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A free scalar field minimally coupled to gravity model is quantized and the Wheeler-DeWitt equation in
minisuperspace is solved analytically, exhibiting positive and negative frequency modes. The analysis is
performed for positive, negative and zero values of the curvature of the spatial section. Gaussian superpositions
of the modes are constructed, and the quantum Bohmian trajectories are determined in the framework of the
Bohm-—de Broglie interpretation of quantum cosmology. Oscillating universes appear in all cases, but with a
characteristic scale of the order of the Planck scale. Bouncing regular solutions emerge for the flat curvature
case. They contract classically from infinity until a minimum size, where quantum effects become important,
acting as repulsive forces avoiding the singularity and creating an inflationary phase, expanding afterwards to
an infinite size, approaching the classical expansion as long as the scale factor increases. These are nonsingular
solutions which are viable models to describe the early Universe.

PACS numbd(s): 98.80.Hw, 04.20.Cv, 04.60.Kz

[. INTRODUCTION tract predictions from the wave function of the Universe, the
Bohm—de Broglie ontological interpretation of quantum me-
The existence of an initial singularity is one of the major chanics2,3] has been proposdd—6|, since it avoids many
drawbacks of classical cosmology. In spite of the fact thaconceptual difficulties that follow from the application of the
the standard cosmological model, based in the classical gestandard Copenhagen interpretation to a unique system that
eral relativity theory, has been successfully tested until th&ontains everything. In opposition to the latter one, the on-
nucleosynthesis er@roundt~ 1 9, the extrapolation of this tological interpretation does not need a classical domain out-
model to higher energies leads to a breakdown of the geonfide the quantized system to generate the physical facts out
etry in a finite cosmic time. This breakdown of the geometryOf potentialities(the facts are therab initio), and hence it
may indicate that the classical theory must be replaced by §&n be applied to the universe as a wholith this inter-
quantum theory of gravitation: quantum effects may avoidPretation in hand, one can ask if the quantum scenario pre-
the presence of the singularity, leading to a complete reguldficted by the Wheeler—DeWitt equation is free of singulari-
cosmological model. ties and which type of classical universe emerges from the
The quantization of gravity is plagued with many concep-quantum phase. _ .
tual and technical problems, and when it is applied to the In & preceding work8], we have applied this proposal to
whole universe new issues appear. In the Dirac quantizatiof free scalar-tensor model with minimal coupling in
approach, a functional equation for the wave function of the-fiedmann-Robertson-Walker geometry, which can be ob-
Universe is obtained, the Wheeler-DeWitt equatigi, tained from a nonmlmmal scalar—tenspr theory through a
which is the basic equation of quantum cosmology. It is for-conformal transformation. Free scalar fields are good (_:andl—
mulated in so-called superspace, the space of all possibfates to describe the material content of the early Universe
three-dimensional spatial geometries. It is very hard to find?e€cause of their simplicity and because they represent stiff
exact solutions of the full Wheeler-DeWitt equation, but so-matter, the type of fluid advocated by Zel'dovif8] to be
lutions may be found in minisuperspaces where all but delevant at early stages of cosmic evolution. Only positive
finite number of degrees of freedom are frozen. curvature spatial sections have been studied. The Bohmian
Among the fundamental questions that come from therajectories in configuration space revealed an unexpected
quantization of the universe as a whole, one of the mosgcenario: they behaved as the classical solutions for small
important concerns the interpretation of the wave functionvalues of the scale factor, but display quantum behavior
coming from the Wheeler-DeWitt equation. In order to ex-When the scale factor is big. As a consequence, the initial

*Email address: coliste@ccr.jussieu.fr 10ther alternative interpretations can be used in quantum cosmol-
"Email address: fabris@cce.ufes.br ogy such as the many worlds interpretation of quantum mechanics
*Email address: nelsonpn@Iafex.cbpf.br [7].
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singularity is still present in this quantum model.

