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Coherent neutrino radiation in supernovae at two loops
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We develop a neutrino transport theory, in terms of the real-time nonequilibrium Green'’s functions, which
is applicable to physical conditions arbitrary far from thermal equilibrium. We compute the coherent neutrino
radiation in cores of supernovae by evaluating the two-particle—two-h@e2td polarization function with
dressed propagators. The propagator dressing is carried out in the particle-particle channel to all orders in the
interaction. We show that at two loops there are two distinct sources of coherence effects in the bremsstrah-
lung. One is the generically off-shell intermediate state propagation, which leads to the Landau-Pomeranchuk-
Migdal type suppression of radiation. We extend previous perturbative results, obtained in the leading order in
quasiparticle width, by deriving the exact nonperturbative expression. A new contribution due to off-shell final
or initial baryon states is treated in the leading order in the quasiparticle width. The latter contribution
corresponds to processes of higher order than second order in the virial expansion in the number of quasipar-
ticles. At the 2-2h level, the time component of the polarization tensor for the vector transitions vanishes
identically in the soft neutrino approximation. Vector current thereby is conserved. The contraction of the
neutral axial vector current with the tensor interaction among the baryons leads to a nonvanishing contribution
to the bremsstrahlung rate. These rates are evaluated numerically for finite temperature pure neutron matter at
and above the nuclear saturation density.

PACS numbd(s): 97.60.Bw

[. INTRODUCTION gence and the vanishing contribution from the low frequency
region makes the quasiparticle approximation to @g.ap-
Neutrino production in baryon encounters is among theplicable in cold neutron stars.
fundamental processes by which compact stars lose their en- During the first several tens of seconds after a supernova
ergy. The reactions can be arranged, in general, according txplosion and core collapse the temperature of the dense
the number of participating baryons, as phase space arguuclear matter is of the order of several tens of MeV. The
ments play the central role in controlling their temperatureneutrino bremsstrahlung is then suppressed, because the for-
and density dependen¢&—6]. In the case of neutrino pair mation length of the neutrino radiation is of the same order
bremsstrahlung, the leading order process in the densityf magnitude as the mean free path of a bary@®nl11]. The
virial expansion is the two-body reaction collective effects become important on the radiation scale
[i.e., the role of the spectator in the reactidnis taken over
o by the mediunh because the baryon undergoes multiple scat-
B,+By,—B;+By+vi+ vy, (1) tering during the radiation. The underlying mechanism is the
Landau-Pomeranchuk-MigdélPM) quenching of the radia-

. tion, first introduced in the context of QE[A2]. The central
where B stands for a baryony; (v¢) for a neutrino(an-  role in the theory is played by the formation length of radia-
tineutring of flavor f = e, u, 7. Note that the subleading order tion|;. If the mean-free path of a baryon is much larger than
procesdi.e., the one in the absence of the speclatanishes the formation lengthyzp>1¢ then the radiation reduces to a
for identical particles, as an on-shell propagating particlessum of separate radiation events, each of which is well de-
cannot radiate. scribed by the Bethe-Heitler spectrum. In the opposite limit

The matter in neutron stars is highly degenerate for temty,rp<<l; the individual scattering events are unresolved and
peratures typically below a few MeV and the elementarythe radiation spectrum takes the Bethe-Heitler form for a
excitations are quasiparticles with a well-defined energysingle scattering event. In the intermediate regime, when
momentum relation. The produced neutrinos are typicallyl,,rp~1¢, the radiation amplitudes for scattering off various
“soft” with energies of order of temperature. In this limit centers interfere destructively and the radiation is suppressed
the intermediate quasiparticle propagator divergesasaht  (Landau-Pomeranchuk-Migdal effect; for a review see Refs.
the amplitudes of the neutrino absorption, scattering, anfi10,13).
emission turn out formally divergent as«f. The infrared The rates of the neutrino-nucleon processes are com-
behavior of the in-medium rates, however, is dominated bymonly expressed through phase space integrals over the con-
the neutrino phase space factors, rather than the infrared diraction of the weak currents with the polarization function
vergence of the amplitudes and the rates of the bremsstrabf the nuclear medium. The polarization functi@r struc-
lung and its spacelike analogues remain finite. At the samaure function of the supernova/neutron star matter has been
time, at low temperatures, the contribution from the infraredthe subject of many studi¢$0,14—19. The modifications of
region to the rate of the bremsstrahlung is negligible. Theeaction rates by the spatial correlations amdag-shel)
combined effect of the cancellation of the infrared diver-quasiparticles have been studied within the Fermi-liquid
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theory[14], the one-boson exchange interaction thgdsy, The imaginary part of a single loop in thgh channel

the relativistic random phase approximatid€], the varia- vanishes in the timelike region of the phase space, which is
tional approach17], and combinations there18,19. The relevant for the particle production. A finite result emerges
spatial correlations tend to suppress reaction rates in generdfhen one dresses the propagators by either extending the

although their impact on the supernova physics is model dg€summation in theph channel to two- and higher-loops
pende?ﬂ[l4—1q. P P Py and/or by dressing the propagators in fiye channel to all

. . ._orders. Ignoring the latter resummation, i.e., using the quasi-
The common strategy of incorporating the LPM effect in article propagators in the two-loop expansion, misses a

the neutrino-nucleon interaction processes is to add a quaﬁ'umber of short-range collective effects, such as the LPM

particle damping in the intermediate state propagator by regyenching of the radiation due to multiple scattering. On the
placing o by w+iy [8-10. In the soft neutrino limit the  other hand, summing only the ladders in the channel does
vector current coupling does not contribute by virtue of vec-not recover the vector current conservation in the radiation
tor current conservatiofCVC) and the net contribution procesgin, at least, a transparent mannérherefore a natu-
comes from the axial-vector transitions via baryon spin flip.ral choice, motivated by the separation of the short- and
The above modification of the intermediate state propagatdeng-range phenomena, is to truncate gitechannel at two-
then leads to an ansatz for the nucleon spin structure fundoops and to resum thep channel to all orders. The situa-
tion: S, 7’<r/(w2+%2r) [8-10], where y, is the nucleon tion is reminiscent of the parquet resummation scheme in the

spin-flip collision rate. This ansatz generalizes the quasiparf-IrSt iteration, where n both phannels the driving force is the
bare baryon-baryon interactidi].

fucle picture, in & semlph_enomenologlcal manner, _by mplud- Early studies of the bremsstrahlung at the quasiparticle
ing the temporal correlations among the quasiparticles in thg,e| modelled the strong force using tAematrix interac-
justification of this phenomenology emerges from the vari-and their in-medium modificatior$] supplemented with a
ous formulations of the finite temperature quantum fieldhardcore modelled in the spirit of the Fermi-liquid theory.
theory, e.g., the thermofield dynamif20], or the closed The explicit use of the tensor interaction turned out to be
diagram formalism in the Schwinger-Keldysh techniquecrucial as there are significant cancellations among different
[13]. A microscopic computation is not straightforward, diagrams, and the surviving contribution is due to a non-
however. For example, the polarization function of the medrivial contraction between the operator structures of the
dium can be computed at one loop, including the quasiparti?éak and strong interactiorigensor forcg [4]. This moti-
cle width to all orders iny, however,a priori the current ~YaleS our ansatz for the driving force in the particle-hole
conservation is not guaranteed at this level. The reason, i h) channel of nuclear Interaction, which includes e.xpllc—

; . ) o . itly the tensor force contribution. We do not attempt, in the
part, is that _the more complicated™ higher qrder loop dia- present work, to go beyond the one-pion exchange approxi-
grams contribute at the same order as the single [@8p

