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Coherent neutrino radiation in supernovae at two loops
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Kernfysisch Versneller Instituut, NL-9747 AA Groningen, The Netherlands

~Received 14 February 2000; published 26 September 2000!

We develop a neutrino transport theory, in terms of the real-time nonequilibrium Green’s functions, which
is applicable to physical conditions arbitrary far from thermal equilibrium. We compute the coherent neutrino
radiation in cores of supernovae by evaluating the two-particle–two-hole (2p-2h) polarization function with
dressed propagators. The propagator dressing is carried out in the particle-particle channel to all orders in the
interaction. We show that at two loops there are two distinct sources of coherence effects in the bremsstrah-
lung. One is the generically off-shell intermediate state propagation, which leads to the Landau-Pomeranchuk-
Migdal type suppression of radiation. We extend previous perturbative results, obtained in the leading order in
quasiparticle width, by deriving the exact nonperturbative expression. A new contribution due to off-shell final
or initial baryon states is treated in the leading order in the quasiparticle width. The latter contribution
corresponds to processes of higher order than second order in the virial expansion in the number of quasipar-
ticles. At the 2p-2h level, the time component of the polarization tensor for the vector transitions vanishes
identically in the soft neutrino approximation. Vector current thereby is conserved. The contraction of the
neutral axial vector current with the tensor interaction among the baryons leads to a nonvanishing contribution
to the bremsstrahlung rate. These rates are evaluated numerically for finite temperature pure neutron matter at
and above the nuclear saturation density.

PACS number~s!: 97.60.Bw
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I. INTRODUCTION

Neutrino production in baryon encounters is among
fundamental processes by which compact stars lose thei
ergy. The reactions can be arranged, in general, accordin
the number of participating baryons, as phase space a
ments play the central role in controlling their temperatu
and density dependence@1–6#. In the case of neutrino pai
bremsstrahlung, the leading order process in the den
virial expansion is the two-body reaction

B11B2→B11B21n f1 n̄ f , ~1!

where B stands for a baryon,n f ( n̄ f) for a neutrino~an-
tineutrino! of flavor f 5e,m,t. Note that the subleading orde
process~i.e., the one in the absence of the spectator! vanishes
for identical particles, as an on-shell propagating parti
cannot radiate.

The matter in neutron stars is highly degenerate for te
peratures typically below a few MeV and the elementa
excitations are quasiparticles with a well-defined ener
momentum relation. The produced neutrinos are typica
‘‘soft’’ with energies of order of temperature. In this lim
the intermediate quasiparticle propagator diverges as 1/v and
the amplitudes of the neutrino absorption, scattering,
emission turn out formally divergent as 1/v2. The infrared
behavior of the in-medium rates, however, is dominated
the neutrino phase space factors, rather than the infrare
vergence of the amplitudes and the rates of the bremss
lung and its spacelike analogues remain finite. At the sa
time, at low temperatures, the contribution from the infrar
region to the rate of the bremsstrahlung is negligible. T
combined effect of the cancellation of the infrared dive
0556-2821/2000/62~8!/083002~16!/$15.00 62 0830
e
n-
to
u-

e

ity

e

-
y
-
y

d

y
di-
h-
e

d
e
-

gence and the vanishing contribution from the low frequen
region makes the quasiparticle approximation to Eq.~1! ap-
plicable in cold neutron stars.

During the first several tens of seconds after a supern
explosion and core collapse the temperature of the de
nuclear matter is of the order of several tens of MeV. T
neutrino bremsstrahlung is then suppressed, because the
mation length of the neutrino radiation is of the same or
of magnitude as the mean free path of a baryon@8–11#. The
collective effects become important on the radiation sc
@i.e., the role of the spectator in the reaction~1! is taken over
by the medium# because the baryon undergoes multiple sc
tering during the radiation. The underlying mechanism is
Landau-Pomeranchuk-Migdal~LPM! quenching of the radia-
tion, first introduced in the context of QED@12#. The central
role in the theory is played by the formation length of rad
tion l f . If the mean-free path of a baryon is much larger th
the formation lengthl MFP@ l f then the radiation reduces to
sum of separate radiation events, each of which is well
scribed by the Bethe-Heitler spectrum. In the opposite lim
l MFP! l f the individual scattering events are unresolved a
the radiation spectrum takes the Bethe-Heitler form fo
single scattering event. In the intermediate regime, wh
l MFP; l f , the radiation amplitudes for scattering off variou
centers interfere destructively and the radiation is suppres
~Landau-Pomeranchuk-Migdal effect; for a review see Re
@10,13#!.

