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Cosmological perturbations in a Friedmann-Robertson-Walker model with a scalar field
and false vacuum decay
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The unconstrained reduced action corresponding to the dynamics of scalar fluctuations about the Friedmann-
Robertson-Walke(FRW) background is derived using Dirac’s method of description of singular Lagrangian
systems. The results are applied to the so-called negative mode problem in the description of tunneling
transitions with gravity. With our special choice of physical variable, the kinetic term of the reduced action has
a conventional signature for a wide class of models. In this representation, the existence of a negative mode
justifying the false vacuum decay picture turns out to be manifest. We also explain how the present result
becomes consistent with the previously proved “no negative m@igercritical supercurvature magde
theorem.”

PACS numbegps): 98.80.Hw, 98.80.Cq

One of the interesting and widely exploited cosmologicalConformal rotation was introduced in the case of pure grav-
models is based on the theory of a scalar field coupled tity to cure the conformal factor problefiil]. It was also
gravity. Such remarkable phenomena as inflation and metdoeund to be possible to treat this probléat least in pertur-
stable (false vacuum decay are usually discussed in thebative gravity via careful gauge fixing12].
framework of this model. For a complete description of this In this short paper, we revisit the dynamics of small
process, it is very important to know the properties of thescalar-type perturbations of a scalar field coupled to a FRW-
perturbations to the background configurations describing intype background in the framework of the conventional
flation or vacuum decay. The cosmological perturbations irtheory of degenerate Lagrangian systdif. We obtain an
the Lorentzian regime are related to the cosmic microwavexpression for the reduced action which is more appropriate
background radiation and large scale structure formatioiior discussing quantum tunneling with gravity. For a wide
[1-3]. Furthermore, perturbations in the Euclidean version ottlass of models, the signature of the obtained reduced action
the theory define one-loop corrections to the bubble nuclebecomes the conventional one. The potential for the eigen-
ation rate and determine the quantum state of the materialalue problem is also regular for the same class of models,
ized bubble[4]. Since the model contains gauge degrees ofind it is shown that there is a negative mode in the spectrum
freedom, the choice of physical variables to analyze the syssf small fluctuations about the Coleman—De Luccia bounce
tem is not unique. There are several known ways to deriveolution [15] in accordance with a consistent interpretation
and express unconstrained quadratic action solely written inf metastable vacuum dec$4]. As will become clear later,
terms of physical variables in the theory of a scalar fieldthis result is not in conflict with conclusions about the ab-
coupled to gravity in a nonspatially flat Friedmann- sence of a negative mode arrived at in the other reduction
Robertson-Walker(FRW) universe [2,3,5-1Q. However, schemd2,6—9.
none of them is completely satisfactory for the purpose of The evolution of the system composed of a scalar matter
applying it to the issue of quntum tunneling, which we dis-field minimally coupled to gravity is determined by the con-
cuss mainly in this short paper. An extension of the conveventional action
nient variablev discussed in the well-known review fii] to
the nonspatially flat case is found in REt0]. However, the
canonical transformation to arrive at this variable turns out to
be singular in the case of quantum tunneling. In the reduction
discussed in5], the kinetic term does not have a definite
signature. In the case of the reduction given[@2], the
kinetic term has a definite signatufas long as the back- wherex=8%G is the reduced Newton’s constant aviflo)
ground scalar field is monotonicHowever, the overall sig- is the scalar field potential.
nature is unconventional and hence some analytic continua- We expand the metric and the scalar field over an FRW-
tion similar to conformal rotation becomes necessarytype background
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ds?=a(7)[—[1+2A(n)Y]d7*+2B(7)Ydndx
+{y[1-2¥ () Y]+ 2E(n) Y dxdx ],

of singular Lagrangian systenj43]. Performing the Leg-
endre transformation with canonical momenta

8L 6a? K

d=@(n)+P(n)Y, 2 Myi=——= J;—4V+—¢®—HA, (8)
SU' K 2

where v;; is the three-dimensional metric on the constant

curvature space sections,and ¢ are the background field ey

values andA, W, @, B, and& are small perturbation¥’is a Hq)::—=a2\/;/(d>’ —o'A), (9)

normalized eigenfunction of the three-dimensional Laplac- oD’

ian, AY=—k?Y, and the vertical line represents a covariant

derivative with respect toy; . To keep simplicity, we set 59,

B(n)=&(n)=0. These terms are absent for homogeneous I ,:= =0, (10)

perturbations from the beginning. Also for inhomogeneous oA’

perturbations, it is known that this choice of gauge is consis-

tent. we find the primary constrain€,:=11,=0. Thus the total

The background fielda and ¢ satisfy the equations

K
HZ_HI+IC:EQD,2,

HamiltonianH is

Hr=Hc+ui(n)Cyq, (11)