: ) - ; mation for several reasons, one being that the nonperturba-
In a previous paper we carried out & microscopic compUgye treatment of the interaction does not change the spin,
tation of the bremsstrahlung, including the LPM effect, at thejgogpin, and tensor operator structure of the interaction, and

one-loop level in a formalism based on the quasiclassicamportant cancellations in the radiation matrix elements will
Kadanoff-Baym transport equati¢al]. Here we extend this pe preserved in a more advanced treatment. We also want to
computation to two loops and partially modify our approachpe able to isolate the finite width effects in our comparisons
to include the propagator and vertex renormalization on theo the earlier work done in the one-pion exchange approxi-
same footing and to include the tensor force explicitly. Themation [4,10]. The situation is different in the particle-
extension to two loops is motivated by the following. The particle (pp) channel, where the short-range correlations
long range phenomena, driven by the weaker attractive partave to be treated in a nonperturbative manner by summing
of the baryon-baryon interaction, are sensitive to the resumdp the ladder diagrams to all orders. We do this in the finite-
mation in the particle-holegth) channel. On the other hand, temperature Brueckner theory.

as well known, one should fully resum the particle-particle ~ The paper is organized as follows. In Sec. II, starting from
(pp) channel to treat the hard core of the baryon-baryorthe Kadanoff-Baym formalism, we derive a single-time
interaction. Therefore, theh channel can be treated pertur- transport equation fdanti) neutrinos with collision integrals
batively by expanding in the number of particle-hole loops,driven by (ant) neutrino coupling to baryons via the polar-

while thepp channel must be treated nonperturbatively by aZation tensor of the medium. The polarization tensor is com-
PP P y puted in the »-2h approximation in Sec. Ill. The summa-

full resummation of the ladder diagrams. Thus, the separa: n of the ladder diagrams in thep channel within the
tion of the long-range and short-range phenomena dictat inite temperature Brueckner theory is described in Sec. IV.

the manner in which the diagrammatic expansion is carrie : : ;
: . . .Section V evaluates the phase space integrals and neutrino
out. The dressing of the single particle propagators occurs IBremsstrahlung emissivities. The numerical results are pre-

bOth.Cha.””e'.s and can be treated_ either explicitly, say, b)§ented in Sec. VI. Section VIl summarizes our main results.
considering higher order self-energies attached to a propaga-

tor, or, alternatively, by condensing it in the width of the Il. NEUTRINO TRANSPORT FORMALISM

propagator spectral function. As a consequence of the sepa- _

ration of the scales, the short-range correlations can be con- A. Neutrino propagators

densed in the propagator width on the scales relevant for the The theory of neutrino radiation can be conveniently for-
long-range phenomena. mulated in terms of the real-time quantum neutrino transport.

083002-2



COHERENT NEUTRINO RADIATION IN SUPERNOVE . .. PHYSICAL REVIEW D 62 083002

Let us start by defining the various time-ordered Green’'s [y — ReQR(x;,%3),S " (X3,X2) ]
functions of massless Dirac neutrinos. These can be written ®
in the generic matrix form —[ReSR(X1,X3),27=(X3,X5)]
22 Sl<2 1
iSlzzi( = ) :E{S>’<(X1,X3),Q>'<(X3,X2)}
- S12 8?2
— — 1
_((Tw(xl)¢<x2)> —<t//(xz)¢(x1)>) +5{07 (X1 %3), S (X X)), (6)
<‘/’(X1)Z(X2)> (T‘/’(Xl)a(xz»

L e where[,] and{,} stand for commutator and anticommutator,
. ( Sz S ) respectively. In arriving at Eq6) we assumed the existence
=1 +— ++ | (2) i i :
S, S of the Lehmann representation for the neutrino propagators;
as a /Eesult we have RB¥=ReS*=ReS and ReQR
L — 0 =Re()*=Re().
where y/(x) ar(.a the, neutrino f|eld operator$,~—y v, T 'S_ For the present purposes the neutrino dynamics can be
the chronological time ordering operator, ahds the anti-  reated semiclassically, by separating the slowly varying
chronological time ordering operator; the indicesX;, 2 center-of-mass coordinates from the rapidly varying relative
=Xy, ..., collectively denote the space-time and discretecoordinates. Carrying out a Fourier transform with respect to
quantum numbers. The neutrino matrix propagator is furtheghe relative coordinates and keeping the first-order gradients
assumed to obey the Dyson equation in the slow variable we arrive at a quasiclassical neutrino
transport equation
S(X1,X2) = Sp(X1,X2) + Sp(X1,X3) (X3,X2) S(X2,X1) {RES M0, S (00 ot HRES(.10. 2% <(q0)]
- - - - = i{ReS %(q,x),S™~(q,X)}pe+i{ReS(q,x),Q”=(q,x
= (X4 503 X5 2 (Xa ) Sz X0, SIS et HEERA A
- - - - 3 =S77(a,x)Q77(q,x) + Q77 (g,x)S7(g,x),  (7)
whereq=(q,q,) andx are the neutrino four momentum and
where Sy(x;,Xp) is the free neutrino propagator and the center-of-mass space-time coordinate, respectively,
S H(X1,%2) So(X1,X0) = 0,8(X, — X;), 0, is the third compo-  {---}pg is the four-dimensional Poisson bracket. The left-
nent of the Pauli matrix{) is the neutrino proper self- hand sidgLHS) of Eq. (7) is the precursor of the drift term
energy, and we assume integratisammation over the re- of the Boltzmann equation. The second Poisson bracket,
peated variables. The self-enerflyis a 2x2 matrix with however, does not fit in the Boltzmann description and can
elements defined on the contourin terms of the Dyson equde eliminated by an expansion of the neutrino propagator in
tion. The quasiclassical neutrino transport equation followghe leadingquasiparticle and next-to-leading order terms in
from the Dyson equation in the “conjugate subtracted” formthe small neutrino  damping: S™=(q,x)=S;"~(d,X)

[22,23 +S7"7(q,x). A direct evaluation of the Poisson brackets
decouples the LHS of transport equatiof to the leading
iS(Xq,X0) by, — i by S(X7,X5) order with respect to the small damping of neutrino-
- 2 — antineutrino state§lm (q,x)/Re{(q,x)<<1]. The quasi-
= S(X1,X3) Q(X3,X2) 0,— 0 (Xq1,X3) S(X3,X5). (4)  particle part of the transport equation
: —1 > <
Note that the initial correlations are neglected in &j. The 1{ReS™(q.x).S " (a.x)}ee
set of the four Green’s functions above, can be supplemented =S7(q,X) Q7 (g, %) + Q7 <(q,X)S”<(q,X)
by the retarded and advanced Green’s functions which are
defined as ®)
R — describes the evolution of the distribution functi@Nigner
iS1;= 0t = ta)({¥(x0), ¥(x2)}), function) of on-shell excitations with the LHS corresponding
to the drift term of the Boltzmann equation. The RHS corre-
iSﬁ2= — B(ty—ty)({eh(xy) E(Xz)}> (5) sponds to the collision integral with the self-energies

0~<(q,x) having the meaning of the collision rates. The
i . i . advantage of this form of th@eneralizefl collision integral
where 6(x) is the Heaviside step function on the real-time s tha¢ it admits systematic approximations in terms of Feyn-

contour defined ad6(x)/dx=a,(x). The retarded and ad- an perturbation theory. The remaining part of the transport
vanced Green’s functions obey integral equations in the QUasquation

siclassical limit. The relations between the six Green’s func-

tions are listed in the Appendix A. The transport equation for i{ReS %(q,%),S7<(q,X) pe
the off-diagonal elements of the matrix Green’s function T '
reads +i{ReS(q,x),Q2”=(q,X)}pg=0, 9)
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relates the finite width part of the neutrino propagator to the
self-energies in the form of a local functional which depends
on the local(antineutrino particle distribution function and
their coupling to the matter.

