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Pattern formation in the early universe

A. Sornborgef
Laboratory of Applied Mathematics, Biomathematical Sciences Division, Mt. Sinai School of Medicine, One Gustave L. Levy Place,
New York, New York 10029
and NASA/Fermilab Astrophysics Group, Fermi National Accelerator Laboratory, Box 500, Batavia, lllinois 60510-0500

M. Parry'
Theoretical Physics Group, Blackett Laboratory, Imperial College, Prince Consort Rd, London SW7 2BZ, United Kingdom
and Department of Physics, Brown University, Providence, Rhode Island 02912
(Received 22 May 2000; published 26 September 2000

Systems that exhibit pattern formation are typically driven and dissipative. In the early universe, parametric
resonance can drive explosive particle production called preheating. The fields that are populated then decay
guantum mechanically if their particles are unstable. Thus, during preheating, a driven-dissipative system
exists. We have shown previously that pattern formation can occur in two dimensions in a self-coupled inflaton
system undergoing parametric resonance. In this paper, we provide evidence of pattern formation for more
realistic initial conditions in both two and three dimensions. In the one-field case, we have the novel interpre-
tation that these patterns can be thought of as a network of domain walls. We also show that the patterns are
spatio-temporal, leading to a distinctive, but probably low-amplitude peak in the gravitational wave spectrum.
In the context of a two-field model, we discuss putting power from resonance into patterns on cosmological
scales, in particular to explain the observed excess power at 10Mpc, and why this seems unlikely in the
absence of a period of post-preheating inflation. Finally we note our model is similar to that of the decay of
disoriented chiral condensates and therefore pattern formation may also occur at BNL RHIC and CERN LHC.

PACS numbeps): 98.80.Cq, 03.65.Pm, 11.10.Lm, 98.80.Hw

I. INTRODUCTION dunes, cloud streets and a variety of other convective sys-
tems, chemical reaction-diffusion systems, stellar atmo-
Much recent work has been devoted to the topic of prespheres and vibrated granular materials. All of these physical
heating in inflationary cosmology. Preheating is a stage ofystems have two features in common. They are all driven in
explosive particle production which results from the resonansome manner, i.e. energy is input to the system, and they are
driving of particle modes by an inflaton oscillating in its all dissipative, usually being governed by diffusive equations
potential at the end of inflatiofL—3]. of motion. Typically, patterns are formed in these systems in
In regions of parameter space where parametric resonantiee weakly non-linear regime before the energy introduced
is effective, much of the energy of the inflaton is transferredinto the system overwhelms the dissipative mechanism.
to bands of resonant wave modes. This energy transfer Sometimes, patterns persist beyond the weakly non-linear
non-thermal and can lead to interesting non-equilibrium beregime as well.
havior. Two examples of the non-equilibrium effects that can At the end of inflation, the inflatorp is homogeneous
be produced are non-thermal phase transitiphs7] and  and, in most commonly studied models, oscillating about the
baryogenesi$8—11]. The non-thermal phase transitions in- minimum of its potential. This oscillation gives an effec-
duced during preheating can sometimes lead to topologicaively time-dependent mass to fields which are coupled to the
defect formatior{12—15, even at energies above the even-inflaton, including fluctuations of the inflaton itself. The
tual final thermal temperature. Furthermore, non-linear evotime-dependent mass drives exponential growth in the par-
lution of the field when quantum decay of the resonantlyticle number in certain bands of wave modes. However, the
produced particles is negligible leads to a chaotic power-lawields into which the inflaton can decay resonantly are also
spectrum of density fluctuatiori46,17. unstable to quantum decay. For these reasons, at the end of
In a previous papdrl9], we presented evidence for a new inflation, we are considering fields which are driven, due to
phenomenon that can arise from preheating: pattern formaesonant particle creation, and also dissipative, due to quan-
tion. It has long been known that many condensed mattefum decay. In[19], we were able to show that pattern for-
systems exhibit pattern formatidnExamples of pattern mation occurs in a chaotic inflationary model with a self-
forming systems which have been studied are ripples on sargbupled inflaton in the weakly non-linear regime.
In this paper, we primarily considenap* theory with the
addition of a phenomenological decay term to mimic the

