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Parametric amplification of metric fluctuations during reheating in two field models
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We study the parametric amplification of super-Hubble-scale scalar metric fluctuations at the end of inflation
in some specific two-field models of inflation, a class of which is motivated by hybrid inflation. We demon-
strate that there can indeed be a large growth of fluctuations due to parametric resonance and that this effect is
not taken into account by the conventional theory of isocurvature perturbations. Scalar field interactions play
a crucial role in this analysis. We discuss the conditions under which there can be nontrivial parametric
resonance effects on large scales.

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

It was recently suggested@1# that parametric resonanc
during the reheating phase of an inflationary universe@2–4#
may lead to an exponential amplification of super-Hub
scale gravitational fluctuations. If true, this would affect t
usual predictions of inflationary models for observables s
as the matter power spectrum and the spectrum of cos
microwave anisotropies. In particular, it would require t
coupling constants in the particle physics model of inflat
to be exponentially smaller than previously thought in ord
that the theory does not generate a too large amplitude
the fluctuations.

In Ref. @5# it was shown that, although there are no ca
sality constraints which prohibit the amplification of supe
Hubble~but sub-horizon! modes during reheating, the effe
does not occur in a simple massive scalar field mode
chaotic inflation based on the potentialV(f)5m2f2/2
~here,f is the inflaton field!. This is true even beyond th
linear analysis@6#. Similarly, there is no effect for a quarti
potential @7# V(f)5lf4/4, nor for a potential containing
both quadratic and quartic terms@8#. These results agree wit
the earlier analyses in Refs.@9# and @10#. Very recently, it
has been shown@11# that for single scalar field matter eve
the addition of non-minimal coupling to gravity does n
lead to parametric resonance of long wavelength metric fl
tuations.

It was then suggested@12# that the amplification of super
Hubble-scale modes would occur for two field models
inflation, e.g. for a model with potential

V~f,x!5
1

2
m2f21

1

2
g2f2x2, ~1!

where as beforef is the inflaton field andx is a second
scalar matter field. This model had earlier been analyzed
Taruya and Nambu@13# who claimed that the isocurvatur
mode of the fluctuations will be parametrically amplifie
during reheating. However, as was shown in Refs.@14# and
@15# ~and more recently in@16#!, the fluctuations in thex
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field are exponentially suppressed during inflation for valu
of the coupling constant for which the equation of motion
the metric fluctuations corresponds to broad resonance,
rendering the effect studied in Ref.@12# completely ineffi-
cient.

The suppression of fluctuations in thex field which ren-
ders the parametric amplification of gravitational fluctuatio
ineffective in the model given by Eq.~1! occurs since during
inflation the induced massmx of the x field which is given
by mx5gufu is larger than the Hubble expansion parame
H, and hence, as can be easily seen by considering the e
tion of motion

d̈x13H ḋx1S k2

a2 1g2f2D dx50 ~2!

for the linearized fluctuation of thex field with comoving
wave numberk @the scale factor is denoted bya(t)#, dx
undergoes damped oscillatory motion.

A model in which mx,H during the stage of inflation
when scales of cosmological interest today exit the Hub
radius was recently studied by Bassett and Viniegra@17#. It
is a two field model given by the potential

V~f,x!5
1

4
lf41

1

2
g2f2x2. ~3!

In the absence of metric fluctuations, this model was stud
in detail in Ref.@18# ~see also@19#!, where it was shown tha
for values of the coupling constants satisfying

g2.2l ~4!

long wavelength modes (k.0) are in the first broad insta
bility band of the Floquet-type equation of motion derive
from Eq. ~2! after field rescaling which describes the par
metric resonance of matter fluctuations in an unpertur
expanding space-time. Bassett and Viniegra@17# showed that
in this model the quantityz @20# increases exponentially dur
ing the initial stages of reheating. Note thatz is a measure of
the curvature fluctuations and is believed to be conserved
©2000 The American Physical Society02-1
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super-Hubble scales in the absence of isocurvature fluc
tions~see e.g.@21# for a review of the theory of cosmologica
fluctuations!. However, since the model given by Eq.~3!
admits isocurvature fluctuations, a growth ofz on super-
Hubble modes is expected also in the ‘‘usual’’ analysis
the evolution of fluctuations in inflationary cosmology.

In this paper we take a closer look at the theory given
the potential~3!. Subject to certain assumptions on initi
conditions of the background field dynamics we recover
sults similar to Bassett and Viniegra: exponential growth oz
during the initial stages of reheating. Furthermore, we de
onstrate that this effect is not taken into account by the c
ventional theory of isocurvature perturbations. We then d
cuss some criteria which an inflationary Universe mo
must satisfy in order to have substantial parametric growth
z during reheating via scalar field interactions. We argue t
these conditions are naturally satisfied in some models
hybrid inflation, and we study a couple of concrete examp
in which super-Hubble-scale gravitational fluctuations gr
exponentially during reheating~some other examples wher
exponential growth of super-Hubble-scale modes could
cur are given in@22#!.

