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Gaussian superpositions in scalar-tensor quantum cosmological models
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A free scalar field minimally coupled to gravity model is quantized and the Wheeler-DeWitt equation in
minisuperspace is solved analytically, exhibiting positive and negative frequency modes. The analysis is
performed for positive, negative and zero values of the curvature of the spatial section. Gaussian superpositions
of the modes are constructed, and the quantum Bohmian trajectories are determined in the framework of the
Bohm–de Broglie interpretation of quantum cosmology. Oscillating universes appear in all cases, but with a
characteristic scale of the order of the Planck scale. Bouncing regular solutions emerge for the flat curvature
case. They contract classically from infinity until a minimum size, where quantum effects become important,
acting as repulsive forces avoiding the singularity and creating an inflationary phase, expanding afterwards to
an infinite size, approaching the classical expansion as long as the scale factor increases. These are nonsingular
solutions which are viable models to describe the early Universe.

PACS number~s!: 98.80.Hw, 04.20.Cv, 04.60.Kz
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I. INTRODUCTION

The existence of an initial singularity is one of the ma
drawbacks of classical cosmology. In spite of the fact t
the standard cosmological model, based in the classical
eral relativity theory, has been successfully tested until
nucleosynthesis era~aroundt;1 s!, the extrapolation of this
model to higher energies leads to a breakdown of the ge
etry in a finite cosmic time. This breakdown of the geome
may indicate that the classical theory must be replaced b
quantum theory of gravitation: quantum effects may av
the presence of the singularity, leading to a complete reg
cosmological model.

The quantization of gravity is plagued with many conce
tual and technical problems, and when it is applied to
whole universe new issues appear. In the Dirac quantiza
approach, a functional equation for the wave function of
Universe is obtained, the Wheeler-DeWitt equation@1#,
which is the basic equation of quantum cosmology. It is f
mulated in so-called superspace, the space of all poss
three-dimensional spatial geometries. It is very hard to fi
exact solutions of the full Wheeler-DeWitt equation, but s
lutions may be found in minisuperspaces where all bu
finite number of degrees of freedom are frozen.

Among the fundamental questions that come from
quantization of the universe as a whole, one of the m
important concerns the interpretation of the wave funct
coming from the Wheeler-DeWitt equation. In order to e
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tract predictions from the wave function of the Universe, t
Bohm–de Broglie ontological interpretation of quantum m
chanics@2,3# has been proposed@4–6#, since it avoids many
conceptual difficulties that follow from the application of th
standard Copenhagen interpretation to a unique system
contains everything. In opposition to the latter one, the
tological interpretation does not need a classical domain
side the quantized system to generate the physical facts
of potentialities~the facts are thereab initio!, and hence it
can be applied to the universe as a whole.1 With this inter-
pretation in hand, one can ask if the quantum scenario
dicted by the Wheeler–DeWitt equation is free of singula
ties and which type of classical universe emerges from
quantum phase.

In a preceding work@8#, we have applied this proposal t
a free scalar-tensor model with minimal coupling
Friedmann-Robertson-Walker geometry, which can be
tained from a nonminimal scalar-tensor theory through
conformal transformation. Free scalar fields are good ca
dates to describe the material content of the early Unive
because of their simplicity and because they represent
matter, the type of fluid advocated by Zel’dovich@9# to be
relevant at early stages of cosmic evolution. Only posit
curvature spatial sections have been studied. The Bohm
trajectories in configuration space revealed an unexpe
scenario: they behaved as the classical solutions for s
values of the scale factor, but display quantum behav
when the scale factor is big. As a consequence, the in

1Other alternative interpretations can be used in quantum cos
ogy such as the many worlds interpretation of quantum mecha
@7#.
©2000 The American Physical Society07-1
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singularity is still present in this quantum model.
The Wheeler-DeWitt solutions for this scalar-tens

model contain positive and negative frequency modes,
first leading to an expanding universe, and the second
contracting universe, near the singularity. Inspired by t
observation, we constructed in Ref.@8# some particular su-
perpositions mixing negative and positive models. In t
way, we found nonsingular quantum solutions which we
however, of Planckian size and hence they could not b
model for our real Universe.