2
B. On-shell neutrino approximation ) o
FIG. 1. The neutrino Dyson equation in terms of the Feynman

~ The on-mass-shell neutrino propagator is related to th@jagrams. The dashed curve corresponds t&thmpagator, which
Sl'ng|e't|me d'StrlbUt!On functionéNigner funCt'|0|’1$ of neu-  includes the neutrinos and antineutrino holes moving in the same
trinos and antineutrinod,,(g,x) andf,(qg,x), via the ansatz time direction (reverting the time direction one finds the Dyson
- equation for antineutrinos and neutrino hglebhe shaded loop is
i i ati i
< _ . _ the baryon polarization tensor. The wavy lines correspond to the
S0 (qlx) wv(q) {5[q0 wu(Q)]fv(QaX) 5[q0+ wv(q)] Wt]zO boson propagators.
X[1-f(=a,x)]} (100 case of the bremsstrahlung we have to eventually sum these
equations; still the relation of the transport self-energies to

Wh(_are (_uy(q)=c|q| s the on—mass-ghell-r)eutrmo— particular processes becomes transparent if one treats the
antineutrino energy. Note that the ansatz includiesulta- transport equations separately.

neouslythe neutrino particle states and antineutrino hole
states, which propagate in, say, positive time direction. Simi- C. Collision integrals
larly, the on-shell propagator

We adopt the standard model for the description of the

- B i neutrino-neutron interactions and write the neutral current
S (@)= w,(9) {oldo~ (@1 -Tu(a.x)] interaction Hamiltonian in the form

= 0[Qot+ @, (PIF(—a,x)}, (11

corresponds to the states propagating in the reversed time

direction and, hence, includes the antineutrino particle states _

and neutrino hole states. U=y (1= ys) ¢, (13
To recover the Boltzmann drift term in the on-shell limit, ) )

we take the trace on both sides of the transport equéfipn Where G is the weak coupling constan and ¢ are the

and integrate over th@ntjneutrino energy,. The firstterm ~ Neutrino and neutron field operatogs, and g, are the di-
on LHS of Eq.(7) reduces then to the drift term of the mensionless weak neutral-current vector and axial vector

Boltzmann equation. The single time Boltzmann equationCOUp”r‘g constants for the case of the neutrino-neutron inter-
(BE) for neutrinos is obtained after integrating over the posi-ction treated in the later sections.

G _
Hint:_FHFL! l—‘H M:¢yM(gV_gA75)¢l
22 ’

tive energy range The diagrams contributing to the neutrino emission rates

can be arranged in a perturbation expansion with respect to

(31 dqo (D ]f ,(AX) the weak interaction. The lowest order in the weak interac-
qv xd P p\H

tion Feynman diagrams which contribute to scattering, emis-

do - - - - _ sion, and absorption processes are shown in Fig. 1. The cor-
=/, 5, 1745 (9,%) = 27(9,%) Sy (a,X)]; responding transport self-energies are read off from the
diagram
(12 ’
- . o . d'q d*o,
a similar equation follows for the antineutrinos if one inte- —|Q>'<(ql,x)=f 2 Z(2m)*6Y(a1— 92— q)
grates in Eq(7) over the rangé —=,0]. (2m)" (2m)

The different energy integration limits select from the
RHS of the transport equations the processes leading to
modifications of the distribution functions @dintneutrinos. (14)

The separation of the transport equation into neutrino and o ) _
antineutrino parts is arbitrary, however, is motivated by theVherell, ;~(q) are the off-diagonal elements of the matrix
observation that the fundamental quantities of neutrino radiaof the baryon polarization tensdr{, is the weak interaction
tive transport, as the energy densities or neutrino fluxes, ca¥ertex. The contact interactiofl3) can be used for the
be obtained by taking the appropriate moments of BEs€nergy-momentum transfers much smaller than the vector
These quantities are not symmetric with respect to thd0son massj<mz,my. Let us first concentrate on the BE
neutrino-antineutrino populations in general. For examplefor neutrinos. Define the loss and gain terms of the collision
the neutrino emissivitiegenergy output per unit time per unit integral as

volume for processes based ghdecay reactions are given v

by t_h_e zeroth order moment of the antineutrino _BE, and it is |§,<(q,x):f ﬂTr[Q>'<(q,x)S§'<(q,x)]. (15)
sufficient to consider only the BE for antineutrinos. In the 0 2m

XiT{4i S5 (A2 )TN :=(q,%),
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Substituting the self-energies and the propagators in the cojpte

lision integrals we find, for the gain part,

F dq d*q,
r
—w(2mm)* (2m)*

=g
=i [ 5

0 2m
md,
wv(qZ)

X{ [ Aoo— @,(0p) 1T ,(d2,X) — 8] doot w,(T) ]

X (2m)*s* (g —a— )Tt

md,
wv(ql)

X[1=f(—az,x) [} 10— ,(qy)]

X[1=f (a1, ) ] (0,%) ¢ (16)

The loss term is obtained by replacing in E6) the neu-
trino Wigner functions by the neutrino-hole functions
f(q,X)—[1-f,(qg,x)] and the antineutrino-hole Wigner
functions by the antineutrino function§1—f,(—q,x)]
—f,(q,x). The terms proportional (£f,)f, and (1
—f,)(1—f7) in the gain part of the collision integra]; (q)

PHYSICAL REVIEW D 62 083002

gral If(q) are the neutrino emission and scattering-in
contributions, respectively. Note that, when the neutrinos are
in a thermal equilibrium with the baryons, the collision inte-
grals for the scattering-in or scattering-out and for the ab-
sorption or emission cancel. Under the conditions of detailed
balance theéantineutrino distribution function reduces to the
Fermi-Dirac form.

D. Bremsstrahlung emissivity

The neutrino-pair emissivitythe power of the energy ra-
diated per volume unjitis obtained by multiplying the left-
hand sides of the neutrino and antineutrino by their energies,
respectively, summing the BEs, and integrating over a phase
space element

3

q
=at) ol AT eN@

o

€VV

dq
(2m)®

(15— 1 ]w,(9), (19

correspond to the neutrino scattering-in and emission contriwhere in the collision integrals we kept only the terms which

butions, respectively. The terms proportioig{1—f,) and
f,f, in the loss part of the collision integraf (q) are the
neutrino scattering-out and absorption contributions.

The loss and gain collision integrals for the antineutrinos
can be defined in a manner, similar to the case of neutrinof
with the energy integration spanning the negative energy

range

>, < 0 d > <
2 5@0= [ SET0” (@08 @x) 17

Using the above expressions for the self-energy and the

propagators, we find, for the gain term,

= d'q d'gp
.
r[ fo«zw)“ (2m)"

P

wv(qZ)
X {8 Aoz~ 0,(Gp) I ,(02,X) = 8] Qoo+ @,(Qp) ]

md,
wv(ql)

0 d
I?(%x)zif o

Cw 27T

X (2m)*o*(ar—a— )Tt

X[1—f (=g ) I

X 8lgiot wy(ql)]f;(—ql,x)l'[;h(q,x)] . (19

The loss term is obtained by making replacements in Eq.

(18) analogous to those applied to E46). The terms pro-
portionalf ,f; andf(1—f}) in the gain part of the collision

integrallf(q) then correspond to the neutrino absorption and
scattering-out contributions. The terms proportional (1

—f)(1—f,) and (1-f,)f, in the loss part of the collision

S

correspond to the processes with the neutrino and an-
tineutrino in the final statébremsstrahlung

dq;
(2m)?

1 =) @,(ay)
s f d*ay d’q,  d'q
(2m)%20,(0h) (27)°20,(0) (27)*
X (2m)*8%(qp+ tp— ) 8 w,(0y) + @,(G2) — o]
Xo,(q){1-f[w,(q)]H1-fle,(d)]}
X ANy, 02)TT 57 (a,X),

(20

and A“M=Tr[ y*(1— v°)d,v"(1— v°)d,]. The collision in-
tegrals for neutrinos and antineutrinos can be combined
if one uses the identities H;A(q)=1'l_fﬂ(_—q_)
=2igg(do)Im I1,,,(q); heregg(qo) is the Bose distribution
function andﬂfjx(q) is the retarded component of the polar-
ization tensor. With these modifications the neutrino-pair
bremsstrahlung emissivity becomes

G 2

22

€

vv

d*q )

2m*

j da,
T J (2m)%2w,(q)
d3Q1

8 f (2m)%2w,(qy) f
Xl w,(th)+ (%) —dol[ @,(th) + w,(0x) ]

Xgg(qo{1—f [, () ]H1-flw,(0)]}
X AMMqq,q,)Im 115, ().