*Email address: ats@camelot.mssm.edu inflaton’s quantum decay. This model without the decay term

TEmail address: mparry@ic.ac.uk has been studied extensively in the literature

For an extensive review of pattern formation in condensed mattef2,3,16,18,17,20,23 and a similar model including the de-
systems, sef21,27,. cay term has also been studigid].
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In [19], we used restricted initial conditions. We only At the end of inflation, we may expang about a homo-
seeded the resonant band with small fluctuations of ordegeneous piece and then linearize E®). Let ¢(7,X)
~1072 of (¢), then simulated the field’s evolution. We =& (7)+ (r,x), wherefd®x=0. We obtain
found that the resonant modes interacted and formed pat-

terns. Here we use initial conditions appropriate to the "+ P3=0, €)
vacuum at the end of chaotic inflation. We also extend our , ) . 5
study to a 3-dimensional volume. [19], we did not point pet+al gy +[k“=a’'TI'+30%(7) =0, (4)

out the spatio-temporal nature of the patterns, which was not . .
evident at the time due to an unfortunate coincidence in th&/here we have taken the Fourier transform in the latter equa-
form of the pattern at the timesteps at which we viewed thdion. The solution to Eq(3) is ®(7)=cn(r;1/y2), and
data. Here we note the spatio-temporal behavior. We alsierefore, for’=0, Eq.(4) becomes a Lamequation.
discuss resonance giving rise to patterns on cosmological FOrI'=0, the resonant modes lie in the interyag|
scales. 3

The paper i_s orde_red_as follows: In Sec. I!, we present '_[he —<k2< 3, (5)
model we are investigating. In Sec. Ill, we discuss the initial 2
conditions appropriate for the end of inflation. In Sec. IV, we

present the results of our simulations in two and three spati@nd have an amplitude of the form exg(), wherep, is the
dimensions. In Sec. V, we extend our analysis to the tWo_charactenstlc exponent or Floguet index. It should be noted
field case and discuss the possible implications of our resultdlat the wavelengths of the resonant modes are of the order
This is followed by the conclusions. of the Hubble radius immediately after inflation.

ForI'#0, we can introduca’_jz yexpGfaldr) giving

Il. THE A ¢* MODEL WITH PHENOMENOLOGICAL o 3 1 o
DAMPING Y+ | k32— sa'l— Za2F2+ 30%(7) | yp=0.  (6)
Our field equation in comoving coordinates is ] )
Now the resonance band becomes time-varying. The modes
which can be in resonance at any moment in time safisfy

. . o1
¢+3H¢+'}’¢__2V2¢+)\¢3:O, (l) <kgﬁ<\/§, where
a

2 _,2 3 1,2
) . ) kig=k“— za'I'— -a“T'“. (7)
where y is a decay constan, is the self-coupling of the 2 4
field and H=a/a. We convert to conformal timedt
=a(r)dr and introduce the fieldo=a¢. Upon rescaling:
r— 1l Nor, X—x/\\egande— per, Where subscripR
denotes “at the start of reheating,” we obtain a new equatio

