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Parametric amplification of metric fluctuations during reheating in two field models
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We study the parametric amplification of super-Hubble-scale scalar metric fluctuations at the end of inflation
in some specific two-field models of inflation, a class of which is motivated by hybrid inflation. We demon-
strate that there can indeed be a large growth of fluctuations due to parametric resonance and that this effect is
not taken into account by the conventional theory of isocurvature perturbations. Scalar field interactions play
a crucial role in this analysis. We discuss the conditions under which there can be nontrivial parametric
resonance effects on large scales.

PACS numbegs): 98.80.Cq

[. INTRODUCTION field are exponentially suppressed during inflation for values
of the coupling constant for which the equation of motion of

It was recently suggestdd] that parametric resonance the metric fluctuations corresponds to broad resonance, thus
during the reheating phase of an inflationary univg@ed]  rendering the effect studied in Rdfl2] completely ineffi-
may lead to an exponential amplification of super-Hubblecient.
scale gravitational fluctuations. If true, this would affect the  The suppression of fluctuations in thefield which ren-
usual predictions of inflationary models for observables suclders the parametric amplification of gravitational fluctuations
as the matter power spectrum and the spectrum of cosmioeffective in the model given by Eql) occurs since during
microwave anisotropies. In particular, it would require theinflation the induced mass, of the y field which is given
coupling constants in the particle physics model of inflationby mX=g|¢| is larger than the Hubble expansion parameter
to be exponentially smaller than previously thought in orderH, and hence, as can be easily seen by considering the equa-
that the theory does not generate a too large amplitude fdion of motion
the fluctuations.

In Ref.[5] it was shown that, although there are no cau-
sality constraints which prohibit the amplification of super-
Hubble (but sub-horizohmodes during reheating, the effect
does not occur in a simple massive scalar field model ofor the linearized fluctuation of thg field with comoving
chaotic inflation based on the potenti®l($)=m?¢?2  Wwave numberk [the scale factor is denoted ty(t)], 5x
(here, ¢ is the inflaton fieldl This is true even beyond the undergoes damped oscillatory motion.
linear analysig6]. Similarly, there is no effect for a quartic A model in whichm,<H during the stage of inflation
potential [7] V(¢)=\¢*/4, nor for a potential containing when scales of cosmological interest today exit the Hubble
both quadratic and quartic terrf]. These results agree with radius was recently studied by Bassett and Vinidgdrd. It
the earlier analyses in Reff9] and[10]. Very recently, it IS @ two field model given by the potential
has been showfl1] that for single scalar field matter even 1 1
the addition of non-mlnlmal coupling to gravity doeg not V(d,x)= =N dp*+ = g2y 3
lead to parametric resonance of long wavelength metric fluc- 4 2
tuations.

It was then suggestdd 2] that the amplification of super-
Hubble-scale modes would occur for two field models of
inflation, e.g. for a model with potential

2

. : k
Ox+3HSx+ ;—i—gzcﬁz) ox=0 2

In the absence of metric fluctuations, this model was studied
in detail in Ref[18] (see alsd19]), where it was shown that
for values of the coupling constants satisfying

g*=2\ @
— 1 242 1 2422

V(g x)=5m ¢ +3597¢" X", @ long wavelength modesk&0) are in the first broad insta-
bility band of the Floquet-type equation of motion derived
where as beforep is the inflaton field andy is a second from Eq. (2) after field rescaling which describes the para-
scalar matter field. This model had earlier been analyzed bgnetric resonance of matter fluctuations in an unperturbed
Taruya and Namb(i13] who claimed that the isocurvature expanding space-time. Bassett and Vinigdrgd showed that
mode of the fluctuations will be parametrically amplified in this model the quantity [20] increases exponentially dur-
during reheating. However, as was shown in REfd] and  ing the initial stages of reheating. Note ti{ais a measure of
[15] (and more recently if16]), the fluctuations in they the curvature fluctuations and is believed to be conserved on
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super-Hubble scales in the absence of isocurvature fluctua-
tions(see e.g[21] for a review of the theory of cosmological 5¢i+3HSp +
fluctuations. However, since the model given by E(B)
admits isocurvature fluctuations, a growth ofon super-
Hubble modes is expected also in the “usual” analysis of
the evolution of fluctuations in inflationary cosmology.

In this paper we take a closer look at the theory given b>yvherek denotes the comoving wave numbif; indicates

the potential(3). Subject to certain assumptions on initial E:r:)engtzrr:\t/auve ofV with respect tog;, andG is Newton’s
conditions of the background field dynamics we recover re- The Sasaki-Mukhanoy23] variables for then matter

sults similar to Bassett and Viniegra: exponential growtlj of field
during the initial stages of reheating. Furthermore, we dem€lds are
onstrate that this effect is not taken into account by the con- .

ventional theory of isocurvature perturbations. We then dis- Q=8¢+ ﬁq) (9)
cuss some criteria which an inflationary Universe model ' ' H

must satisfy in order to have substantial parametric growth of ) ) )