2m)*83% (a1 + - 0)

(21)
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We note that Eq(21) has been derived under the assumptionspace-time coordinate is trivial and can be dropped. The dis-
that the neutrinos and antineutrinos are on shell. Providettibution function of the baryons is related to the off-diagonal
that the on-shell constraint is satisfied, the departure of theielements of the matrix Green function by the exact relations
distribution functions from their equilibrium Fermi-Dirac

form can be arbitrary large. The polarization function of the —1G~(p)=a(p)fn(p), G~ (p)=a(p)[1—fn(p)],
baryons in Eq(21) is not constrained by either equilibrium (25)

and/or on-shell considerations. wherea(p) =i[GR(p) — GA(p)]=i[G™ (p) - G=(p)] is the

baryon spectral functiorf,y(p) =[exp(B(w—u))+1] tis
the Fermi-Dirac distribution functiorB=T"1! is the inverse

In this section we start the implementation of the pertur-temperature, ang. is the chemical potentigkelations(25)
bative scheme motivated in the Introduction. Our strategy idVill be referred to as the Kadanoff-Baym ansatz in the fol-
the separation of the long and short-range phenomena in tHewing]. ~ The  quasiparticle  energy &,=p®/2m
ph and pp channels. Here we carry out the first step by ReER(p)|w:£p follows from the solution of the Dyson
expanding the particle-hole channel and truncating it at twcequationGR(p)z[w—sp+i Im3R(p)]~t. When damping
loops. This fixes the amount of the long-range correlations irof quasiparticle states is small, B¥(p)<ReXR(p), the
the theory. The short-range effects are condensed in theropagators can be decomposed into quasiparticle and back-
width of the particle-hole propagators, which is specified in aground contributions, e.g.,
later section by summing the ladder diagrams.

Ill. TWO-LOOP BARYON POLARIZATION FUNCTION

. P
A. Baryon propagators G=(p)=2miz(p)fn(p) 5(w_sp)_2<(p)(w_8 )2
p
Although we shall treat the baryon sector in the equilib- O(+2 26
rium limit, it is still useful to define the six Green’s functions +0(v9). (26)

of the nonequilibrium theory, as in the case of neutrinos. Th(?\J
matrix Green'’s function of nonrelativistic baryons is defined
in the standard way

ote that the self-energy appearing in the denominator of the
second term of Eq(26) via the dispersion relation is re-
stricted, to the leading order in damping, to the mass shell. In

¢ G5 equilibrium,
G _ _
22 '(sz iz) I35 (p)=y(P)fu(p),  —iE7(P=AP)1-fu(p)],
(<T¢<xl>¢*(x2)> —(¢"(x2) p(x1)) here y(p) = 2 Im (p) is the width of the b 20
= - where y(p)=—2 Im3,(p) is the width of the baryon spec-
(p(x) T (X2))  (T(x1) T (x7)) tral function. The wave-function renormalizatiap) in the
G, Gg same approximation is
:i( +- ++)v (22
G, Gp B do’ , P
Z(p)—l—fg ImE(w ,p)m . s (28)

where ¢(x) are the baryon field operators. In terms of these
operators the retarded and advanced function are defined as

R N where we used the integrodifferential form of the Kramers-
IGT,= 0(ti—t2){({d(x1), 4" (x2)}), Kronig relation

iGh=— 0(ta—t)({p(X1), T (x2)}). d do’ , P
ﬁReE(w,p)—JT ImE(w ,p)m (29)
The structure of the proper self-energy mafixs identical

to Eq.(22) and its elements are defined via the Dyson equa®©n inserting the expression of the wave-function renormal-
tion for baryons: ization (28) in the expansior{26) we find the final form of

the propagator
E(Xl X2) = Go(X1,X2) +E0(X1 ,Xs)g(xs -Xz)E(Xz X1)

e de’
:Eo(Xl,Xz)+E(X1,X3)§(X3,X2)E0(X2,Xl)- G<(p):2WifN(P)_27Tif%Y(F)’)
(24)

P
(“”_Sp)2

X[d(w—ep)—d(w—w')]fy(w). (30

In a complete analogy to the neutrino sector, we approximate . . .
the Green’s functions by their quasiclassical counterparts bilote that this form of propagator renders the strict fulfill-
defining center-of-mass and relative space-time coordinatg®ent of the spectral sum rule
and Fourier transform with respect to the relative space-time
coordinates. In the equilibrium limit the dependence of the d_“’ _

: . , . . a(p)=1, (31
guasiclassical Green’s functions on their center-of-mass 2
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at any order in the expansion with respect to the damping. , b
Using the linear relations among the propagators, listed i - + - +
Appendix A, we find for the causal propagator: ! ! ! !

w—[ep+ReS(p)—u]

G (p=
{o—[ep+ReX(p)— ul}?+[IM2(p)]?
HIm(p) - Ql/
{w—[ep+ReX(p)— u]}*+[IMmX(p)]? l
1 14
Bw - !
xtan%‘(T), (32 .
where tanh/2)=[1-2f\(w)] and e,=p?%2m. As the FIG. 2. The Feynman diagrams for neutrino-nucleon interaction

evaluation of the baryon polarization function requires thein the 2p-2h approximation. The vertical dashed lines correspond
causal and acausal Green's functions of the t@e (q to the baryon-baryon interaction and the wavy lines tozheector
+p), we note here that, the denominator of such a functiorbosons. Exchange diagrams are shown in Fig. 3.
can be expanded in the limig< w, wherev <1 is the char- . )
L . B. The interactions
acteristic velocity of a baryon
The central ingredient of a bremsstrahlung process is the
P modelling of the strong interaction. For the particle-hole in-
(wtep)—epig=w—p-g/m—q—ReZ(p)— €=, teraction a reasonable, but not unique, choice is the one-pion
ap exchange interaction combined with a contact interaction in
(33 the spirit of the Fermi-liquid theory:

to the leading order. The approximati@B) will be referred _ f_w ? -

in the following as thesoft-neutrino approximatiariWe also Vipn (k)= ( mw) (010D (K (o2 K+ Tot Ty (0 0),
employed the nonrelativistic limit for baryons. If we use the (36)
ansatzy(— o) = y(w), which is exact in the phenomenologi-
cal Fermi-liquid theory and will be verified in our micro-

scopic calculations, then

wheref . is the pion decay constant), is the pion mass,
D™ (k) is the one-shell causal pion propagatfy,and f,

are the coupling parameters of the Fermi-liquid thearyis

the vector of the Pauli matrices. The nonrelativistic reduction
® of the neutrino-neutron interaction vert€3) is

N
w’+ y(w,p)?/4 I'l=—(8,0=0ad,i0), (37)

Y(w,p)/2 I‘(ﬂ_w)
+|—w2+y(w,p)2/4tan 5| (34

G (xw,p=

whereg,=1.25 is the axial-vector coupling constant.

