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Systems that exhibit pattern formation are typically driven and dissipative. In the early universe, parametric
resonance can drive explosive particle production called preheating. The fields that are populated then decay
quantum mechanically if their particles are unstable. Thus, during preheating, a driven-dissipative system
exists. We have shown previously that pattern formation can occur in two dimensions in a self-coupled inflaton
system undergoing parametric resonance. In this paper, we provide evidence of pattern formation for more
realistic initial conditions in both two and three dimensions. In the one-field case, we have the novel interpre-
tation that these patterns can be thought of as a network of domain walls. We also show that the patterns are
spatio-temporal, leading to a distinctive, but probably low-amplitude peak in the gravitational wave spectrum.
In the context of a two-field model, we discuss putting power from resonance into patterns on cosmological
scales, in particular to explain the observed excess power at 100h21 Mpc, and why this seems unlikely in the
absence of a period of post-preheating inflation. Finally we note our model is similar to that of the decay of
disoriented chiral condensates and therefore pattern formation may also occur at BNL RHIC and CERN LHC.

PACS number~s!: 98.80.Cq, 03.65.Pm, 11.10.Lm, 98.80.Hw
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I. INTRODUCTION

Much recent work has been devoted to the topic of p
heating in inflationary cosmology. Preheating is a stage
explosive particle production which results from the reson
driving of particle modes by an inflaton oscillating in i
potential at the end of inflation@1–3#.

In regions of parameter space where parametric reson
is effective, much of the energy of the inflaton is transferr
to bands of resonant wave modes. This energy transfe
non-thermal and can lead to interesting non-equilibrium
havior. Two examples of the non-equilibrium effects that c
be produced are non-thermal phase transitions@4–7# and
baryogenesis@8–11#. The non-thermal phase transitions i
duced during preheating can sometimes lead to topolog
defect formation@12–15#, even at energies above the eve
tual final thermal temperature. Furthermore, non-linear e
lution of the field when quantum decay of the resonan
produced particles is negligible leads to a chaotic power-
spectrum of density fluctuations@16,17#.

In a previous paper@19#, we presented evidence for a ne
phenomenon that can arise from preheating: pattern for
tion. It has long been known that many condensed ma
systems exhibit pattern formation.1 Examples of pattern
forming systems which have been studied are ripples on s

*Email address: ats@camelot.mssm.edu
†Email address: mparry@ic.ac.uk
1For an extensive review of pattern formation in condensed ma

systems, see@21,22#.
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dunes, cloud streets and a variety of other convective s
tems, chemical reaction-diffusion systems, stellar atm
spheres and vibrated granular materials. All of these phys
systems have two features in common. They are all drive
some manner, i.e. energy is input to the system, and they
all dissipative, usually being governed by diffusive equatio
of motion. Typically, patterns are formed in these systems
the weakly non-linear regime before the energy introduc
into the system overwhelms the dissipative mechani
Sometimes, patterns persist beyond the weakly non-lin
regime as well.

At the end of inflation, the inflatonf is homogeneous
and, in most commonly studied models, oscillating about
minimum of its potential. This oscillation gives an effe
tively time-dependent mass to fields which are coupled to
inflaton, including fluctuations of the inflaton itself. Th
time-dependent mass drives exponential growth in the p
ticle number in certain bands of wave modes. However,
fields into which the inflaton can decay resonantly are a
unstable to quantum decay. For these reasons, at the e
inflation, we are considering fields which are driven, due
resonant particle creation, and also dissipative, due to qu
tum decay. In@19#, we were able to show that pattern fo
mation occurs in a chaotic inflationary model with a se
coupled inflaton in the weakly non-linear regime.