The aim of the present work is to explore further t
possibilities of the minisuperspace model of Ref.@8#. First,
we will not restrict ourselves to positive curvature spat
sections and second, we will explore more suitable supe
sitions of negative and positive modes, namely, the Gaus
superposition. For the case the spatial section is flat,
possible to solve analytically the expressions for the phas
the wave function, and to reduce the equations for the Bo
ian trajectories to a dynamical system. The critical points
calculated, and they are identified as center or nodes po
This leads to the existence of three kind of scenarios: p
odic solutions representing oscillating universes, bounc
universes, models with a big-bang followed by a big crun
The bouncing universes contract classically from infinity u
til a minimum size, where quantum effects become import
acting as repulsive forces avoiding the singularity, expand
afterwards to an infinite size, approaching the classical
pansion as long as the scale factor increases. These are
singular solutions which are viable models to describe
Universe we live in. For closed and open spatial sections
calculations must be performed numerically, and the tra
tories obtained in the configuration space reveal again
presence of oscillating universes in addition to those wit
big-bang followed by a big-crunch. In all three cases,
oscillating universes have a characteristic scale of the o
of the Planck length, except for very speci
Gaussians in the case of zero spatial curvature. Hence
most interesting scenarios emerge from the flat case, w
we have succeeded to obtain a viable nonsingular mode

The article is organized as follows. In Sec. II, we descr
the classical model and the corresponding Wheeler-DeW
equation in the minisuperspace. Section III is devoted to
study of the Gaussian superposition of the quantum solut
found before, and their corresponding analysis. In Sec. IV
present our conclusions.

II. THE CLASSICAL AND QUANTUM MINISUPERSPACE
MODELS

Let us take the Lagrangian

L5A2ge2f~R2wf ;rf ;r!. ~1!

For w521 we have effective string theory without th
Kalb-Ramond field. Forw523/2 we have a conformally
coupled scalar field. Performing the conformal transform
tion gmn5efḡmn we obtain the following Lagrangian:
08350
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L5A2gFR2S v1
3

2Df ;rf ;rG , ~2!

where the bars have been omitted. We will defineCw[(v
1 3

2 ), which we will consider, from now on, to be strictl
positive in order not to violate any of the energy condition
at least classically.

We will consider the Robertson-Walker metric

ds252N2 dt21
a~ t !2

11~e/4!r 2
$dr21r 2@du21sin2~u!dw2#%,

~3!

where the spatial curvaturee takes the values 0,1,21. Insert-
ing this line element into the Lagrangian~2!, and using the
units where\5c51, we obtain the following action:

S5
3V

4p l p
2 E Na3

2 S 2ȧ2

N2a2
1Cw

ḟ2

6N2
1

e

a2D dt, ~4!

whereV is the total volume divided bya3 of the spacelike
hypersurfaces, which are supposed to be closed, andl p is the
Planck length.V depends on the value ofe and on the topol-
ogy of the hypersurfaces. Fore50, V can have any value
because the fundamental polyhedra ofe50 hypersurfaces
can have arbitrary size~see Ref.@10#!. In the case ofe51
and topology S3, V52p2. Defining b254p l p

2/3V, f̄
[ACw/6f, and omitting again the bars, the Hamiltonia
reads

H5NS 2b2
pa

2

2a
1b2

pf
2

2a3
2e

a

2b2D , ~5!

where

pa52
aȧ

b2N
, ~6!

pf5
a3ḟ

b2N
. ~7!

Usually, the scale factor has dimensions of length beca
we use angular coordinates in closed spaces. Hence we
define a dimensionless scale factorã[a/b. In that case the
Hamiltonian becomes, omitting the tilde,

H5
N

2b S 2
pa

2

a
1

pf
2

a3
2eaD . ~8!

As b appears as an overall multiplicative constant in t
Hamiltonian, we can set it equal to one without any loss
generality, keeping in mind that the scale factor which a
pears in the metric isba, not a. We can further simplify the
Hamiltonian by defininga[ ln(a) obtaining
7-2
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H5
N

2 exp~3a!
@2pa

21pf
2 2e exp~4a!#, ~9!

where

pa52
e3aȧ

N
, ~10!

pf5
e3aḟ

N
. ~11!

The momentumpf is a constant of motion which we wil
call k̄. The classical solutions are, in the gaugeN51, the
following.