C. Direct contribution to the polarization function
The three topologically differentlirect diagrams(i.e.,

o those which do not involve an exchange of outgoing par-
-G (top=t—F—— -~ ticles) are shown in Figs. )—2(c).
o+ y(w,p)/4 The analytical expression, corresponding to Fi@),2s

, /2 -H7+,a
i Hop) 5 tanl‘(ﬂ—w), (35 (@
o+ y(o,p)/4 2 [ dip, 4
I

=f I1 5| i 2™ AT Pa—k—pg)
where the second equation follows from the relation =1 [ (2m)"[(2m)
[G."(p)]* = —G*.*(p), valid in the momentum represen- X 8(k+py—p) TIV(K)G ™ * (p)V(K)G* ~(py)]
tation (see Appendix A Thus both propagators are odd un- - o .
der the exchange of the sign of a property which will be XTI G (q+pa)V(KD™ " (K)G™ " (p3)
important in establishing the vector current conservation in XV(K)D**(K)G**(q+p)T,G* ~(pa)], (38)

the radiation processes discussed below. Since the depen-
dence of the quasiparticle width on the momentum is weakvhere V(k) is the strong interaction vertex, which can be
in the density and temperature range of interest it is useful toead off from Eq.(36). The contribution of this diagram is
define momentum average quasiparticle width which is aeadily recognized as jpropagator dressingn the ph chan-
function only of the frequency. This approximation is imple- nel by means of a self-energy corresponding to an excitation
mented in the phase space integrations below. of a single particle-hole collective mode. The analytical ex-
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pression, corresponding to Figk?, is
4 4
d*k
.H7+'b :J
i,,"(a) i:Hl o)

X (2m)®8(q+ ps—k—p3) (k+pz—p1)

XTITV(K)G™ " (p1)V(K)G"(py)]

XTI ,G™ " (g+pa)V(k)

XD~ (kG "(pa)T,,

XV(K)D " (k)G " (p3—aq)G" " (pa)].
(39

d*p;
(2m)*

The contribution of this diagram corresponds teestex cor-

_rection in the ph qhannel b_y an eff(_ective interactior_], which FIG. 3. The exchange Feynman diagrams for baryon-baryon in-
mcqrpqrates an |ntgrmgd|ate pgrtlcle-hole collective mOd‘%eraction in the P-2h approximation. Conventions are the same as
excitation. The contribution of Fig.(2) reads in Fig. 2.

4o 4 d4pi d*k
i, (q)=fil;[l 2|2

X (2m)®5(q+ ps—k—ps) S(k+po—py)
-— -- -+ This result is valid in the soft-neutrino and nonrelativistic
XTE,G (a4 pa) V0D (G (ps) baryon limits. The second term on the RHS in the square
XV(k—q)G" " (py)] bracket can be dropped, as it does not contribute after the
. i phase space integrations. Note that the total number of dia-
XTIVK)G™ " (p)T,G™ " (p1—q) grams of the typda)—(c) is four, if one allows for all pos-
_ e - sible relabeling of incoming and outgoirgentica) bary-
*V(k=a)D T (k=q)G T (po) ] (40 ons; this form factor is equal to the symmetry factor by
The latter diagram may be interpreted as a particle-hole fluc¥hich the total rate must be reduced. We do not include
tuation. The diagraméa)—(c) are evaluated in Appendix B these factors explicitly.
for the interaction given by Eq36). There we show tha(f)
the vector current contributions from diagrarte and (b)
mutually cancelfii) the diagram(c) does not contribute be-
cause the axial-vector contribution involves traces over od
number ofc matrices and the vector-current contribution is
cancels because diagrdp) and the diagram generated from
(c) by flipping one of the loops upside down contribute
equally but with opposite signsiii) all contributions due to
the Fermi-liquid interaction cancel after summing the dia- F\4
grams(a) and (b). For the contraction of the trace of the Cex(q)=16g,§Gz(—”) w10,G” ()2
neutrino current with the polarization function we findj( My
=1,...,3),

X (2m)*8(q+ps—k—p3)(2m)*

X 6(k+pa—pa). (41

D. Exchange contribution to the polarization function

Theexchangaliagrams are generated from the direct ones
%y means of interchanging the outgoing propagators in a
strong vertex. There is a complete set of diagrams analogous
to (a) and(b) with exchanged labeling of the hole propaga-
tors. These contribute to the contraction

d4pi
(2m*

<[ ataco w2 jﬁl

Cair(01,01,0p) =1 Tr(A [T 3(a) + 11 *2(a) ]

, 2( fw)“ ﬁ dp; XG™ T (p)G" (p2)G " (p3)G T (pa)
e 22|
0, | 2ms X (27)*6(Q-+ K+ P2~ o) 8K+ Py py),
X 2 G (0)’D7 7 (k)? _ . o _
(2m in the soft neutrino approximation. The skeleton diagrams
which correspond to the interference between the direct and
K 01— (a1-k)(gz-k) exchange contributions are shown Fig&)33(d). There are
172 k|2 eight diagrams of each type if one allows for all possible

XG T (p)GT (p2)G” T(p3)G ' (pa)

relabeling of the propagators. The analytical expressions for,
e.g., diagramsa) and(c) are
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d4p. d*k IV. QUASIPARTICLE WIDTH
+ ,a,€ —
()= fH (2m)*|(2m)* The purpose of this section is to specify the width of
baryon propagators. To this end we carry out a full resum-
xdk' (27)85(q+p,—k—p3) mation in the particle-particlep(pp) channel by solving the
scatteringT matrix at finite temperatures. Our approach is
X O(K"+p2—p3) o(k+pa—p1) based on the Brueckner theory with the continuous energy-

. momentum spectrum of baryons. The nonperturbative treat-
XTELG (A pa) ment of thepp channel is mandatory for including the ef-
XV(K)D~~(K)G™*(p3) fects of the short-range correlations due to the repulsive part
of the nucleon-nucleon force. These correlations are then re-
XV(K)DT(K)G* (po)V(K')G™ " (py) sponsible for the width of quasiparticle propagateri our
R Yo perturbation expansion in the particle-holphj channel.
XV(K)GT(q+pa)l,G7 (pa)], (43 The ph interactions are dominated by the weaker long-range
part of the nucleon-nucleon interaction, which makes pos-

a0 4 sible the perturbative treatment of this channel by a trunca-
d*p; | d% ible th bati f this ch | b
heeg)= f H ' Z tion at two loops. The contour orderddmatrix in the con-
(2m)*|(2m) figuration space is
Xdk,(z’ﬁ) 5(q+p4_k_p3) I(Xl,XZ;Xg,X4)ZY[pp](Xl,Xz;Xg,X[l)
X 8(k+pa—pg) o(k+pz2—py) iV (pp1 (X1, %X, X8) G(X7 Xs)

XTHT,G™(q+py)V(K)D™ " (K)G™ *(pa)

’ ++ +— ! -+

XV(K)DTT (k)G (p)V(K) G (py) where Vipp(X1,X2;X3,X4) = 0,Vpg(X1,X2:X3,X4) IS the
XT,G" " (q+psy)V(K)G"(pa)], (44)  time-local baryon-baryon interaction in the particle-particle
channel. Note that the time locality implies that the
gropagator producGG=G;,, should be considered as a
single matrix. The components of the scattering amplitudes,
needed for complete specification of the self-energies, can be
chosen as the retarded or advanced ones; the remaining com-

nents are provided by the optical theorem. In the quasi-
Classical limit the retarded/advanc&dnatrices obey the in-
tegral equation

TYAPP';P)=Vipp(P.P)

X G(Xg,Xg) T(X5,Xg:X3,X4a), (46)

and their computation is a complete analogue of that for th
direct diagramgAppendix B. The vector current contribu-
tion again cancels among the diagraf@sand(c) and, simi-
larly, (b) and(d). The contribution from the interference be-
tween the direct and exchange diagrams to the contraction
neutrino and baryon currents is

f 4
cim<q>=16giez(m—”) w10,6” ()2

ko

3A
+'f(2 S Vien(PHIGA(PP)

XTRA(P',p',P), (47)

xf dkf dk’k?k’2D~ " (k)D~ " (K’)
4
% -+ G*+- G+ where we kept the leading order terms in the gradient expan-
f |H1 (PG (P2)G 7 (Ps) sion of the producG;,,"ATRA. Here the subscripitpp]

. 4 indicates the particle-particle channel gmdP are the rela-
XGT(Pa) X (2m)"5(a+Pps—K—p3) tive momentum and total four-momentum, respectively. The
X 8(k+py—p1) 8K+ pa—py), (45)  two-particle Green's function, appearing in the kernel of Eq.

