PHYSICAL REVIEW D, VOLUME 62, 083514

Gravity waves from instantons
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We perform a first principles computation of the spectrum of gravity waves produced in open inflationary
universes. The background spacetime is taken to be the continuation of an instanton saddle point of the
Euclidean no boundary path integral. The two-point tensor correlator is computed directly from the path
integral and is shown to be unique and well behaved in the infrared. We discuss the tensor contribution to the
cosmic microwave background anisotropy and show how it may provide an observational discriminant be-
tween different types of primordial instantons.

PACS numbse(s): 98.80.Hw, 04.62+v, 98.80.Cq

I. INTRODUCTION Lorentzian region of interest. Our main result for the tensor

The inflationary universe scenario provides an appealin correlator(32) is given in a form which is straightforward to
Y P bp %9mpute numerically. We defer detailed numerical calcula-

explanation for the smoothness and flatness of the presefit o the CMB anisotropies to a future pajét in which

universe, as well as a mechanism for the origin of densit - .

) . ) . . o oth scalar and tensor contributions for a variety of scalar
fluctuations. Until recently it was believed that inflation in- . . .
evitably predicted a fla€)y=1 universe. However, ipl] it potentials will be discussed.

. 0 e Pt . There have over the last few years been many papers
was shown that with m"‘?‘ fine-tuning an open universe ISexploring similar calculations, mostly making one approxi-
_also possnble._The_ potential must have a sharp false VaCUUfation or anothefo—11]. Very recently, Garrig&t al. have
in which the field is assumed to have become trapped. Thggependently obtained formulas for the scalar and tensor
field is then assumed to tunnel out via an instanton known agqre|ators similar to ourkl2,13. These formulas have been
the Coleman—De Luccia instant¢@], producing a bubble  nymerically implemented in Ref14] which gives results for
within which slow roll inflation occurs. The interior of the gome examples of Coleman—De Luccia instantons calculated
bubble produced via the Coleman—De Luccia instanton is agithout approximation.
infinite inflating open universe. We feel that the derivation given here is significantly

Such models provide important counter-examples to thelearer than in those papers, and that our method has several
standard folklore but require quite contrived scalar field poimportant conceptual advantages. First, all earlier authors
tentials. Recently, however, Hawking and one of us showegerformed a mode by mode analysis. In this framework, one
that open inflation can occur much more generally. Werequires a prescription for the vacuum state for each pertur-
found a new class of instantoh3] that exist for essentially bation mode and this is taken to be the state in which the
any inflationary potential and provide saddle points of thepositive frequency modes are regular on the lower half of the
Euclidean path integral. The continuation of these instantonimstanton. This prescription is rathad hoc In contrast, our
is similar to that of the Coleman—De Luccia instantons, andnethod is to simply perform the Euclidean no boundary path
they define initial conditions for open inflationary universes.integral. This automatically gives a unique Green function.
Although the Hawking-Turok instantons are singular, theThere is no need for an additional prescription; indeed im-
singularity is mild enough for the quantization of perturba-posing one is contrary to the spirit of the no boundary pro-
tions to be well pose@i3-5]. In this paper we compute the posal(see the discussion {i5]). The whole idea of the Eu-
spectrum of gravity waves for both Coleman—De Luccia anctlidean no boundary proposal is that an essentially
Hawking-Turok instantons. topological prescription should define the initial state of the

This paper is a companion to R¢8], where scalar fluc- universe. Analyticity arises because the background solution
tuations about open inflationary instantons were calculateds a solution of a differential equation. Divergent fluctuation
Here we perform an analogous calculation for the tensomodes have infinite Euclidean action and are therefore sup-
fluctuations and discuss possible observable signals in theressed in the path integral. Second, in the matching method
cosmic microwave backgrountCMB) anisotropy power of Garrigaet al, they devote a great deal of effort to deter-
spectrum. The calculation is performed in the framework ofmining the action for perturbations in region Il, the part of
the Euclidean no boundary proposal due to Hartle and Hawkthe Lorentzian spacetime exterior to the open universe re-
ing [6], as discussed if5]. The correlator is computed in the gion. This introduces considerable technical complexity
Euclidean region where it is uniquely determined by asince the spatial hypersurfaces used in their canonical quan-
Gaussian integral, and then analytically continued in the cotization approach are inhomogeneous in region Il. Our ap-
ordinates of the classical background solution into theproach is to analytically continue directly from the Euclidean

region into the open universe. Region Il is just a part of the

continuation route with no special significance. Third, as em-
*Email address: T.Hertog@damtp.cam.ac.uk phasized in[5], we deal throughout directly with the real
"Email address: N.G.Turok@damtp.cam.ac.uk space correlator. In this approach “super-curvature” modes
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are automatically included and their relation to the “sub-boundary condition, one can in principle at least compute the
curvature” modes is thereby made clear. A related fact igpath integral as a perturbative expansion to any desired
that we find the real space correlator to be infrared finitepower in.
even in perfect de Sitter space, as mentioned below. Finally, In this paper, we shall compute the two-point tensor fluc-
Garrigaet al. only give formulas for equal-time correlators. tuation correlator about classical solutions describing the be-
To compute the microwave anisotropies one requires thginning of open inflationary universes, to first orderfin
unequal-time correlator, which we give here. We are alsdrhe principles are described [iB], namely that we compute
careful to define the continuation of the conformal time co-the correlator in the Euclidean region where the expoi@nt
ordinate into the Euclidean region, which is not explained inin the path integral becomesSg= —(S;+S,), whereSg is
Ref. [14]. the Euclidean action$, is the instanton action an§, the
The paper is organized as follows. In Sec. Il we describeaction for fluctuations. We shall keep the latter only to sec-
the relevant path integral and the model-dependent Schr@nd order, this being all that is needed to compute the quan-
dinger operator which occurs in the Euclidean action. Weum fluctuations to leading order #. The correlator is then
show that for singular instantons the singularity acts as given by a Gaussian path integral
reflecting boundary, fixing Dirichlet boundary conditions for

the perturbation modeg3-5|. The Euclidean tensor cor- s, ,
relator is computed from the path integral in Sec. llI. In this f [DSgIDoBle 2t ()t (X")
calculation we need several properties of maximally sym- (tij()tij/(x"))=

metric bitensors 01%%, which are described in the Appendix. f [DSg][DEple =2

Section IV describes the analytic continuation to the open %)

universe. Finally, Sec. V is devoted to the Sachs-Wolfe in-

tegral to determine the contribution of gravitational waves toThe | orentzian correlator is then obtained by analytically

the CMB anisotropy. Here we comment on possible obsergontinuing in the coordinates of the background classical so-

vational distinctions between Coleman—De Luccia andyton, into the open inflating region.