¢ during reheating via scalar field interactions. We argue tha@nd satisfy the following system of equations:

these conditions are naturally satisfied in some models of

k2 :
§5¢i+;1 Vi8¢

:4d)¢i_2V,iq)l (8)

hybrid inflation, and we study a couple of concrete examples .. . k? ’ 8nG(ad. . |
in which super-Hubble-scale gravitational fluctuations grow Qi+3HQ;+ ;Qﬁ';l Vi~ ad ﬁ¢i¢i Q;=0.
exponentially during reheatinggome other examples where (10)
exponential growth of super-Hubble-scale modes could oc-
cur are given irf22]). We will now specialize to our two field model. If the
homogeneous part of the second scalar figldzanishes
Il. MASSLESS TWO FIELD MODEL RECONSIDERED (which will not be true if parametric resonance is to excite

) ) ) ) ) ~gravitational fluctuations—see lajethen the inflatonp dur-
In this section we will consider the two-field model with ng the initial stages of reheatiniwhen back-reaction effects
potential(3) in which Bassett and Viniegrel 7] showed the  gre negligible oscillates as follow$18]:
parametric resonance of super-Hubble scale gravitational
modes. This model has been studied in detafl1i8] in the 1
absence of gravitational perturbatiofsee alsd19]). b( n)zalqsocn( x—xo,—), (11
As in our previous pap€dis], we shall work in longitudi- \/E
nal gauge in which the metric including linearized scalar

metric fluctuations takes on the form wheredg, is the amplitude otp at the end of the slow-rolling
period,cn is the Jacobi elliptic cosine functiom, is confor-
ds?=(1+2®)dt?—a?(t)(1-2W¥)dx dx; (5) mal time andx= ]\ ¢, is a rescaled dimensionless confor-

mal time coordinate. Followin@18], it is insightful to re-
where thex' are the comoving spatial coordinates anig  scale all the field$ by the scale factor and use new fields
physical time. Since for the matter model considered the offf =af. The equations of motiofiL0) then become
diagonal components of the spatial part of the energy-

momentum tensor vanish, the corresponding components of _ 5 a’ 5 1|2
the Einstein equations imp[1] ¥ = ®. For the moment we Qpt| k™= g+3cn X=Xo, ﬁ Qy
will write down the equations for a general system with mul-
tiple scalar fieldsi(=1, . . . n), and only at a later stage will 2 1\ __ 5 _
we specialize to the specific model considered in this section. =— 2—cn( X—Xg, = | XQytMy4sQutMy Q,
The remaining independent equations of motion for lin- Ao \/E
earized perturbations in this Einstein-Higgs system are the (12)
perturbed energy constraint and momentum constraint equa-
tions as well as the equations of motion for the Higgs field a’ 2 1
H . " 2 = 2 _ 1A
perturbationsd¢; : Qi t| x 2 + N cn (x X0, \/5 Q,
ahd— | van|o ’ 1
a2 =—-2 cn X_Xo,_ XQ¢’+M¢XQ¢+ MXXQX’
N, 2

=4mG2, [$166i— PP +V 54, (©) (13

where the derivative with respect to the conformal time is

n denoted by a prime, where, following the notation[af]
<i>+H<I>:4wGE b5, 7) (up to a prefactor containing), we have used the abbrevia-
= ’ tion
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8nG[ 1 (-, a~ \[~, a~ ||
My g,= a2 lan ¢’1_;¢1 d’z‘gd’z , (14
and where
k2
KP=—07y. (15)
N3

In the model considered, the time-averaged equation of sta
is that of radiation and hence the scale factor is linean in
and thusa”=0.
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In the two field case, the evolution equation fors [25]

d

dt

H

2

H VZ(D
H a?

Qu_Qufd (o =x
b xJdtlgrey

In the case of a single scalar field, the second term vanishes,
but the equation cannot be applied during reheating since
H=0 at times whenp=0.

te In the single field case, the evolution equation favhich
applies also during reheating (®r long-wavelength pertur-
bations for which the spatial gradient term can be neglected

¢

) . (19

Neglecting for a moment the terms on the right hand sidg 5]

of the equations, both Eq§l2) and(13) are of the form of
Lameequations. Lamequations in the context of reheating
were first noticed i3] and then studied in detail if24],
[19] and[18]. The coefficient in front of then? term[which

in the case of Eq(13) is g?/\] is crucial to the resonance

(1+w)¢=0, (19

wherew=p/p, p andp being pressure and energy density,
respectively. This shows thdtis conserved unless=—1.

structure of the equation. Since we are interested in supekdnless matter is given by an oscillating scalar figfdwhich
Hubble modes, we need to know for which values of thecasew=—1 will occur at the turnaround points whef

coefficient the mode=0 lies in the first instability band of
the equation. This is the case for valties
2
g
1<T<3'

(16)
This implies that resonance occurs only in E&R) for QX,
and then only for values af?/\ in the above rangéor in the
range corresponding to other instability banddowever, if
the condition(16) is satisfied, and if they field is indeed

excited, then parametric amplification@( is expected, and
via the terms on the right hand side of Ed=2), induced

exponential growth 05¢ should occur.
Note, however, that it is not sufficient to show that an

amplification of(~3¢ or QX occurs in order to demonstrate

that parametric resonance during reheating will have a cru

cial effect on the amplitude of gravitational fluctuations.