In this paper, we primarily consider alf4 theory with the
addition of a phenomenological decay term to mimic t
inflaton’s quantum decay. This model without the decay te
has been studied extensively in the literatu
@2,3,16,18,17,20,23#, and a similar model including the de
cay term has also been studied@10#.
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A. SORNBORGER AND M. PARRY PHYSICAL REVIEW D62 083511
In @19#, we used restricted initial conditions. We on
seeded the resonant band with small fluctuations of o
;1023 of ^f&, then simulated the field’s evolution. W
found that the resonant modes interacted and formed
terns. Here we use initial conditions appropriate to
vacuum at the end of chaotic inflation. We also extend
study to a 3-dimensional volume. In@19#, we did not point
out the spatio-temporal nature of the patterns, which was
evident at the time due to an unfortunate coincidence in
form of the pattern at the timesteps at which we viewed
data. Here we note the spatio-temporal behavior. We
discuss resonance giving rise to patterns on cosmolog
scales.

The paper is ordered as follows: In Sec. II, we present
model we are investigating. In Sec. III, we discuss the ini
conditions appropriate for the end of inflation. In Sec. IV, w
present the results of our simulations in two and three spa
dimensions. In Sec. V, we extend our analysis to the tw
field case and discuss the possible implications of our res
This is followed by the conclusions.

II. THE lf4 MODEL WITH PHENOMENOLOGICAL
DAMPING

Our field equation in comoving coordinates is

f̈13Hḟ1gḟ2
1

a2
¹2f1lf350, ~1!

where g is a decay constant,l is the self-coupling of the
field and H[ȧ/a. We convert to conformal timedt
5a(t)dt and introduce the fieldw5af. Upon rescaling:
t→t/AlwR , x→x/AlwR andw→wwR , where subscriptR
denotes ‘‘at the start of reheating,’’ we obtain a new equat

w91aGw82¹2w2S a8G1
a9

a Dw1w350, ~2!

whereG5g/AlwR . Further simplification is possible if we
note that inlf4 theory, the averaged equation of state d
ing preheating is that of radiation, thereforea9.0. We use
a511HRt.

It should be noted that pattern formation in the inflat
system is conceptually distinct from condensed matter s
tems for at least two reasons. First, the equations we s
are wave equations with damping, not diffusive equatio
Secondly, we expect wave patterns to be formed while
homogeneous mode decays, therefore pattern formation
be a temporary phenomenon, at least in the model abov
which gravity is neglected. The driving inlf4 preheating
comes from the large initial value of the inflaton at the end
inflation, causing the field to roll and oscillate in its potenti
This should be considered in contrast to the typical c
densed matter system, in which energy is introduced
boundary conditions~in a convective system! or by a vibrat-
ing bed~in a granular material system!, and the energy inpu
is essentially constant.
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At the end of inflation, we may expandw about a homo-
geneous piece and then linearize Eq.~2!. Let w(t,x)
5F(t)1c(t,x), where*cd3x50. We obtain

F91F350, ~3!

ck91aGck81@k22a8G13F2~t!#ck50, ~4!

where we have taken the Fourier transform in the latter eq
tion. The solution to Eq.~3! is F(t)5cn(t;1/A2), and
therefore, forG50, Eq. ~4! becomes a Lame´ equation.

For G50, the resonant modes lie in the interval@23#

3

2
,k2,A3, ~5!

and have an amplitude of the form exp(mkt), wheremk is the
characteristic exponent or Floquet index. It should be no
that the wavelengths of the resonant modes are of the o
of the Hubble radius immediately after inflation.

For GÞ0, we can introducec̄5c exp(12*aGdt) giving

c̄k91S k22
3

2
a8G2

1

4
a2G213F2~t! D c̄k50. ~6!

Now the resonance band becomes time-varying. The mo
which can be in resonance at any moment in time satisf3

2

,keff
2 ,A3, where

keff
2 5k22

3

2
a8G2

1

4
a2G2. ~7!