The rates of the neutrino-nucleon processes are c
monly expressed through phase space integrals over the
traction of the weak currents with the polarization functi
of the nuclear medium. The polarization function~or struc-
ture function! of the supernova/neutron star matter has be
the subject of many studies@10,14–19#. The modifications of
reaction rates by the spatial correlations among~on-shell!
quasiparticles have been studied within the Fermi-liq
©2000 The American Physical Society02-1
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theory@14#, the one-boson exchange interaction theory@15#,
the relativistic random phase approximation@16#, the varia-
tional approach@17#, and combinations thereof@18,19#. The
spatial correlations tend to suppress reaction rates in gen
although their impact on the supernova physics is model
pendent@14–19#.

The common strategy of incorporating the LPM effect
the neutrino-nucleon interaction processes is to add a qu
particle damping in the intermediate state propagator by
placing v by v1 ig @8–10#. In the soft neutrino limit the
vector current coupling does not contribute by virtue of ve
tor current conservation~CVC! and the net contribution
comes from the axial-vector transitions via baryon spin fl
The above modification of the intermediate state propag
then leads to an ansatz for the nucleon spin structure fu
tion: Ss}gs /(v21gs

2) @8–10#, where gs is the nucleon
spin-flip collision rate. This ansatz generalizes the quasip
ticle picture, in a semiphenomenological manner, by incl
ing the temporal correlations among the quasiparticles in
leading order in the quasiparticle width. The microsco
justification of this phenomenology emerges from the va
ous formulations of the finite temperature quantum fi
theory, e.g., the thermofield dynamics@20#, or the closed
diagram formalism in the Schwinger-Keldysh techniq
@13#. A microscopic computation is not straightforwar
however. For example, the polarization function of the m
dium can be computed at one loop, including the quasipa
cle width to all orders ing, however,a priori the current
conservation is not guaranteed at this level. The reason
part, is that the ‘‘more complicated’’ higher order loop di
grams contribute at the same order as the single loop@13#.

In a previous paper we carried out a microscopic com
tation of the bremsstrahlung, including the LPM effect, at
one-loop level in a formalism based on the quasiclass
Kadanoff-Baym transport equation@21#. Here we extend this
computation to two loops and partially modify our approa
to include the propagator and vertex renormalization on
same footing and to include the tensor force explicitly. T
extension to two loops is motivated by the following. Th
long range phenomena, driven by the weaker attractive
of the baryon-baryon interaction, are sensitive to the res
mation in the particle-hole (ph) channel. On the other hand
as well known, one should fully resum the particle-partic
(pp) channel to treat the hard core of the baryon-bary
interaction. Therefore, theph channel can be treated pertu
batively by expanding in the number of particle-hole loop
while thepp channel must be treated nonperturbatively b
full resummation of the ladder diagrams. Thus, the sep
tion of the long-range and short-range phenomena dict
the manner in which the diagrammatic expansion is car
out. The dressing of the single particle propagators occur
both channels and can be treated either explicitly, say,
considering higher order self-energies attached to a prop
tor, or, alternatively, by condensing it in the width of th
propagator spectral function. As a consequence of the s
ration of the scales, the short-range correlations can be
densed in the propagator width on the scales relevant for
long-range phenomena.
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The imaginary part of a single loop in theph channel
vanishes in the timelike region of the phase space, whic
relevant for the particle production. A finite result emerg
when one dresses the propagators by either extending
resummation in theph channel to two- and higher-loop
and/or by dressing the propagators in thepp channel to all
orders. Ignoring the latter resummation, i.e., using the qu
particle propagators in the two-loop expansion, misse
number of short-range collective effects, such as the L
quenching of the radiation due to multiple scattering. On
other hand, summing only the ladders in thepp channel does
not recover the vector current conservation in the radiat
process~in, at least, a transparent manner!. Therefore a natu-
ral choice, motivated by the separation of the short- a
long-range phenomena, is to truncate theph channel at two-
loops and to resum thepp channel to all orders. The situa
tion is reminiscent of the parquet resummation scheme in
first iteration, where in both channels the driving force is t
bare baryon-baryon interaction@7#.