(47), is defined as

Pi

(2m)*

where we dropped the terms which vanish in the phase space GRA do, -

integrations. Later on we will show that for the interactions Gipp(P1,P1) = f f (27 )4{6 (P2/2+py)

which depend only on the momentum transfer the current

contractionCg;(q) can be written as a convolution of the X G (Py2—p;1) —G=(P,/2+p,)
phase space integrals over a single loop. The phase space s

integrations in the interference contribution are more compli- <G (P,J2— )}(277) 8°(P1—Py)
cated, since the momentum integrations do not decouple into 217 Ps Ei—Ey,xis '
two separate loops. The disentanglement can be achieved by 48)
constraining the momentum transfer in one of the pion
propagators at the valyk’|=2pg, as the main contribution where we dropped the irrelevant dependence of the quasi-
to the integral originates near this value of the momentuntlassical functions on their center-of-mass space-time coor-
transfer. dinates. If the particle-hole symmetry is kept in the kernel of
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the integral equation, th& matrix diverges at the critical d*p, d4p

temperature of the superfluid phase transition. To be able to L(k)zf a(ppa(po)[fner)—fnler)]
apply our computation to the low-temperature regitaad (2m* (2w )4

thereby avoid the pairing instability in tiematrix) we drop X (2m)45(K+ pp—py) (53)

the hole-hole propagators. This is a common approximation
in the Brueckner theory and is justified in terms of the Bethe-
Goldstone hole-line expansion. We treat the intermediatd he exchange contributiaf, leads to an additional factor of
state two-particle propagation in the quasiparticle limit. Us-two. The interference contribution decouples only under cer-
ing the angle averaging procedure for e propagator and tain constrains. The single loop, E§3), can be evaluated to
after partial wave expansion, the thermodynamic retailed arbitrary order in the spectral width in genefal]. We shall
matrix is given by restrict ourselves to the limit of small quasiparticle damping
" and use the expansion with respect to the width of the spec-
T”?(D,D'P,w):VFpm” A(p,p") tral function given by Eq(30). Note that the elementary loop
(53) can be extended to include RPA-type resummation of an
il 2 dp”p”ZV“pp]”"(p ") infinite number of the bubble diagranisee Ref[5]).

|\

x(G pp](p" =] a)))Tl,,l,(p" p',P,w), A. Leading order
(49) T.he Io_vvest order a}pprogimation corresponds to the quasi-
particle (i.e., zero width limit. The contribution from a
wherea collectively denotes the quantum numbegsJ,M)  single loop vanishes in the timelike region of the phase space
in a particular partial wavep and P are the magnitudes of where w,=|k|. This result is found only if the relativistic
the relative and total momentum, respectivel(p,p’) is  kinematics is applied; nonrelativistic kinematics leads to spu-
the bare nuclear interaction. Hef&r}, ;) is the angle aver- rious termsxexp(-m/q). In the spacelike region of the

aged two-particle propagator phase space the result is finite. We carry out the energy in-
tegrations keeping only the leading order term. Removing
(G[Rpp](p,P,w)> one of the trivial momentum delta functions we find
_ f dQ {1-fy[e(PR2+ P IH{1—fyls(Pl2—p)]}
) 4x w—e(Pl2+p)—e(P2—p)+ié Lo(k)= f (ep) —fnlep)1(27)

(50)
><5(a)k+8p—£p+k). (54

with e(p)=e,+ReX(gy,p), i.e., the intermediate state
propagation is treated in the quasiparticle approximation

The retarded self-energy is given by The integrations can be carried out exactly

1
R — 4 I'A’2
27(p,w) 2 2] 1)f dp’p Lo(k)= J' )3 —fnleps)1(27)
Ra ’. ’. ’ ’

><-I—” [pvp vpvp ,(1)+8(p )]fN[S(p )]1 (51) Xé(wk+8p_8p+k)
which also defines its real and imaginary parts. The coupled mk 2
equations(49) and (51) are subject to normalization to the =55k ——L(wy,K), (55
total density at a given temperature. mAlK

V. PHASE SPACE INTEGRATIONS wherem* is the effective mass of a quasiparticle and

Let us turn to the task of evaluating the phase space inte-
grals in the expressions for the current contractions. We sub-

1+exp{— Ble_ (k) ul}|

;titutg the Kadanoff-Baym ansatz in E@l) and use the Loy, k)=In 1+exp[—ﬁ[s+(k)—,u]}|’ (56)
identity fn(ed) fn(—e2)=0(e1—e2)[fn(e2) —fanled) ],
which is exact in the equilibrium limit. We then find that
the contributions from each loop decouple, i.e., with & . (K) = (wg+ef)/4e*+ w/2. Note that the quasiparti-
cle loop(55) is zero in the timelike regiond,=|k|), which
o of T 4 I d4k . sets a natural cutoff in the phase space integrations below.
Cal@=166367 17 | wr0s6 (12 i
D**(k)z (000 JL(K)L( K (52 B. Next-to-leading order
w w—w -

gLed “ a ' The next-to-leading order contributidgwhich is linear in

wherew, =k and the elementary loop is defined as v) is
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d*p d®q; d*qy d*q
k =2 2 - + V;:
Hlewk) j (2my ZT A ) e f <2w>32wy<q2>f (2w>32wy<ql>f (2m)*
do' P X(2m)* %A1+ a,— @) w,(0) + @,(d2) 1C(Q),
> P )—(w,_sp)2{5(8—8p) 62

—de—w")}[fn(e)—fn(etwy],  (B7)  whereC(q) is the sum of the direct, exchange and interfer-
ence contributions. Let us first compute the contribution
where we summed the two terms arising from the product ofrom the direct term by substituting E¢41) for the current
the leading and next-to-leading order contributiof®0(p).  contraction. We carry out the integrations over the neutrino
The angular integral can be carried out analytically to thephase space and the summation over the three neutrino fla-

accuracy®(y?). One finds vors to find
Ly(@p k) 4m*2fd8p[f()f(+)] 16, L f\ =, 2
wy,K)=— — g,y)— e,tw — _T --
1{ oy K (2m)2 N €p N(Ep €, 5(277)7gAG (mﬂ> JO dow®°G™ (w) jdkk6
X{2(&p,K) = Flep K o)}, (58

X Dfi(k)zj dog(w)g(@—w)[Lo(K)Lo(q—k)
where the first term in the curly brackets is due to the wave-
function renormalization +L1(K)Lo(q—k)+Lo(k)L1(g—K)T, (63)

P where we usedi*k=4mk?dkdw,. Normalizing the energy
Z(Sp:k)za(gp_smin) dwy(w)(—

w—g,)% scales by the temperature and the momentagy\we obtain
P
4 *\ 4
(@xeq)” e G2 fi) (m_> 'TS

Smin—4—8q. (59) vy 5(277)9 FgA m, m Pr
The second term is the off-pole contribution and is given by =5.5x10"%3Tg (ergcm s, (64)
) B ek_wk_,uﬁz‘/epek yvhereTg_is th_e temper_ature in units of 10K, 15 is the

Foy K,ep)=arcta Wt onl2 integrall in units 16 defined ab
— . _2 o0 o o0 o
—arctap X BV g0 I=f dyy’G <y)29<y>f D (%)?
Y(ept wy)/2 0 0

The current contraction, which so far includes contribu-
tions to all orders iny, now can be decomposed in the lead-
ing and next-to-leading order terms with respectytoem-
ploying the corresponding decomposition for the loops. For
example, for the direct contribution one finds

X j:dzgz)g(y— z)[ L(Z,X)L(Y—2,X)

2 2
+ ;z/j(y—z,x)[]—'(z,x)—Z(z,x)]Jr ;(y—z)/j(z,x)

f\4 d*k _ _ _
cdir(q>=1egiez(—”) ©10,G " ()2 f KD~ (k)2 XAy =20 = 2y Z’X”}- 5
mﬂ' (27T)4
X - La(K)La(d—K)+ L. (KL The explicit dependence of E(G4) on the temperature and
9lw@g(w=wllolkLo(@=k)*LilloLo density is the generic orfd—6]. Additional dependence on
X(g=k)+Lo(k)Li(q—k)]. (61)  these parameters is contained in the inte¢88). Note that

to avoid spurious contributions from the quasiparticle part
The exchange and interference terms can be decomposed iffthe first term in curly brackets in E¢65)], one should re-
similar manner. strict the z integration to the spacelike region. For the nu-
merical evaluation of the neutrino emissivity we use, follow-
C. Neutrino emissivity ing Ref.[4], the free space pion propagator

After the preparatory work above, the computation of the
neutrino emissivity is straightforward. We first relate the cur-
rent contraction to our original expression for the neutrino
emissivity by using the relation—2gg(gg)Im Hiv(q)
=iH;V(q). Expression21) takes the form 1t is understood that the functions of new variables are relabeled.