However the modes we are actually interested in areck /a,
and these will only grow for timest&4umku/HRG. This is
because we typically haveG!umku,HR&1 ~in rescaled
units!. Thus, even in the absence of backreaction,2 a combi-
nation of the expansion of the universe and quantum m
chanical decay of the inflaton serves to take the system ou
resonance. During this time the values ofk2 in resonance go
from being shifted upwards by an amountG to an amount
4mk

2 . Effectively this means the resonance band is smea
out in k-space.

While the above perturbative analysis is helpful it is su
able only for early times as resonance will soon take us aw
from the linear regime. The effect that we are trying to is
late is intrinsically non-linear so we now resort to numeric
simulation of the field equation~2!.

III. INITIAL CONDITIONS

The initial conditions forF are those of the end of th
slow-roll, which is normally supposed to be whenä50. It is
sufficient for our purposes to setF(0)51 andF8(0)50.

The fluctuations in the inflaton are quantum in origi

2It should be noted that backreaction profoundly alters the pict
that emerges from a perturbative treatment; see e.g.@29#. In our
case backreaction is necessary but also necessarily small.
1-2
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PATTERN FORMATION IN THE EARLY UNIVERSE PHYSICAL REVIEW D62 083511
Super-Hubble modes exist which were generated during
flation and have remained fixed in amplitude after leav
the Hubble volume. However these modes do not unde
amplification in this model, so it is not important to quanti
them precisely. Of more significance for us are the s
Hubble modes at the end of inflation. At this timeG is in fact
zero and it is appropriate to consider any field to be in
vacuum state. Then the initial conditions for theck are given
by the usual results:

ck5
1

A2vk

uAkue2p ir k ck852 ivkck , ~8!

where vk
25k213F(0)2, Ak is a number randomly take

from a Gaussian distribution with zero mean and unit va
ance, andr k is a random number taken from the interv
@0,1#.

IV. SIMULATION RESULTS

A. Two dimensions

To simulate the evolution of the field, we discretize t
spatial derivatives to fourth-order inDx, and we use a leap
frog integrator which is accurate to second order inDt.

Setting the box size to 256 gridpoints per dimension a
such that the resonant wave number in the box is 16
enough to give many different resonant modes in the b
but still have good resolution of the wave, so this is the b
size we used. We use periodic boundary conditions.

We set out to identify the weakly non-linear regim
Khlebnikov and Tkachev@16# showed that, without the de
cay terms, the self-coupled inflaton system’s non-linear ti
evolution proceeds as follows: First, the resonant band
plitude grows. Next, when the amplitude in the reson
band is high enough for non-linear effects to become imp
tant, period doubling occurs and subsidiary peaks develo
the power spectrum. Further peaks then develop and
spectrum broadens and approaches an exponential spec
We tunedG such that the amplitude of the resonant ba
grew, but little period doubling occurred. In this regime, on
resonant mode wavelengths exist in the box and they inte
with each other non-linearly.

In the expanding case, the increase of the effective da
ing coefficientGeff5aG with increasing scale factora makes
it easier to keep the system in the weakly non-linear reg
compared to the non-expanding case.

We found the smallest value forG such that the system
remained weakly non-linear was of order 1025. This is two
orders of magnitude smaller than that in the non-expand
case.

In Fig. 1 we plot a superposition of the power spectrum
various times during a simulation withG5531025. It is
possible to see that the system stays in the weakly non-li
regime for the entire simulation.

When wave patterns form, the specific pattern wh
arises is due to the non-linear interaction of the wave mod
The amplitude of wave modes separated by different an
grows at different rates. Modes separated by angles with
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fastest growing amplitudes dominate the solution and fo
the wave pattern.

It is also possible that patterns vary temporally. This is
situation we find in thelf4 model. What we see in both th
expanding and non-expanding cases is that a pattern eme
from the fluctuation background, then the peaks and vall
begin to move relative to each other.