Early studies of the bremsstrahlung at the quasipart
level modelled the strong force using theT-matrix interac-
tion @3#, the free-space one-boson exchange interaction@4#,
and their in-medium modifications@5# supplemented with a
hardcore modelled in the spirit of the Fermi-liquid theor
The explicit use of the tensor interaction turned out to
crucial as there are significant cancellations among differ
diagrams, and the surviving contribution is due to a no
trivial contraction between the operator structures of
weak and strong interactions~tensor force! @4#. This moti-
vates our ansatz for the driving force in the particle-ho
(ph) channel of nuclear interaction, which includes expl
itly the tensor force contribution. We do not attempt, in t
present work, to go beyond the one-pion exchange appr
mation for several reasons, one being that the nonpertu
tive treatment of the interaction does not change the s
isospin, and tensor operator structure of the interaction,
important cancellations in the radiation matrix elements w
be preserved in a more advanced treatment. We also wa
be able to isolate the finite width effects in our compariso
to the earlier work done in the one-pion exchange appro
mation @4,10#. The situation is different in the particle
particle (pp) channel, where the short-range correlatio
have to be treated in a nonperturbative manner by summ
up the ladder diagrams to all orders. We do this in the fin
temperature Brueckner theory.

The paper is organized as follows. In Sec. II, starting fro
the Kadanoff-Baym formalism, we derive a single-tim
transport equation for~anti! neutrinos with collision integrals
driven by ~anti! neutrino coupling to baryons via the pola
ization tensor of the medium. The polarization tensor is co
puted in the 2p-2h approximation in Sec. III. The summa
tion of the ladder diagrams in thepp channel within the
finite temperature Brueckner theory is described in Sec.
Section V evaluates the phase space integrals and neu
bremsstrahlung emissivities. The numerical results are
sented in Sec. VI. Section VII summarizes our main resu

II. NEUTRINO TRANSPORT FORMALISM

A. Neutrino propagators

The theory of neutrino radiation can be conveniently fo
mulated in terms of the real-time quantum neutrino transp
2-2
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COHERENT NEUTRINO RADIATION IN SUPERNOVAE . . . PHYSICAL REVIEW D 62 083002
Let us start by defining the various time-ordered Gree
functions of massless Dirac neutrinos. These can be wri
in the generic matrix form

i S125 i S S12
c S12

,

S12
. S12

a D
5S ^Tc~x1!c̄~x2!& 2^c̄~x2!c~x1!&

^c~x1!c̄~x2!& ^T̃c~x1!c̄~x2!&
D

5 i S S12
22 S12

21

S12
12 S12

11D , ~2!

wherec(x) are the neutrino field operators,c̄5g0c* , T is
the chronological time ordering operator, andT̃ is the anti-
chronological time ordering operator; the indices 15x1 , 2
5x2 , . . . , collectively denote the space-time and discr
quantum numbers. The neutrino matrix propagator is furt
assumed to obey the Dyson equation

S~x1 ,x2!5S0~x1 ,x2!1S0~x1 ,x3!V~x3 ,x2!S~x2 ,x1!

5S0~x1 ,x2!1S~x1 ,x3!V~x3 ,x2!S0~x2 ,x1!,

~3!

where S0(x1 ,x2) is the free neutrino propagator an
S0

21(x1 ,x2)S0(x1 ,x2)5szd(x12x2), sz is the third compo-
nent of the Pauli matrix,V is the neutrino proper self
energy, and we assume integration~summation! over the re-
peated variables. The self-energyV is a 232 matrix with
elements defined on the contour in terms of the Dyson eq
tion. The quasiclassical neutrino transport equation follo
from the Dyson equation in the ‘‘conjugate subtracted’’ for
@22,23#

i S~x1 ,x2!]” x2
2 i ]” x1

S~x1 ,x2!

5S~x1 ,x3!V~x3 ,x2!sz2szV~x1 ,x3!S~x3 ,x2!. ~4!