However the modes we are actually interested inyaréa,
and these will only grow for times=4|u,|/Hg[. This is
because we typically havé <|u,|<Hg=1 (in rescaled
rhnits). Thus, even in the absence of backreactiancombi-
nation of the expansion of the universe and quantum me-
chanical decay of the inflaton serves to take the system out of
resonance. During this time the valueskdfin resonance go
from being shifted upwards by an amountto an amount
whereT = y/\\ ¢r. Further simplification is possible if we 4,u,ﬁ.. Effectively this means the resonance band is smeared
note that in\ ¢* theory, the averaged equation of state dur-Out in k-space. _ o o
ing preheating is that of radiation, therefa®=0. We use While the above_ perturbative anaIyS|§ is helpful it is suit-
a=1+Hgr. able only for early times as resonance will soon ta_ke us away
It should be noted that pattern formation in the inflaton{T0m the linear regime. The effect that we are trying to iso-
system is conceptually distinct from condensed matter Sygé}te IS |_ntr|nS|caIIy _non—llnear SO we now resort to numerical
tems for at least two reasons. First, the equations we studgimulation of the field equatio(®).
are wave equations with damping, not diffusive equations.
Secondly, we expect wave patterns to be formed while the [l INITIAL CONDITIONS
homogeneous mode decays, therefore pattern formation will
be a temporary phenomenon, at least in the model above in . 8 )
which gravity is neglected. The driving ing* preheating Slow-roll, which is normally supposed to be thmo' Itis
comes from the large initial value of the inflaton at the end ofSufficient for our purposes to sd{(0)=1 and®’(0)=0.
inflation, causing the field to roll and oscillate in its potential.  1he fluctuations in the inflaton are quantum in origin.
This should be considered in contrast to the typical con-
densed matter system, in which energy is introduced via

”n

o"+alp' —V2p— a’F-I—E o+ ¢3=0, (2

The initial conditions for® are those of the end of the

boundary conditiongin a convective systejror by a vibrat- 2t should be noted that backreaction profoundly alters the picture
ing bed(in a granular material systerrand the energy input that emerges from a perturbative treatment; see [9. In our
is essentially constant. case backreaction is necessary but also necessarily small.
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Super-Hubble modes exist which were generated during in-
) - . . . . 0.012

flation and have remained fixed in amplitude after leaving

the Hubble volume. However these modes do not undergc ¢ g1

amplification in this model, so it is not important to quantify

them precisely. Of more significance for us are the sub-0.008

Hubble modes at the end of inflation. At this tifigs in fact

zero and it is appropriate to consider any field to be in the

vacuum state. Then the initial conditions for thigare given

0.006

0.004
by the usual results:
0.002
_ 2qir I e
l/,k_\/gm"'e k=Tl tS) 25 50 75 100 125 150 175 200
k

FIG. 1. A superposition of power spectra taken from a simula-
where wZ=k?+3®(0)?, A, is a number randomly taken tion with T=5x10"°. We plot the amplitude of the power spectra
from a Gaussian distribution with zero mean and unit vari-vs wave number. Note that the period doubling modes are only

ance, andry is a random number taken from the interval weakly populated, indicating that the simulation is in the weakly
[0,1]. non-linear regime.

fastest growing amplitudes dominate the solution and form
the wave pattern.

A. Two dimensions Itis also possible that patterns vary temporally. This is the
situation we find in thé\ ¢* model. What we see in both the
expanding and non-expanding cases is that a pattern emerges
from the fluctuation background, then the peaks and valleys

IV. SIMULATION RESULTS

To simulate the evolution of the field, we discretize the
spatial derivatives to fourth-order iix, and we use a leap-
frog integrator which is accurate to second ordeAin

Setting the box size to 256 gridpoints per dimension and’®3iN t0 move relative to each other. o
such that the resonant wave number in the box is 16 is The temporal dependence is almost periodic. Peaks and

enough to give many different resonant modes in the boxtrcughs in the field energy align along one direction in a

but still have good resolution of the wave, so this is the bo){’jpple—like pattern, then t.h? pattern flips to align in a direc-
size we used. We use periodic boundary conditions. tion orthogonal to the original direction. We say the depen-

We set out to identify the weakly non-linear regime. dence is “almost” periodic because the field flips back and

Khlebnikov and Tkachey16] showed that, without the de- forth, but the timing of the flips varies as the field evolves.

