(pv

2524). This
means that this discrete tensor mode is not invariant un
~vector! gauge transformations. It may be generated b
purely spatial gauge transformation without disturbing
value of the scalar field@11#. We may therefore use the re
maining gauge freedom in the decomposition~6! to set

W( i )
i j i 8 j 850. We conclude that up to a term involving a pu

gauge mode, we can deform the contourC1 into the contour
C shown in Fig. 2. Since the integrand involves a fac
(p sinhpp)21 which has a double pole atp50, we leave the
contour avoiding the origin on a small semicircle in the u
per halfp plane. We shall see that for the Coleman–De Lu
cia and Hawking-Turok cases the complete integrand is
tually regular atp50, but for perfect de Sitter space th
double pole survives. In the latter case the contribution to
Green function from the small semicircle acts to regulate
integral *0

`dp/p2 coming from the real axis. Thus, in ou
treatment, even in perfect de Sitter space the Green func
is finite, in contradiction to the conclusion reached in tre
ments based on mode-by-mode matching.

Finally, since the Green equation~17! only depends on
p2, we would like to write our Euclidean Green function
a sum of its symmetric and antisymmetric part. Denoting
integrand in Eq.~23! by I p we then have

GE
i ji 8 j 85

1

2E dp~ I p1I 2p!1
1

2E dp~ I p2I 2p! , ~24!

where the integral is taken fromp52` to ` along a path
avoiding the origin above. But*dpI2p along this contour is
equal to the integral ofI p taken along a contour avoiding th
origin below. The second term is therefore equal to the in
gral of I p along a contour around the origin. Hence we ha

1

2E dp~ I p2I 2p!52p iRes~ I p; p50! . ~25!

It has been known that a degeneracy appears betw
p250 tensor modes andps

2524 scalar harmonics. As a
consequence of this, thep250 tensor perturbation couples t
the inflaton field, and is not represented by a simple actio
the form ~8!. Hence this part of the correlator should b
treated as a scalar perturbation, as was done in@5#.

In thep-symmetric part of the correlator, we can leave t
integrand as a sum ofI p andI 2p . We henceforth denote th
path from2` to 1` avoiding the origin above byR. This
shall turn out to be a regularized version of the integral o
the real axis. Our final result for the Euclidean tensor Gre
function then reads:
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GE
i ji 8 j 8~m,X,X8!5

k

2ER

dp

psinhpp
Wi ji 8 j 8

~p!
~m!

3S gp~X!Cp~X8!

a2p
1

g2p~X!C2p~X8!

ap
D .

~26!

IV. TWO-POINT TENSOR CORRELATOR IN AN OPEN
UNIVERSE

The analytic continuation into the open universe is giv
by setting V52 ix and s5 i t ~see @5#! and letting a(t)
→b(s)[2 ia( is). HereV, is the polar angle on the three
sphere. For our correlator, without loss of generality we m
take one of the two points, sayV8, to be at the north pole o
the three-sphere. Thenm5V, andm continues to2 ix. We
then obtain the correlator in the open universe where
point has been chosen as the origin of the radial coordin
x.

The background line element of the Lorentzian region

ds252dt21a2~ t !~dx21sinh2xdV2
2!. ~27!

The conformal coordinateX continues to conformal timet as
follows:

X[E
i t

sm ds

b~s!
52t2

ip

2
~28!

where the conformal timet is defined via

t[ lim
e→0

S E
e

sm ds

b~s!
2E

e

t dt8

a~ t8!
D . ~29!

We now wish to make the substitutionsm52 ix, wherex is
the comoving separation onH3, in the open universe, an
X52 ip/22t. The first continuation may be done immed
ately. We use the explicit formula for the bitensor regular
m5p, given in the Appendix, Eqs.~A6!, ~A10! and ~A11!,
to write the following p integral for the Euclidean Gree
function:

GE
i ji 8 j 8~m,X,X8!5

k

2ER

dp

p sinhpp S gp~X!g2p~X8!