Hawking-Turok instantons. _ _ The O(4) symmmetric instantons of interest possess a
We conclude this Introduction with two technical re- |ine element of the formdaz+b2(a)dQ§ wheredﬂg is the

marks. First, the question of discrete “super-curvature” ;.o alement orS3. Both Hawking-Turok and Coleman—De

modes arises in the tensor calculation just as in the scalgn, . ia instantons possess a regular pole which we take to be

case[5]. Here, however, we find that although the relevantat o=0. As o approaches zero, we hatdo)—o. The

Schralinger operator possesses a pound state just as in ﬂa,eoleman—De Luccia instantons have a second regular pole
case of scalar perturbatiofiS], here it does not generate a whereb— o — o whereo... is the maximum value of. In
m m N

“super-curvature mode.” Instead the relevant mode is & ontrast Hawking-Turok instantons habe- (o,— o) 2 as
time-independent shift in the metric perturbation which may o.. It is useful in both cases to introduce a conformal

be gauged away. This is in agreement with R¢idl,12. . ; P Y :

Second, it has been claimed in much of the previous Iitera-SpatIal coordinate satisfyingX=da/b(c), so that the line
. . .~ _element takes the form

ture that the spectrum of gravity waves in pure de Sitter

space is infrared divergertl5,9 but that the divergence d<2=b2(X)(d X2+ dO2 3

disappears once the existence of the bubble wall is taken in (X)( 3) ®

account 10]. In our approach we find a different result. Ne- g, Hawking-Turok instantons we define

glecting the gauge mode previously mentioned, the two point

correlator has a well-defined long-wavelength limit even in o do’

perfect de Sitter space. We shall investigate this issue further XEJ " (4)

in future work. s b(a')

so X=0 corresponds to the singular pole akd->x to the
regular pole. For Coleman—De Luccia instantohshay be

In quantum cosmology the basic object is the wave funcconveniently defined byfg‘dcr’/b(a"), where o, is the
tional W[h;;,¢], the amplitude for a three-geometry with value of sigma for whictb is a maximum, and theX ranges
metrich;; and field configuratiosp. It is formally given by @ from —o to +. We write the perturbed line element and
path integral the scalar field as

II. PATH INTEGRAL FOR TENSOR FLUCTUATIONS

h | _ _h2 2 i YAy

wih, ,¢]~J i ¢[Dg][D¢]e'S[9"”]. @ ds?=b2(X)[(1+2A)d X2+ SdX'dX+ (y;;+h;;)dx'dx],
= do(X)+6¢. (5

Following Hartle and Hawking6] the lower limit of the path

integral is defined by continuing to Euclidean time and inte-and decomposg&; andh; as follows[16]:

grating over all compact Riemannian metrgcand field con-

figurations ¢. If one can find a saddle point of Eql),

. \ oo . E+2F; i+t
namely a classical solution satisfying the Euclidean no (il1)

ijo

b= hy, +2 Vv — A
=3 Yij iVjT 3723
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Here A5 is the Laplacian andjj the covariant derivative on
the three-sphere. With respect to reparametrizations of the -0.5
three-sphereh, B and E are scalarsV; and F; are diver-
genceless vectors ang is a transverse traceless symmetric
tensor.

One may expand the spatial part of each of these ispin-
fields in terms of a complete set of harmonics, labeled by the
eigenvalues\ ,= p?+(r +1) of the Laplacian or§®. Here
p=in andnis an integer. In general the decomposition of a
metric perturbatiorh;; into a scalar, vector and tensor part is -2
unique. Hence one can writg F; andt;; back in terms of
hi; [16,17. For scalap?= —4 and vectop’= —4 harmon- O
ics, however, the decomposition is not unique and there ap- ' -2
pears a degeneracy between scalar- or vector-type perturba-
tions andp?=0 and p?=—1 tensor modes respectively.

- f the f . i d by the invol FIG. 1. Potentialu(X) occurring in the Schidinger operator
reatment of the former is complicated by the invo Vementgoverning tensor perturbations about the various instanton solutions

of the scalar field5], but the latter mode is unambiguously giscyssed in the text. The dashed line shows the potential f6f an
pure gauge. We will return to this point in Sec. IV. instanton corresponding to perfect de Sitter space, whH7¥)

The Euclidean action is = —2/cosi(X). The upper solid line shows the potential for a
Coleman-De Luccia instanton, whereo<X<o, and the lower
S= if d4x\/§( —R+ EV ¢>V“¢+V(¢)) solid line that for a Hawking-Turok instanton, with the singularity
2k 2~ indicated by the vertical dotted line. The potentials have been

shifted inX so their minima coincide. All three are very similar to
_EJ d3x\/;K ) the right of the minimum. To the left, the Hawking-Turok potential
K ' diverges as one approaches the singularity. The potential is reflec-

_ _ tionless in thes* case, weakly reflecting in the Coleman—De Luccia
where the surface term is needed to remove second derivgase and totally reflecting in the Hawking-Turok case.

tives. Substituting the decompositig8) into the action(7),

we keep all terms to second order. The scalar, vector ang
tensor quantities decouple. The scalar perturbations are stu
ied in Ref.[5]. The vector perturbations are uninteresting to ) ; .
first order inf since they are forced to be zero by the Ein- For singular instantons the surface terms in @ play a

; ; _ 2
stein constraints. The tensor perturbations give the followingcrUCIaI role. Trle potentiall (X) — — 1/4X” as X—0. The
second order positive Euclidean action: elgeandeS oK thus behave aKl/Z or XllzlnX near the

singularity. The latter modes contribute positive infinity to
1 4 20eriier o siilk i the surface terms in E¢9), and are therefore suppressed in
SZ_@J' Ayt I+t 2t @) e path integral. Hence we see that as in the scalar[84se
the path integral unambiguously specifies the allowed fluc-
where the prime denotes differentiation with respect to thduation modes as those which vanish at the singularity.

conformal coordinateX. If one performs the rescalin@ij
=b(X)t;; and integrates by parts, one obtains lIl. EUCLIDEAN GREEN FUNCTION

ositive continuum starting at eigenvalp&=0, as well as a

single bound staté;; =b(X)q;; (Q) atp=i.