cay terms, the self-coupled inflaton system’s non-linear tim This leads us .tq bel_|eve that, for instance, if therg were a
evolution proceeds as follows: First, the resonant band am22ckground driving field that gave constant energy ir(pst

plitude grows. Next, when the amplitude in the resonan pposed to the decaying background in chaotic inflatiba

band is high enough for non-linear effects to become impor-”plpinlg wo;ldee tg“'jf/ periodic. Hots of th i
tant, period doubling occurs and subsidiary peaks develop in n Figs. 2, 3, and 4 we present snapshots of the evolution
the power spectrum. Further peaks then develop and th%f the FOUI‘.IeI’ tral_"nsform of thg mfl_aton in two dimensions in
spectrum broadens and approaches an exponential spectru?ﬁ‘. expanding umverse.'And n F|g§. 2 6'. and 7 we present
We tunedI’ such that the amplitude of the resonant bandfsnapShOt_S of the evqlunon Qf(x,y)_ln conflguratlon space
grew, but little period doubling occurred. In this regime, onlyIn two dimensions in an expanding universe. Notice the

resonant mode wavelengths exist in the box and they interaEf|ange n d|rect|c_)n betW‘?e” the ripples in Figs. 6 and 7
with each other non-linearly. In the expanding casén contrast to the non-expanding

In the expanding case, the increase of the effective dampf-ase' the patterns are more clearly delineated and look less

ing coefficientl ;= al with increasing scale factamakes noisy. This is due to the fact that the field equation has an

it easier to keep the system in the weakly non-linear regimt?ﬁcect'.ve ?ymmetry rl])releikmg potenpal I?nd tgs Igads to a
compared to the non-expanding case. restoring force on the fluctuations ip. From Eq.(2) we

We found the smallest value fdr such that the system deduce
remained weakly non-linear was of order £0 This is two 1
orders of magnitude smaller than that in the non-expanding Veii( @)= L—l(q:z—a’l“)2 9
case.

In Fig. 1 we plot a superposition of the power spectrum at
various times during a simulation witi=5x10"°. Itis in a radiation dominated universe. The barrier height is
possible to see that the system stays in the weakly non-linega’I'/2)? which is constant in time. Thus dissipation not only
regime for the entire simulation. leads to an overall damping of the field, but also leads to

When wave patterns form, the specific pattern whichdegeneracy in the minima of the effective potential. This
arises is due to the non-linear interaction of the wave modesuggests a novel interpretation of pattern formation in this
The amplitude of wave modes separated by different anglesodel: the pattern is actually a network of domain walls
grows at different rates. Modes separated by angles with theeparated by the characteristic wavelength of the resonance.
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FIG. 2. t=0. Initial conditions for a two-dimensional simula- FIG. 4.t=1020. The final wave pattern in Fourier space.
tion with '=5%x10"°. The magnitude ofﬁ(kx,ky), the Fourier
transform of the inflaton, is indicated by the shading: brighter re-
gions correspond to regions of larger amplitude. The zero mode has . . . . )
been deleted for plotting purposes, and the surrounding modes Using Fhe same simulation techniques d_escr'bed abO\_/e'
populated with vacuum amplitudes from E8). Only the region of W€ @lso find spatio-temporal pattern formation in three di-
interest is plotted. mensions. We plot the field in configuration space in Figs. 8,

9, and 10, again witi'=5x10"°. The behavior of these

. ) . . . patterns is similar to those found in two dimensions: the
If I' increases then the barrier height increases, reflecting ﬂ}ﬁ‘attern forms at the resonant wavelength, then the peaks and

fact that the non-linear coupling of the modes necessary fajjieys begin to move with respect to each other. In these
pattern formation is suppressed. On the other hand, for smadimylations, we set the physical box size such that there were
I', the barrier is not high enough to prevent the field fromejght resonant wavelengths per dimension in the box. Overall
probing both minima, and again patterns do not form. This igshere were 64 gridpoints per dimension and we neglected
because the system has become strongly non-linear. expansion in these simulations.