1
ap

a2p
gp~X!gp~X8! DW(p)

i j i 8 j 8~x!

1~p→2p! , ~30!

where we have used the formula~19! to re-expressCp in
terms of the Jost functionsgp(X). The obstacle to setting
X52t2 ip/2 is that the integrand of Eq.~30! contains a
term gp(X)gp(X8);eip(X1X8). If we simply make the sub-
stitution X52 ip/22t, this would produce a term going a
epp. But the bitensor defined in Eqs.~A10! and ~A11! in-
volves terms which behave ase1p(p1 ix), and the two factors
of epp would lead to a meaningless divergent integral.
circumvent the problem, we use the following identity. F
X2X8.0, we have
4-6
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E
R

dp

p

gp~X!cp~X8!

a2p
eipxF~p!50 ~31!

whereF(p) are thep-dependent coefficients occurring in th
final ~Lorentzian! form for the bitensor given in Eq.~A12!.
This identity holds up to the constantp5 i gauge mode. It
follows from the analyticity properties of the integrand e
plained above and the fact that, despite first appearan
formulas~A12! are actually analytic atp5 i . We now insert
15sinhpp/sinhpp under the integral, to show that the int
gral ~31! with a factorepp/sinhpp inserted equals that with
a factore2pp/sinhpp inserted. The resulting identity allow
us to replace the dangerous terms in the bitensore1p(p1 ix)

by e2pp1 ipx, and similarly in the (p→2p) term of ~30!.
We now perform theX continuation. The analytic con

tinuation of the Euclidean mode functions is given by

g6p~X!→e6pp/2g6p
L ~t! ~32!

where the Lorentzian Jost functiongp
L(t) is the solution to

the Lorentzian perturbation equationK̂gp
L(t)5p2gp

L(t)
obeyinggp

L(t)→e2 ipt ast→2`. Equation~32! follows by
matching at largeX. We finally obtain the Lorentzian tenso
Feynman~time-ordered! correlator, fort82t.0:

GL
i j i 8 j 8~x,t,t8!5

k

2ER

dp

p sinhpp S e2ppgp
L~t!g2p

L ~t8!

1
ap

a2p
gp

L~t!gp
L~t8! DWL(p)

i j i 8 j 8~x!

1~p→2p! , ~33!

where the Lorentzian bitensorWi ji 8 j 8
L(p) (x) of relevance in the

hyperbolic universe is defined in the Appendix, Eq.~A12!.
The factorap /a2p is simply a phase, since for realp the
Euclidean wave function is real, soap* 5a2p .

Now we would like to represent the result~33! as an
integral over realp. The term (p sinhpp)21 in the integrand
seems to produce a double pole atp50. However, for either
the Coleman–De Luccia or Hawking-Turok instantons,
reflection term in Eq.~33! turns out to precisely cancel th
first term asp→0. This cancellation was first discovered
Refs. @10,8#. The reason for the cancellation is that for a
potential except a perfectly reflectionless one, at very l
momenta~i.e. very long wavelengths! the wave function is
completely reflected. This means that in the smallp limit
both ap /a2p and cp /dp tend to 21 @22#. This makes the
integrand of Eq.~33! analytic asp→0. It is, however, clear
from the form of the potentials~Fig. 1! that the Coleman–De
Luccia instantons are much closer to the perfectS4 nonre-
flecting solution. Therefore we may expect the regim
cp /dp→21 to set in at much lowerp than in the Hawking-
Turok case. This will lead to a larger contribution to th
large angle microwave anisotropies. As mentioned abov
virtue of our treatment seems to be that even the de S
result is finite.
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In the cases of interest therefore there is no singularity
p50, and we may take the contour to run along the reap
axis. Using the symmetryp→2p, the right hand side of Eq
~33! becomes

k

2E2`

` dp

p
Wi ji 8 j 8

L(p)
~x!S cothpp@gp

L~t!g2p
L ~t8!