Note that also in the conventional treatment of fluctuations

[21] the amplitude of th&) variable grows during the inter-

val in which the equation of state of the background changes
As emphasized if5], a straightforward way to check if the .
effect discussed here is a new effect is to consider the tim

evolution of the “traditional conserved quantity” [20]
which gives a measure of the adiabatic component of th
metric fluctuations. In the multi-field caséjs given by[13]

H

E Qi (17)

$4

§:

=0), Eq. (19 implies that the variabl€ is conserved on
scales outside the Hubble radi{@0]. However, reheating
corresponds to an oscillating inflaton field, in which case the
conclusion that is constant may break down, as discussed
in [5]. Nevertheless, in the specific single field models which
have been analyzdd0,9,5—-§ it was found that no net in-
crease off occurs during the initial stages of reheating, and
a general proof of the constancy 6fin single field models
was suggested if8] and recently if11].

If matter is described, more realistically, in terms of mul-
tiple scalar fieldgeach of which is given by a conventional
action, then it appears extremely unlikely that=—1 will

occur at all, since at the points in time wher=0, the other
fields will not all also be at rest, and thus the net valusvof
will be greater than-1. Therefore, the only realistic possi-
bility for growth of { is as a consequence of the second term
on the right hand side of E¢18), a term which corresponds
to an isocurvature perturbation. Inspection of EcB), how-
ever, immediately shows that during reheating there is the

chance of having a very large increas€/ias a consequence

f the zeros inp which arise periodically in time. This effect

is missed if the scalar fields are treated in the slow-roll ap-

proximation, or if the change in the equation of state during

éeheating is modelled as a monotonic change from a nearly
de Sitter equation of state during inflation to a radiative

equation of state after reheating.

However, to see if there is indeed an exponential growth
of isocurvature perturbations, it is important to take a closer
look at the equations. In the specific two field model of Eqg.
(3), symmetric initial conditions for the homogeneous part of

x give x=0 andy=0. In this case, it follows from Eq17)
that{ only depends o, , and, since by Eq12) there is no

[0)

!Note that this condition and the corresponding conditions in alparametric amplification Of super-Hubble modeQH given
the other examples discussed in this paper are stable against pert{ffat the COUP“”Q @, V§n|3hesv that there will therefore be
bative coupling constant renormalizations, the reason being that w0 parametric amplification af. The same result can also be

considerg?~X\ and \ should be constrained by the cosmic micro-
wave backgroundCMB) anisotropy results to be a small number
<1. Thus, the perturbative correction terms which are of ogfer
are much smaller than eithgf or \.

seen from Eq(18) since for symmetric initial conditions, the
time derivative on the right hand side of the equation acts on
a constant. The result is confirmed by our numerical analysis
(see Fig. L
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FIG. 1. Evolution of (&w)¢ for the model of Eq.(3) as a

function of the a-dimensional time= \AM t for xo=x,=0 and
bo=3.5My, do=—.1M pl @S initial conditions for the background.
The fluctuationQ, and Q, start in the adiabatic vacuum 40
e-foldings before inflation ends. The wave number ks
=107\AM pl» Which corresponds to five times the Hubble radius at
the beginning of the simulation. Note that the mode is far outside
the Hubble radius at the end of inflation.

zZ = \/X-Mplt

FIG. 2. Evolution in logarithmic scale of (fw){ for yo=2
X10 %My, xo="0 (top) and xo=2%10"®M, xo~AMpxo (bot-
tom) as initial value fory. The initial condition for¢ and ¢ are the
same as in Fig. 1 in both of the panels. The fluctuatiQgsandQ,
start in the adiabatic vacuum 40 e-foldings before inflation ends.
The wave number iskzloz\/XMp,, which corresponds to five
times the Hubble radius at the beginning of the simulation. The

f e b diff f he El growth of ¢ is delayed in the second case because the background
or continuity reasons cannot be too difierent from the 0'field, and consequently the mixing terms in E§2), are smaller

quet exponent for long wavelengih¥ia the source terms in -y in the first case: in this way,, takes longer to feed the growth
Eq.(12), this will induce parametric growth @, and both ¢ Q, and{. The initial conditions for the second case correspond

will contribute to the parametric growth df. In fact, since o the values obtained through renormalization arguments.
the homogeneous value gf(defined in the above waglso

grows parametrically with the exponept,, the resulting
growth of £ will have a Floquet exponent of2,,% i.e. a