II. MASSLESS TWO FIELD MODEL RECONSIDERED

In this section we will consider the two-field model wit
potential~3! in which Bassett and Viniegra@17# showed the
parametric resonance of super-Hubble scale gravitatio
modes. This model has been studied in detail in@18# in the
absence of gravitational perturbations~see also@19#!.

As in our previous paper@5#, we shall work in longitudi-
nal gauge in which the metric including linearized sca
metric fluctuations takes on the form

ds25~112F!dt22a2~ t !~122C!dxidxi ~5!

where thexi are the comoving spatial coordinates andt is
physical time. Since for the matter model considered the
diagonal components of the spatial part of the ener
momentum tensor vanish, the corresponding componen
the Einstein equations imply@21# C5F. For the moment we
will write down the equations for a general system with m
tiple scalar fields (i 51, . . . ,n), and only at a later stage wil
we specialize to the specific model considered in this sect

The remaining independent equations of motion for l
earized perturbations in this Einstein-Higgs system are
perturbed energy constraint and momentum constraint e
tions as well as the equations of motion for the Higgs fi
perturbationsdf i :

23HḞ2S k2

a2
13H2D F

54pG(
i 51

n

@ḟ i ḋf i2Fḟ i
21V,idf i #, ~6!

Ḟ1HF54pG(
i 51

n

ḟ idf i , ~7!
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d̈f i13H ḋf i1F k2

a2
df i1(

j 51

n

V,i j df j G
54Ḟḟ i22V,iF, ~8!

wherek denotes the comoving wave number,V,i indicates
the derivative ofV with respect tof i , and G is Newton’s
constant.

The Sasaki-Mukhanov@23# variables for then matter
fields are

Qi5df i1
ḟ i

H
F ~9!

and satisfy the following system of equations:

Q̈i13HQ̇i1
k2

a2
Qi1(

j 51

n FV,i j 2
8pG

a3 S a3

H
ḟ iḟ j D .GQj50.

~10!

We will now specialize to our two field model. If the
homogeneous part of the second scalar fieldx vanishes
~which will not be true if parametric resonance is to exc
gravitational fluctuations—see later!, then the inflatonf dur-
ing the initial stages of reheating~when back-reaction effect
are negligible! oscillates as follows@18#:

f~h!5a21f0cnS x2x0 ,
1

A2
D , ~11!

wheref0 is the amplitude off at the end of the slow-rolling
period,cn is the Jacobi elliptic cosine function,h is confor-
mal time andx5Alf0 is a rescaled dimensionless confo
mal time coordinate. Following@18#, it is insightful to re-
scale all the fieldsf by the scale factor and use new field
f̃ 5a f . The equations of motion~10! then become

Q̃f9 1Fk22
a9

a
13cn2S x2x0 ,

1

A2
D G Q̃f

522
g2

lfo
cnS x2x0 ,

1

A2
D x̃Q̃x1MffQ̃f1MfxQ̃x

~12!

Q̃x91Fk22
a9

a
1

g2

l
cn2S x2x0 ,

1

A2
D G Q̃x

522
g2

lfo
cnS x2x0 ,

1

A2
D x̃Q̃f1MfxQ̃f1MxxQ̃x ,

~13!

where the derivative with respect to the conformal time
denoted by a prime, where, following the notation of@17#
~up to a prefactor containinga), we have used the abbrevia
tion
2-2
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PARAMETRIC AMPLIFICATION OF METRIC . . . PHYSICAL REVIEW D 62 083502
Mf1f2
5

8pG

a2 F 1

aH S f̃182
a8

a
f̃1D S f̃282

a8

a
f̃2D G8, ~14!

and where

k25
k2

lf0
2 . ~15!

In the model considered, the time-averaged equation of s
is that of radiation and hence the scale factor is linear inh
and thusa950.

Neglecting for a moment the terms on the right hand s
of the equations, both Eqs.~12! and ~13! are of the form of
Laméequations. Lame´ equations in the context of reheatin
were first noticed in@3# and then studied in detail in@24#,
@19# and@18#. The coefficient in front of thecn2 term@which
in the case of Eq.~13! is g2/l# is crucial to the resonanc
structure of the equation. Since we are interested in su
Hubble modes, we need to know for which values of t
coefficient the modek50 lies in the first instability band o
the equation. This is the case for values1

1,
g2

l
,3. ~16!

This implies that resonance occurs only in Eq.~13! for Q̃x ,
and then only for values ofg2/l in the above range~or in the
range corresponding to other instability bands!. However, if
the condition~16! is satisfied, and if thex field is indeed
excited, then parametric amplification ofQ̃x is expected, and
via the terms on the right hand side of Eq.~12!, induced
exponential growth ofQ̃f should occur.

Note, however, that it is not sufficient to show that
amplification of Q̃f or Q̃x occurs in order to demonstrat
that parametric resonance during reheating will have a
cial effect on the amplitude of gravitational fluctuation
Note that also in the conventional treatment of fluctuatio
@21# the amplitude of theQ̃ variable grows during the inter
val in which the equation of state of the background chang
As emphasized in@5#, a straightforward way to check if th
effect discussed here is a new effect is to consider the t
evolution of the ‘‘traditional conserved quantity’’z @20#
which gives a measure of the adiabatic component of
metric fluctuations. In the multi-field case,z is given by@13#

z5
H

(
j

ḟ j
2
(

i
ḟ iQi . ~17!