The temporal dependence is almost periodic. Peaks
troughs in the field energy align along one direction in
ripple-like pattern, then the pattern flips to align in a dire
tion orthogonal to the original direction. We say the depe
dence is ‘‘almost’’ periodic because the field flips back a
forth, but the timing of the flips varies as the field evolve
This leads us to believe that, for instance, if there wer
background driving field that gave constant energy input~as
opposed to the decaying background in chaotic inflation! the
flipping would be truly periodic.

In Figs. 2, 3, and 4 we present snapshots of the evolu
of the Fourier transform of the inflaton in two dimensions
an expanding universe. And in Figs. 5, 6, and 7 we pres
snapshots of the evolution off(x,y) in configuration space
in two dimensions in an expanding universe. Notice t
change in direction between the ripples in Figs. 6 and 7.

In the expanding case~in contrast to the non-expandin
case!, the patterns are more clearly delineated and look l
noisy. This is due to the fact that the field equation has
effective symmetry breaking potential and this leads to
restoring force on the fluctuations inw. From Eq. ~2! we
deduce

Veff~w!5
1

4
~w22a8G!2 ~9!

in a radiation dominated universe. The barrier height
(a8G/2)2 which is constant in time. Thus dissipation not on
leads to an overall damping of the field, but also leads
degeneracy in the minima of the effective potential. Th
suggests a novel interpretation of pattern formation in t
model: the pattern is actually a network of domain wa
separated by the characteristic wavelength of the resona

FIG. 1. A superposition of power spectra taken from a simu
tion with G5531025. We plot the amplitude of the power spect
vs wave number. Note that the period doubling modes are o
weakly populated, indicating that the simulation is in the wea
non-linear regime.
1-3
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A. SORNBORGER AND M. PARRY PHYSICAL REVIEW D62 083511
If G increases then the barrier height increases, reflecting
fact that the non-linear coupling of the modes necessary
pattern formation is suppressed. On the other hand, for s
G, the barrier is not high enough to prevent the field fro
probing both minima, and again patterns do not form. Thi
because the system has become strongly non-linear.

FIG. 2. t50. Initial conditions for a two-dimensional simula

tion with G5531025. The magnitude off̃(kx ,ky), the Fourier
transform of the inflaton, is indicated by the shading: brighter
gions correspond to regions of larger amplitude. The zero mode
been deleted for plotting purposes, and the surrounding mo
populated with vacuum amplitudes from Eq.~8!. Only the region of
interest is plotted.

FIG. 3. t5840. After resonance begins to boost the amplitu
of the resonant mode. Notice the brightening~increasing amplitude!
of the resonant modes.
08351
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B. Three dimensions

Using the same simulation techniques described abo
we also find spatio-temporal pattern formation in three
mensions. We plot the field in configuration space in Figs
9, and 10, again withG5531025. The behavior of these
patterns is similar to those found in two dimensions: t
pattern forms at the resonant wavelength, then the peaks
valleys begin to move with respect to each other. In th
simulations, we set the physical box size such that there w
eight resonant wavelengths per dimension in the box. Ove
there were 64 gridpoints per dimension and we neglec
expansion in these simulations.

-
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e

FIG. 4. t51020. The final wave pattern in Fourier space.

FIG. 5. t50. The initial conditions in configuration space. Th
inflaton f(x,y) is plotted, again with brighter regions correspon
ing to larger values off.
1-4
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PATTERN FORMATION IN THE EARLY UNIVERSE PHYSICAL REVIEW D62 083511
V. DISCUSSION

A. Gravitational waves

Since the patterns that we see vary in time, we exp
there to be a peak in the gravitational wave spectrum at
resonant frequency for preheating in the weakly non-lin
regime. Similar peaks in the gravitational wave spectr
have been seen@24,25# in simulations of undamped prehea
ing. These peaks correspond to the resonant and pe
doubled frequencies. In the pattern forming regime, we
pect to see similar peaks of lower amplitude, since the di
pative terms keep the resonant peak in our simulation
lower amplitude than the undamped system. The peak in
gravitational wave spectrum from pattern formation will
of smaller amplitude than that of the fully chaotic system b
since the pattern has directionality, this might help in extra
ing a signal.