D™ (k)=[k>+m2] L.
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The free-space approximation should be valid in the vicinity 40
of the nuclear saturation density. The softening of the one- — 1:0-25&":\)?
pion exchange(a precursor of the pion-condensatioin- 20] ——T=10(Mev)
creases the neutrino emissivity by large factd@k We do — T-SRE
not attempt to accommodate this effect as our main interes I e
here is the role of the finite width of quasiparticles. The Pauli
blocking factor

y/2 [MeV]

1 =
0(y) =30 dww(1- w11, (wy)] :
0 =
wW
X{1-f1(1-w)yl}, (66) «
accounts for the occupation of neutrino and antineutrino final 86 &5 48 is o5 25 ab &8 4b

states. In the dilutéantineutrino Iimitﬁ,uvf<1 (where,uVf

is the chemical potential of neutrinos of flavbr Q(y)=1.
In the low-temperature limit(z) = z and thez integration FIG. 4. The real part of the on-shell self-energy and the half-

decouples from thex integration. On imposingy(w)—0 width as a function qf particle momentum at the saturation density

(quasiparticle limit one finds thatF=0 and G~ (w) ns=0:17 3 for_dlfferentltemperatures; the zero temperature

— o~ 2. Then thez integration can be carried out analytically Fe™Mi momentum is 1.7 fm-.

upon dropping the wave-function renormalization contribu-

tion terms of the reciprocal of the quasiparticle lifetime in the

Fermi-liquid theory:

y(y?+4m?)

f:dZQ(Z)g(y—Z)Z(y—ZF—. (67) y=aT?

1+
6(e’—1)

, (69

2
27TT)

After these manipulations Eq64) reduces to Friman and Whereais a density dependent phenomenological parameter.
Maxwell's result[Ref. [4], Eq. (47)]. The numerical coeffi- The parabolic dependence of the width on the frequency is
cient in Eq. (64), however, is by a factor 3 larger, since justified for temperatures below 30 MeV in the range of the

Friman and Maxwell do not carry out the summation overdensitiesis=n<2ns. The quadratic dependencepbn the

the three neutrino flavors at that stage. temperature breaks down at slightly lower temperatures. The
The contribution from the exchange current contractionYalue of the parametesrwezl;\kly depends on the density and

Eq. (42), leads to a factor of 2 in the integr&65). The IS approximately 0.2 MeV"™. The emergent neutrino spec-

contribution of the interference term, in the approximationtrum can be characterized by their spectral function

where one of the momentum transfers is fixed at the charac-

teristic value P, is sy =6~ [ ot x? | dzgaigty-2
0 — 00
o - ) -~ (x)D~~ 2
||nt_ fO dyy6G (y)zQ(y) J;) dXXZD (X)D (1) X E(z,x)ﬁ(y—z,x)+ ;zﬁ(y—z,x)[}'(z,x)
8 fwdzg(”g(y‘Z)(“Z’XWV‘“) 2201+ 2y 2) Lz Fy—2x)
2 2
2Ly -z Fz D) - 22D+ (- DLz D) - Z(y—z,x)]], 70
_ _ _ which is depicted in Fig. 5. The dependence of the spectral
XAy =z = 2y Z'X)]]' (69 function on the neutrino frequency is shown foF

=20 MeV, at the saturation densitys=0.17 fm 3, for
three cases of vanishing widfldashed ling including the
leading order contribution in the quasiparticle widttashed-

The numerical calculations were carried out for pure neudotted ling, and (iii) the full nonperturbative resulgsolid
tron matter using the Parl$N interaction keeping<4 par-  line). The energy carried by neutrinos is of order®@5T
tial waves. Figure 4 displays the real part of the on-shelin all three cases, as the peak in the spectral function is
self-energy and the half width of the spectral function as d@ndependent of the approximation to the width of the propa-
function of the particle momentum for several values of thegators. The integrdl; is shown in Fig. 6. The finite width of
temperature at the saturation density=0.17 fm 3. The propagators leads to a suppression of the bremsstrahlung rate
width of the quasiparticle propagators can be parametrized ias a result of the LPM effect. Keeping the full nonperturba-

VI. RESULTS
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VII. CONCLUSIONS

In this work we formulated a transport theory for neutri-
nos in the framework of real-time Green’s functions formal-
ism, with particular attention to the collision integrals for the
neutrino-pair bremsstrahlung. The main focus was a first
principle calculation of the bremsstrahlung emissivity in-
cluding the width of propagators. This allows us to answer
guestions, not covered by the semiphenomenological theory,
such as the magnitude of the contribution of higher order
terms in the expansion with respect to the quasiparticle width
or the cancellation of the vector current contribution at all

orders in the quasiparticle width.
The central quantity of the theory is the particle-hole po-

00 ," . ‘ larization tensor in theh channel truncated at two loops.
' 5.0 100 15.0 The pp channel is treated nonperturbatively within the finite
temperature Brueckner theory. We find that the only contri-

0.0
FIG. 5. The neutrino spectral functiaii0) at the temperature bution to the bremsstrahlung rate comes from the contraction
T=20 MeV and density1,=0.16 fr 3. The dashed curve is the of the tensor force with the axial vector current to all orders

zero width limit, the dashed-dotted curve includes only the leadingn the quasiparticle width. Other contributions, which arise

order in+y contribution from the causal propagator, the solid curvefrom the contraction of the Fermi-liquid-type interaction
with the axial vector current and the contraction of the net

strong interaction with the vector current, cancel when we
{pke the sum of the diagrams corresponding to vertex correc-

tive expression for the causal propagators enhances the val oo

of the integral, as the higher order terms contribute addiions and propagator renormalization in tipé channel.

tively to the leading order result. The LPM effect sets inThereby the vector current conservation is established at all
' orders in the quasiparticle width. These cancellations are in-

trrc:ggohr:)s/e\;v?eer:wewrazijésopfhu;r:_n:hs/l Zifegr?sdgf?:etggmﬂy’ dependent of the approximations to the propagators and are
P A effective both in the quasiparticle limit and beyond. The
hree ingredients crucial to the cancellations @rehe anti-

Equation(69) shows that the value of the paramegecon-
trols the onset temperature which turns out of the order of &\ utation of the tensor force with the axial vector cur-
MeV in agreement with the previous results of R¢&-11  on¢ (iji) the odd parity of the causal propagator under the
and our numerical computatidsee Fig. 6. exchange of its energy argumefiti) the soft neutrino and
nonrelativistic baryon approximations. The first two ingredi-
ents are based on the symmetry arguments with respect to
the time-reversal and parity, and are in this respect universal.
The last approximation breaks down as the density of the
system increases. The relativistic corrections become compa-
rable, or even larger, that those discussed above, in the high
density regimetypically several times the nuclear saturation
density. Also the contribution from the off-shell region to
the strong interaction amplitude become important as the en-
ergy transfer in the reaction increases with the density. These
issues are beyond the scope of this paper.
Our numerical evaluation of the neutrino emissivity of hot
neutron matter, carried out at two loops, shows that the
LPM-type suppression sets in at temperatuiies y, in
agreement with the previous work limited to the first order
terms in the quasiparticle widttsee Ref.[10], and refer-
ences therein The higher order terms enhance the magni-
tude of the neutrino emissivity compared to the leading order
result. The nonperturbative result, however, is still sup-
pressed compared to the quasiparticle limit.
Our formalism can be extended in various ways. One ob-
vious extension is allowing for two different chemical poten-

is the full nonperturbative result.