To evaluate the path integr&®), we first look for the

Green functiorG' I’ of the operator in Eq(9). The Euclid-
ean fluctuation correlator(2) will then be given by

1 - ~
Szzaf d*xyTij (R +3—Ag)t!

1 , ~ b : _ _
~ax J d x\/;fijt” F(X) 9 b YX)b }X")GE" ! . The Euclidean Green function satis-
fies
where the Schidinger operator
1 . N
A d> b d? T (K+3-A5)GL, (X,X,Q,Q")
K:—ﬁﬁ‘g—lE—@ﬁ‘U(X). (10) 4k
:5()(_X’)’yillztsiji/j/(Q_Q’). (11)

The form of the potential(X) is shown in Fig. 1 for

Euclidean de Sitter spadée. a four-sphere as well as ex- |f we think of the scalar product as defined by integration
amples of a Coleman—De Luccia instanton and a Hawkingover S* and summation over tensor indices, then the right
Turok instanton. The operatdf has in all three cases a hand side is the normalized projection operator onto trans-
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verse traceless tensors &. Since the eigenmodes of the 1 N -
Laplacian form a complete basis, we can write the last term Gp(X,X") =1 [V (X) ¥ (X)O(X=X")
as P
- + ’ r__
—1/25I]|, ;(Q—Q/) +\I,p (x)"Pp(x )®(x X)], (18)

|
_2 E 2 E q%)mu(ﬂ)q(k)ﬂm(ﬂ o (12) where ¥ (X)lllzs the solution to the Schdinger equation
P=e,0 [=2 m=—1 that goes a2 asX—0 and¥ p (X) is the solution going
asePX=e "X as X tends to |nf|n|ty The facton\,, is the
where onS® we have WronskianW ;"W » — W ¥ of the two solutions.
Agqlil = ) @i (13) We shall yltlmately be interested in re-expressing this so-
lution as an integral over real valuesmin order to continue
with A= —k(k+2)+2. Here P={e,0} labels the parity, it to the+0pen universe. To do so we must extend the solu-
the angular momentum onS® takes the valuesk tions ¥, defined above ap=in into the complexp plane.
=2,3,4 ... and 2<I<k and—I<m=] are the usual quan- ¥, (X) becomeslf p(X), defined for all complex to be the
tum numbers on the two-sphere. Note thiat ) because a solution which tends (Y2 as X—0. Being a solution of a
spin-2 field has no monopole or dipole components. Theéegular differential equation this is analytic for finjpen the
eigenmodes are normalized by the condition complexp plane. On the other hant¥ +(X) is the analytic
continuation ofgp(xl)pxdefmed on the rea;b axis to be the
3y (K)ij o (KD)% kK’ solution tending te'P* as X—oe. This is the Jost function,
f VYO O = 0% Oppr SOy - (14) and is analyticgi]n the upper haif plane[20]. The two solu-

tions may be expressed in terms of each other as
The set of eigenmodes forms a representation of the sym-

metry groupSQ(4) of the manifold. It follows in particular
that the sum oveP, | andm defines a maximally symmetric Y o(X)=a,gp(X)+a_pg-p(X), (19
bitensor[18]

ij k (kyPIm (s and their Wronskiam\ =WV g,—g,V,=—2ipa_,, inde-
Wigirj (m) = 2 q( )”(Q)q (Qn)* (19 pendent ofX. This too is analytic in the upper hagifplane.
Zeros ofa_ , in the upper halp plane correspond to normal-
which depends only on the geodesic distapg€), ') be- izable bound states. They can only occur on the imagipary
tween the two points 08%. The Green funC“ONBE, . can @axis, and in the case of interest here the only zero in the

only be a function ofu(Q,Q) if it is to be invariant under UPPer halfp plane is atp=i. This Z€r10 corresponds fo the
isometries of the three-sphere. Note that the indiceie in ~ 2ound state mentioned above. Bor X" we have the Green

function as a discrete sum:

the tangent space over the pofatwhile the indices’,j’ lie
in the tangent space over the pofdt. The general form of
the bltensoNV'k Yor appearing in tensor fluctuation correla- Gii ’j’( X X
E lu‘y Ll )
tors has been obtained by Allgd9] and is given in the _
Appendix below. Here we note already that in terms of the e . - o
label p=i(k+1)=in, the bitensor orS® has precisely the =4Kp23i ZpT‘I’p(X)‘I’p(X')W(Jp) (w). (20
= -p

same formal expression as the corresponding objeditn
Since we would like to analytically continue our result for
the Euclidean tWO-pOint correlator into the open Universe, We For regu|ar Coleman-De Luccia instantons a similar pro-
will use the labep=in from now on. We now return to Eq. cedure may be followed. Hebéranges from- to + and

(1) for the Euclidean Green function. we define the two linearly independent mode functions
By substituting the following ansatz for the Green func- Ieft(x) which tends toe 'P* as X— —, and grlght(x),
tion, which tends toe'PX as X— . These can be shown to be

orthogonal and analytic in the upper half plane. AsX

(X X = 4K2 G, (X, XYW (), (16) —+>, we haveg f(X)—c,e'P*+d,e 'PX. Hence, the
E' N P (Pi'j’ ' rlght rlght/ Ieft

Wronskian A = gp gy, 9, =—2ipd, and the

into Eq. (11) and noting that in terms op=in, we have Green functionGy' 2 (M X,X") may be expressed in a form
\p=Pp2+3, we obtain an equation for the model-dependennalogous to that for singular instantons.

part of the Green function: Before proceeding to the analytic continuation, let us
demonstrate that our Euclidean Green functions are regular
(R—pz)Gp(X,X’)=5(X—X'). (17)  at the regular pole. This is a nontrivial check because the

coordinateso and X are singular there, and the rescaling
Let us first discuss the case of singular instantons. Theéecomes divergent tob(X)~ o~ 1~e**. In the largeX, X’
solution to Eq.(17) is limit, Eq. (20) becomes
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2F1

. 7
3+|p,3—|p,§,z)

7
=(—coshpm),F, 3+ip,3—ip,§,1—z)

aulh

T(3+ip)L(3—ip)