1Note that this condition and the corresponding conditions in
the other examples discussed in this paper are stable against p
bative coupling constant renormalizations, the reason being tha
considerg2;l and l should be constrained by the cosmic micr
wave background~CMB! anisotropy results to be a small numb
!1. Thus, the perturbative correction terms which are of orderg4

are much smaller than eitherg2 or l.
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In the two field case, the evolution equation forz is @25#

ż52
H

Ḣ

¹2

a2F1
H

2 FQf

ḟ
2

Qx

ẋ
G d

dt S ḟ22ẋ2

ḟ21ẋ2D . ~18!

In the case of a single scalar field, the second term vanis
but the equation cannot be applied during reheating si
Ḣ50 at times whenḟ50.

In the single field case, the evolution equation forz which
applies also during reheating is~for long-wavelength pertur-
bations for which the spatial gradient term can be neglec!
@5#

~11w!ż50, ~19!

wherew5p/r, p andr being pressure and energy densi
respectively. This shows thatz is conserved unlessw521.
Unless matter is given by an oscillating scalar field~in which
casew521 will occur at the turnaround points whenḟ
50), Eq. ~19! implies that the variablez is conserved on
scales outside the Hubble radius@20#. However, reheating
corresponds to an oscillating inflaton field, in which case
conclusion thatz is constant may break down, as discuss
in @5#. Nevertheless, in the specific single field models wh
have been analyzed@10,9,5–8# it was found that no net in-
crease ofz occurs during the initial stages of reheating, a
a general proof of the constancy ofz in single field models
was suggested in@8# and recently in@11#.

If matter is described, more realistically, in terms of mu
tiple scalar fields~each of which is given by a conventiona
action!, then it appears extremely unlikely thatw521 will
occur at all, since at the points in time whenḟ50, the other
fields will not all also be at rest, and thus the net value ow
will be greater than21. Therefore, the only realistic poss
bility for growth of z is as a consequence of the second te
on the right hand side of Eq.~18!, a term which correspond
to an isocurvature perturbation. Inspection of Eq.~18!, how-
ever, immediately shows that during reheating there is
chance of having a very large increase inz as a consequenc
of the zeros inḟ which arise periodically in time. This effec
is missed if the scalar fields are treated in the slow-roll
proximation, or if the change in the equation of state dur
reheating is modelled as a monotonic change from a ne
de Sitter equation of state during inflation to a radiati
equation of state after reheating.

However, to see if there is indeed an exponential grow
of isocurvature perturbations, it is important to take a clo
look at the equations. In the specific two field model of E
~3!, symmetric initial conditions for the homogeneous part
x give x50 andẋ50. In this case, it follows from Eq.~17!
thatz only depends onQf , and, since by Eq.~12! there is no
parametric amplification of super-Hubble modes ofQf given
that the coupling toQx vanishes, that there will therefore b
no parametric amplification ofz. The same result can also b
seen from Eq.~18! since for symmetric initial conditions, the
time derivative on the right hand side of the equation acts
a constant. The result is confirmed by our numerical analy
~see Fig. 1!.
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F. FINELLI AND R. BRANDENBERGER PHYSICAL REVIEW D62 083502
However, due to quantum fluctuations we expect that
average ofx over a volume corresponding to a particul
super-Hubble~but sub-horizon! mode will not vanish.2 It is
reasonable@26,27# to use for the homogeneous value ofx the
r.m.s. value of the renormalized quantum fluctuations. It f
lows from Eq.~13! that Qx will experience parametric am
plification during the initial stages of reheating. It will gro
as exp@m0h#, wherem0 is the Floquet index ofk50 ~which
for continuity reasons cannot be too different from the F
quet exponent for long wavelengths!. Via the source terms in
Eq. ~12!, this will induce parametric growth ofQf , and both
will contribute to the parametric growth ofz. In fact, since
the homogeneous value ofx ~defined in the above way! also
grows parametrically with the exponentm0, the resulting
growth of z will have a Floquet exponent of 2mo ,3 i.e. a
growth similar to the one expected in perturbation theory
the second order from terms asdx2. Our numerical analysis
confirms the above considerations. In Fig. 2 we depict
growth of z during the initial stages of reheating for tw
different values of the homogeneous component ofx, which
shows how the onset of the parametric growth ofz is depen-
dent on the value ofx. In Fig. 3 we show the time evolution
of the Sasaki-Mukhanov variablesQf andQx .

III. ISOCURVATURE PERTURBATIONS

Having determined in the previous section that in t
model~3! there is indeed amplification ofz during reheating,
we must now show that this effect is indeed a conseque
of parametric resonance, and not just an effect due to

2Note that the condition of nonvanishing of the spatial average
x is not necessary if we work to higher order in perturbation theo

3We thank Jim Zibin for comments on this point.