)

with arbitrary functionu,(#) and canonical Hamiltonian
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where a prime denotes a derivative with respect to conformal 2V 3
time », H:=a'l/a, and K is the curvature parameter, which x| a2 ——k@'?+ K2 |D?|+AC,, (12
has the values 1, 0, and 1 for closed, flat, and open uni- Spdp 2
verses, respectively. h
Expanding the total action, keeping terms of second ordef' €€
in perturbations, and using the background equations, we , )
find CZZ(,D H¢—HHW+a \/;
—g0) 1 g2 Y 2(k?—3K)
S=59+50), (6) X a25_+3<p'H d+———V|. (13
(0] K

whereS(¥ is the action for the background solution a&d

is quadratic in perturbations with the Lagrangian for scalartConservation of the primary constraint gives the secondary

perturbations:
Ny
©lr= —6W'24+2(k?—3K)W?
K
52V
+x{ 2~ a? +k?
Opdp
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+12H\If’+4(k2—31C)\If]

XA—2(H'+2H?2—K)A?

(I)2+6go’\lf’(1)]

constraintC,=0. The primary and the secondary constraints
are first class and there are no ternary constraints.

The existence of constraints in the system usually means
the presence of gauge degrees of freedom. To identify the
physical degrees of freedom, we fix the gauge and solve the
constraints. There are two simple strategies: either to elimi-
nate perturbations of the scalar fiellll4 and ®) or the
gravitational degrees of freedorhl ¢, andV'). The approach
developed i{6-9,7 is based on the first possibilityHere
we use the second possibility.

Thus we choose the following gauge fixing condition:
x1:=114=0. (14

From the consistency conditiopy =0, we obtain

()

To obtain the unconstrained system corresponding to the de-'Note that the gauge invariant formulation [i] corresponds to
generate Lagrangiaf¥) we will follow Dirac’s description  the gauge choicggyst=®=0.
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—wXa(n),e(n)]f?|dy. (23

=A-¥=0, 15 1 1
X2 (15 S(z)zj 1o
2 2

which is the condition known as the Newton gauge. Then,

the consistency conditioW ' —A"=0 will determineuy, and Ny we apply the derived reduced action to the investigation
the set of constraints closes_. . of the negative mode problem in quantum tunneling with
As a next step one can introduce the Dirac brackets, og.a ity The false vacuum decay is described by the bounce
equivalently we can identify the Ha}mlltonlan for the physical solution of Euclidean equatiorfid4,15. The value of the
degrees of freedorl™ by the relation Euclidean action at the bounce gives the leading exponential
, , , , factor in the decay rate. The quadratic action defines one-
Iy W'+ 1@’ + 1A _HC|Xa:0'Ca:0:H‘I’(D —H*. loop corrections. It is remarkable that in the spectrum of
18 small perturbations about a bounce in the absence of gravity
there is exactly one negative mog@g. This mode is respon-
sible for making a correction to the ground-state energy
imaginary, i.e., justifying the decay interpretation. The rel-

After some algebra, assumihg+# 3K, we obtain

= Q nz— ke 30/ H A 25V M. evant object for tunneling transitions is the Euclidean action
_2a2\/— @ 2(k2—3K) ¢ a 5_<P ® which can be obtained from the action, Eg3), by the ana-
Y lytic continuationn= —i 7. Defining the Euclidean action as
1 « SV 2 usual byS®?=iS® and specifyingC= + 1, we obtain
+ —azx/; - —(3¢’H+a2—>
2 2(k?—3K) S X (L., 1 ,
S@=2x f —f2+ -Ula(7),e(n]f2|dr, (24
V3 22
+| a2 — — k@' ?+K?| |2, (17) .
Spdp 2 where=d/dr and
i u QE( & e >+[|(|+2) 3]Q (25)
= o — - E»
Kp'? ¢ \d7 VQE
Qi=1l— ———. (18 .
2(k2_3IC) with
"2
To proceed further it is useful to introduce new canonical Q=1+ ke 26
coordinated and 7 defined by ET 2[1(1+2)-3]"
ke' 1+Q , ) oV Here we used the fact that the eigenvalues of the Laplatian
mi— | QH+ B Q 2¢"H+a 5o f on a unit sphere take discrete values, k8=1(l+2) with
1=0,1,2....
Q The equation for the mode functions, which diagonalize
= gy, (19 the action, Eq(24), has the form of the Schdinger equation
a2\y
d2
——f+U[a(7),p(7)]f=ET. 2
N — F+ULa(n.¢(n)] 27
f= D, (20
Q Let us first show that for the=0 case Eq(27) has at least

one negative mode for the Coleman—De Luccia background

One finds that the dynamics of the physical variables bounce solution. We define a new potential

governed by the simple harmonic oscillator Hamiltonian
11 \/QE( d? ¢ )
>U.