[4A)

r

FIG. 2. Contour for the Euclidean correlator. (1—2) 52,F,

Giji’j’(MXX/):zKi E e N(X=X") ¢ &in e N(X+X") X 1—ip,l+ip,—§,l—z .
E 17N = n a_in 2 2 2
XWi(jiin’)j’(M)_ (21) Notice that for the eigenvalues of the Laplacian 8 i.e.

p=in (n=3), the second term on the right-hand side van-
ishes. In this case the two choices are simply related by
For n=3 the Gaussian hypergeometric functidhé3+n,3  (—1)""! and they are both regular for alt. Since F(1
—n,7/27) that constitute the bitensoN‘(jri,)'i' have a series —2)—1 for coincident points, we take this solution in Eq.
expansion that terminates, and they essentially reduce to G&0)- But when we express the discrete s(20) as a contour

enbauer polvnomial€® .(1— 22). Using then the identit integral, to maintain regularity of the integrandat = we
d poly n-al ) g Y heed to replaceF(1—z) by a term F(z)(—1)""1,

[21] and then continue the latter term te (coshpm) L,F(3
+ip,3—ip,3,2).
. Y | oy Now we write the sum in Eq20) as an integral along a
;0 Ci(x)g=(1-2xq+q°) (220 contour ¢, encircling the pointsp=3i,4i, ... Ni on the

imaginaryp axis, whereN tends to infinity. Using the ana-
lytic properties of the terms in the discrete sum extended into

with g=e~ =X, one easily sees that the su@t) indeed the complexp plane we have, fokK>X",
converges. ,

We have the Euclidean Green function defined as an in-~iji’j’ "N dp  gp(X)ihp(X') K
fini : ; . G ' (u, X, X")=k - Wipy ! (1)
inite sum(20). We wish to represent it as an integral oper c,psinhpm a_,
To do so we must extend the summand into the upperghalf (23
plane. We have already defined the wave functions for all
complexp but we need to extend the bitensor as well. Wher\,vherewi(iri’)'i’(#) is defined in the Appendix, Eq§A6), but
the Green function is expressed as a discrete sum, it involvegith «(z) replaced by— a(z). The explicit expressions for
the bitensoW'(J,;)/’/(M) evaluated ap=in with nintegral. At « and 8 may be obtained from Eq$A10) and (A1l) by

these values op, the bitensor is regular at both coincident setting y=iu. To verify Eqg.(23) note thatWi(j‘i))/j'(M) and
and opposite points 0%, that is atu=0 andu=m. How-  the factorsg,, ¥, anda”} are analytic in the complep
ever, if we extendp into the complex plane, we lose regu- pjane in the required region. Introduce-toshpm/coshpmr
larity at u=0. This is clear from Eq(11). For if we distort 4o the integral. Then note that cqihr has residuer* at
the p integral to run along the real axis, and use the COMayery integer multiple ofi. The remaining factor of
pletengs§’relation for the eigenfunctiods,(X), it follows (coshpm) ! is what is needed to convert a(z) into a(1
that W, ' (n) obeys a differential equation with a delta —z), according to Eq(22). A similar formula relateg(z) to
function source gt.= 0 (see the discussion of the scalar caseg(1—2z).

in [5]). Similarly, when we extenwi("iL')j/(M) into the com- We now distort the contour for theintegral to run along
plex p plane, we must maintain regularity at=, since the realp axis (Fig. 2. At large imaginaryp the integrand
there is no delta function source there. decays exponentially and the contribution vanishes in the

The condition of regularity atr imposed by the differen- limit of large N. However, as we deform the contour towards
tial equation for the Green function is sufficient to uniquely the real axis we encounter two poles in the sitgr factor,

specify the analytic continuation Wl(liln,)J,(,U,) into the com- the Iattfer atp—Fl beﬁong.a d(l)uble pole dure] to.thfe”5|mple
plexp plane. To see this, we note from the Appendix that thezgro ofa_p. For thep=2l p_o e,' we note that it c.)“c,)‘v’vs
bitensor involves coefficient functions and 8 which are  directly from the the normalization facta@, that Wi
hypergeometric functions of the variabte=cog(u/2). For ~ =0. Indirectly, this is a consequence of the fact that spin-2
coincident pointsz=1 but for antipodal pointg=0. There  Perturbations do not have a monopole or dipole component.
are two independent solutions of the hypergeometric equa®t P=i we have a double pole. However, the bound state
tion’ name'ya(z) and a(l_z). They are related by the wave function is jUSt proportional tb(X) and the metric

transformation formuldEq.[15.3.6 in [27]) tensor perturbatiomijzbfl(X)Tij is therefore independent
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of X. The latter coordinate continues to conformal time in the p )

open universe, and it follows that the metric perturbation is GEijir,—r(M,X.X’)=§f sin—rmrvwiﬁ’i’(m

time independent and will not contribute to the Sachs-Wolfe P

formula (37). However, to understand this mode more (gp(X)\Pp(X’) g_p(X)¥_ (X))
X + .

deeply, recall that fop?= — 1 a degeneracy appears between

2_ a-p ap

p“=—1 tensor-type perturbations amﬁ= —4 vector-type
perturbationg11]. To be more precise, the tracelesss trans- (26)
verse tensorg’P'™ may be constructed from the vector har-

monics Vi(Zi)pIm by symmetrized covariant differentiation. IV. TWO-POINT TENSOR CORRELATOR IN AN OPEN