~1! e50:

f56a1c1 , ~12!

wherec1 is an integration constant. In terms of cosmic tim
they read

a5ea53k̄t1/3, ~13!

f5
ln~ t !

3
1c2 . ~14!

The solutions contract or expand forever from a singular
depending on the sign ofk̄, without any inflationary epoch.

~2! e51:

a5ea5
k̄

cosh~2f2c1!
, ~15!

wherec1 is an integration constant, and from the conser
tion of pf we get

k̄5e3aḟ. ~16!

The cosmic time dependence is complicated and we will
write it here. These solutions describe universes expan
from a singularity till a maximum size and contracting aga
to a big crunch. Near the singularity, these solutions beh
as in the flat case. There is no inflation.

~3! e521:

a5ea5
k̄

u sinh~2f2c1!u
, ~17!

wherec1 is an integration constant, and again, from the c
servation ofpf we get

k̄5e3aḟ. ~18!

As before, the cosmic time dependence is complicated
we will not write it here. These solutions describe univers
08350
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contracting forever to or expanding forever from a singul
ity. Near the singularity, these solutions behave as in the
case. There is no inflation.2

Let us now quantize the model. The Wheeler-DeW
equation is obtained through the Dirac quantization pro
dure where the wave function must be annihilated by
operator version of the constraint in Eq.~9!. With the choice
of factor ordering which makes it covariant through fie
redefinitions, it reads

2
]2C

]a2
1

]2C

]f2
1ee4aC50. ~19!

Employing the separation of variables method, we obtain
general solution

C~a,f!5E F~k!Ak~a!Bk~f!dk, ~20!

where k is a separation constant andF(k) is an arbitrary
function of k,

Bk~f!5b1 exp~ ikf!1b2 exp~2 ikf!, ~21!

and fore50

Ak~a!5a1 exp~ ika!1a2 exp~2 ika!, ~22!

for e51

Ak~a!5a1I ik/2~e2a/2!1a2Kik/2~e2a/2!, ~23!

and fore521

Ak~a!5a1Jik/2~e2a/2!1a2Nik/2~e2a/2!. ~24!

The functionsJ,N,I ,K are Bessel and modified Bessel fun
tions of first and second kind.

The Bohm–de Broglie interpretation of homogeneo
minisuperspace models goes as follows: in general,
minisuperspace Wheeler-DeWitt equation is

H@ p̂a~ t !,q̂a~ t !#C~q!50. ~25!

Writing C5R exp(iS/\), and substituting it into Eq.~25!, we
obtain the following equation:

1

2
f ab~qm!

]S

]qa

]S

]qb
1U~qm!1Q~qm!50, ~26!

where the quantum potential is

Q~qm!52
1

2R
f ab

]2R

]qa]qb
. ~27!

2In the casee521 there are classical solutions withCw,0.
Qualitatively, they represent universes contracting from an infin
to a minimum size and then expanding again to infinity.
7-3
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The Bohm–de Broglie interpretation applied to quantu
cosmology states that the trajectoriesqa(t) are real, indepen-
dently of any observations. Equation~26! is the Hamilton-
Jacobi equation for them, which is the classical one amen
with a quantum potential term~27!, responsible for the quan
tum effects. This suggests that we define

pa5
]S

]qa
, ~28!

where the momenta are related to the velocities in the u
way:

pa5 f ab
1

N

]qb

]t
. ~29!

To obtain the quantum trajectories we have to solve the
lowing system of first order differential equations, called t
guidance relations:

]S~qa!

]qa
5 f ab

1

N
q̇b . ~30!

In the present case of the Hamiltonian~9!, the quantum
potential~27! becomes

Q~a,f!5
e3a

2R F ]2R

]a2
2

]2R

]f2G , ~31!

and the guidance relations~30! read

]S

]a
52

e3aȧ

N
, ~32!

]S

]f
5

e3aḟ

N
. ~33!

Equations~30! are invariant under time reparametrizatio
Hence, even at the quantum level, different choices ofN(t)
yield the same spacetime geometry for a given nonclass
solutionqa(t). There is no problem of time in the Bohm–d
Broglie interpretation of minisuperspace quantu
cosmology.3 Let us then apply this interpretation to ou
minisuperspace models and choose the gaugeN51.