The Wheeler-DeWitt solutions for this scalar-tensor L= \/—_Q{R—
model contain positive and negative frequency modes, the
first leading to an expanding universe, and the second to @here the bars have been omitted. We will defie= (o
contracting universe, near the singularity. Inspired by this

b i ructed in RES eul +3), which we will consider, from now on, to be strictly
observation, we constructed in €8] SOme particuiar su- - positive in order not to violate any of the energy conditions,
perpositions mixing negative and positive models. In this

found inaul t luti hich at least classically.
way, we found nonsinguiar quantum soiutions wnich Were, e wi consider the Robertson-Walker metric

however, of Planckian size and hence they could not be a
model for our real Universe.

3 :
w+§) ¢>;p¢'P}, @

2
The aim of the present work is to explore further the y2— _ N2 12+ a(t) [dr2+r2[d6%+sirX(0)d 2]}
possibilities of the minisuperspace model of R&]. First, 1+ (eld)r? '
we will not restrict ourselves to positive curvature spatial (©)]

sections and second, we will explore more suitable superpo-

sitions of negative and positive modes, namely, the Gaussiawhere the spatial curvatueetakes the values 0,1 1. Insert-
superposition. For the case the spatial section is flat, it i#ng this line element into the Lagrangi&®), and using the
possible to solve analytically the expressions for the phase afnits wheres =c=1, we obtain the following action:

the wave function, and to reduce the equations for the Bohm-

ian trajectories to a dynamical system. The critical points are 3V Na3[ —a2 e
calculated, and they are identified as center or nodes points. = 2 J < |t WF+ — | dt, (4
This leads to the existence of three kind of scenarios: peri- 4y N“a N® a

odic solutions representing oscillating universes, bouncing ) . 3 )
universes, models with a big-bang followed by a big crunchvhereV is the total volume divided bp* of the spacelike
The bouncing universes contract classically from infinity un-nypersurfaces, which are supposed to be closed| gisdhe
til a minimum size, where quantum effects become important’!@nck lengthV depends on the value efand on the topol-
acting as repulsive forces avoiding the singularity, expandin@9y of the hypersurfaces. Fa=0, V can have any value
afterwards to an infinite size, approaching the classical exoecause the fundamental polyhedraestO hypersurfaces
pansion as long as the scale factor increases. These are n&&n have arbitrary sizésee Ref[10]). In the case ofe=1
singular solutions which are viable models to describe th@nd topology S®, V=272 Defining g2=4ml2/3V, ¢
Universe we live in. For closed and open spatial sections, ak=/C,/6¢, and omitting again the bars, the Hamiltonian
calculations must be performed numerically, and the trajecreads
tories obtained in the configuration space reveal again the
presence of oscillating universes in addition to those with a p? P2
big-bang followed by a big-crunch. In all three cases, the HZN( —32—a+32%"3—e— (5)
oscillating universes have a characteristic scale of the order 2a 2a
of the Planck length, except for very special
Gaussians in the case of zero spatial curvature. Hence, thghere
most interesting scenarios emerge from the flat case, where _
we have succeeded to obtain a viable nonsingular model. aa

The article is organized as follows. In Sec. I, we describe Pa=———, (6)
the classical model and the corresponding Wheeler-DeWitt
equation in the minisuperspace. Section Il is devoted to the .
study of the Gaussian superposition of the quantum solutions _ a’¢
found before, and their corresponding analysis. In Sec. IV we p¢_132_N' (7)
present our conclusions.

Usually, the scale factor has dimensions of length because

we use angular coordinates in closed spaces. Hence we will
Il. THE CLASSICAL AND QUANTUM MINISUPERSPACE . . . ~
MODELS define a dimensionless scale facteea/ 3. In that case the
Hamiltonian becomes, omitting the tilde,

N ( p§+ P2 )
- —+——eal.
L=V"ge “R-wd.,d"). ) 28 ‘

a a3
) ) ) As B appears as an overall multiplicative constant in the
For w=—1 we have effective string theory without the Hamiltonian, we can set it equal to one without any loss of
Kalb-Ramond field. Fow=—3/2 we have a conformally generality, keeping in mind that the scale factor which ap-
COUpled scalar field. Performlng the conformal tranSfOfma'pears in the metric iga, nota. We can further S|mp||fy the
tion nge‘/’gw we obtain the following Lagrangian: Hamiltonian by definingx= In(a) obtaining