One therefore hasyf™(p?=—1)=V{(pi=—4). This UNIVERSE
means that this discrete tensor mode is not invariant under The ana|ytic continuation into the open universe is given
(vectoy gauge transformations. It may be generated by &y setting(Q=—iy and o=it (see[5]) and lettinga(t)
purely spatial gauge transformation without disturbing the_,p(g)=—ia(i o). Here, is the polar angle on the three-
value of the scalar fiell11]. We may therefore use the re- sphere. For our correlator, without loss of generality we may
maining gauge freedom in the decompositi®) to set take one of the two points, s4y’, to be at the north pole of
W'(‘i')”':O. We conclude that up to a term involving a pure the three-sphere. Them= (), andu continues to—iy. We
gauge mode, we can deform the cont6yrinto the contour then obtain the correlator in the open universe where one
C shown in Fig. 2. Since the integrand involves a factorpoint has been chosen as the origin of the radial coordinate
(p sinhpm) ! which has a double pole at=0, we leave the .
contour avoiding the origin on a small semicircle in the up- The background line element of the Lorentzian region is
er halfp plane. We shall see that for the Coleman—De Luc- )
Eia and pchzlwking-Turok cases the complete integrand is ac- ds’=—dt?+a’(t)(dx*+sinffxdQ)). 27
tually regular atp=0, but for perfect de Sitter space the 1o conformal coordinati continues to conformal time as
double pole survives. In the latter case the contribution to the,) ows:
Green function from the small semicircle acts to regulate the

integral [5dp/p? coming from the real axis. Thus, in our om do i
; ; ; X= — =T (28
treatment, even in perfect de Sitter space the Green function it b(o) 2
is finite, in contradiction to the conclusion reached in treat-
ments based on mode-by-mode matching. where the conformal time is defined via
Finally, since the Green equatidi7) only depends on )
p?, we would like to write our Euclidean Green function as . om do t dt
) . . . . =Ilim — | —. (29
a sum of its symmetric and antisymmetric part. Denoting the o\ Je blo)  Jea(t)

integrand in Eq(23) by I, we then have
We now wish to make the substitutiops= —i y, wherey is
|J|’j’_1 1 the comoving separation af?, in the open universe, and
Ge ' =5 dp(lpt1_p)+5] dplp=l-p), (24  x—_jz/2— 7 The first continuation may be done immedi-
ately. We use the explicit formula for the bitensor regular at
where the integral is taken frop=—c to = along a path 4=, given in the Appendix, Eq4A6), (A10) and (A11),
avoiding the origin above. Butdpl_, along this contour is to write the following p integral for the Euclidean Green
equal to the integral df, taken along a contour avoiding the function:
origin below. The second term is therefore equal to the inte-

e Gir K dp
ral of | , along a contour around the origin. Hence we have iy N | ——— '
9 P 9 9 Geg * (u.X,X") Zﬁz pSiﬂhpw(gp(X)g_p(X )
1
= dp(l,—1_,)=—miRegl,; p=0). 25 a ,
2[ p(lp—I_p)=—miRegl,; p=0) (25 +ap 9,(X)gy(X ))WI(J‘;)J (x)
-p
It has been known that a degeneracy appears between +(p——p), (30)

p?=0 tensor modes anp§=—4 scalar harmonics. As a _
consequence of this, th=0 tensor perturbation couples to Where we have used the formula9) to re-express¥,, in
the inflaton field, and is not represented by a simple action oferms of the Jost functiong,(X). The obstacle to setting
the form (8). Hence this part of the correlator should be X=—7—i7/2 is that the integrand of E¢30) contains a
treated as a scalar perturbation, as was dorj&Jin term gp(x)gp(x’)~e'p(x*x'). If we simply make the sub-

In the p-symmetric part of the correlator, we can leave thestitution X= —i#/2— 7, this would produce a term going as
integrand as a sum ¢f, andl _,. We henceforth denote the e”. But the bitensor defined in Eq§A10) and (A11) in-
path from—o to 4+ avoiding the origin above bR. This  volves terms which behave a$P("*1X) and the two factors
shall turn out to be a regularized version of the integral oveiof e®” would lead to a meaningless divergent integral. To
the real axis. Our final result for the Euclidean tensor Greerircumvent the problem, we use the following identity. For
function then reads: X—X'">0, we have
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dp gp(X)¢p(X') . In the cases of interest therefore there is no singularity at
f o a., ePXF(p)=0 (3)  p=0, and we may take the contour to run along the eal
r P axis. Using the symmetrg— — p, the right hand side of Eqg.

- o (33) becomes
whereF(p) are thep-dependent coefficients occurring in the

final (Lorentzian form for the bitensor given in EqA12).

This identity holds up to the constapt=i gauge mode. It ffw @W!._(p)
follows from the analyticity properties of the integrand ex-2J) . p = i’}
plained above and the fact that, despite first appearances,

,<X>(cothpw[g;<r>gip( ')

formulas(A12) are actually analytic gb=i. We now insert +ng(T)glﬁ(Tl)]_[glr_J(T)gI:p(T,)_gllp( T)QE(T')]
1=sinhp#/sinhps under the integral, to show that the inte- a a

gral (31) with a factoreP”/sinhpm inserted equals that with + — _pg,g(T)grL)(T')+;ngp(7)ggp(7r) )
a factore P/sinhp inserted. The resulting identity allows sinhp7|a_p ap

us to replace the dangerous terms in the bites@®f™* ') (34)

by e P7*IPX and similarly in the p— —p) term of (30).
We now perform theX continuation. The analytic con-

L H ; L
tinuation of the Euclidean mode functions is given by For realp, g-,(7) is the complex conjugate @() and

a_p of a,. So the second term is imaginary but the first and
third terms are real. In fact it is straightforward to see that if
we apply the Lorentzian version of the perturbation operator
) ) _ ) K to Eq. (34) with an appropriate Heaviside function of
where the Lorentzian Jost functlcgt(r) is the solution to  _ -/ " the imaginary term will produce the Wronskian of
the Lorentzian perturbation equatioKg,(7)=p°gy(7) 9" ,(7) and g;(7), which is proportional top, times 5(~

9. p(X)— P29k (7) (32

obeyingg,ﬁ(r)ee“pf as7— —. Equation(32) follows by ~ —7'). Then the integral ovep produces a spatial delta func-
matching at largeX. We finally obtain the Lorentzian tensor tion. From this one sees that our Feynman correlator obeys
Feynman(time-ordered correlator, forr’ —7>0: the correct second order partial differential equation, with a

delta function source. The delta function source term in Eq.

o K p (11) goes from being real in the Euclidean region to imagi-
GIJI ] ( pe T/):_ _ e—pw L(T) L (’T’) . . . o
L X7 2| 5sinhoar 9p(7)9-p nary in the Lorentzian region because the faafgrcontin
R psinnpm )
ues toiy—g.
ap | Lo it For cosmological applications, we are usually interested
5 9(D9(7) [ Wi (X) in the expectation of some quantity squared, such as the mi-
P crowave background multipole moments. For this purpose,
+(p——p), (33 all that matters is the symmetrized correlator