III. BOHM INTERPRETATION OF GAUSSIAN
SUPERPOSITIONS

We will now make Gaussian superpositions of these
lutions and interpret the results using the Bohm–de Bro
interpretation of quantum mechanics. We will begin by t
casee50, which is simpler, and it is the one to which th
others reduce whena→2`.

3This is not the case, however, for the full superspace~see Ref.
@5#!.
08350
ed

al

l-

.

al

-
e

A. Hypersurfaces with eÄ0

This case can be solved analytically. We choose the a
trary functionF(k) as the Gaussian

F~k!5expF2
~k2d!2

s2 G . ~34!

We can study two types of wave function

C1~a,f!5E F~k!Bk~f!@Ak~a!1A2k~a!#dk ~35!

and

C2~a,f!5E F~k!Ak~a!@Bk~f!1B2k~f!#dk, ~36!

both with a25b250. We will restrict ourselves toC1 be-
cause it yields the most interesting results. The results c
ing from C2 can be obtained from the first by changinga
with f.

Performing the integration ink we obtain, forC1,

C15sApH expF2
~a1f!2s2

4 Gexp@ id~a1f!#

1expF2
~a2f!2s2

4 Gexp@2 id~a2f!#J . ~37!

In order to obtain the Bohmian trajectories, we have to c
culate the phaseSof the above wave function and substitu
it into the guidance formula~32!,~33!, working in the gauge
N51. These equations constitute a planar system which
be easily studied:

ȧ5
@fs2 sin~2da!12d sinh~s2af!#

exp~3a!$2@cos~2da!1cosh~s2af!#%
, ~38!

ḟ5
@2as2 sin~2da!12d cos~2da!12d cosh~s2af!#

exp~3a!$2@cos~2da!1cosh~s2af!#%
.

~39!

The linea50 divides configuration space in two symmetr
regions. The linef50 contains all singular points of thi
system, which are nodes and centers. The nodes appear
the denominator of the above equations, which is prop
tional to the norm of the wave function, is zero. No trajecto
can pass through these points. They happen whenf50 and
cos(da)50, or a5(2n11)p/2d, n an integer, with separa
tion p/d. The center points appear when the numerators
zero. They are given byf50 and a52d@cot(da)#/s2.
They are intercalated with the node points, and their sep
tions cannot exceedp/d. As uau→` these points tend to
np/d. As one can see from the above system, the class
solutions (a(t)}t1/3) are recovered whenuau→` or ufu
→`, the other being different from zero.

A field plot of this planar system is shown in Fig. 1, fo
s5d51. We can see plenty of different possibilities, d
pending on the initial conditions. Near the center points
7-4



he
d white,
west. The

e oscillating

GAUSSIAN SUPERPOSITIONS IN SCALAR-TENSOR . . . PHYSICAL REVIEW D 62 083507
FIG. 1. Field plot of the system of planar equations~38!, ~39! for s5d51, which uses the Bohm–de Broglie interpretation with t
wave functionC1, Eq. ~37!. Each arrow of the vector field is shaded according to its true length, black representing short vectors an
long ones. The four shades of gray show the regions where the vector field is pointing to northeast, northwest, southeast, or south
black curves are the nullcline curves that separate these regions. The white points are the center points whose neighborhoods hav
trajectories. The trajectories are the white curves with direction arrows.
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can have oscillating universes without singularities and w
amplitude of oscillation of order 1.4 For negative values o
a, the universe arises classically from a singularity but qu
tum effects become important forcing it to recollapse to
other singularity, recovering classical behavior near it. F
positive values ofa, the universe contracts classically b
when f and a are small enough, quantum effects beco
important creating an inflationary phase which avoids
singularity. The universe contracts to a minimum size a
after reaching this point it expands forever, recovering
classical limit whena becomes sufficiently large. These a
models which can represent the early Universe. We can
that for a negative we have classical limit for small sca
factor while for a positive we have classical limit for big
scale factor.

For the wave functionC2, the analysis goes in the sam
way but we have to interchangea with f. In this case we
also have periodic solutions but the others are universes
ing classically from a singularity, experiencing quantum
fects in the middle of their expansion, and recovering th
classical behavior for large values ofa. There are no further
possibilities.