1g2p
L ~t!gp

L~t8!#2@gp
L~t!g2p

L ~t8!2g2p
L ~t!gp

L~t8!#

1
1

sinhpp F ap

a2p
gp

L~t!gp
L~t8!1

a2p

ap
g2p

L ~t!g2p
L ~t8!G D .

~34!

For realp, g2p
L (t) is the complex conjugate ofgp

L(t) and
a2p of ap . So the second term is imaginary but the first a
third terms are real. In fact it is straightforward to see tha
we apply the Lorentzian version of the perturbation opera
K̂ to Eq. ~34! with an appropriate Heaviside function oft
2t8, the imaginary term will produce the Wronskian o
g2p

L (t) and gp
L(t), which is proportional top, times d(t

2t8). Then the integral overp produces a spatial delta func
tion. From this one sees that our Feynman correlator ob
the correct second order partial differential equation, with
delta function source. The delta function source term in
~11! goes from being real in the Euclidean region to ima
nary in the Lorentzian region because the factorAg contin-
ues toiA2g.

For cosmological applications, we are usually interes
in the expectation of some quantity squared, such as the
crowave background multipole moments. For this purpo
all that matters is the symmetrized correlat
^$t i j (x),t i 8 j 8(x8)%& which is just the real part of the Feynma
correlator. It also represents the ‘‘classical’’ piece, which
the situations of interest, where occupation numbers
modes are large, is much larger than the quantum piece

For the tensor correlator we also need to restore the fa
ia21(t) to t i j . It is convenient to define the eigenmod
Fp

L(t)5gp
L(t)/a(t). The extra minus sign hereby intro

duced in the correlator is cancelled by a change in sign of
normalization factorQp , which then becomesQp51(p2

14)/(30p2). These two sign changes are naturally relat
as is seen by considering the behavior of the line elem
~27!. Under continuation the line element onS3 changes to
minus that onH3, but the change in sign of thea2 coefficient
compensates, keeping the spatial line element positive.
cancellation of these signs ensures that the Lorentzian
relator has the correct positivity properties. The symmetriz
correlator is then given by

^$t i j ~x!,t i 8 j 8~x8!%&52k RE
0

`dp

p S cothppFp
L~t!F2p

L ~t8!

1
ap

a2p

Fp
L~t!Fp

L~t8!

sinhpp DWi ji 8 j 8
L(p)

~x!

~35!
4-7
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whereWi ji 8 j 8
L(p) (x) is defined in the Appendix, Eqs.~A3! and

~A12!. In this integral it may be written as

W(p)
i j i 8 j 8~x!5(Plm

qPlm
(p) i j ~V!qPlm

(p) i 8 j 8~V8!* ~36!

whereqPlm
(p) i j (V) are the rank-2 tensor eigenmodes with

genvalueslp52(p213) of the Laplacian onH3. For x
→0 the bitensor converges and it exponentially decays
large geodesic distance. At largep, its coefficient functions
wj

(p) ~see the Appendix! behave likep sinpx. Hence the
above integral converges at largep for both timelike and
spacelike separations. Equation~35! is our final result for the
tensor spectrum from singular instantons. As in the sc
calculation @5#, and as mentioned above, for Coleman–
Luccia instantons the phaseap /a2p gets replaced bycp /dp ,
which is the reflection amplitude for waves incident fro
X51` in the Euclidean region.