({ti;(x),tirj(x")}) which is just the real part of the Feynman
where the Lorentzian bitensWiL.f‘,’).,(X) of relevance in the correlator. It also represents the “classical” piece, which in
hyperbolic universe is defined]inj the Appendix, E412). the situations of . interest, where occupation numbers of
The factora,/a_, is simply a phase, since for replthe modes are large, is much larger than the quantum piece.
Euclidean wave function is real, s =a_,. _ 7Flor the tensor correlator we also need to restore the factor

Now we would like to represent the resu33) as an |aL (TZ t? ;. It Is convenient tq defln_e the elgenmodes
integral over reap. The term p sinhpm) L in the integrand ~ Pp(7) =gp(7)/a(7). The extra minus sign hereby intro-
seems to produce a double polepat 0. However, for either duced in the correlator is car_lcelled by a change in S|gn20f the
the Coleman—De Luccia or Hawking-Turok instantons, thenormahzatzlon factorQp, which then become®,= +(p
reflection term in Eq(33) turns out to precisely cancel the +4)/(3077). These two sign changes are naturally related,
first term asp— 0. This cancellation was first discovered in 35 IS S€€n by C(.)n5|d.er|ng thg behavior of the line element
Refs.[10,8]. The reason for the cancellation is that for any (27)- Under cogtlnuatlon the line element & changes to
potential except a perfectly reflectionless one, at very lowMinus that orH*, but the change in sign of tre coefficient
momenta(i.e. very long wavelengthshe wave function is compens.ates, keeping _the spatial line element posm_ve. The
completely reflected. This means that in the sngalimit cancellation of these signs ensures thgt the Lorent2|an_ cor-
both a,/a_, andc,/d, tend to —1 [22]. This makes the relator has the corrgct positivity properties. The symmetrized
integrand of Eq(33) analytic asp— 0. It is, however, clear COITelator is then given by
from the form of the potentialé=ig. 1) that the Coleman—De
Luccia instantons are much closer to the perf@tnonre- =dp
flecting solution. Therefore we may expect the regime {{tij(X),tirj(x")})=2« ERJ F<00thpﬂ‘1’t(7)¢5p( )
Cp/d,— —1 to set in at much lowep than in the Hawking- 0
Turok case. This will lead to a larger contribution to the a, (1)',5(7')(1)'5(7") L)
large angle microwave anisotropies. As mentioned above, a — )Wiji’?j,(x)
virtue of our treatment seems to be that even the de Sitter
result is finite. (35

a_, sinhpw
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whereW-® (x) is defined in the Appendix, Eq§A3) and  coordinate. The anisotropy is characterized by the two-point

(A12). Inmth]is integral it may be written as angular correlation functio€(y), wherevy is the angle be-
tween two points on the celestial sphere. It is customary to

_— . o expand the correlation function in terms of Legendre poly-
Wi, (X):ler:n g (Q)qfh T (Q)* (36 nomials as

o

where g (Q) are the rank-2 tensor eigenmodes with ei- C('y)=<g(0)$('y}> =3 ZIjQP,(COSy),

genvaluesk,= —(p?+3) of the Laplacian orH*. For =2 4w

—0 the bitensor converges and it exponentially decays at (38)
large geodesic distance. At largeits coefficient functions
wP (see the Appendixbehave likepsinpy. Hence the
above integral converges at largefor both timelike and
spacelike separations. Equati@b) is our final result for the
tensor spectrum from singular instantons. As in the scalar

caIcu_IaFion[S], and as mentioned above, for Coleman-De C(y):EJTOdeTOdT,i i(t (Ot (7).
Luccia instantons the phasg/a_, gets replaced by, /d,, 4], e 0T g7 X

which is the reflection amplitude for waves incident from (39
X=+x in the Euclidean region.

Before moving on to the observational consequences dh order to obtainC, we write the bitensor back in terms of
Eq. (35) we would like to make one more technical com- its defining tensor eigenmodes dd®, Eg. (36). Since
ment. We mentioned already that a degeneracy appears txeag;'})o'm=0, only the even parity modes contribute to the
tweenp?=0 tensor modes anpf= —4 scalar perturbations. CMB  anisotropy. ~The normalized eigenfunctions
These discrete modes were initially interpreted as bubble?)*'™(x,6,¢) can be written aQQ®' (x)Yim(6,¢), where
wall fluctuations[23,24]. However, in our approach they do [26]
not contribute in the scalar calculatidior | =2) because the
corresponding spherical harmonics are singular and over- | N;(p)
complete on the Euclidean three-sphere. More recently the Q% (X)=—— ——
wall fluctuations were argued to have re-appeared as a long- po(p™+1)
wavelength continuum contribution on top of the usual con-
tinuous spectrum of even parity gravitational wave mode
[10]. In this way, the bubble wall fluctuations were found to
regularize the tensor spectrum, thought to be infrared diver- (I=DI(1+1)(1+2) 1/2
gent in pure de Sitter spag&0]. Our result for the correlator N,(p) = : ] (42)
for a Coleman—De Luccia model is indeed infrared finite and P
the cancellation caused by total reflection of low momentum ”jﬂz (1°+p%)
modes allowed us to represent the result as an integral start-
ing atp=0. However, we do not agree that the presence ofjence we obtain for the power spectrum of multipole mo-
the bubble was needed to regularize the spectrum. In oypents,
method, even in perfect de Sitter space we obtain a finite
result, because the contribution of the small semicircle on the +odp (70 70 . .
contourC shown in Fig. 2 regularizes the final answer. So in C;= Ki}if 2—f dTJ dT'(COthPW[‘Db(T)q)Ep(T')]
our approach the tensor spectrum in perfect de Sitter space 0 “PJr Te

where in standard notatio®, =(|a,,|?). Hence, inserting the
Sachs-Wolfe integral into Eq38) and substituting Eq(.35)
for the two-point fluctuation correlator yields

I+1
—) (cospy)

(SinhX)lz(sinhX dy
(40)

appears to be infrared finite, contrary to the findings of ear- a ., . | ol
i + = — ' Qv .
lier works. Sinhp a7p®p(7)q)p(T) )QXXQX N (42
V. IMPLICATIONS FOR THE CMB ANISOTROPY The contribution to the multipole moments due to the sec-

o . . ond reflection term falls exponentially with increasing wave
Gravitational waves provide an extra source of time de- P y 9