We will now pass to the cases with curved spatial s
tions. One can immediately notice an important differen
The casee50 has a symmetrya→2a which is present not
only in the Wheeler-DeWitt equation~19! but also in the
solution ~37!. The casese5” 0 do not possess this symmet

4As discussed above, these amplitudes can be very large as
asd becomes very small because the separation of the center p
are of the order of 1/d.
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~the potentialee4a in the Wheeler-DeWitt equation break
it!, and one should not expect to obtain thea.0 part of the
field plots in these cases from thea,0 part through a re-
flection, as in the casee50 ~see Fig. 1!.

B. Hypersurfaces with eÄ1

The Wheeler-DeWitt equation~19! for e51, in the case
we neglect the]ffC, is analogous to a stationary Schr¨-
dinger equation withE50 andV5e4a. Hence, one should
make superpositions involving only the parts ofAk(a) which
goes to zero asa goes to infinity, which are the Bessel func
tions Kik/2(e

2a/2). Consequently, we will take the following
superposition:

C3~a,f!5E expF2
~k2d!2

s2 GKik/2~e2a/2!Bk~f!dk.

~40!

The limit a→2` does not give the preceding results fore
50 because the Bessel functionK reduces in this limit to

Kik/2~e2a/2!'
i

k Fexp$ ik@a2 ln~2!#%GS 12
ik

2 D
2exp$2 ik@a2 ln~2!#%GS 11

ik

2 D G ,
~41!

and the presence of the gamma functions spoils their s
larity.

ng
nts
7-5
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FIG. 2. Field plot of the numerical solution of the system of planar equations~44!,~45! using the Bohm–de Broglie interpretation wit
the wave functionC3, Eq. ~40!, for s5d51. Each arrow of the vector field is shaded according to its true length, black representing
vectors and white, long ones. The four shades of gray show the regions where the vector field is pointing to northeast, northwest,
or southwest. The black curves are the nullcline curves that separate these regions. The white point is the center point whose nei
has oscillating trajectories. The trajectories are the white curves with direction arrows.
fo

a
t
ie

lu

w
y
m

n-
ne
er

ion
n-
xi-
t

he
e

This case must be studied numerically, and the trans
mation

a85a2f, ~42!

f85f1a, ~43!

eases this task. The guidance relations~32!–~33! become

ȧ8522 expF23~a81f8!

2 G ]S

]f8
, ~44!

ḟ8522 expF23~a81f8!

2 G ]S

]a8
, ~45!

and Fig. 2 shows the field plot of this transformed plan
system, usings5d51. There are periodic solutions withou
singularities which happen when the Bohmian trajector
cross the lines (a8523.73, f8,23.73), or (f8523.73,
a8,23.73) or, equivalently, (a5ufu23.73, a,23.73).
These oscillating trajectories can reach very negative va
of a but their maximum size cannot exceeda50, or a
' l pl . Another behavior is related to the trajectories sho
in Fig. 2 which are exclusively in the light gray region. The
begin classically from a singularity, expand to a maximu
08350
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r
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value ofa, and then return classically to a singularity. Co
cluding, we have two types of trajectories in this case. O
which is periodic due to quantum effects, and the oth
which exhibit the pattern of classical behavior: expans
from a singularity until a maximum size followed by a co
traction to a big crunch. The periodic solutions have ma
mum size arounda50, or a' l pl and they cannot represen
the Universe we live in.

C. Hypersurfaces with eÄÀ1

In this case we will choose asAk(a) the combination

Ak~a!5FGS 11
ik

2 D Jik/2~e2a/2!1GS 12
ik

2 D J2 ik/2~e2a/2!G
~46!

in order to get rid of the gamma functions and obtain t
preceding results fore50 whena is very negative becaus
the Bessel functionJ reduces in this limit to

Jik/2~e2a/2!'
exp$ ik@a2 ln~2!#%

G~11 ik/2!
. ~47!