Before moving on to the observational consequences
Eq. ~35! we would like to make one more technical com
ment. We mentioned already that a degeneracy appear
tweenp250 tensor modes andps

2524 scalar perturbations
These discrete modes were initially interpreted as bub
wall fluctuations@23,24#. However, in our approach they d
not contribute in the scalar calculation~for l>2) because the
corresponding spherical harmonics are singular and o
complete on the Euclidean three-sphere. More recently
wall fluctuations were argued to have re-appeared as a l
wavelength continuum contribution on top of the usual co
tinuous spectrum of even parity gravitational wave mod
@10#. In this way, the bubble wall fluctuations were found
regularize the tensor spectrum, thought to be infrared div
gent in pure de Sitter space@10#. Our result for the correlato
for a Coleman–De Luccia model is indeed infrared finite a
the cancellation caused by total reflection of low moment
modes allowed us to represent the result as an integral s
ing at p50. However, we do not agree that the presence
the bubble was needed to regularize the spectrum. In
method, even in perfect de Sitter space we obtain a fi
result, because the contribution of the small semicircle on
contourC shown in Fig. 2 regularizes the final answer. So
our approach the tensor spectrum in perfect de Sitter sp
appears to be infrared finite, contrary to the findings of e
lier works.

V. IMPLICATIONS FOR THE CMB ANISOTROPY

Gravitational waves provide an extra source of time
pendence in the background in which the cosmic microw
background photons propagate. The contribution of grav
tional waves to the CMB anisotropy is given by the integ
in the Sachs-Wolfe formula@25#

dTSW

T
~u,f!52

1

2Ete

t0
dttxx,t~t,x,u,f!ux5t02t ~37!

wheret0 andte are respectively the observing and last sc
tering time for the photons andx is the comoving radial
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coordinate. The anisotropy is characterized by the two-po
angular correlation functionC(g), whereg is the angle be-
tween two points on the celestial sphere. It is customary
expand the correlation function in terms of Legendre po
nomials as

C~g!5 K dT

T
~0!

dT

T
~g!L 5(

l 52

`
2l 11

4p
Cl Pl~cosg!,

~38!

where in standard notationCl5^ualmu2&. Hence, inserting the
Sachs-Wolfe integral into Eq.~38! and substituting Eq.~35!
for the two-point fluctuation correlator yields

C~g!5
1

4Ete

t0
dtE

te

t0
dt8

]

]t

]

]t8
^txx~t,0!tx8x8~t8,g!&.

~39!

In order to obtainCl we write the bitensor back in terms o
its defining tensor eigenmodes onH3, Eq. ~36!. Since
qxx

(p)olm50, only the even parity modes contribute to th
CMB anisotropy. The normalized eigenfunction
qxx

(p)elm(x,u,f) can be written asQxx
pl (x)Ylm(u,f), where

@26#

Qxx
pl ~x!5

Nl~p!

p2~p211!
~sinhx! l 22S 21

sinhx

d

dx D l 11

~cospx!

~40!

and

Nl~p!5F ~ l 21!l ~ l 11!~ l 12!

p)
j 52

l

~ j 21p2! G 1/2

. ~41!

Hence we obtain for the power spectrum of multipole m
ments,

Cl5kRE
0

1`dp

2pEte

t0
dtE

te

t0
dt8S cothpp@Ḟp

L~t!Ḟ2p
L ~t8!#

1
1

sinhpp F ap

a2p
Ḟp

L~t!Ḟp~t8!G DQxx
pl Qx8x8

pl . ~42!

The contribution to the multipole moments due to the s
ond reflection term falls exponentially with increasing wa
number. However, in contrast with the scalar fluctuations
long-wavelength tensor perturbations do give a substan
contribution to the CMB anisotropies. Hence the depende
of the tensor spectrum on the boundary conditions for
perturbations defined by the instanton background
Dirichlet for Hawking-Turok, free boundary conditions fo
Coleman–De Luccia—may provide a way to observationa
distinguish different versions of open inflation. From the d
cussion above, we expect a larger contribution at lowp for
regular instantons. We shall perform the numerical com
tation of the needed reflection coefficients in future work@7#.
4-8
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GRAVITY WAVES FROM INSTANTONS PHYSICAL REVIEW D62 083514
In addition, for a complete calculation of theCl one must
evolve the Lorentzian mode functionsFp

L(t) forward from
the beginningt52` of inflation inside the open univers
up to the present timet5t0. In the inflationary phase of the
open universe the mode functions closely follow perfect
Sitter evolution in which they tend to a constant after t
physical wavelength has been stretched outside the Hu
radius. The amplitude and phase of this constant define
tial conditions for the radiation and matter dominated era
which the modes of interest re-enter the Hubble radius.
radiation and matter evolution is straightforward to stu
numerically, and from this one can compute the Sachs-W
integral ~42! and the multipole momentsCl .