B. Three dimensions

FIG. 3. t=840. After resonance begins to boost the amplitude FIG. 5.t=0. The initial conditions in configuration space. The

of the resonant mode. Notice the brighteniimcreasing amplitude  inflaton ¢(x,y) is plotted, again with brighter regions correspond-
of the resonant modes. ing to larger values ofh.
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Time: 0.000000

FIG. 8. t=0. Initial conditions for a three-dimensional simula-
tion with I'=5x105. Here ¢(x,y,z) is plotted, again with
V. DISCUSSION brighter regions indicating larger field values.

FIG. 6. t=840. Wave pattern at intermediate time.

A. Gravitational waves

Since the patterns that we see vary in time, we expect . . i
there to be a peak in the gravitational wave spectrum at the We.would also like to discuss the .pOSSIt.)Illty of patterns
resonant frequency for preheating in the weakly non-lineaPccur"ng on cosmologllcal scales, since, if we could put
regime. Similar peaks in the gravitational wave spectrunf€Sonant power at 160~ Mpc, we would have an expla-
have been sedi24,25 in simulations of undamped preheat- nation for the observed excess power found at these scales
ing. These peaks correspond to the resonant and peridg6]- Although such a scale is outside the Hubble radius at
doubled frequencies. In the pattern forming regime, we exthe end of inflation, recently a number of auth¢25-33
pect to see similar peaks of lower amplitude, since the dissibave investigated the question of whether resonance can am-
pative terms keep the resonant peak in our simulation alify modes with wavelength larger than the Hubble radius.
lower amplitude than the undamped system. The peak in thé turns out that this is possible because of the large-scale
gravitational wave spectrum from pattern formation will be (many Hubble volumescoherence of the inflaton at the end
of smaller amplitude than that of the fully chaotic system butof inflation; super-Hubble mode amplification can be thought

since the pattern has directionality, this might help in extractof as down-scattering from the oscillating zero mode. How-
ing a signal. ever in the usual parameter region of some models

B. Large scale structure formation

Timne: 30.000000

FIG. 7. t=1020. Wave pattern at the end of the simulation. FIG. 9. t=100. Wave pattern at intermediate time.
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0 05

FIG. 11. A portion of the instability plot fog=1 in Eqg.(12).
Darker shading indicates larger values of the characteristic expo-
FIG. 10.t=300. Wave pattern at the end of the simulation. nentu, . The narrow resonance band of K@) is not indicated.

Timne: 60.000000

[30,31,33, this amplification does not seriously affect the K KPY o H
post-inflationary power spectrum. This is due to the fact that R_0 00 (13)
during inflation in these models, fluctuations in matter fields Hr Ho ar Hg

are suppressed by a factor @f 3? compared to fluctuations
in the inflaton. Therefore, during preheating, although super;,
Hubble modes are amplified, they cannot be amplifie
enough to be significant.

However consider the following model for preheating:

hereH=a'/a=aH. For a bump at 109! Mpc, we find

e needkg/Hg~10"2% In terms of our dimensionless

quantities this becomeg;~ 10~ 2* which we want to be the

principal wavelength in resonance. It follows that we have
1 1 either k2,<0 or r,= 10" “8 but from our simulations the

V= Z)\¢4+ zgz¢2X2. (10) Ilatter is ruled out because it will be too small to damp reso-

nance and lead to pattern formation.
If we consider Fig. 11 it is readily apparent that it will be

=g2/\ ~ i i ;
Forg=g'/~1, fluctuations iny are not suppressed during difficult to introduce a feature at the required scale. gor

inflation[32]. This is because the effective massyais g, <1 we can have resonanceldt=10"24 but also, ruinously

and this is much less thar during slow roll. at all scales down t&=0. Indeed the characteristic expo-

If we now supposey decays quantum mechanically into nent becomes larger dsgets smallef. We can avoid this

gézegfgggfs'atﬂﬁwéqirﬁ ‘ed to a phenomenological equzlia_roblem forg=1 but only if q is fine tuned to an unaccept-

able degree. In any case the resonance band is broad here
(this problem is further exacerbated in our situation by the
N ) 1o 242 fact that quantum mechanical decay tends to smear the reso-
X+3Hx+ v, x— =2Vx+9°9 x=0. (11 q y U N e
a nance bandsand peaks for modes witkg;>0. Thus it is
) o i , _unlikely that super-Hubble mode amplification in this model
With the same simplifications used earlier, and introducing.o, ead to a feature at 100" Mpc.