FIG. 1. Evolution of (11w)z for the model of Eq.~3! as a

function of the a-dimensional timez5AlMplt for x05ẋ050 and

f053.5Mpl , ḟ052.1Mpl as initial conditions for the background
The fluctuation Qf and Qx start in the adiabatic vacuum 4
e-foldings before inflation ends. The wave number isk
5102AlMpl , which corresponds to five times the Hubble radius
the beginning of the simulation. Note that the mode is far outs
the Hubble radius at the end of inflation.
08350
e

-

-

t

e

ce
e

change in the equation of state between the inflationary
and the post-inflationary era, an effect which is already ta
care of in the ‘‘usual’’ theory of isocurvature perturbations
inflationary cosmology, which we define as the results o
tained when the transition in the equation of state betw
the inflationary slow-rolling phase (p.2r) and the post-
inflationary radiation-dominated phase (p5 1

3 r) is taken to
be monotonic. We will show that in the ‘‘usual’’ analysi
there can be no exponential increase in the isocurvature
turbation, and that therefore the exponential increase we
tain here is a result of parametric resonance.

The fact that isocurvature perturbations can induce
adiabatic component on super-Hubble scales has been kn
for a long time@28–32,21#. Entropy perturbations act as
source forz even on scales larger than the Hubble radi
This is true even in the case when matter is given by a sin
scalar field. In this case, the evolution equation forz be-
comes@33#

ż53HS ṗ

ṙ
2

dp

dr D . ~20!

f
.

t
e

FIG. 2. Evolution in logarithmic scale of (11w)z for x052

31022Mpl , ẋ050 ~top! andx05231028Mpl , ẋ0;lMplx0 ~bot-

tom! as initial value forx. The initial condition forf andḟ are the
same as in Fig. 1 in both of the panels. The fluctuationsQf andQx

start in the adiabatic vacuum 40 e-foldings before inflation en
The wave number isk5102AlMpl , which corresponds to five
times the Hubble radius at the beginning of the simulation. T
growth of z is delayed in the second case because the backgro
field, and consequently the mixing terms in Eq.~12!, are smaller
than in the first case: in this wayQx takes longer to feed the growt
of Qf andz. The initial conditions for the second case correspo
to the values obtained through renormalization arguments.
2-4
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PARAMETRIC AMPLIFICATION OF METRIC . . . PHYSICAL REVIEW D 62 083502
These perturbations, however, are suppressed on s
larger than the Hubble radius.

In models with two or more scalar fields, the equation
z is given by Eq.~18!, and it is thus clear that even o
super-Hubble scales one should expectżÞ0. In the approxi-
mation in which both fields are slowly rolling, the time ev
lution of z on scales larger than the Hubble radius was st
ied in detail in @25,33,34#, with particular emphasis on
calculating the deviations from scale-invariance of the res
ing power spectrum of density fluctuations. However, sin
the analyses made use of the slow-rolling approximation
effects of the dynamics of reheating were considered.

More recently, Taruya and Nambu@13# and Bassettet al.
@12# considered the effect of reheating on the spectrum
density fluctuations and discovered a large growth ofz due
to the initial isocurvature perturbations, however in a mo
in which the necessary initialx field fluctuations are expo

FIG. 3. Evolution in logarithmic scale ofQf @panel~a!# andQx

@panel~b!# for the second set of initial conditions of Fig. 2. In pan
~c! we show the behavior ofQf andQx for the same initial condi-
tions, but for a longer period which correspond to 22 oscillations
the homogeneous fieldf.
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nentially suppressed during inflation. Bassett and Vinie
@17# then pointed out that the suppression would be absen
the model~3!.

It has been known for a long time that isocurvature p
turbations can be produced in inflationary models with m
than one scalar field. This issue was initially considered
the context of axion perturbations in@35#, extended to more
general two field models in@36# and studied in detail in@37#.
It was discovered that initial super-Hubble-scale isocurvat
perturbations induce an adiabatic component by the time
the scales re-enter the Hubble radius.

The gauge invariant expression for the total isocurvat
perturbation in a multi-fluid system is@32#

pG[(
i

~dpi
gi2cs

2dr i
gi!, ~21!

where dpi
gi and dr i

gi are the gauge invariant pressure a
density perturbations with respect to the total matter r
frame and the total speed of soundcs

2 is defined as the
weighted sum of the i-th speed of sound@32#:

cs
2[

ṗ

ṙ
5

1

(
j

ḟ j
2
(

i
csi

2 ḟ i
2 ~22!

with

csi
2 5112

V,i

3Hḟ i

. ~23!

The total isocurvature perturbation can be written as the s
of the non-adiabatic pressure component of the single c
ponent and of the relative isocurvature perturbationSi j as

pG5(
i

~dpi2csi
2 dr i !1

1

(
i

ḟ i
2
(
i , j

ḟ i
2ḟ j

2

2
Si j ~csi

2 2cs j
2 !

~24!

where

Si j [
dr i

gi

ḟ i
2

2
dr j

gi

ḟ j
2

. ~25!

The relative isocurvature perturbationSi j with respect to the
total matter frame can be written for our two field model

Sfx5
drf

ḟ2
2

drx

ẋ2
2

av
k

qfS 1

ḟ2
1

1

ẋ2D
5

drf

ḟ2
2

drx

ẋ2
2

3g2

8pG

fx

ḟ2ẋ2
~ḟx2ẋf!