VI. CONCLUSION

We have computed the spectrum of tensor perturbat
predicted in open inflation, according to Euclidean no bou
ary initial conditions. The Euclidean path integral unambig
ously specifies the tensor correlators with no additional
sumptions. We feel that the present work places ear
results on a substantially firmer footing. Our final result f
the correlator Eq.~35!, and the cosmic microwave multipol
moments~42! is given in terms of scattering amplitudes
the Euclidean region and mode functions in the Lorentz
region. Both are straightforward to compute numerically, a
we shall do so in future work@7#.

Note added in proof. We have given an analogous trea
ment of gravitational waves in de Sitter space in@28#.
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APPENDIX: MAXIMALLY SYMMETRIC BITENSORS

A maximally symmetric bitensorT is one for which
s* T50 for any isometrys of the maximally symmetric
manifold. Any maximally symmetric bitensor may be e
panded in terms of a complete set of ‘‘fundamental’’ ma
mally symmetric bitensors with the correct index symm
tries. For instance,

Ti ji 8 j 85t1~m!gi j gi 8 j 81t2~m!@nigji 8nj 81njgii 8nj 8

1nigj j 8ni 81njgi j 8ni 8#1t3~m!@gii 8gj j 81gji 8gi j 8#

1t4~m!ninjni 8nj 81t5~m!@gi j ni 8nj 81ninjgi 8 j 8#

~A1!

where the coefficient functionst j (m) depend only on the
distancem(V,V8) along the shortest geodesic fromV to
V8. Hereni 8(V,V8) andni(V,V8) are unit tangent vector
to the geodesics joiningV and V8 and gi j 8(V,V8) is the

parallel propagator along the geodesic;Vigi
j 8 is the vector at

V8 obtained by parallel transport ofVi along the geodesic
from V to V8 @18#.

The bitensor
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W(p) i 8 j 8
i j

~m!5(Plm
qPlm

(p) i j ~V!qi 8 j 8
(p)Plm

~V8!* ~A2!

appearing in our Green function~15! has some additiona
properties arising from its construction in terms of the tra
verse and traceless tensor harmonicsqi j

(p)Plm on S3 ~or H3).
The tracelessness ofWi ji 8 j 8

(p) allows one to eliminate two of
the coefficient functions in Eq.~A1!. It may then be written
as @19#

Wi ji 8 j 8
(p)

~m!5w1
(p)@gi j 23ninj #@gi 8 j 82ni 8nj 8#

1w2
(p)@nigji 8nj 81njgii 8nj 81nigj j 8ni 8

1njgi j 8ni 814ninjni 8nj 8#1w3
(p)@gii 8gj j 8

1gji 8gi j 822nigi 8 j 8nj22ni 8gi j nj 8

16ninjni 8nj 8#. ~A3!

The requirement that the bitensor be transverse¹ iWi j i 8 j 8
(p)

50 and the eigenvalue condition (D32lp)W(p)
i j i 8 j 850 im-

pose additional constraints on the remaining coefficient fu
tions wj

(p)(m). To solve these constraint equations it is co
venient to introduce the new variables@19#

a~m!5w1
(p)~m!1w3

(p)~m!

b~m!5
7

~p219!sinm

da~m!

dm
, ~A4!

wherem is the geodesic distance onS3. In terms of a new
argument z5cos2(m/2) the transversality and eigenvalu
conditions imply, fora(z),

z~12z!
d2a~z!

d2z
1F7

2
27zGda~z!

dz
5~p219!a~z!