. . . . . number. However, in contrast with the scalar fluctuations the
pendence in the background in which the cosmic microwav

background photons propagate. The contribution of glraVita‘i_’ong—wavelength tensor perturbations do give a substantial

tional waves to the CMB anisotropy is given by the integral g?rt];réb?gr?snotrosthgcitﬂg %r;:st%téoggeusr.‘ dl_;erncceotr?c?it%ize?gretnhcee
in the Sachs-Wolfe formulg25] P y

perturbations defined by the instanton background—
10 Dirichlet for Hawking-Turok, free boundary conditions for
(0,)=— _J ’drt (7,x,0,0)|,— (379  Coleman—De Luccia—may provide a way to observationally
1 2 XX,V DAY X=Tg—T .. . . . . . .
Te distinguish different versions of open inflation. From the dis-
cussion above, we expect a larger contribution at fofor
wherer, and 7, are respectively the observing and last scat+egular instantons. We shall perform the numerical compu-
tering time for the photons ang is the comoving radial tation of the needed reflection coefficients in future wiatk

OTsw
T
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In addition, for a complete calculation of ti@& one must i (i ()M, oy ox
evolve the Lorentzian mode functiods;,(7) forward from W(p)i’j'(luf):%n Apim ()0, (1) (A2)
the beginningr= — of inflation inside the open universe
up to the present time= 7,. In the inflationary phase of the appearing in our Green functiofi5 has some additional
open universe the mode functions closely follow perfect deproperties arising from its construction in terms of the trans-

Sitter evolution in which they tend to a constant after theygrse and traceless tensor harmorq'#?.”m on S (or H3).
physical wavelength has been stretched outside the Hubblg,q tacelessness w8 P
I

. . . L iirj» allows one to eliminate two of
r§d|us. The amplitude ar)d _phase of this constant define Nhe coefficient functions in EqAl). It may then be written
tial conditions for the radiation and matter dominated eras ”}as[lg] '

which the modes of interest re-enter the Hubble radius. The

radiation and matter evolution is straightforward to study y/p) =wPra: —3nn:1di ) —nini»
numerically, and from this one can compute the Sachs-Wolfe i () =WiTlgy gy =y ]

integral (42) and the multipole moments, . +W(2P)[nigji,nj,+njg“,nj,+nig“,ni,
VI. CONCLUSION +0;05 0+ Ay 1+ w9505
We have computed the spectrum of tensor perturbations + ;i Gijr — 2Ngirj Ny — 2N g n;»

predicted in open inflation, according to Euclidean no bound-
ary initial conditions. The Euclidean path integral unambigu-
ously specifies the tensor correlators with no additional as: . . ;
sumptions. We feel that the present work places earlie;rhe requirement that the bitensor be tran,_s_\f?%‘wi(ﬁ)’i’
results on a substantially firmer footing. Our final result for =0 and the eigenvalue conditiom\§{—\ )W’ =0 im-

the correlator Eq(35), and the cosmic microwave multipole pose additional constraints on the remaining coefficient func-
moments(42) is given in terms of scattering amplitudes in tionswj(p)(,u). To solve these constraint equations it is con-
the Euclidean region and mode functions in the Lorentziarvenient to introduce the new variablgk9]

region. Both are straightforward to compute numerically, and

+6nin;n;:n;]. (A3)

we shall do so in future work7]. a(p) =wiP (u)+wP (u)
Note added in proofWe have given an analogous treat-
ment of gravitational waves in de Sitter spacq 28]. 7 da(w)
Bp)= ; (A4)

2 - d
ACKNOWLEDGMENTS (p™+9)sinu Gk
We wish to thank Martin Bucher and Steven Gratton forwhere . is the geodesic distance 1. In terms of a new
discussions, and Stephen Hawking for advice and encouraggrgument z= cos(u/2) the transversality and eigenvalue
ment. One of ugN.T.) thanks J. Garriga for valuable com- conditions imply, fora(z),

ments. This work was supported by PPARGK).

d’a(z) [7 da(z) )
APPENDIX: MAXIMALLY SYMMETRIC BITENSORS 2(1-2) 2 5 17 —q7 (P F9ea(2)
A maximally symmetric bitensofT is one for which (A5)
o*T=0 for any isometryo of the maximally symmetric - .
manifold. Any maximally symmetric bitensor may be ex- and then, for the coefficient functions,
panded in terms of a complete set of “fundamental” maxi- W,=0Q[2(\,r2—6)2(z—1)— 2] a(2)
mally symmetric bitensors with the correct index symme- 17 =p P
tries. For instance, +3[(N\pr2+6)2(z—3)(z—1)]1B(2)
Tijirjr=ta()9ijGirjr +ta() [N Gji Ny + 0G5 Ny W,=Qu2(1—=2)[(\or>—6)z+3]a(2)
+nig;; Nir + NG5 N ]+ t3()[9ii 90 + 9 Gij /] —4[(\r2+6)2(z—1)(z— )1B(2)
+t n;nin; N, +t N NG NN
a(p)n JALAL) 5(;“«)[g|] i1 in;g; J(]Al) W3=Qp[—2()\pr2—6)2(2—1)+3]a'(2)

_4 24 _1y(y—

where the coefficient functiong(u) depend only on the PLQpr™+ B)z(z=2)(z-1)]A(z) (A9
distancen({,Q') along the shortest geodesic frofh to  with A,=(p?+3) onS® andQ,, a normalization constant.
Q'. Heren;,(£,Q') andn;(2,Q)") are unit tangent vectors To fix the normalization constai@, we contract the in-
to the geodesics joiningl and ()’ and g;;-(£2,Q2") is the  dices in the coincident limiz— 1. This yields[19]
parallel propagator along the geodeyégf' is the vector at
Q' obtained by parallel transport &f' along the geodesic (p)ij = (P)PIm (PPIMij ()% —
from Q to Q' [18]. Wi () PEIr;w ai” (g ()7 =30Qpa(l).

The bitensor (A7)
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By integrating over the three-sphere and using the normalsing the relation—coshf)=coshf—iw), the Legendre
ization condition(14) on the tensor harmonics one obtains functions may be expressed as
Qp=—p?+4/307%a(1).