Let us take the Lagrangian

®
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N . contracting forever to or expanding forever from a singular-
= S avaa L Pt Py eexplda)], (9) ity. Near the singularity, these solutions behave as in the flat
2 exg3a) ; . !
case. There is no inflatich.
Let us now quantize the model. The Wheeler-DeWitt
equation is obtained through the Dirac quantization proce-
dure where the wave function must be annihilated by the

H

where

p,=— e*a (10) operator version of the constraint in E§). With the choice
“ N’ of factor ordering which makes it covariant through field
redefinitions, it reads
e3a
Py= Nd)- (13) S
———+ —+ €™V =0. (19
0"6(2 2

The momentunp,, is a constant of motion which we will

call k. The classical solutions are, in the gauge:1, the
following.
(1) e=0:

Employing the separation of variables method, we obtain the
general solution

V(e )= f F(K) A @)By( $)dk (20
d=*a+cCq, (12

wherek is a separation constant amdk) is an arbitrary

wherec; is an integration constant. In terms of cosmic time )
function ofk,

they read
_ By ()=bqexplikd)+b,exp —ike), (21
I 3 () =Dy explike) +b, exp(—ike
and fore=0
In(t)
¢=—73*Ca (14 A(a)=a; explika)+a, exp(—ika), (22)
. . . fore=1
The solutions contract (lexpand forever from a singularity,
depending on the sign &, without any inflationary epoch. A @) =aylio(€2%12) + a Ky n(€2212), (23
(2) e=1:
o and fore=—1
k
a=e“*= cosn24—cy)” (15 A @) = a3z €2%12) + agNiy o €2412). (24

) ) . The functions],N,|,K are Bessel and modified Bessel func-
wherec, is an integration constant, and from the conservasjgns of first and second kind.

tion of p, we get The Bohm-de Broglie interpretation of homogeneous
_ ) minisuperspace models goes as follows: in general, the
k=e3¢. (16)  minisuperspace Wheeler-DeWitt equation is

The cosmic time dependence is complicated and we will not H[ﬁa(t),aa(t)]qf(q)zo_ (25)

write it here. These solutions describe universes expanding

from a singularity till a maximum size and contracting againWriting ¥ =R exp(S/%), and substituting it into E¢25), we
to a big crunch. Near the singularity, these solutions behavebtain the following equation:

as in the flat case. There is no inflation.

(3) e=—1: 1f dS 9S U 0 -
o E D(,B(q,u)@@—’— (q/.L)_’_Q(q,u,)_ ’ ( )
k
a=e*=—————, 1 I
[Sinh(2—cy)| (17 where the quantum potential is
2
wherec, is an integration constant, and again, from the con- Q(q,)=— _faﬁﬂ_ (27)
servation ofp,, we get a 2R 799,995

k=e¢. (18
2In the casee=—1 there are classical solutions with,<0.
As before, the cosmic time dependence is complicated an@ualitatively, they represent universes contracting from an infinite
we will not write it here. These solutions describe universeso a minimum size and then expanding again to infinity.

083507-3



R. COLISTETE, JR., J. C. FABRIS, AND N. PINTO-NETO PHYSICAL REVIEW &2 083507

The Bohm-de Broglie interpretation applied to quantum A. Hypersurfaces with e=0
cosmology states that the trajectorgggt) are real, indepen-  Thjs case can be solved analytically. We choose the arbi-
dently of any observations. Equati@¢@6) is the Hamilton- trary functionF (k) as the Gaussian
Jacobi equation for them, which is the classical one amended

with a quantum potential terig27), responsible for the quan- (k—d)2
tum effects. This suggests that we define F(k)=exp — 5 (34
g
S .
pazw, (28)  We can study two types of wave function

where the momenta are related to the velocities in the usual \1’1(&,¢)=f F(K)Bk(@)[Ax(a@)+A_(a)]dk (35
way:
and
sl 9

N ot (29

Wl d)= f FIOA(@)[Bu(¢)+B_($)]dk, (36)