Taking this choice ofAk(a), Eq. ~46!, into the Gaussian
superposition
7-6
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FIG. 3. Field plot of the numerical solution of the system of planar equations~32!,~33! using the Bohm–de Broglie interpretation wit
the wave functionC4, Eq. ~48!, for s5d51. Each arrow of the vector field is shaded according to its true length, black representing
vectors and white, long ones. The four shades of gray show the regions where the vector field is pointing to northeast, northwest,
or southwest. The black curves are the nullcline curves that separate these regions. The white points are the center points whos
hoods have oscillating trajectories. The trajectories are the white curves with direction arrows.
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C4~a,f!5E expF2
~k2d!2

s2 GAk~a!Bk~f!dk, ~48!

the numerical calculations with respect to thee521 case
show that the behavior for very negative values ofa is simi-
lar to thee50 case, as one can see by comparing Fig. 3 w
Fig. 1. Asa increases the regions with oscillating univers
are squeezed and their separation decreases monotoni
Like the e50 case, there are periodic solutions without s
gularities and with amplitude of oscillation of order 1. Th
other behavior is described by trajectories that arise cla
cally from a singularity, experiment a quantum halt at so
maximum value of the scale factor, and then classically c
tracts to a big crunch, contrary to the classical solutions
Eq. ~17! which contract forever to or expand forever from
singularity.

IV. CONCLUSION

The quantization of a scalar-tensor model in the mini
perspace leads to a separable partial differential equa
admitting analytical solutions, with positive and negative f
quencies. In this work, we have studied Gaussian superp
tions of these different modes and the corresponding Bo
ian trajectories. Such analysis was performed for ze
positive and negative curvature spatial sections, which
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considered to be compact. The Bohmian trajectories in c
figuration space were calculated numerically, except for
flat case, where it is possible to reduce the equations for
Bohmian trajectories to a two-dimensional dynamical s
tem.

The comparison of the trajectories in the configurati
space of the variablesa and f, which are the dynamica
degrees of freedom of the minisuperspace, with the class
ones, allows one to identify the classical and quantum pha
for the scalar-tensor cosmological models. For all three
ferent values of the curvature of the spatial sections, the c
figuration space of the quantum solutions displays oscillat
universes. However, these oscillating universes remain a
Planck scale and they cannot be considered as candidate
the description of the early Universe~they are more similar
to baby universes!, except for the unnatural choiceudu!1 in
the e50 case. There are also trajectories which corresp
to universes which begin and end in singular states. Only
the flat case is it possible to have bouncing models.

In the bouncing models of the flat spatial section case,
scale factor has an infinite initial and final values, near wh
it behaves classically. As it approaches the singularity,
repulsive quantum effects lead to the bounce, avoiding
singularity. Such a scenario can be a candidate for the
scription of our early Universe, since it is free from the initi
singularity and behaves classically in the asymptotic limit
7-7
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large values for the scale factor. It is worth noting that t
classical asymptotic limit corresponds to the stiff mat
Friedmann universe which, according to Zel’dovich@9#, is
the most promising one to describe the very early Unive

The free scalar field model considered in this paper,
the other hand, can be connected to a nonminimal cou
scalar field, with a coupling parameterv, as in the Brans-
Dicke theory, by a conformal transformation. In Ref.@11# a
quantum analysis of these nonminimal models was p
formed, and it was shown that nonsingular scenarios can
obtained when the parameterv is negative. In fact, all quan
tum analysis performed here can be connected with a sim
analysis in the nonminimal case through a conformal tra
formation, namely,aNMC5a1f and fNMC5f. One can
verify that when the minimal model displays singularities
is possible to have nonsingular solutions in the correspo
ing nonminimal case; but the nonsingular solutions in
minimal case must also be nonsingular in the correspond
nonminimal models.

An important generalization of the model studied he
would be to consider self-interacting scalar fields. It w
h-

of
e
d

s

08350
s
r

e.
n
ed

r-
be

ar
s-

t
d-
e
g

s

shown in Ref.@12# that to each perfect fluid barotropic equ
tion of state, it is possible to construct a self-interacting s
lar field model leading to the same classical description
minisuperspace. We may argue if this correspondence
mains at the quantum level. Note that in Ref.@6# we have
obtained bouncing universes for radiation fields withe50
ande521 with the same qualitative behavior as the boun
ing universes found here. They are also viable models for
early Universe. One should investigate if a scalar field mo
with a potential corresponding to the radiation fluid wou
give similar results.
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