FIG. 6. t5840. Wave pattern at intermediate time.

FIG. 7. t51020. Wave pattern at the end of the simulation.
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B. Large scale structure formation

We would also like to discuss the possibility of patter
occurring on cosmological scales, since, if we could p
resonant power at 100h21 Mpc, we would have an expla
nation for the observed excess power found at these sc
@26#. Although such a scale is outside the Hubble radius
the end of inflation, recently a number of authors@27–33#
have investigated the question of whether resonance can
plify modes with wavelength larger than the Hubble radiu
It turns out that this is possible because of the large-sc
~many Hubble volumes! coherence of the inflaton at the en
of inflation; super-Hubble mode amplification can be thoug
of as down-scattering from the oscillating zero mode. Ho
ever in the usual parameter region of some mod

FIG. 8. t50. Initial conditions for a three-dimensional simula
tion with G5531025. Here f(x,y,z) is plotted, again with
brighter regions indicating larger field values.

FIG. 9. t5100. Wave pattern at intermediate time.
1-5
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A. SORNBORGER AND M. PARRY PHYSICAL REVIEW D62 083511
@30,31,33#, this amplification does not seriously affect th
post-inflationary power spectrum. This is due to the fact t
during inflation in these models, fluctuations in matter fie
are suppressed by a factor ofa23/2 compared to fluctuations
in the inflaton. Therefore, during preheating, although sup
Hubble modes are amplified, they cannot be amplifi
enough to be significant.

However consider the following model for preheating:

V5
1

4
lf41

1

2
g2f2x2. ~10!

For q[g2/l;1, fluctuations inx are not suppressed durin
inflation @32#. This is because the effective mass ofx is gf,
and this is much less thanH during slow roll.

If we now supposex decays quantum mechanically in
other particles, then we are led to a phenomenological eq
tion of motion akin to Eq.~1!

ẍ13Hẋ1gxẋ2
1

a2¹2x1g2f2x50. ~11!

With the same simplifications used earlier, and introduc

X5xa exp(12*dtaGx), we obtain the the following equatio
for the Fourier modes ofX:

Xk91@keff
2 1qF2~t!#Xk50, ~12!

where nowkeff
2 5k223a8Gx/22a2Gx

2/4. This differs essen-
tially from Eq. ~6! because of the appearance ofq. A partial
plot of the instability bands in the (keff

2 ,q)-plane is shown in
Fig. 11. WhenGxÞ0 we have a new feature: for modes wi
k small enough, we can havekeff

2 ,0, i.e. the system can
probe the lower half of the instability plot.

If k0
phy is the physical scale today on which we want

have a feature in the power spectrum, then this correspo
to a co-moving modekR at reheating such that

FIG. 10. t5300. Wave pattern at the end of the simulation.
08351
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kR

HR
5

k0
phy

H0

a0

aR

H0

HR
, ~13!

whereH[a8/a5aH. For a bump at 100h21 Mpc, we find
we needkR /H R;10224. In terms of our dimensionles
quantities this becomeskR;10224 which we want to be the
principal wavelength in resonance. It follows that we ha
either keff

2 ,0 or Gx&10248, but from our simulations the
latter is ruled out because it will be too small to damp re
nance and lead to pattern formation.

If we consider Fig. 11 it is readily apparent that it will b
difficult to introduce a feature at the required scale. Forq
!1 we can have resonance atk2510224 but also, ruinously,
at all scales down tok50. Indeed the characteristic expo
nent becomes larger ask gets smaller.3 We can avoid this
problem forq*1 but only if q is fine tuned to an unaccep
able degree. In any case the resonance band is broad
~this problem is further exacerbated in our situation by
fact that quantum mechanical decay tends to smear the r
nance bands! and peaks for modes withkeff

2 .0. Thus it is
unlikely that super-Hubble mode amplification in this mod
can lead to a feature at 100h21 Mpc.