Ḣ

H
~z2F!,

~26!

wherev is the total perturbed velocity for matter,qf is the
homogeneous energy transfer to thef component (qf1qx

f

2-5
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F. FINELLI AND R. BRANDENBERGER PHYSICAL REVIEW D62 083502
50 because of total energy conservation!, and nowdr i are
the density perturbations in the longitudinal gauge:

dr i5ḟ idḟ i2Fḟ i
21V,idf i . ~27!

From Eq. ~26! it follows that the parametric resonanc
from the matter sector of the theory~the Q variables to be
specific! induces exponential growth of the relative isocurv
ture perturbation, and hence also of the total isocurva
perturbation~see Fig. 4!.

In turn, isocurvature perturbations determine the cha
in z via Eq. ~18!. This shows that in the presence of sca
field interaction terms, there is a correlated exponen
growth of z and of the relative isocurvature perturbatio
Sfx . This exponential growth is a consequence of param
ric resonance and is absent if the phase transition is mode
with a monotonically increasing value ofw.

Analogously to Eq.~17! for the Bardeen parameter, th
total nonadiabatic pressurepG can be expressed in terms
the Sasaki-Mukhanov variables in the following way:

pG5(
i F V̇

r
ḟ iQi22V,iQi22

V̇

3H(
i

ḟ i
2
~ḟ i Q̇i1V,iQi !G .

~28!

As mentioned above, the exponential growth ofSfx andz
during reheating is a new effect due entirely to parame
resonance. The growth of fluctuations in inflationary mod
with two uncoupled fields were studied in@37# in an approxi-
mation in which the oscillations of the inflaton field we
neglected. In this case there is no growth ofSfx . An initial
isocurvature perturbation does induce the growth of an a
batic component on super-Hubble scales, but the final am
tude of the adiabatic mode is not much larger than the in
amplitude of the isocurvature perturbation, in agreem
with the earlier analysis in@35#.

IV. THREE GOLDEN RULES

Based on the analysis of Sec. II, it appears that sev
conditions are required in order to have efficient parame
resonance of super-Hubble-scale metric fluctuations.

FIG. 4. Evolution in logarithmic scale of the total non-adiaba
pressurepG for the first set of initial conditions of Fig. 2.
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~1! In the absence of gravitational perturbations the
must be broad-band parametric resonance in the matter
tor of the theory corresponding to isocurvature fluctuatio
andk50 must be part of the resonance band.

~2! The fluctuations in the matter field which undergo
parametric resonance must be effectively massless durin
flation. More precisely, there should be no large net supp
sion of these fluctuations before the phase of parame
resonance.

~3! The homogeneous value of the matter field which u
dergoes resonance must be non-vanishing. This is the w
est of the three conditions since it is only required if we wo
strictly to first order in perturbations.4

We show how these three rules are satisfied in ano
model with massless fields, but now based onnegative cou-
pling instability @39#. The potential is the following:

V~f,x!5
1

4
lf42

1

2
g2f2x21

1

4
lxx4 ~29!

with the parameterr[llx /g4.1 in order to have a poten
tial bounded from below@39#. This model has an attractor fo
x in the point which minimize the potential forx @39#

x̄~ t !;
g

Alx

f~ t !. ~30!

In this way even the third and weakest of the above con
tions is satisfied. The second one is easily satisfied bec
of the negative effective mass for thex fluctuations when the
backgroundx is small. In order to find the unstable band
one can use the attractor solution and estimate the frequ
of the inflatonf and of the fluctuationsdx during the period
of coherent oscillations:

vf
2 5lf22g2x2;lf2S 12

1

r D[l̃f2

vdx
2 5

k2

a2
13lxx22g2f2;

k2

a2
12g2f2.

If x is small compared to the inflatonf, then an unstable
band fork50 should be located at 2g252l̃. This gives a
second order equation forg2 whose positive root is

g25lx

211A114l/lx

2
. ~31!

We confirm numerically this analytical estimate in Fig.
for two allowed values ofg2: g25l with l!lx and g2

5l/2(A521) with l5lx . The reason for the growth ofz

4We are assuming that back-reaction on the inflaton by sc
particle creation does not shut off the resonance early. This issu
under consideration@38#. However, when the above three rules a
verified and the maximum Floquet index is on long wavelength
expect that backreaction will not be able to prevent some change
the standard predictions.
2-6
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is similar to the previous case:Qx is parametrically ampli-
fied, feeds the growth ofQf and in this case both contribut
to the growth ofz.

V. A MODEL MOTIVATED BY HYBRID INFLATION

Another natural scenario in which the above conditio
can all be satisfied is hybrid inflation@40#. Hybrid inflation is
also an attractive framework for implementing inflation
the context of supergravity models@41#. Since~at least! two
fields are involved in the dynamics of hybrid inflation, th
generation of isocurvature perturbations is rather natura
hybrid models, the phase of inflation during which the infl
ton fieldf is slowly rolling towardsf50 is terminated by a
phase transition in the second scalar fieldx, a field with the
double-well potential. This implies that during the oscill
tions off, the background value ofx is non-vanishing, lead-
ing to an obvious realization of condition~3! above.