However, due to quantum fluctuations we expect that the
average ofy over a volume corresponding to a particular
super-Hubblgbut sub-horizon mode will not vanist. It is
reasonabl§26,27] to use for the homogeneous valueyothe
r.m.s. value of the renormalized quantum fluctuations. It fol-
lows from Eq.(13) that Q, will experience parametric am-
plification during the initial stages of reheating. It will grow
as expuo7l, whereu is the Floquet index ok=0 (which

change in the equation of state between the inflationary era

o ) . and the post-inflationary era, an effect which is already taken

tgr:owth smc}nar dto tfhe or;e expgctzedom perturb.atuljn th:aory L are of in the “usual” theory of isocurvature perturbations in
€ second oraer from terms ay-. Yur numerical analysis inflationary cosmology, which we define as the results ob-

confirms the ab-ove con.si.d.erations. In Fig. 2 we depict th(?ained when the transition in the equation of state between
growth of ¢ during the initial stages of reheating for two the inflationary slow-rolling phasep& —p) and the post-

different values of the homogeneous _componer?tz,oﬂ/hlch inflationary radiation-dominated phasp=3p) is taken to
shows how the onset of the parametric growtli @ depen- be monotonic. We will show that in the “usual’ analysis

dent on the value of. In Fig. 3 we show the time evolution e can be no exponential increase in the isocurvature per-

of the Sasaki-Mukhanov variabl€g, andQ, . turbation, and that therefore the exponential increase we ob-
tain here is a result of parametric resonance.

Ill. ISOCURVATURE PERTURBATIONS _The _fact that isocurvature perturbations can induce an
adiabatic component on super-Hubble scales has been known
Having determined in the previous section that in thefor a long time[28—32,21. Entropy perturbations act as a

model(3) there is indeed amplification dfduring reheating, source for{ even on scales larger than the Hubble radius.

we must now show that this effect is indeed a consequencehis is true even in the case when matter is given by a single

of parametric resonance, and not just an effect due to thecalar field. In this case, the evolution equation fobe-

comes[33]
°Note that the condition of nonvanishing of the spatial average of p sp
X is not necessary if we work to higher order in perturbation theory. Z: 3H| - ——|. (20)
3We thank Jim Zibin for comments on this point. p op
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Qs 2 nentially suppressed during inflation. Bassett and Viniegra
[17] then pointed out that the suppression would be absent in
the model(3).
1000 2000 3000 4000 7%fod 000 It has been known for a long time that isocurvature per-
Y 7 turbations can be produced in inflationary models with more
than one scalar field. This issue was initially considered in
the context of axion perturbations 5], extended to more
general two field models if86] and studied in detail ih37].
It was discovered that initial super-Hubble-scale isocurvature
perturbations induce an adiabatic component by the time that
the scales re-enter the Hubble radius.
The gauge invariant expression for the total isocurvature

Qy? /\W perturbation in a multi-fluid system [82]
N

L | . :
1000 2000 3 Y4?00] 000 6000 DFEE (5pigl_C§5Pigl)y (21)
I
®
where sp?' and 5p?' are the gauge invariant pressure and
-4 density perturbations with respect to the total matter rest
frame and the total speed of sound is defined as the
w6 weighted sum of the i-th speed of souf82]:
p 1 .
ci=+= > chef (22)
6 P 42 |
> &
. i
5 with
(© At V.
2000 /Y 1140 4000 8000 10000 Cgi:1+2 i 23)
- 3H ¢,
w4 The total isocurvature perturbation can be written as the sum
6 of the non-adiabatic pressure component of the single com-
ponent and of the relative isocurvature perturbanas
z=VAMyt .
akal
i 7j
FIG. 3. Evolution in logarithmic scale @4 [panel(a)] andQ, pr= Z (5pi_C§i5Pi)+ _ E 2 $j(C§i— 051)
[panel(b)] for the second set of initial conditions of Fig. 2. In panel ' 2 qsiz b
(c) we show the behavior d@, andQ, for the same initial condi- i
tions, but for a longer period which correspond to 22 oscillations of (24)
the homogeneous field.
where
These perturbations, however, are suppressed on scales i i
larger than the Hubble radius. _op? op} oe
In models with two or more scalar fields, the equation for i~ ¢-2 ¢2 : (29)
[ i

{ is given by EQ.(18), and it is thus clear that even on

super-Hubble scales one should expe®0. In the approxi- The relative isocurvature perturbati®) with respect to the
mation in which both fields are slowly rolling, the time evo- total matter frame can be written for our two field model as
lution of { on scales larger than the Hubble radius was stud-

ied in detail in[25,33,34, with particular emphasis on dopy Op, av 1 1
calculating the deviations from scale-invariance of the result- ¢x:? N 7 K Y i
ing power spectrum of density fluctuations. However, since

the analyses made use of the slow-rolling approximation, no Spy Op, 39 ¢x . . H

effects of the dynamics of reheating were considered. = =2 "2 8.G W( dx—xP) ﬁ(g— D),
More recently, Taruya and Namipai3] and Bassetét al. ¢ X ™ ¢

[12] considered the effect of reheating on the spectrum of (26)

density fluctuations and discovered a large growtli afue
to the initial isocurvature perturbations, however in a modewherev is the total perturbed velocity for matteq,, is the
in which the necessary initig} field fluctuations are expo- homogeneous energy transfer to #hecomponent §,+q,
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pl (1) In the absence of gravitational perturbations there
1000 2000 3000 2000 5000 6000 must be broad-band parametric resonance in the matter sec-
tor of the theory corresponding to isocurvature fluctuations,