Notice that Eq.(A5) is precisely the hypergeometric dif- _ 2 _ _
ferential equation, which has a pair of independent solutions ~Tla+ip(— coshy) = V- 7TsinhX(lJr p?) " H(4+p?) !
a(z)=5F(3+ip,3—ip,7/27) and a(1-2)=,F(3+ip,3
—ip,7/2,1-z). The former of these solutions is singular at
z=1, i.e. for coincident points on the three-sphere, and the
latter is singular for opposite points. The solution ®¢z)
follows from Egs.(A4) and is given by

X | — 3 cothy coshp(m+i )

i sinhp(iy+ )

oy L2-p90

B(z)=,F(4—ip,4+ip,9/22). (A8)
+ cothx) + (4+ p?)cosechy]

/ 2
—-7/2 _ 2y—1
P_1,2+ip(—cosh)()— ——wsinhx(1+p ) (4

The hypergeometric functions are related by the transforma-
tion formula(Eq. [15.3.6 in [27])

I'(c)I'(c—a—h)

oF1(a,b,c,2)= szl(a,b,a+ b—c,1-2)

I'(c)I'(a+b—c)
I'(a)I'(b)

XF,(c—a,c—b,c—a—b,1-2z). (A9)

(1-2)¢ b,

Only for the eigenvalues of the Laplacian &, i.e. p
=in (n=3), does the term on the second line vanish for
o,F1(3+ip,3—ip,7/27). In this case the functions are re-
lated by (— 1)""! and they are both regular for any angle on
the three-sphere. But sincE(1—z)—1 for coincident
points, it is convenient to take(1—z) in the bitensor ap-
pearing in the Euclidean Green functig®0). In fact, the
hypergeometric series terminates for these parameter valu
and the hypergeometric functions reduce to Gegenbau
polynomialsC® ;(1-22).

We conclude that the above properties required of the
bitensor completely determine its form. Notice that in terms
of the labelp we have obtained a “unified” functional de-

scription of the bitensoW'(’,;)"' on S® and H? although its
explicit form is very different in both cases. In fact it is
precisely this which allowed us in Sec. IV to analytically
continue the angular part of the Green function from the
Euclidean region into the open universe.

To perform the continuation we note that the Euclidean
geodesic separatiom continues to—iy wherey is the co-
moving geodesic separation d¢h®. We apply the relation
(A9) in an intermediate step of the calculation, the continu-
ation of the bitensor into the compl@xplane. In this step the
functions— «(2),B(2) rather thane(1—2) andB(1—2z2) en-
ter. The hypergeometric functions &7 are defined by ana-
lytic continuation (Eq. [15.3.7 in [27]) and may be ex-
pressed in terms of associated Legendre functions as

ﬂ- . — —
«(2)= 15\[5(—5'”1)() S12p 32, ip(— coshy),

B(z)= 15\/2( —sinhy) = "2P=1j3, ,(—coshy).
(A10)
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W fr
Y an?(p2+1)

W frd
2 4m?(p2+1)

W f
¥ 4n?(p2+1)

+p?) 19+ p?) Y coshp(m+iy)

X (p?—11— 15 cosechy)

—6| S|nhpé|)(+ ) [(1—p?)cotty

+(p?+ 2)cothy cosecRy]|. (A11)

The factorse™P™ in these expressions combine with similar
factors from the continuation of the conformal spatial coor-
inate X to produce our final result35). The coefficient

L(p)

ynctions of the bitensoWV:;';+,(x) in our final result(35)

iji’j

for the tensor correlator are

cosecAy [sinpy

p
—p?(p?+1)sintty]

[3+(p?+4)sintfy

—cospx[3/2+ (p?+1)sintfx]sinh 2y

cosecfy [sinpy

p
X (142 coshy)sintfy+ p?(p?+ 1)sint'y]

[3+12 coshy—3p?

+cospx[ — 12— 3 coshy+ 2(p?—2)sinky

+2(p?+ 1)coshysint? y]sinhy

cosecAy [sinpy

5 [3—3p2sintfy

+ p?(p?+ 1)sintfy ]+ cospy[ —3/2

+(p?+1)sinfy]sinh 2y . (A12)
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As mentioned before, fop— 0 these functions converge and  When expressing the Euclidean Green function as an in-

they exponentially decay at large geodesic distances. Weegral, we continueC,(z) into the complexp plane, and

also note that in this form one should take the normalizatioragain need to express it in terms of the hypergeometric func-

factor Q, to be positive, as explained in the text. tion regular atz=0. We re-expres$-(1+ip,1—ip,3/2,1
Finally, let us mention that the scalar Green funcibh  —2z) using the relatiofA9) and obtain

may also be described in terms of hypergeometric functions.

In terms of the variable, the equation for the angular part sinhpu _ sinhp(7—u)  coshpu

Cp(u) of the scalar Euclidean Green functipiq. (35) in cothpm psing psinhpmsing  psing (AL5)
5]] reads
(5] The factor cotlpsr is needed in converting the sum into a
d’C,(2) [3 dCy(2) contour integral. The first term is regular for opposite points
Z(l—Z)T 5~ } dz =(p%+ 1)Cy(2). and leads exactly to the angular part of the Lorentzian cor-
z

relator[Eq. (46) in [5]] in the same way as described above
for tensor fluctuations. The second term is a bit more subtle.
Its analogue in the tensor correlator did not contribute to the
contour integral because it had no poles within the contour.
However, in the scalar case we need to take into account the
Qpsinhpu extra normalization factor 1p¢+4) which has a pole ab
W =2i. This is the underlying reason for the presence of the
(A14) extra term in the.integral represe_ntation of.the scalar Euclid-
ean Green functiofisecond term in Eq(37) in [5]]. As ex-
As for the tensor correlator, the normalization cons@pis  plained in[5], the (w— () factor in front of it arises from
determined by the normalization of the scalar harmonics omatching the delta function in the Green equation, which
S°. However, because of the extra factaks(+3) in the unlike the tensor Green equation is fourth order in deriva-
scalar Green equatidieq. (35) in [5]], we must also divide tives. This is also the reason why we had to include the extra
by 4+ p? in this case. This reproduces precisely the angulafactor 1/(p?>+4). Nevertheless, it is clear that the scalar and
part of the scalar Green functigiq. (38) in [5]]. tensor cases are very closely parallel.

(A13)

If we express the Green function as an infinite Jiy. (38)
in [5]], the appropriate solution regular@at=0 andu = 7 is

Cp(2)=Q,F(1+ip,1-ip,3/2,1-2)=
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