Parametric resonance in the matter sector of hybrid in
tion models was studied in detail by Garcia-Bellido a
Linde @42#, and, in supersymmetric hybrid inflation, b
Bastero-Gil et al.@43#. The resonance of the fluctuations
the two fieldsf and x is inefficient for a large set of the
parameter space since both thedf anddx fields are effec-
tively massive during the regime of coherent oscillations (dx
becomes massive through the Higgs mechanism!. Quite ge-
nerically, parametric resonance could be much more effic

FIG. 5. Evolution in logarithmic scale of (11w)z for the model
~29! for g25l, lx5102l ~top! andl5lx ,g25l/2(A521) ~bot-
tom!. The initial conditions for the background aref053.5Mpl ,

ḟ0520.1AlMpl , x05231028Mpl and ẋ050. The fluctuations
Qf and Qx start in the adiabatic vacuum 40 e-foldings before
flation ends. The wavenumber isk5102AlMpl , which roughly cor-
responds to five times the Hubble radius at the beginning of
simulation.
08350
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if there is a third fieldc which couples to bothf and x.
Another interesting possibility is to consider a doublet for t
field x. Then, even in the phase of coherent oscillatio
there is a massless degree of freedom, namely the ‘‘G
stone’’ mode. Such a situation arises naturally in supergr
ity models@41#.

Therefore, as a toy model we will consider the followin
potential for the inflaton fieldf and the doubletx5(1/A2)
3(x1 ,x2):

V5lS M2

2l
2uxu2D 2

1
1

2
m2f21g2f2uxu2

5
1

2
m2f21

1

2
g2f2~x1

21x2
2!1

M4

4l
2

1

2
M2~x1

21x2
2!

1
l

2
x1

2x2
21

l

4
~x1

41x2
4!. ~32!

For supersymmetric hybrid inflation, there is only one ind
pendent coupling constant since

l5
g2

2
. ~33!

The values of the masses and coupling constants are
strained by the amplitude of density fluctuations at Hub
radius crossing, which is given by@40#

dr

r
;

g

l3/2S M

M pl
D 3S M

mD 2

~34!

which should be about 1025. In our numerical simulations
we chooseg251023, l5g2/2 ~as in a supersymmetric
model!, M2/M pl

2 510212 andM2/m251010. With these val-
ues, the Hubble parameter during the late stages of infla
is much larger thanm which ensures slow rolling off.

In this model, slow-roll inflation takes place while th
value of the inflatonf is larger thanfc5M /g. For these
values, the effective square massmx

2 of x ~evaluated atx
50) is positive. Oncef drops belowfc , themx

2 turns nega-
tive and inflation ends~at time tc) via a symmetry breaking
transition in the matter sector. We choose the basis of thx
fields such that the order parameter of the transition isx1.
However, since in general the initial ratio ofx fields andx
velocities attc is not the same

ẋ2

ẋ1

~ tc!Þ
x2

x1
~ tc!, ~35!

we can with no loss of generality assume that the value ofx2
at the timet r , when thex transition is complete and thef
oscillations start, does not vanish~as in the previous case
reasonable value forx2 is the rms of the renormalized quan
tum fluctuations!. Thus, we have argued that the third of th
conditions mentioned at the beginning of this section~non-
vanishing background matter fields! is naturally satisfied in

-

e
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this model~in contrast to the model considered in Sec. I!.
The initial values of the matter fields at the beginning of t
period of oscillation will be

x1~ t r !.M /Al

0Þx2~ t r !!M /Al. ~36!

In contrast to the model~1! in which the matter fluctua-
tions are exponentially suppressed during inflation, the ef
tive negative coupling instability in the matter fields in th
time interval betweentc and t r leads to the conclusion tha
the x fluctuations are not suppressed. In fact, they are s
pressed during slow-roll inflation, but build up again exp
nentially fast in the time intervaltc,t,t r . To see this, we
focus on the evolution of the fluctuations in thex field since,
as we shall see below, these are essential for the effec
ness of parametric resonance. We will consider field fluct
tions neglecting metric perturbations and the mixing ter
deriving from particle interactions~even if in the hybrid
models these mixing terms are not perturbatively small
their importance has been emphasized in@43#!. Under these
approximations the evolution equation fordx2 is

d̈x213H ḋx252S k2

a2 1g2f21lx1
213lx2

22M2D dx2 .

~37!

For f.fc , the effective square mass is larger thanH2 and
positive, thus leading to damped oscillatory solutions

dx2;a23/2~ t !exp~ ivt !, ~38!

with v5gf ~in the adiabatic limit!. During this time inter-
val, however, the homogeneous components of the ma
fields are also damped. The evolution equation for the or
parameterx1 is

ẍ113Hẋ152~g2f21lx1
21lx2

22M2!x1 . ~39!