~A5!

and then, for the coefficient functions,

w15Qp@2~lpr 226!z~z21!22#a~z!

1 4
7 @~lpr 216!z~z2 1

2 !~z21!#b~z!

w25Qp2~12z!@~lpr 226!z13#a~z!

2 4
7 @~lpr 216!z~z21!~z2 3

2 !#b~z!

w35Qp@22~lpr 226!z~z21!13#a~z!

2 4
7 @~lpr 216!z~z2 1

2 !~z21!#b~z! ~A6!

with lp5(p213) on S3 andQp a normalization constant.
To fix the normalization constantQp we contract the in-

dices in the coincident limitz→1. This yields@19#

Wi j
(p) i j ~V,V!5(Plm

qi j
(p)Plm~V!q(p)Plmi j~V!* 530Qpa~1!.

~A7!
4-9
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THOMAS HERTOG AND NEIL TUROK PHYSICAL REVIEW D62 083514
By integrating over the three-sphere and using the norm
ization condition~14! on the tensor harmonics one obtai
Qp52p214/30p2a(1).

Notice that Eq.~A5! is precisely the hypergeometric di
ferential equation, which has a pair of independent soluti
a(z)52F1(31 ip,32 ip,7/2,z) and a(12z)52F1(31 ip,3
2 ip,7/2,12z). The former of these solutions is singular
z51, i.e. for coincident points on the three-sphere, and
latter is singular for opposite points. The solution forb(z)
follows from Eqs.~A4! and is given by

b~z!52F1~42 ip,41 ip,9/2,z!. ~A8!

The hypergeometric functions are related by the transfor
tion formula ~Eq. @15.3.6# in @27#!

2F1~a,b,c,z!5
G~c!G~c2a2b!

G~c2a!G~c2b! 2F1~a,b,a1b2c,12z!

1
G~c!G~a1b2c!

G~a!G~b!
~12z!c2a2b

2

3F1~c2a,c2b,c2a2b,12z!. ~A9!

Only for the eigenvalues of the Laplacian onS3, i.e. p
5 in (n>3), does the term on the second line vanish
2F1(31 ip,32 ip,7/2,z). In this case the functions are re
lated by (21)n11 and they are both regular for any angle
the three-sphere. But sinceF(12z)→1 for coincident
points, it is convenient to takea(12z) in the bitensor ap-
pearing in the Euclidean Green function~20!. In fact, the
hypergeometric series terminates for these parameter va
and the hypergeometric functions reduce to Gegenba
polynomialsCn23

(3) (122z).
We conclude that the above properties required of

bitensor completely determine its form. Notice that in ter
of the labelp we have obtained a ‘‘unified’’ functional de

scription of the bitensorW(p)
i j i 8 j 8 on S3 and H3 although its

explicit form is very different in both cases. In fact it
precisely this which allowed us in Sec. IV to analytical
continue the angular part of the Green function from
Euclidean region into the open universe.

To perform the continuation we note that the Euclide
geodesic separationm continues to2 ix wherex is the co-
moving geodesic separation onH3. We apply the relation
~A9! in an intermediate step of the calculation, the contin
ation of the bitensor into the complexp plane. In this step the
functions2a(z),b(z) rather thana(12z) andb(12z) en-
ter. The hypergeometric functions onH3 are defined by ana
lytic continuation ~Eq. @15.3.7# in @27#! and may be ex-
pressed in terms of associated Legendre functions as

a~z!515Ap

2
~2sinhx!25/2P21/21 ip

25/2 ~2coshx!,

b~z!515Ap

2
~2sinhx!27/2P21/21 ip

27/2 ~2coshx!.

~A10!
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Using the relation2cosh(x)5cosh(x2ip), the Legendre
functions may be expressed as

P21/21 ip
25/2 ~2coshx!5A 2

2p sinhx
~11p2!21~41p2!21

3F23 cothx coshp~p1 ix!