However we now mention that it may not be necessary
require such amplification in order to have an effect on la
scale structure. It is possible that apost-preheating period of
inflation @34,4,35# occurs ~or even several! and this may
bring sub-Hubble modes, previously amplified in narro
band resonance, up to scales appropriate for structure fo
tion. The growth in the scale factor will also be larger if w
imagine the inflaton decays into a large number of fieldsx i ,
though we have not considered pattern formation in s
models.

3It follows that, for q!1, the quantum mechanical decay of th
inflaton leads to a red tilt in the power spectrum.

FIG. 11. A portion of the instability plot forq.1 in Eq. ~12!.
Darker shading indicates larger values of the characteristic ex
nentmk . The narrow resonance band of Eq.~7! is not indicated.
1-6
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PATTERN FORMATION IN THE EARLY UNIVERSE PHYSICAL REVIEW D62 083511
It should be noted thatGx is not constrained in the sam
way Gf is. The latter has to be small so that radiative c
rections do not spoil the required flatness of the inflaton
tential. In the rescaled units used here, it is not hard to sh
@36# that Gf&10213, where we have takenl.10213 which
leads to the correct magnitude of density perturbations fr
inflation. Thus our earlier results were obtained with aG
which was too large to be physical. However the resu
should go through for the two-field model considered abo

C. Patterns in heavy ion collisions

As a final comment, we would like to point out that th
system of equations which we have investigated is simila
that for heavy ion collisions. It is hoped that in coming e
periments at RHIC and LHC energies will be obtained wh
are in excess of the critical temperature for the QCD ch
phase transition. The situation may be modeled by
O(4)-symmetric theory for the scalar fieldsF5(s,pW ) @37#,
where one initially haŝs&5^pW &50. Due to the expansion
of the plasma, the temperature quickly falls below the criti
temperature, theO(4)-symmetry is broken, and the syste
evolves to new equilibrium values^s&Þ0,̂ pW &50. It is dur-
ing this time that ‘‘disoriented chiral condensates’’~DCC’s!,
domains in which the pion field develops a non-zero exp
tation value in a certain direction, may be produced. T
subsequent decay of a DCC gives rise to a character
signal in the detectors.

The important point for us is that during DCC deca
long-wavelength pion modes are resonantly amplified w
s oscillates about the minimum of its effective potent
@38#. Furthermores decays vias→2p and it has been ar
gued that this process can be modeled phenomenologi
by the addition of a time-dependent friction term@39#. Al-
though some questions remain concerning the applicab
of such a term, it is intriguing that a driven-dissipative sy
tem exists for DCC decay. This suggests that patterns m
turn up at RHIC and LHC. We are currently working on th
experimental signatures of such events.
v.

s.
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VI. CONCLUSIONS

In this paper, we have presented new evidence that th
is a pattern forming regime in alf4 theory during preheat-
ing at the end of inflation. We have used vacuum init
conditions appropriate to sub-Hubble modes at the end
inflation. We have shown that patterns arise in both two- a
three-dimensions, and that, in the one-field case, they ma
thought of as a network of domain walls. Furthermore sin
the patterns vary spatio-temporally, gravitational waves w
be produced. However, relative to the gravitational wav
produced in an undamped model, their amplitude will
small, and therefore, unless the directionality of the patt
can aid in detection, extremely difficult to detect.

We have speculated on the possibility, in the context o
two-field model, of putting a resonant band at cosmologi
scales, in particular at 100h21 Mpc. We conclude that this
is not feasible because it is impossible to amplify only t
required modes. However this conclusion may change i
model which allows a subsequent period of inflation.

Finally, we point out that heavy ion collisions at the BN
Relativistic Heavy Ion Collider~RHIC! and CERN Large
Hadron Collider ~LHC! may be another physical syste
which exhibits pattern forming behavior.
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