Since~up to the contributions fromx2
2 which are negligible

during inflation! the effective masses in Eqs.~39! and ~37!
are the same, the damping rates ofx1 anddx2 are also the
same fort,tc . In the time interval betweentc and t r , the
signs of the effective square masses in both Eq.~39! for x1
and Eq.~37! for dx2 are reversed. In both cases, the effect
m2 is now 2M2, leading to exponential increase in bothx1
anddx2. This period ends whenx1 reaches the minimum o
the potential at timet r . To summarize the above discussio
the evolution ofx1 follows:

M

Al
.x1~ t r !;eM (tr2tc)x1~ tc!;eM (tr2tc)e2(3/2)H(tc2t i )x1~ t i !

~40!

wheret i is the time at the beginning of inflation andH is the
Hubble constant during inflation, assumed to be constan
make the equation simple~this assumption does not affe
the basic point we are making!. In comparison, the evolution
of dx2 obeys
08350
c-

p-
-

e-
-

s

d

er
er

,

to

dx2~ t r !;eM (tr2tc)dx2~ tc!;eM (tr2tc)e2(3/2)H(tc2t i )dx2~ t i !
~41!

which shows that the exponential growth ofdx2 for tc,t
,t r precisely makes up for the exponential decay during
period t i,t,tc , exactly as it does for the evolution ofx1.
Equations~40! and ~41! can be combined to give

dx2~ t r !;
M /Al

x1~ t i !
dx2~ t i !. ~42!

This demonstrates that there is no overall suppression of
fluctuations indx2 before the onset of parametric resonan
showing that the second condition for the effectiveness
parametric amplification of super-Hubble gravitation
modes mentioned at the beginning of this section is satisfi

The final conditions to discuss are the criteria for pa
metric resonance of thek50 modes of the matter perturba
tions. To do this, we consider the mode equation fordx2
during the period in which the inflatonf oscillates. For gen-
eral hybrid models, the background dynamics is chao
since bothf and x1 oscillate with different frequencies
However, in the supersymmetric case@43#, the frequencies
coincide and the background dynamics becomes non-cha
Both f and x1 oscillate with the frequencyA2M . To sim-
plify the analysis, we shall neglect the back-reaction of p
ticle production and expansion on the inflaton, and neg
the Hubble damping term in the equation of motion~this is a
good approximation since we are considering a case in wh
H!A2M and the fields oscillation are not damped by t
expansion of the universe!. Therefore, we take the inflaton t
oscillate with amplitudefa,fc , andx1 will oscillate about
its ground state as

x1~z!5
M

Al
@11 f ~z!#, ~43!

where f (z) is periodic with period 2p. It is convenient to
introduce the dimensionless timez5A2Mt. Denoting the de-
rivative with respect toz by a prime, the equation for the
Fourier modex2k of dx2 becomes

x2k9 1x2kS k2

2a2M2 1
g2fa

2

4M2 1
g2fa

2

4M2cos~2z!1 f 1
f 2

2 D 50,

~44!

where we have neglected the terms inx2. In the absence of
the final term@the term containingf (z)#, this has the form of
the Mathieu equation

x2k9 1x2k@A~k!22q cos~2z!#50. ~45!

The value ofq is q<1/8, the maximal value being taken o
if fa5fc , and for long wavelengthsA(k).2q. As can be
seen from the Floquet instability charts~see e.g. Fig. 1 in
@39#!, these values do not correspond to efficient resona
From the evolution of the background fields obtained fro
the full numerical solution of the background field equatio
~see Fig. 6! it follows that the amplitude of oscillationfa is
2-8
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in fact substantially smaller thanfc . In contrast,x1 oscil-
lates with a large amplitude. Hence, the term containingf (z)
in Eq. ~44! is more important. This term leads to negati
coupling instability~see@39# for a general discussion of reso
nant particle production by negative coupling instability! for
small values ofk. Hence, we expect parametric amplificatio
of long wavelength gravitational fluctuations in our mode

The above considerations are supported by our nume
results. In Fig. 6 we show the evolution of the backgrou
fields f, x1 , x2 andH as a function of time in a simulation
with parameters mentioned after Eq.~34!, and with initial
conditionsf053Mpl , x151022Mpl , x251024Mpl .

As is evident, following an initial transient period th
three scalar fields oscillate with the same frequency. T

FIG. 6. Evolution of the background dynamics for a supersy
metric model of hybrid inflation withg251023, M2/M pl

2 510212

and M2/m251010. The initial conditions aref053Mpl , x1

51022Mpl , x251024Mpl and all the field velocities set to zero.
08350
al
d

e

results for the fluctuation variablesQf , Qx1
, Qx2

andz are
shown in Fig. 7. The initial perturbation amplitudes we
chosen to beQf(t0)51, Qx1

(t0)5Qx1
(t0)51024, and all

their derivatives set to zero for a wavelength outside
Hubble radius (k50). As is evident, after the initial transien
period, all four quantities grow almost with the same Floqu
exponent, as expected from our analytical analysis.