= andk=0 must be part of the resonance band.
-6 (2) The fluctuations in the matter field which undergoes
s parametric resonance must be effectively massless during in-

flation. More precisely, there should be no large net suppres-
sion of these fluctuations before the phase of parametric
“1z resonance.
(3) The homogeneous value of the matter field which un-
dergoes resonance must be non-vanishing. This is the weak-
2= \/XMplt est of the three conditions since it is only required if we work
strictly to first order in perturbatiorfs.
FIG. 4. Evolution in logarithmic scale of the total non-adiabatic ~ \We show how these three rules are satisfied in another
pressurepI” for the first set of initial conditions of Fig. 2. model with massless fields, but now basednegative cou-
pling instability [39]. The potential is the following:

-10

=0 because of total energy conservajjcend nowdsp; are

the density perturbations in the longitudinal gauge: 1 1 1
V(¢ =h ' =50%% %+ v (29

Opi= 10— P I +V 166 . @n .
with the parameterz)\)\xlg4>1 in order to have a poten-

From Eqg.(26) it follows that the parametric resonance tial bounded from beloW39]. This model has an attractor for
from the matter sector of the theofthe Q variables to be x in the point which minimize the potential for [39]
specifig induces exponential growth of the relative isocurva-
ture perturbation, and hence also of the total isocurvature — g
perturbation(see Fig. 4. x(H)~ \/T¢(t)' (30

In turn, isocurvature perturbations determine the change X
in ¢ via Eq. (18). This shows that in the presence of scalarin this way even the third and weakest of the above condi-
field interaction terms, there is a correlated exponentiations is satisfied. The second one is easily satisfied because
growth of { and of the relative isocurvature perturbation of the negative effective mass for tigefluctuations when the
S,y - This exponential growth is a consequence of paramethackgroundy is small. In order to find the unstable bands
ric resonance and is absent if the phase transition is modellashe can use the attractor solution and estimate the frequency

with a monotonically increasing value of. of the inflaton¢ and of the fluctuationsy during the period
Analogously to Eq.(17) for the Bardeen parameter, the of coherent oscillations:

total nonadiabatic pressupd’ can be expressed in terms of
the Sasaki-Mukhanov variables in the following way: 1 -
wfﬁ=>\¢2—gzxz~>\¢2<1—r =\¢?
V. Y L
Pr=2 | ZdiQ=2V,Q=2————($Q+V,Q) |- 2 2
SHZ #? w§X=;+3)\XX2—gz¢>2~;+292¢2.
(28)
_ _ If x is small compared to the inflato#, then an unstable
As mentioned above, the exponential growtt8gf and{  pand fork=0 should be located atg?=2X. This gives a
during reheating is a new effect due entirely to parametricGeond order equation fg? whose positive root is
resonance. The growth of fluctuations in inflationary models
with two uncoupled fields were studied[iB7] in an approxi- — 14+ 1+ 4NN
. . . . . . . 2__ X
mation in which the oscillations of the inflaton field were g°=A, 2 .
neglected. In this case there is no growthSpf, . An initial
isocurvature perturbation does induce the growth of an adi
batic component on super-Hubble scales, but the final ampli
tude of the adiabatic mode is not much larger than the initial™ M2(
amplitude of the isocurvature perturbation, in agreement
with the earlier analysis ifi35].

(31)

_ We confirm numerically this analytical estimate in Fig. 5
for two allowed values ofg?: g?=\ with A<\, and g?
V5—1) with A=\ ,,. The reason for the growth af

“We are assuming that back-reaction on the inflaton by scalar
IV. THREE GOLDEN RULES particle creation does not shut off the resonance early. This issue is
under consideratiof88]. However, when the above three rules are
Based on the analysis of Sec. Il, it appears that severalerified and the maximum Floquet index is on long wavelength we
conditions are required in order to have efficient parametri@xpect that backreaction will not be able to prevent some changes to
resonance of super-Hubble-scale metric fluctuations. the standard predictions.
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(1 +w)¢ if there is a third fieldy which couples to bothp and y.
Another interesting possibility is to consider a doublet for the
field y. Then, even in the phase of coherent oscillations,
there is a massless degree of freedom, namely the “Gold-
stone” mode. Such a situation arises naturally in supergrav-
ity models[41].

10

[&]

T Rdop 7000 5000 8000 10000 Therefore, as a toy model we will consider the following
r potential for the inflaton fields and the doublej = (1/1/2)
-3 X(Xl!XZ):
(1 +w)é M? 2 1
2 242, (242 12
=N 55— += +
20 V=A\ o\ |X| 2m¢’ g¢|X|
15
1 1 M4 1
10 = 5P+ S g% H i+ x5+ o s MAXI+ X))
5
A A
Mo2o2, Mooa, 4
2000 4000 6000 8000 10000 * 2X1X2+ 4(X1+X2)' (32)
-5
For supersymmetric hybrid inflation, there is only one inde-
n lin nstant sin
L= \/XMplt pendent coupling constant since
2
FIG. 5. Evolution in logarithmic scale of (£w) ¢ for the model _ g_
2 2 A= . (33)
(29) for g?=\, =10\ (top) and\ =\, ,g?=\/2(5—1) (bot- 2
tom). The initial conditions for the background atg,=3.5M,
do=—0.1yAM ol» Xo=2X10"8M; and xo=0. The fluctuations The values of the masses and coupling constants are con-