H*=§7Tf2+EW2[a(n),<p(77)]f2, (21) U‘:T a” Jo,

with frequency whose time dependence is determined by th&n€ eigenvalue problem with this potential manifestly has a
background solutions zero eigenvalue state with= ¢/\/Qg. SinceU>U, the ei-
genvalue problem with the potentidimust have at least one
Q( ® )" negative eigen modé.l
wila(n),e(n)]=—|—=| —(k*-3K)Q. (22 A similar discussion leads to the conclusion that there are
' \/6 no negative modes for>1 (compare[7]). Thel=1 case
needs separate consideration. As was explained in[BEgf.
Thus, the unconstrained quadratic action becomes there are no physical degrees of freedom in this sector.

(28)

!
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Note that the present result does not contradict the no We also note that with the present choice of variable there
negative mode theoref®]. The argument of the no negative is no manifest correspondence between the no negative mode
mode theorem is that, when we consider a bounce solutiotheorem and the no supercritical supercurvature mode theo-
such that it realizes the minimum value of the action amongem[8] as there was in terms of the varialjelefined in[2].
all nontrivial O(4)-symmetric configurations, there is no The equation which determines the perturbation spectrum in
negative mode for the specific varialgjedefined by the context of one-bubble open inflation in terms of the
present variablé is not the standard Schiimger-type equa-
tion and the existence of a mode with a negative valug of
does not imply the existence of a supercritical supercurvature
mode. So far we considered background solutions with a
whereWN representsl evaluated in the Newton gaud2].  positive definite factoiQg. If this factor becomes zero or
In terms of this variable, the kinetic term stays negative for negative for some regidg) of 7, the Euclidean analogue of
=0 modes. Hence, as mentioned earlier, we need to dthe canonical transformation, Eq4.9),(20), becomes singu-
some analytic continuation similar to conformal rotation tolar. This will not immediately indicate a certain physical
perform the path integration. Although it is not fully justi- meaning because nothing special happens as long as our dis-
fied, this procedure of analytic continuation is thought tocussion is in terms off in Ref.[2]. However, if there exists
produce the required imaginary factee[6,9]). Now we  some class of bounce solutions for which the signature of the
are working with a different variablefor which the kinetic  yinetic term cannot be set to be positive definite without
term takes the conventionallsignature. Therefore there Sho“l?assing through a singular canonical transformation, then it
be one and only one negative mode. might suggest some physical meaning. In this case, we might

Once we accept the original no negative mode theoremyaye 1o reconsider the possibility of catastrophic particle cre-
we can give indirect proof of the uniqueness of the negativeyiinn discussed in Ref5].
mode forf under the same condition that the absence of a T4 conclude we have investigated the dynamics of small
negative mode fog was proved. It is easy to find the relation perturbations in a nonflat FRW model coupled to a scalar
betweenf andq because our gauge condition corresponds tg;g|q. Using the gauge conditions, E@.4), we reduced the
the Newton gaugéls). EliminatingI14 from the constraint system of coupled perturbations, E@), to the dynamical
equationC,=0 and the Hamiltonian equation of motion for system, Eq(23), with one physical degree of freedom. The

8a
qi=—="", (29
K@

@ derived from Eq(17), we obtain reduced quadratic action, Eq23), has the conventional
overall signature. Investigating the Euclidean quadratic ac-
d \/Q—E _ I(1+2)-3K tion, Eq. (24), we proved that there is exactly one negative
drl 4 Ve 4\/;(;0 Qed, (30 eigenvalue mode about the Coleman—De Luccia bounce so-

lution. The result is consistent with the so-called “no nega-

where we used the definitior{20) and (29). Suppose that  tive mode™ theoren{9] in false vacuum decay with gravity
has two negative modes for=0, and let us try to derive a Which was proved in the other reduction scheme. The treat-
contradiction by using the fact that does not have any Ment discussed here is restricted to background solutions
negative mode. By assumption, the zero eigenvalue solutiofhich satisfy the condition that the quant® be positive.
(E=0) of f which satisfies the boundary condition on one Hence, another question arises as to whether we can always
side must have two nodes. One may think that this impliedind a variable for which the kinetic term of a perturbation in

that there are at least two zeroszt (\VOg/ 4/7¢)f. But it the reduced action becomes positive definite. This issue
is not true because the regularity condition fqust requires needs further investigation.
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zvanishes. With the aid of E430), this implies that the zero supported by the Georgian Academy of Sciences under
eigenvalue solution off has a node, which means the exis- Grant No. 1.4 and by a Royal Society grant. The work of
tence of a negative mode ipand contradicts with the no T.T. was partly supported by the Monbusho System to Send
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