To obtain the quantum trajectories we have to solve the fol-

lowing system of first order differential equations, called the20th With _aZi; bZhZO' We will restrict ourlselvehs v, llae-
quidance relations: cause it yields the most interesting results. The results com-

ing from ¥, can be obtained from the first by changing

0S(ds) ., 1. with 6. . - .
T=f“5 R (30 Performing the integration ik we obtain, for¥,
- (a+$)?0” .
In the present case of the Hamiltoni&®), the quantum ‘I’l=0'\/; expg — B exdid(a+¢)]

potential(27) becomes

(a—¢)?0?
e R 4°R texp — ———— exd —id(a—¢)];. (37
Qle,¢)=55 E_&TSZ : (3D
In order to obtain the Bohmian trajectories, we have to cal-
and the guidance relatior{80) read culate the phas8 of the above wave function and substitute
it into the guidance formul&32),(33), working in the gauge
9S e3a, N=1. These equations constitute a planar system which can
e TN (32)  be easily studied:
[ po? sin(2da) + 2d sinh o?a )]
S e3¢ @= 2 ’ (38)
oo (33) exp(3a){2[cog2da)+cosio ad)]}
e N

4 [ — ao?sin(2da)+2d cog2de) + 2d cosi o2 a )]
Equationq30) are invariant under time reparametrization. ¥~ 2 :
Hence, even at the quantum level, different choicebl@f exp(3a){2[cod 2da) +costloa ) ]}
yield the same spacetime geometry for a given nonclassical
solutiong,(t). There is no problem of time in the Bohm—de The linea=0 divides configuration space in two symmetric
Broglie interpretation of minisuperspace  quantumregions. The linep=0 contains all singular points of this

cosmology? Let us then apply this interpretation to our system, which are nodes and centers. The nodes appear when

(39

minisuperspace models and choose the galige.. the denominator of the above equations, which is propor-
tional to the norm of the wave function, is zero. No trajectory
1. BOHM INTERPRETATION OF GAUSSIAN can pass through these points. They happen whe® and
SUPERPOSITIONS cos@a)=0, or a=(2n+1)#/2d, n an integer, with separa-

. ) . tion 7r/d. The center points appear when the numerators are
We will now make Gaussian superpositions of these 03¢5 They are given byp=0 and a=2d[cot(da)]/ o

lutions and interpret the results using the Bohm—de Broglierhey are intercalated with the node points, and their separa-
interpretation _of quantum mechamgs. We will beg|r! by thetions cannot exceedr/d. As |a|— these points tend to
casee=0, which is simpler, and it is the one to which the , /4 As one can see from the above system, the classical
others reduce whea— —c. solutions @(t)«tY3) are recovered wheha|— or |¢|
—oo, the other being different from zero.
A field plot of this planar system is shown in Fig. 1, for

3This is not the case, however, for the full supersp@me Ref. o=d=1. We can see plenty of different possibilities, de-

[5]). pending on the initial conditions. Near the center points we
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FIG. 1. Field plot of the system of planar equatid88), (39) for c=d=1, which uses the Bohm-de Broglie interpretation with the
wave function¥;, Eq.(37). Each arrow of the vector field is shaded according to its true length, black representing short vectors and white,
long ones. The four shades of gray show the regions where the vector field is pointing to northeast, northwest, southeast, or southwest. The
black curves are the nulicline curves that separate these regions. The white points are the center points whose neighborhoods have oscillating
trajectories. The trajectories are the white curves with direction arrows.

can have oscillating universes without singularities and withthe potentialee*® in the Wheeler-DeWitt equation breaks
amplitude of oscillation of order 4 For negative values of it), and one should not expect to obtain tae 0 part of the
«a, the universe arises classically from a singularity but quanfield plots in these cases from the<0 part through a re-
tum effects become important forcing it to recollapse to an4lection, as in the case=0 (see Fig. L
other singularity, recovering classical behavior near it. For
positive values ofe, the universe contracts classically but
when ¢ and « are small enough, quantum effects become
important creating an inflationary phase which avoids the The Wheeler-DeWitt equatiofl9) for e=1, in the case
singularity. The universe contracts to a minimum size andve neglect thej, W, is analogous to a stationary Schro
after reaching this point it expands forever, recovering thedinger equation wittE=0 andV=e**. Hence, one should
classical limit whena becomes sufficiently large. These are make superpositions involving only the parts’g{ «) which
models which can represent the early Universe. We can se@0€s to zero ag goes to infinity, which are the Bessel func-
that for @ negative we have classical limit for small scale tions Kiy(€°“?). Consequently, we will take the following
factor while for o positive we have classical limit for big Superposition:
scale factor. K_d)?
For the wave functionV’,, the analysis goes in the same ‘I’a(a,¢)=f ex;{ . ( )