X=yaexpi/dral,), we obtain the the following equation  However we now mention that it may not be necessary to

for the Fourier modes oX: require such amplification in order to have an effect on large
scale structure. It is possible thapastpreheating period of
ﬁ+[k§ﬁ+ qd?(7)]X=0, (12 inflation [34,4,39 occurs (or even severaland this may

bring sub-Hubble modes, previously amplified in narrow
where nowkgﬁz k’—3a’'T 2= azl“f(/4. This differs essen- band resonance, up to scales appropriate for structure forma-
tially from Eg. (6) because of the appearancecpfA partial ~ tion. The growth in the scale factor will also be larger if we
plot of the instability bands in thek,q)-plane is shown in  imagine the inflaton decays into a large number of figds
Fig. 11. Wherl", #0 we have a new feature: for modes with though we have not considered pattern formation in such
k small enough, we can haué;<0, i.e. the system can Mmodels.
probe the lower half of the instability plot.

If kghy is the physical scale today on which we want to

have a feature in the power spectrum, then this correspondsiit follows that, forq<1, the quantum mechanical decay of the
to a co-moving modég at reheating such that inflaton leads to a red tilt in the power spectrum.
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It should be noted thdf, is not constrained in the same VI. CONCLUSIONS

way I', is. The latter has to be small so that radiative cor- In this paper. we have presented new evidence that there
rections do not spoil the required flatness of the inflaton po- Paper, b

. . - 4 .
tential. In the rescaled units used here, it is not hard to shol® & Pattern formmg regime in R¢" theory during prehe.a.t-.
[36] that ", <1013 where we have taken=10"23 which ing at the end of inflation. We have used vacuum initial

leads to the correct magnitude of density perturbations fronfonditions appropriate to sub-Hubble modes at the end of
inflation. Thus our earlier results were obtained witi"a inflation. We have shown that patterns arise in both two- and

which was too large to be physical. However the resultdhree-dimensions, and that, in the one-field case, they may be

should go through for the two-field model considered abovethought of as a network of domain walls. Furthermore since
the patterns vary spatio-temporally, gravitational waves will

C. Patterns in heavy ion collisions be produced. However, relative to the gravitational waves
produced in an undamped model, their amplitude will be
small, and therefore, unless the directionality of the pattern
Qan aid in detection, extremely difficult to detect.

We have speculated on the possibility, in the context of a

As a final comment, we would like to point out that the
system of equations which we have investigated is similar t
that for heavy ion collisions. It is hoped that in coming ex-
periments at RHIC and LHC energies will be obtained which ) : .
are in excess of the critical temperature for the QCD chirafwo'fleIOI madel, of putting a resonant band at cosmological

phase transition. The situation may be modeled by ar?cales, in particular at 190.1 .Mpc. We conclude. that this
0(4)-symmetric theory for the scalar fields— (o ;T) [37] is not feasible because it is impossible to amplify only the

o N _ required modes. However this conclusion may change in a
where one initially hago)=(m)=0. Due to the expansion mqge| which allows a subsequent period of inflation.

of the plasma, the temperature q_wckly falls below the critical Finally, we point out that heavy ion collisions at the BNL
temperature, th©(4)-symmetry is bmkeg’ and the system po4tivistic Heavy lon CollidefRHIC) and CERN Large
evolves to new equilibrium valugsr) #0(m)=0. Itis dur-  Hadron Collider (LHC) may be another physical system
ing this time that “disoriented chiral condensate®CC’s),  which exhibits pattern forming behavior.

domains in which the pion field develops a non-zero expec-

tation value in a certain direction, may be produced. The

s_ubsequent decay of a DCC gives rise to a characteristic ACKNOWLEDGMENTS

signal in the detectors.
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