2
i sinhp~ ix1p!

2p
@~22p2!~1

1coth2x!1~41p2!cosech2x#G
P21/21 ip

27/2 ~2coshx!5A 2

2p sinhx
~11p2!21~4

1p2!21~91p2!21Fcoshp~p1 ix!

3~p2211215 cosech2x!

26
i sinhp~ ix1p!

p
@~12p2!coth3x

1~p21 3
2 !cothx cosech2x#G . ~A11!

The factorse6pp in these expressions combine with simil
factors from the continuation of the conformal spatial co
dinate X to produce our final result~35!. The coefficient
functions of the bitensorWi ji 8 j 8

L(p) (x) in our final result~35!
for the tensor correlator are

w15
cosech5x

4p2~p211!
Fsinpx

p
@31~p214!sinh2x

2p2~p211!sinh4x#

2cospx@3/21~p211!sinh2x#sinh 2xG
w25

cosech5x

4p2~p211!
Fsinpx

p
@3112 coshx23p2

3~112 coshx!sinh2x1p2~p211!sinh4x#

1cospx@21223 coshx12~p222!sinh2x

12~p211!coshxsinh2x#sinhxG
w35

cosech5x

4p2~p211!
Fsinpx

p
@323p2sinh2x

1p2~p211!sinh4x#1cospx@23/2

1~p211!sinh2x#sinh 2xG . ~A12!
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As mentioned before, forx→0 these functions converge an
they exponentially decay at large geodesic distances.
also note that in this form one should take the normalizat
factor Qp to be positive, as explained in the text.

Finally, let us mention that the scalar Green function@5#
may also be described in terms of hypergeometric functio
In terms of the variablez, the equation for the angular pa
Cp(m) of the scalar Euclidean Green function@Eq. ~35! in
@5## reads

z~12z!
d2Cp~z!

d2z
1F3

2
23zGdCp~z!

dz
5~p211!Cp~z!.

~A13!

If we express the Green function as an infinite sum@Eq. ~38!
in @5##, the appropriate solution regular atm50 andm5p is

Cp~z!5QpF~11 ip,12 ip,3/2,12z!5
Qpsinhpm

p sinm
.

~A14!

As for the tensor correlator, the normalization constantQp is
determined by the normalization of the scalar harmonics
S3. However, because of the extra factor (D313) in the
scalar Green equation@Eq. ~35! in @5##, we must also divide
by 41p2 in this case. This reproduces precisely the angu
part of the scalar Green function@Eq. ~38! in @5##.
f
ro

ys

ys
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When expressing the Euclidean Green function as an
tegral, we continueCp(z) into the complexp plane, and
again need to express it in terms of the hypergeometric fu
tion regular atz50. We re-expressF(11 ip,12 ip,3/2,1
2z) using the relation~A9! and obtain

cothpp
sinhpm

p sinm
5

sinhp~p2m!

p sinhpp sinm
1

coshpm

p sinm
. ~A15!

The factor cothpp is needed in converting the sum into
contour integral. The first term is regular for opposite poin
and leads exactly to the angular part of the Lorentzian c
relator @Eq. ~46! in @5## in the same way as described abo
for tensor fluctuations. The second term is a bit more sub
Its analogue in the tensor correlator did not contribute to
contour integral because it had no poles within the conto
However, in the scalar case we need to take into accoun
extra normalization factor 1/(p214) which has a pole atp
52i . This is the underlying reason for the presence of
extra term in the integral representation of the scalar Euc
ean Green function@second term in Eq.~37! in @5##. As ex-
plained in @5#, the (p2V) factor in front of it arises from
matching the delta function in the Green equation, wh
unlike the tensor Green equation is fourth order in deri
tives. This is also the reason why we had to include the e
factor 1/(p214). Nevertheless, it is clear that the scalar a
tensor cases are very closely parallel.
er,
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