B. Hypersurfaces with e=1

2a
way but we have to interchange with ¢. In this case we o2 Kikiz( €7/2)Bi( $)dk.
also have periodic solutions but the others are universes aris- (40)
ing classically from a singularity, experiencing quantum ef-
fects in the middle of their expansion, and recovering theifrhe |imit — —« does not give the preceding results for
classical behavior for large values @f There are no further _ 4 pecause the Bessel functinreduces in this limit to
possibilities.

We will now pass to the cases with curved spatial sec- i
tions. One can immediately notice an important difference. K, (e?*/2)~ —
The casee=0 has a symmetrg— — a which is present not k
only in the Wheeler-DeWitt equatiofil9) but also in the
solution (37). The caseg+ 0 do not possess this symmetry —exp{—ik[a—In(2)]}T

exp{ik[a—ln(Z)]}F(l—%)

k}

i
1+

(41)

4As discussed above, these amplitudes can be very large as long . _ S
asd becomes very small because the separation of the center poin@d the presence of the gamma functions spoils their simi-
are of the order of H. larity.

083507-5



R. COLISTETE, JR., J. C. FABRIS, AND N. PINTO-NETO PHYSICAL REVIEW &2 083507

X ] 4
IR RR:

TR R Ay

LR 30 300303030 303030 303030083
S XRRRIGOIDOR R IR IR

AT T
RN RO R R R
T Tt b
AR R ERE,
trr T TR Y
+rTTTTETT T
2ttt ETTT
trTTT LT
Tt T T
UL
R R
TrtTrT
threft e e
tTeTe T2 e Ts
RS
LRI
trrTre
g B
Trr e
trrtrr e

-8 -6 -4 ~2 0 2
’

(0

FIG. 2. Field plot of the numerical solution of the system of planar equatidfs(45) using the Bohm—de Broglie interpretation with
the wave function¥' 5, Eq. (40), for c=d=1. Each arrow of the vector field is shaded according to its true length, black representing short
vectors and white, long ones. The four shades of gray show the regions where the vector field is pointing to northeast, northwest, southeast,
or southwest. The black curves are the nulicline curves that separate these regions. The white point is the center point whose neighborhood
has oscillating trajectories. The trajectories are the white curves with direction arrows.

This case must be studied numerically, and the transforvalue of a, and then return classically to a singularity. Con-

mation cluding, we have two types of trajectories in this case. One
which is periodic due to quantum effects, and the other
a'=a—¢, (42 which exhibit the pattern of classical behavior: expansion
from a singularity until a maximum size followed by a con-
¢ =¢+a, (43 traction to a big crunch. The periodic solutions have maxi-

mum size aroundv=0, ora~I, and they cannot represent

eases this task. The guidance relati@®®—(33) become the Universe we live in.

. —3(a’'+¢")] S .
a'=—2ex — , (44) C. Hypersurfaces with e=—1
5 ’
¢ In this case we will choose &, («a) the combination
- —-3(a’'+¢")| S ik ik
¢'=-2 exr{# P 49 Afa@)=|T| 1+ | Jya(€*/2)+T'| 1- E)J_ik,z(ez"/Z)}

46

and Fig. 2 shows the field plot of this transformed planar (40
system, usingr=d=1. There are periodic solutions without in order to get rid of the gamma functions and obtain the
singularities which happen when the Bohmian trajectoriepreceding results foe=0 whenea is very negative because
cross the linesd¢’'=—3.73, ¢’ <—3.73), or (»'=—3.73, the Bessel functiod reduces in this limit to
a'<—3.73) or, equivalently, ¢=|¢|—3.73, a<—3.73). _
These oscillating trajectories can reach very negative values 3 20y Nexp[lk[a—ln(Z)]}
of @ but their maximum size cannot exceed=0, or a i €712)= ['(1+ik/2)

