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Cosmological perturbations in a Friedmann-Robertson-Walker model with a scalar field
and false vacuum decay
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The unconstrained reduced action corresponding to the dynamics of scalar fluctuations about the Friedmann-
Robertson-Walker~FRW! background is derived using Dirac’s method of description of singular Lagrangian
systems. The results are applied to the so-called negative mode problem in the description of tunneling
transitions with gravity. With our special choice of physical variable, the kinetic term of the reduced action has
a conventional signature for a wide class of models. In this representation, the existence of a negative mode
justifying the false vacuum decay picture turns out to be manifest. We also explain how the present result
becomes consistent with the previously proved ‘‘no negative mode~supercritical supercurvature mode!
theorem.’’

PACS number~s!: 98.80.Hw, 98.80.Cq
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One of the interesting and widely exploited cosmologi
models is based on the theory of a scalar field coupled
gravity. Such remarkable phenomena as inflation and m
stable ~false! vacuum decay are usually discussed in
framework of this model. For a complete description of th
process, it is very important to know the properties of t
perturbations to the background configurations describing
flation or vacuum decay. The cosmological perturbations
the Lorentzian regime are related to the cosmic microw
background radiation and large scale structure forma
@1–3#. Furthermore, perturbations in the Euclidean version
the theory define one-loop corrections to the bubble nu
ation rate and determine the quantum state of the mate
ized bubble@4#. Since the model contains gauge degrees
freedom, the choice of physical variables to analyze the s
tem is not unique. There are several known ways to de
and express unconstrained quadratic action solely writte
terms of physical variables in the theory of a scalar fi
coupled to gravity in a nonspatially flat Friedman
Robertson-Walker~FRW! universe @2,3,5–10#. However,
none of them is completely satisfactory for the purpose
applying it to the issue of quntum tunneling, which we d
cuss mainly in this short paper. An extension of the con
nient variablev discussed in the well-known review in@1# to
the nonspatially flat case is found in Ref.@10#. However, the
canonical transformation to arrive at this variable turns ou
be singular in the case of quantum tunneling. In the reduc
discussed in@5#, the kinetic term does not have a defini
signature. In the case of the reduction given in@6,2#, the
kinetic term has a definite signature~as long as the back
ground scalar field is monotonic!. However, the overall sig-
nature is unconventional and hence some analytic contin
tion similar to conformal rotation becomes necessa
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Conformal rotation was introduced in the case of pure gr
ity to cure the conformal factor problem@11#. It was also
found to be possible to treat this problem~at least in pertur-
bative gravity! via careful gauge fixing@12#.

In this short paper, we revisit the dynamics of sm
scalar-type perturbations of a scalar field coupled to a FR
type background in the framework of the convention
theory of degenerate Lagrangian systems@13#. We obtain an
expression for the reduced action which is more appropr
for discussing quantum tunneling with gravity. For a wid
class of models, the signature of the obtained reduced ac
becomes the conventional one. The potential for the eig
value problem is also regular for the same class of mod
and it is shown that there is a negative mode in the spect
of small fluctuations about the Coleman–De Luccia boun
solution @15# in accordance with a consistent interpretati
of metastable vacuum decay@4#. As will become clear later,
this result is not in conflict with conclusions about the a
sence of a negative mode arrived at in the other reduc
scheme@2,6–9#.

The evolution of the system composed of a scalar ma
field minimally coupled to gravity is determined by the co
ventional action

S5E d4xA2g F 1

2k
R2

1

2
¹mf¹mf2V~f!G , ~1!

wherek58pG is the reduced Newton’s constant andV(f)
is the scalar field potential.

We expand the metric and the scalar field over an FR
type background
©2000 The American Physical Society01-1
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ds25a~h!2
†2@112A~h!Y#dh212B~h!Yu idhdxi

1$g i j @122C~h!Y#12E~h!Yu i j %dxidxj
‡,

f5w~h!1F~h!Y, ~2!

where g i j is the three-dimensional metric on the consta
curvature space sections,a and w are the background field
values andA,C, F, B, andE are small perturbations.Y is a
normalized eigenfunction of the three-dimensional Lapl
ian, DY52k2Y, and the vertical line represents a covaria
derivative with respect tog i j . To keep simplicity, we se
B(h)5E(h)50. These terms are absent for homogene
perturbations from the beginning. Also for inhomogeneo
perturbations, it is known that this choice of gauge is con
tent.

The background fieldsa andw satisfy the equations

H 22H81K5
k

2
w82, ~3!

2H81H 21K5
k

2
@2w8212a2V~w!#, ~4!

w912Hw81a2
dV

dw
50, ~5!

where a prime denotes a derivative with respect to confor
time h, Hªa8/a, andK is the curvature parameter, whic
has the values 1, 0, and21 for closed, flat, and open un
verses, respectively.