Q, andQ, start in the adiabatic vacuum 40 e-foldings before in- strained by the amplitude of density fluctuations at Hubble
flation ends. The wavenumberkis: 102\ M pl» Which roughly cor-  radius crossing, which is given §40]
responds to five times the Hubble radius at the beginning of the

simulation. Sp g [ M\3M\?
TW(MT.) & 4

is similar to the previous cas€, is parametrically ampli-

fied, feeds the growth d@,, and in this case both contribute \yhjch should be about 1G. In our numerical simulations,

to the growth ofZ. we chooseg®=10"3, A=g%2 (as in a supersymmetric
mode), M?/M2,=10"*2 and M?/m?=10'. With these val-
ues, the Hubble parameter during the late stages of inflation
is much larger tham which ensures slow rolling of.

Another natural scenario in which the above conditions In this model, slow-roll inflation takes place while the
can all be satisfied is hybrid inflatidd0]. Hybrid inflation is  value of the inflatong is larger than¢.=M/g. For these
also an attractive framework for implementing inflation in values, the effective square massé of x (evaluated aty
the context of supergravity model1]. Since(at leasttwo  =0) is positive. Oncep drops below,, them? turns nega-
fields are involved in the dynamiCS of hybrld inﬂation, the tive and inflation end$at t|metc) via a symmetry breaking
generation of isocurvature perturbations is rather natural. Ifyansition in the matter sector. We choose the basis ofithe
hybrid models, the phase of inflation during which the infla-fie|ds such that the order parameter of the transitiogis
ton field ¢ is slowly rolling towards¢=0 is terminated by a - However, since in general the initial ratio gffields andy
phase transition in the second scalar figlca field with the  ye|ocities att, is not the same
double-well potential. This implies that during the oscilla-
tions of ¢, the background value gf is non-vanishing, lead-
ing to an obvious realization of conditidi3) above.

Parametric resonance in the matter sector of hybrid infla- X1
tion models was studied in detail by Garcia-Bellido and
Linde [42], and, in supersymmetric hybrid inflation, by we can with no loss of generality assume that the valug,of
Bastero-Gil et al[43]. The resonance of the fluctuations of at the timet,, when they transition is complete and the
the two fields¢ and y is inefficient for a large set of the oscillations start, does not vanigas in the previous case a
parameter space since both th¢ and Sy fields are effec- reasonable value foy, is the rms of the renormalized quan-
tively massive during the regime of coherent oscillatiofig (  tum fluctuations Thus, we have argued that the third of the
becomes massive through the Higgs mechahi€uite ge- conditions mentioned at the beginning of this sectipan-
nerically, parametric resonance could be much more efficientanishing background matter fie)Jds naturally satisfied in

V. A MODEL MOTIVATED BY HYBRID INFLATION

22402 %%, (35
X1
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this model(in contrast to the model considered in Seg. Il §y,(t,)~eMtr~t) 5y, (t,)~eMtr e (MHE—t) 5y (t,)
The initial values of the matter fields at the beginning of the (41)

period of oscillation will be
which shows that the exponential growth &f, for t.<t

xi(ty)= M/\\ <t, precisely makes up for the exponential decay during the
periodt;<t<t., exactly as it does for the evolution qf.
0% y,(t,)<M/\. (36 Equations(40) and(41) can be combined to give
In contrast to the moddll) in which the matter fluctua- M/ /N
tions are exponentially suppressed during inflation, the effec- Oxo(ty) ~ —— xa(ti). (42

tive negative coupling instability in the matter fields in the xa(t)

time interval betweer. andt, leads to the conclusion that This demonstrates that there is no overall suppression of the
the x fluctuations are not suppressed. In fact, they are supyctuations indy, before the onset of parametric resonance,
pressed during slow-roll inflation, but build up again expo-showing that the second condition for the effectiveness of
nentially fast in the time interva.<t<t,. To see this, we parametric amplification of super-Hubble gravitational
focus on the evolution of the fluctuations in thdield since,  modes mentioned at the beginning of this section is satisfied.
as we shall see below, these are essential for the effective- The final conditions to discuss are the criteria for para-
ness of parametric resonance. We will consider field fluctuametric resonance of thie=0 modes of the matter perturba-
tions neglecting metric perturbations and the mixing termsjons. To do this, we consider the mode equation &g
deriving from particle interactiongeven if in the hybrid  qgyring the period in which the inflato# oscillates. For gen-
models these mixing terms are not perturbatively small angra hybrid models, the background dynamics is chaotic
their importance has been emphasized48]). Under these  gince both¢ and y, oscillate with different frequencies.