0.0
10.0 20.0 30.0

0.0
T [MeV]

FIG. 6. The integral65) (including the exchange termnas a
function of temperature at the density=0.16 fm 3. The dashed
curve is the zero width limit, the dashed-dotted curve includes oniytials of scattering baryons. This will include the Urca process
the leading order iny contribution from the causal propagator, the (the 8 decay in the second order in the virial expangiand

solid curve is the full nonperturbative result. In the low-temperaturethe effects of the Pauli spin paramagnetism, which become
important in strong magnetic fields. The formalism can be

limit the dashed curve corresponds to the result of REf.
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adapted, with minor changes, for a computation of the spacdn addition, we note that in the momentum representation
like analogous of the bremsstrahlung and, in particular, théhey satisfy the equations

neutrino opacities of the supernova matter. The perturbative

scheme, employed here, itself requires further improvements S~ (@,p)=—[S" " (,p)]*, S w,p)=[SX(w,p)]*.

in several direction, such as the inclusion of the RPA correc- (A10)
tions at the single loop level, and the renormalization of th

one-boson exchange interaction in thie channel. ®Ihe relations above are valid for the baryon and pion propa-

gators in general, and we do not repeat them here.
Similar relations hold among the self-energies. These can
ACKNOWLEDGMENTS be identified by performing a unitary orthogonal transforma-
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Department of Energy for partial support during the comple- (A1)

tion of this work. where the primed quantities have the “triangular” form

APPENDIX A: REAL-TIME GREEN'S FUNCTIONS 0o A o QR
< - 12 ) 712 12 (A12)
The six Green’s functions of the nonequilibrium theory 1218k, s)° 27108 0
are not independent. For completeness we summarize here
the linear relations among them, which can be easily verifiedvhere
from their definitions. The four components of the matrix ‘
Green’s function are related to each other by the relations S%(X1,X2) = S°(X1,X2) + S¥(X1,X5)
S (X1, %) = 0t = 1) S (X1, X,) =S (X X)) ST (X1 Xp),  (AL3)
+0(t,—11)S T (x1,%0), (A1) OR(X1,%2) = QX1 %) + Q= (Xq,X5),
++ +— (A14)
ST (X1, X2) = (12— 1) ST (Xq,X2) QAXq,%2) = QC(Xq, %) + Q7 (X1, X5),
+ _ —+
(L= 1)S " (xaxa), (A2) QK(x1,%2) = Q8(X1, %) + Q¥(Xq,Xp)
—— + + _o+ + —
ST (X1, X2) ST T (X1, X2) =S T (Xq,X2) + ST (X1,X2). = — 07 (x1,%) — Q<(X,Xp). (AL5)
(A3)
The following Hermitian conjugation relations hold: APPENDIX B: DETAILS OF THE COMPUTATION
OF THE POLARIZATION FUNCTION
S™ T (Xq,X2)=—S"T*(X5,X1), (A4)
As an example we compute here the direct contribution to
S (X1, X2)=—S T*(X,Xq), (A5)  the polarization function, represented by the diagraas
and(b) in Fig. 2. The cancellation among the various contri-
S (X1,X2)=—S" % (X5,Xq). (AB6) butions from these diagrams does not depend on the details

) of the structure of the baryon propagatdggiasiparticle or
The retarded and advanced Green’s functions are related Hresseyl but solely on the odd parity of the causal Green’s
tions argument in the soft neutrino approximation.
_ _ In the first step we substitute the vertices. As the contri-
R — _ + g+
ST(X1,X2) = 0t 1) [ST (X1, Xp) =S (X1,%2)] bution of the Landau-Fermi-liquid part of the interaction will

=S (X, X2) =S T (X1,%0) cancel out, to save space, we shall drop its contribution from
L L the outset. For the diagran® and(b) (excluding the factors

=37 (X1,%X2) =S T(X1,X2), (A7) for the topologically equivalent diagraimee find

S Xp) =~ Bt~ t)[ ST (X1, %) =S T (xY)] e 2( fﬂwﬁ dp; | dk

i )= ——=| |=—
=S (X1, X2) = ST (X1,X2) w14 2y2) \mz) J = 2m)(2m)?
=S T (X1,X) = ST (Xe, %) (A8) XTH (340~ 9a8,i0)G ™~ (Q+Pa)
They are Hermitian conjugates, i.e., X(o-k)D™"(K)G™ "(p3)
SA(Xq,X2) = SR* (X1, X,). (A9) X(o-K)D" ()G T (q+pa)(u0
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—040,j0))G" " (p)IT(o-K)G™ " (p1)
X(0-K)G* 7 (p2)](2m)5(q+ps—k—p3)

X (2m)88(q+ps—k—p3)S(k+pa—p1). (B4

The computation of the trace using tiealgebra gives

X 8(K+p2—Pp1), (B1)
T (o-K)(o-K) T oi(o-K)(o-K)oj—oi(o-K)oj( oK) ]
G\t \4 & [ dp | dk  al2(12
rr—+,b I o ! =8k (k 5|_k|k) (BS)
|]._.[’uy (q) (2\/5 (mﬂ_> fﬂl (27T)4 (277)4 . :

The contraction of the polarization tensor with the trace of

X (840~ 09a0,i01)G(A+Pa) neutrino currents, given by

X(o-K)D™ " (K)G™ "(p3)(8,0—9nb,j0))
X(o-K)D* ()G (p3—q)G" " (pa)]
XTr (o~ K)G™ " (p)(o-K)G" " (py)]

X(2)88(q+ ps—k—p3) S(k+po—py).
(B2)

TrAj;=8[01i0zj+ 01j02i + (w1wp+ 01 - Op) 6 + €injm0102
(B6)
leads to

-K)(gy-k
8k2 TrA”(k25” _kikj): 128(4 wlwz—(qzl'?(#

Next we apply the approximatiof33) to the causal and
acausal Green’s functions and fix their momenta at the cor-

responding Fermi momentum. Combining diagra@sand Combining Eqs(B4) and (B7) we recover Eq(41).

(b), we find Let us turn to the fluctuation diagram in Fig(clL From

the original diagram one can generate three additional ones

by turning each of the loops upside down. Let us combine
G \? f\4 4 d*p, | dk the diagram in Fig. (c) with its counterpart, say (g, which

—\/— m f H 2 2 results from(c) by turning the upper loop upside down. The

2v2 g =1 [ (2m)"|(2m) analytical expression corresponding to their sum is

XG™ (@)’D” " (k)*X G (p1)G" T (p2)G ™ (pa)

XGT(pa) TH( 80— gab,i01) (- K) (oK)
X(8,0=9a0,j0}) = (8,0—9ab,ioi) (oK) -
X (8,0~ 9ad,o)) (oK)} T (oK) (oK) ](2m)®
X 8(q+ps—k—pa) 6(k+p2—py),

where we used the conjugation relatiogh10). The terms
under the trace: 8y, , 8o, vanish. Thely, component of the
polarization is hence zero and the vector current is con-
served. The remainder simplifies to

(B7)

i, () +ill,, " (q)

i, %(q) +ill,," (q)

G\t \4r 2T d%p | dk
ﬁ (m_:> flﬂl (2:)4 (2m)*
XG™(@)’D" (kG (p)G* ~(py)
XG™ T (p3)G T (P{TH (80— 9nbLi00)
X(a-K)(a-K) T (oK) (5,0—gab,joj)(o-K)]
=T (- K) (80— 9ad,ioi) (oK) T (oK)
X(8,0—9ad,joj) (oK) 1H2m)®

X 8(q+pa—k—p3)o(k+pa—py),

(B3)

L 3(q) +iT1; ()
B8
d*p; | dk (68)

:ziz(f_w)“ “
g’*(m) m, le (2m)?|(2m)?

X[G™ ()*D~ " (K)*G™ " (p1)G " (p2)
XG™ " (pa)G " (pa) T oi(o-K) (oK)
—oi(o-K)oj(o-K) T (oK) (o-Kk)]

where we dropped compared withk in the strong interac-
tion vertex. The contribution due to the axial-vector current
vanishes because the traces are over odd numberrog-
trices; the contribution due the vector current cancels as
these are identical for diagrants) and (¢) and are of op-
posite sign.
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