Expanding the total action, keeping terms of second or
in perturbations, and using the background equations,
find

S5S(0)1S(2), ~6!

whereS(0) is the action for the background solution andS(2)

is quadratic in perturbations with the Lagrangian for sca
perturbations:

(s)L5
a2Ag

2k
F26C8212~k223K!C2

1kH F822S a2
d2V

dwdw
1k2DF216w8C8FJ

2H 2kw8F812ka2
dV

dw
F

112HC814~k223K!CJ
3A22~H812H 22K!A2G . ~7!

To obtain the unconstrained system corresponding to the
generate Lagrangian~7! we will follow Dirac’s description
08350
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of singular Lagrangian systems@13#. Performing the Leg-
endre transformation with canonical momenta

PCª

d (s)L
dC8

5
6a2Ag

k
S 2C81

k

2
w8F2HAD , ~8!

PFª

d (s)L
dF8

5a2Ag~F82w8A!, ~9!

PAª

d (s)L
dA8

50, ~10!

we find the primary constraintC1ªPA50. Thus the total
HamiltonianHT is

HT5HC1u1~h!C1 , ~11!

with arbitrary functionu1(h) and canonical Hamiltonian

HC52
k

12a2Ag
PC

2 1
1

2a2Ag
PF

2 1
k

2
w8PCF

1a2AgF2
k223K

k
C21

1

2

3S a2
d2V

dwdw
2

3

2
kw821k2DF2G1AC2 , ~12!

where

C25w8PF2HPC1a2Ag

3F S a2
dV

dw
13w8HDF1

2~k223K!

k
CG . ~13!

Conservation of the primary constraint gives the second
constraintC250. The primary and the secondary constrain
are first class and there are no ternary constraints.

The existence of constraints in the system usually me
the presence of gauge degrees of freedom. To identify
physical degrees of freedom, we fix the gauge and solve
constraints. There are two simple strategies: either to eli
nate perturbations of the scalar field (PF and F) or the
gravitational degrees of freedom (PC andC). The approach
developed in@6–9,2# is based on the first possibility.1 Here
we use the second possibility.

Thus we choose the following gauge fixing condition:

x1ªPC50. ~14!

From the consistency conditionx1850, we obtain

1Note that the gauge invariant formulation in@2# corresponds to
the gauge choicexGMSTªF50.
1-2
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x25A2C50, ~15!

which is the condition known as the Newton gauge. Th
the consistency conditionC82A850 will determineu1, and
the set of constraints closes.

As a next step one can introduce the Dirac brackets
equivalently we can identify the Hamiltonian for the physic
degrees of freedomH* by the relation

PCC81PFF81PAA82HCux i50,Ci505PFF82H* .
~16!

After some algebra, assumingk2Þ3K, we obtain

H* 5
Q

2a2Ag
PF

2 2
kw8

2~k223K!
S 3w8H1a2

dV

dw
DPFF

1
1

2
a2AgF2

k

2~k223K!
S 3w8H1a2

dV

dw
D 2

1S a2
d2V

dwdw
2

3

2
kw821k2D GF2, ~17!

with

Qª12
kw82

2~k223K!
. ~18!

To proceed further it is useful to introduce new canoni
coordinatesf andp f defined by

p f2FQH1
kw8

6K
11Q

Q
S 2w8H1a2

dV

dw
D G f

5A Q

a2Ag
PF , ~19!

f 5Aa2Ag

Q
F. ~20!

One finds that the dynamics of the physical variablef is
governed by the simple harmonic oscillator Hamiltonian

H* 5
1

2
p f

21
1

2
w2@a~h!,w~h!# f 2, ~21!

with frequency whose time dependence is determined by
background solutions

w2@a~h!,w~h!#5
AQ

w8
S w8

AQ
D 9

2~k223K!Q. ~22!

Thus, the unconstrained quadratic action becomes
08350
,

or
l

l

e

S(2)5E S 1

2
f 822

1

2
w2@a~h!,w~h!# f 2D dh. ~23!

Now we apply the derived reduced action to the investigat
of the negative mode problem in quantum tunneling w
gravity. The false vacuum decay is described by the bou
solution of Euclidean equations@14,15#. The value of the
Euclidean action at the bounce gives the leading expone
factor in the decay rate. The quadratic action defines o
loop corrections. It is remarkable that in the spectrum
small perturbations about a bounce in the absence of gra
there is exactly one negative mode@4#. This mode is respon-
sible for making a correction to the ground-state ene
imaginary, i.e., justifying the decay interpretation. The r
evant object for tunneling transitions is the Euclidean act
which can be obtained from the action, Eq.~23!, by the ana-
lytic continuationh52 i t. Defining the Euclidean action a
usual byS(2)5 iSE

(2) and specifyingK511, we obtain

SE
(2)52p2E S 1

2
ḟ 21

1

2
U@a~t!,w~t!# f 2D dt, ~24!

where5̇d/dt and

U5
AQE

ẇ
S d2

dt2

ẇ

AQE

D 1@ l ~ l 12!23#QE , ~25!

with

QE511
kẇ2

2@ l ~ l 12!23#
. ~26!

Here we used the fact that the eigenvalues of the LaplaciaD
on a unit sphere take discrete values, i.e.,k25 l ( l 12) with
l 50,1,2, . . . .