approximations the evolution equation oy is However, in the supersymmetric cagts], the frequencies
K2 coincide and the background dynamics becomes non-chaotic.
Sx2+3HSy,=— 2 +g2p%+ >\X§+ 3)\)(3— M2| Sx,. Both ¢ and y; oscillate with the frequency/2M. To sim-

plify the analysis, we shall neglect the back-reaction of par-
@7 ticle production and expansion on the inflaton, and neglect
the Hubble damping term in the equation of motigimis is a
good approximation since we are considering a case in which
H<./2M and the fields oscillation are not damped by the

Sxo~a At)expiwt), (38) expansion of the univergeTherefore, we take the inflaton to
oscillate with amplitudep,< ¢, andy, will oscillate about

with w=g¢ (in the adiabatic limit During this time inter- its ground state as
val, however, the homogeneous components of the matter
fields are also damped. The evolution equation for the order
parametery; is x1(2)= NN

For ¢> ¢, the effective square mass is larger tiéhand
positive, thus leading to damped oscillatory solutions

[1+f(2)], (43

N o 242 2 2 2
X1+3Hx1=—(9°¢"+AxTt A2~ MIx1. (39 \yheref(z) is periodic with period 2. It is convenient to

introduce the dimensionless timae= \2Mt. Denoting the de-
rivative with respect taz by a prime, the equation for the
Fourier modey,, of 5y, becomes

Since(up to the contributions fron)(% which are negligible
during inflation the effective masses in Eq&9) and (37)
are the same, the damping ratesygfand Sy, are also the
same fort<t.. In the time interval betweety andt,, the K2 922 g2 £2
signs of the effective square masses in both [B6) for Xkt Xokl 5=23 + - + ——=C0g22) + f+ = | =0,
and Eq.(37) for Sy, are reversed. In both cases, the effective 2a’M aM 4M 2

m? is now —M?, leading to exponential increase in bogh (44)

and éx,. This period ends wheg; reaches the minimum of \\hare we have neglected the termsyin In the absence of

the potent_ial at time, . To summarize the above discussion, ihe final term{the term containing(z)], this has the form of
the evolution ofy, follows: the Mathieu equation

M "
= () ~ Mty (1)~ Mt (BRH(t—t) ) (1) Xak T X2k A(k) — 20 cog22) ]=0. (45

NN

(40) The value ofg is q=<1/8, the maximal value being taken on
if ¢,=¢., and for long wavelengthé(k)=2q. As can be
wheret; is the time at the beginning of inflation aktlis the  seen from the Floquet instability chartsee e.g. Fig. 1 in
Hubble constant during inflation, assumed to be constant tf89]), these values do not correspond to efficient resonance.
make the equation simpléghis assumption does not affect From the evolution of the background fields obtained from
the basic point we are makingn comparison, the evolution the full numerical solution of the background field equations
of 5y, obeys (see Fig. §it follows that the amplitude of oscillatiogh, is
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FIG. 6. Evolution of the background dynamics for a supersym-
metric model of hybrid inflation witrg?=10"3, M?/Mj=10"12
and M?/m?=10". The initial conditions are¢y=3M,, x1 = M1t
=10"*My, x,=10"*M, and all the field velocities set to zero.

FIG. 7. Evolution in logarithmic scale for the fluctuation vari-
in fact substantially smaller tha#.. In contrast,x; oscil-  ablesQ,, Q,,, Q,, and (1+w){. The initial perturbation ampli-
lates with a large amplitude. Hence, the term contairfifzm) tudes were chosen to beQy(to)=1, Q, (to)=Q,,(to)
in Eq. (44) is more important. This term leads to negative =10*M,, and all their derivatives set to zero for a wavelength
coupling instability(see[39] for a general discussion of reso- outside the Hubble radiuk&0).
nant particle production by negative coupling instabjligr . ,
smallpvalues gk. Hence, we expect parametric amplification "€sults for the fluctuation variablé3, , Q,,, Q,, and{ are
of long wavelength gravitational fluctuations in our model. shown in Fig. 7. The initial perturbation amplitudes were

The above considerations are supported by our numeric&hosen to beQ 4(to) =1, Q, (to)=Q, (to))=10"*, and all
results. In Fig. 6 we show the evolution of the backgroundtheir derivatives set to zero for a wavelength outside the
fields ¢, x1, x> andH as a function of time in a simulation Hubble radius k=0). As is evident, after the initial transient
with parameters mentioned after E@4), and with initial  period, all four quantities grow almost with the same Floquet
conditions¢o=3My, x1= 10*2Mp|, X2= 10*4Mp|. exponent, as expected from our analytical analysis.