~lp. Another behavior is related to the trajectories shown
in Flg 2 which are exclusively in the light gray region. They Taking this choice ofA («), Eq. (46), into the Gaussian
begin classically from a singularity, expand to a maximumsuperposition

@7
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FIG. 3. Field plot of the numerical solution of the system of planar equati®®s33) using the Bohm—de Broglie interpretation with
the wave functiont',, Eq. (48), for co=d=1. Each arrow of the vector field is shaded according to its true length, black representing short

vectors and white, long ones. The four shades of gray show the regions where the vector field is pointing to northeast, northwest, southeast,
or southwest. The black curves are the nulicline curves that separate these regions. The white points are the center points whose neighbor-

hoods have oscillating trajectories. The trajectories are the white curves with direction arrows.

(k—d)2 considered to be compact. The Bohmian trajectories in con-
\If4(a,¢)=f exg -~ ——— Ala)Bi(p)dk, (48 figuration space were calculated numerically, except for the
o flat case, where it is possible to reduce the equations for the

the numerical calculations with respect to the —1 case Bohmian trajectories to a two-dimensional dynamical sys-

show that the behavior for very negative valuesrat simi- tem. . . S ) .
lar to thee=0 case, as one can see by comparing Fig. 3 with The comparison of the trajecto'rles in the conflguratlon
Fig. 1. Asa increases the regions with oscillating universesSPace of the variablea and ¢, which are the dynamical
are squeezed and their separation decreases monotonicaffizgrees of freedom of the minisuperspace, with the classical
Like the e=0 case, there are periodic solutions without sin-ON€S; allows one to identify the classical and quantum phases
gularities and with amplitude of oscillation of order 1. The for the scalar-tensor cosmological models. For all three dif-
other behavior is described by trajectories that arise classférent values of the curvature of the spatial sections, the con-
cally from a singularity, experiment a quantum halt at soméiguration space of the quantum solutions displays oscillating
maximum value of the scale factor, and then classically conuniverses. However, these oscillating universes remain at the
tracts to a big crunch, contrary to the classical solutions of’lanck scale and they cannot be considered as candidates for
Eq. (17) which contract forever to or expand forever from a the description of the early Universthey are more similar
singularity. to baby universes except for the unnatural choi¢d|<1 in

the e=0 case. There are also trajectories which correspond

IV. CONCLUSION to universes which begin and end in singular states. Only for

the flat case is it possible to have bouncing models.

The quantization of a scalar-tensor model in the minisu- In the bouncing models of the flat spatial section case, the
perspace leads to a separable partial differential equatioscale factor has an infinite initial and final values, near which
admitting analytical solutions, with positive and negative fre-it behaves classically. As it approaches the singularity, the
quencies. In this work, we have studied Gaussian superposiepulsive quantum effects lead to the bounce, avoiding the
tions of these different modes and the corresponding Bohnsingularity. Such a scenario can be a candidate for the de-
ian trajectories. Such analysis was performed for zeroscription of our early Universe, since it is free from the initial
positive and negative curvature spatial sections, which arsingularity and behaves classically in the asymptotic limit of
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large values for the scale factor. It is worth noting that thisshown in Ref[12] that to each perfect fluid barotropic equa-
classical asymptotic limit corresponds to the stiff mattertion of state, it is possible to construct a self-interacting sca-
Friedmann universe which, according to Zel'dovid, is lar field model leading to the same classical description in
the most promising one to describe the very early Universeminisuperspace. We may argue if this correspondence re-

The free scalar field model considered in this paper, omrmains at the quantum level. Note that in Rjgd] we have
the other hand, can be connected to a nonminimal coupledbtained bouncing universes for radiation fields wéth 0
scalar field, with a coupling parameter, as in the Brans- ande= —1 with the same qualitative behavior as the bounc-
Dicke theory, by a conformal transformation. In REf1] a  ing universes found here. They are also viable models for the
guantum analysis of these nonminimal models was perearly Universe. One should investigate if a scalar field model
formed, and it was shown that nonsingular scenarios can b&ith a potential corresponding to the radiation fluid would
obtained when the parameteris negative. In fact, all quan- give similar results.
tum analysis performed here can be connected with a similar
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