The equation for the mode functions, which diagonal
the action, Eq.~24!, has the form of the Schro¨dinger equation

2
d2

dt2
f 1U@a~t!,w~t!# f 5E f . ~27!

Let us first show that for thel 50 case Eq.~27! has at least
one negative mode for the Coleman–De Luccia backgro
bounce solution. We define a new potential

Ũª

AQE

ẇ
S d2

dt2

ẇ

AQE

D .U. ~28!

The eigenvalue problem with this potential manifestly ha
zero eigenvalue state withf }ẇ/AQE. SinceŨ.U, the ei-
genvalue problem with the potentialU must have at least on
negative eigen mode.h

A similar discussion leads to the conclusion that there
no negative modes forl .1 ~compare@7#!. The l 51 case
needs separate consideration. As was explained in Ref.@6#,
there are no physical degrees of freedom in this sector.
1-3
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Note that the present result does not contradict the
negative mode theorem@9#. The argument of the no negativ
mode theorem is that, when we consider a bounce solu
such that it realizes the minimum value of the action amo
all nontrivial O(4)-symmetric configurations, there is n
negative mode for the specific variableq defined by

qª
8a

Akẇ
CN, ~29!

whereCN representsC evaluated in the Newton gauge@2#.
In terms of this variableq, the kinetic term stays negative fo
l 50 modes. Hence, as mentioned earlier, we need to
some analytic continuation similar to conformal rotation
perform the path integration. Although it is not fully just
fied, this procedure of analytic continuation is thought
produce the required imaginary factor~see@6,9#!. Now we
are working with a different variablef for which the kinetic
term takes the conventional signature. Therefore there sh
be one and only one negative mode.

Once we accept the original no negative mode theor
we can give indirect proof of the uniqueness of the nega
mode for f under the same condition that the absence o
negative mode forq was proved. It is easy to find the relatio
betweenf andq because our gauge condition corresponds
the Newton gauge~15!. EliminatingPF from the constraint
equationC250 and the Hamiltonian equation of motion fo
F derived from Eq.~17!, we obtain

d

dt S AQE

A4 gẇ
f D 5

l ~ l 12!23K
4Akẇ

QEq, ~30!

where we used the definitions~20! and ~29!. Suppose thatf
has two negative modes forl 50, and let us try to derive a
contradiction by using the fact thatq does not have any
negative mode. By assumption, the zero eigenvalue solu
(E50) of f which satisfies the boundary condition on o
side must have two nodes. One may think that this imp
that there are at least two zeros ofzª(AQE / A4 gẇ) f . But it
is not true because the regularity condition forf just requires
it to behave likee2( l 11)utu on boundaries. Sinceẇ behaves
like ;e22utu, even the regular solution ofz does not go to
zero on the boundary forl 50. Hence, we arrive at the con
clusion that there is at least one point where the derivativ
z vanishes. With the aid of Eq.~30!, this implies that the zero
eigenvalue solution ofq has a node, which means the ex
tence of a negative mode inq and contradicts with the no
negative mode theorem.h
er

ys
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We also note that with the present choice of variable th
is no manifest correspondence between the no negative m
theorem and the no supercritical supercurvature mode th
rem @8# as there was in terms of the variableq defined in@2#.
The equation which determines the perturbation spectrum
the context of one-bubble open inflation in terms of t
present variablef is not the standard Schro¨dinger-type equa-
tion and the existence of a mode with a negative value oE
does not imply the existence of a supercritical supercurva
mode. So far we considered background solutions wit
positive definite factorQE . If this factor becomes zero o
negative for some region~s! of t, the Euclidean analogue o
the canonical transformation, Eqs.~19!,~20!, becomes singu-
lar. This will not immediately indicate a certain physic
meaning because nothing special happens as long as ou
cussion is in terms ofq in Ref. @2#. However, if there exists
some class of bounce solutions for which the signature of
kinetic term cannot be set to be positive definite witho
passing through a singular canonical transformation, the
might suggest some physical meaning. In this case, we m
have to reconsider the possibility of catastrophic particle c
ation discussed in Ref.@5#.

To conclude we have investigated the dynamics of sm
perturbations in a nonflat FRW model coupled to a sca
field. Using the gauge conditions, Eq.~14!, we reduced the
system of coupled perturbations, Eq.~7!, to the dynamical
system, Eq.~23!, with one physical degree of freedom. Th
reduced quadratic action, Eq.~23!, has the conventiona
overall signature. Investigating the Euclidean quadratic
tion, Eq. ~24!, we proved that there is exactly one negati
eigenvalue mode about the Coleman–De Luccia bounce
lution. The result is consistent with the so-called ‘‘no neg
tive mode’’ theorem@9# in false vacuum decay with gravity
which was proved in the other reduction scheme. The tre
ment discussed here is restricted to background solut
which satisfy the condition that the quantityQE be positive.
Hence, another question arises as to whether we can alw
find a variable for which the kinetic term of a perturbation
the reduced action becomes positive definite. This is
needs further investigation.
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