As is evident, following an initial transient period the At this point, an obvious question is whether the figlgd
three scalar fields oscillate with the same frequency. Thés essential in order to obtain parametric resonance of super-
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Hubble-scale cosmological fluctuations. In fact, the field b 3
fluctuations Sy, also will experience an effective negative
coupling instability[43], and therefore the presence yf is 2
not essential for this supersymmetric choice of the param-
eters. The equation of motion fa¥y; for a hybrid model
with two field is

2 A l[\ﬂ Pﬂl

lAMﬂ mn W

| |
. . k i
Sxa+ 3HOX1=— | 2+ %6+ 3N G- M| oxs. (40 UUWVV il W'VUV‘WV
-1
1.4
rolling. At the beginning of the transient periddhen y; 1.2
starts rolling down its potential but is not yet close to the 1

minimum of the potentialthe effective squared mass turns 0.8
negative. Oncey, gets close to its equilibrium position, the
effective squared mass will again be large and posftikie

factor 3 in the third term on the right hand sideHS) of Eq. 0.4
(46) is crucial. However, sincey, is oscillating with a large 0.2
amplitude, the effect of the large mass will be periodically

ly ﬁ}o
The effective squared mass is large and positive during slow-  x1 M

cancelled out by these oscillations. Neglecting the expansion 10070 2000 300 400500
of the background, Eq46) can be written as 914
k2 92¢2 0.012
"Xl =2+ 57 +1+3f+ - 2| =0. 0.01
X1k ™ X1k 2a’M 2M 1+3f 2f 0 (47) o oos (R i‘ I‘KH
[l i Tilbfr:
From our numerical resultéig. 6) we expect that the am- 0.008 i | i
plitude of f(z) will be only slightly smaller than 1. Hence, 0.004 ' , ‘
we expect negative coupling instability for long wavelength 0.002 ‘
metric perturbations also in the two field c448]. However,
100 200 300 400 500

as demonstrated below for values of the coupling constants
which do not correspond to the supersymmetric point, the g
Floquet index in the two field case will be smaller than in the
three field model.

Other interesting effects happen if we go away from the
supersymmetric poirg?=2\. In analogy with the results of
[44] which show that random noise in the inflaton leads to an
increase in the strength of the parametric instability, we ex-
pect that the chaotic background dynamics will not eliminate 1002000 300 a0 500
but rather strengthen the resonance. Chaotic background dy-y 0001355
namics is expected fog>~\ in hybrid models[42]. This
effect is shown by our numerical simulatioff§g. 8 and Fig.
9) which show that the parametric resonance of super- z=Mt
Hubble-scale gravitational fluctuations for the choife=\
is larger than in the supersymmetric case, where no chaoti
ity is presen{43]. Figure 10 shows how the presence of the
“Goldstone” modey, changes the development of the reso-
nance in this chaotic case. In the two field case the Floquet
index with which grows is smaller than the corresponding ton field oscillates should be expected. It is crucial that there
index in the three field case. must be either broad-band parametric instability or negative
coupling instability in the matter sector of the thedig., in
the absence of gravitational perturbatipriBhis will excite
isocurvature fluctuations during reheating. It is important

We have studied the parametric amplification of longthat there be no net exponential damping in the amplitude of
wavelength gravitational fluctuations during reheating in twothe isocurvature fluctuations before reheating. The resonance
field inflationary Universe models. We have confirmed thein the matter sector then induces a resonance in the gravita-
results of Bassett and Viniegfd7] and shown that this ef- tional sector. Since large coupling constants are not neces-
fect is possible for certain models. We have established crisary in order to have efficient resonance, the effect is stable
teria under which an exponential increase in the amplitude ofigainst perturbative coupling constant renormalizations. We
cosmological perturbations during the period when the inflahave shown that in this case the resulting increase in the

0.000137

0.0001365

_ FIG. 8. Evolution of the background dynamics for a model of
ybrid inflation withg?=\. The parameters and the initial condi-
tions for the fields are the same as in Fig. 6.

VI. DISCUSSION
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z=Mt

FIG. 9. Evolution in logarithmic scale for the fluctuation vari-
ablesQ,, Qy,r Qu, and (1+w)¢ for the casegg?=\ of Fig. 8. The
initial perturbation amplitudes are the same as in Fig. 7.

PHYSICAL REVIEW D 62 083502

(L+w)C |

@

-

N

100 200 300 400 500

z=Mt

FIG. 10. Evolution in logarithmic scale of (Aw){ for the
choiceg?=\ for a two field hybrid model ¢,= 8x,=0). The pa-
rameters, initial conditions for the background and for the perturba-
tion amplitudes are the same as in Figs. 8 and 9.

means that the effect is absent if the phase transition is mod-
elled by a monotonic change = p/p.

We discussed several models in which parametric ampli-
fication of long wavelength gravitiational fluctuations can
occur. In the simple double field model gE7] we found a
sensitive dependence of the effect on the initial conditions of
the second fieldy. In a model with negative coupling, the
initial condition dependence is weakend since there is an
attractor fory corresponding to a nonvanishing value of this
field. The same is true for the model of hybrid inflation,
where a nonvanishing value gfis also necessary to model
the symmetry breaking dynamics at the homogeneous level.

We argue that the conditions under which parametric am-
plification of long wavelength gravitational fluctuations oc-
curs are naturally satisfied in a class of models of hybrid
inflation. The presence of a complex matter scalar field en-
hances the resonance, since it ensures the existence of a field
which is massless in the true vacuum of the theory, but it is
not crucial if there is negative coupling instability. However,
note that the existence of massless modes is helpful for the
effect to occur. Such massless modes arise quite generically
in string theory(see e.g[45] for a recent review Thus, the
parametric amplification of long wavelength fluctuations
may be also present in models of inflation based on string
theory.
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