At this point, an obvious question is whether the fieldx2
is essential in order to obtain parametric resonance of su

-

FIG. 7. Evolution in logarithmic scale for the fluctuation var
ablesQf , Qx1

, Qx2
and (11w)z. The initial perturbation ampli-

tudes were chosen to beQf(t0)51, Qx1
(t0)5Qx1

(t0)
51024Mpl , and all their derivatives set to zero for a waveleng
outside the Hubble radius (k50).
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Hubble-scale cosmological fluctuations. In fact, the fie
fluctuationsdx1 also will experience an effective negativ
coupling instability@43#, and therefore the presence ofx2 is
not essential for this supersymmetric choice of the para
eters. The equation of motion fordx1 for a hybrid model
with two field is

d̈x113H ḋx152S k2

a2 1g2f213lx1
22M2D dx1 . ~46!

The effective squared mass is large and positive during sl
rolling. At the beginning of the transient period~when x1
starts rolling down its potential but is not yet close to t
minimum of the potential! the effective squared mass turn
negative. Oncex1 gets close to its equilibrium position, th
effective squared mass will again be large and positive@the
factor 3 in the third term on the right hand side~RHS! of Eq.
~46! is crucial#. However, sincex1 is oscillating with a large
amplitude, the effect of the large mass will be periodica
cancelled out by these oscillations. Neglecting the expan
of the background, Eq.~46! can be written as

x1k9 1x1kS k2

2a2M21
g2f2

2M2 1113 f 1
3

2
f 2D50. ~47!

From our numerical results~Fig. 6! we expect that the am
plitude of f (z) will be only slightly smaller than 1. Hence
we expect negative coupling instability for long waveleng
metric perturbations also in the two field case@43#. However,
as demonstrated below for values of the coupling const
which do not correspond to the supersymmetric point,
Floquet index in the two field case will be smaller than in t
three field model.

Other interesting effects happen if we go away from
supersymmetric pointg252l. In analogy with the results o
@44# which show that random noise in the inflaton leads to
increase in the strength of the parametric instability, we
pect that the chaotic background dynamics will not elimin
but rather strengthen the resonance. Chaotic background
namics is expected forg2;l in hybrid models@42#. This
effect is shown by our numerical simulations~Fig. 8 and Fig.
9! which show that the parametric resonance of sup
Hubble-scale gravitational fluctuations for the choiceg25l
is larger than in the supersymmetric case, where no cha
ity is present@43#. Figure 10 shows how the presence of t
‘‘Goldstone’’ modex2 changes the development of the res
nance in this chaotic case. In the two field case the Floq
index with whichz grows is smaller than the correspondin
index in the three field case.

VI. DISCUSSION

We have studied the parametric amplification of lo
wavelength gravitational fluctuations during reheating in t
field inflationary Universe models. We have confirmed t
results of Bassett and Viniegra@17# and shown that this ef
fect is possible for certain models. We have established
teria under which an exponential increase in the amplitud
cosmological perturbations during the period when the in
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ton field oscillates should be expected. It is crucial that th
must be either broad-band parametric instability or nega
coupling instability in the matter sector of the theory~i.e., in
the absence of gravitational perturbations!. This will excite
isocurvature fluctuations during reheating. It is importa
that there be no net exponential damping in the amplitude
the isocurvature fluctuations before reheating. The resona
in the matter sector then induces a resonance in the gra
tional sector. Since large coupling constants are not ne
sary in order to have efficient resonance, the effect is sta
against perturbative coupling constant renormalizations.
have shown that in this case the resulting increase in

FIG. 8. Evolution of the background dynamics for a model
hybrid inflation with g25l. The parameters and the initial cond
tions for the fields are the same as in Fig. 6.
2-10
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amplitude of the adiabatic mode, conveniently tracked
terms of the variablez, and of isocurvature fluctuations
tracked in terms of the nonadiabatic pressurepG, is expo-
nential and is due to the oscillations in the inflaton field. T

FIG. 9. Evolution in logarithmic scale for the fluctuation var
ablesQf , Qx1

, Qx2
and (11w)z for the caseg25l of Fig. 8. The

initial perturbation amplitudes are the same as in Fig. 7.
08350
n

s

means that the effect is absent if the phase transition is m
elled by a monotonic change inw5p/r.

We discussed several models in which parametric am
fication of long wavelength gravitiational fluctuations ca
occur. In the simple double field model of@17# we found a
sensitive dependence of the effect on the initial conditions
the second fieldx. In a model with negative coupling, th
initial condition dependence is weakend since there is
attractor forx corresponding to a nonvanishing value of th
field. The same is true for the model of hybrid inflatio
where a nonvanishing value ofx is also necessary to mode
the symmetry breaking dynamics at the homogeneous le

We argue that the conditions under which parametric a
plification of long wavelength gravitational fluctuations o
curs are naturally satisfied in a class of models of hyb
inflation. The presence of a complex matter scalar field
hances the resonance, since it ensures the existence of a
which is massless in the true vacuum of the theory, but i
not crucial if there is negative coupling instability. Howeve
note that the existence of massless modes is helpful for
effect to occur. Such massless modes arise quite generi
in string theory~see e.g.@45# for a recent review!. Thus, the
parametric amplification of long wavelength fluctuatio
may be also present in models of inflation based on str
theory.
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FIG. 10. Evolution in logarithmic scale of (11w)z for the
choiceg25l for a two field hybrid model (x25dx250). The pa-
rameters, initial conditions for the background and for the pertur
tion amplitudes are the same as in Figs. 8 and 9.
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