Note that the initial correlations are neglected in Eq.~4!. The
set of the four Green’s functions above can be suppleme
by the retarded and advanced Green’s functions which
defined as

iS12
R 5u~ t12t2!^$c~x1!,c̄~x2!%&,

iS12
A 52u~ t22t1!^$c~x1!,c̄~x2!%&, ~5!

whereu(x) is the Heaviside step function on the real-tim
contour defined asdu(x)/dx5szd(x). The retarded and ad
vanced Green’s functions obey integral equations in the q
siclassical limit. The relations between the six Green’s fu
tions are listed in the Appendix A. The transport equation
the off-diagonal elements of the matrix Green’s functi
reads
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2ReVR~x1 ,x3!,S.,,~x3 ,x2!#

2@ReSR~x1 ,x3!,V.,,~x3 ,x2!#

5
1

2
$S.,,~x1 ,x3!,V.,,~x3 ,x2!%

1
1

2
$V.,,~x1 ,x3!,S.,,~x3 ,x2!%, ~6!

where@ ,# and$,% stand for commutator and anticommutato
respectively. In arriving at Eq.~6! we assumed the existenc
of the Lehmann representation for the neutrino propagat
as a result we have ReSR5ReSA[ReS and ReVR

5ReVA[ReV.
For the present purposes the neutrino dynamics can

treated semiclassically, by separating the slowly vary
center-of-mass coordinates from the rapidly varying relat
coordinates. Carrying out a Fourier transform with respec
the relative coordinates and keeping the first-order gradie
in the slow variable we arrive at a quasiclassical neutr
transport equation

i $ReS21~q,x!,S.,,~q,x!%PB1 i $ReS~q,x!,V.,,~q,x!%PB

5S.,,~q,x!V.,,~q,x!1V.,,~q,x!S.,,~q,x!, ~7!

whereq[(q,q0) andx are the neutrino four momentum an
the center-of-mass space-time coordinate, respectiv
$¯%PB is the four-dimensional Poisson bracket. The le
hand side~LHS! of Eq. ~7! is the precursor of the drift term
of the Boltzmann equation. The second Poisson brac
however, does not fit in the Boltzmann description and c
be eliminated by an expansion of the neutrino propagato
the leading~quasiparticle! and next-to-leading order terms i
the small neutrino damping: S.,,(q,x)5S0

.,,(q,x)
1S1

.,,(q,x). A direct evaluation of the Poisson bracke
decouples the LHS of transport equation~7! to the leading
order with respect to the small damping of neutrin
antineutrino states@ Im V(q,x)/ReV(q,x)!1#. The quasi-
particle part of the transport equation

i $ReS21~q,x!,S0
.,,~q,x!%PB

5S.,,~q,x!V.,,~q,x!1V.,,~q,x!S.,,~q,x!

~8!

describes the evolution of the distribution function~Wigner
function! of on-shell excitations with the LHS correspondin
to the drift term of the Boltzmann equation. The RHS cor
sponds to the collision integral with the self-energi
V.,,(q,x) having the meaning of the collision rates. Th
advantage of this form of the~generalized! collision integral
is that it admits systematic approximations in terms of Fe
man perturbation theory. The remaining part of the transp
equation

i $ReS21~q,x!,S1
.,,~q,x!%PB

1 i $ReS~q,x!,V.,,~q,x!%PB50, ~9!
2-3
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relates the finite width part of the neutrino propagator to
self-energies in the form of a local functional which depen
on the local~anti!neutrino particle distribution function an
their coupling to the matter.

B. On-shell neutrino approximation

The on-mass-shell neutrino propagator is related to
single-time distribution functions~Wigner functions! of neu-
trinos and antineutrinos,f n(q,x) and f n̄(q,x), via the ansatz

S0
,~q,x!5

ipq”

vn~q!
$d@q02vn~q!# f n~q,x!2d@q01vn~q!#

3@12 f n̄~2q,x!#%, ~10!

where vn(q)5cuqu is the on-mass-shell-neutrino
antineutrino energy. Note that the ansatz includessimulta-
neously the neutrino particle states and antineutrino h
states, which propagate in, say, positive time direction. Si
larly, the on-shell propagator

S0
.~q,x!52

ipq”

vn~q!
$d@q02vn~q!#@12 f n~q,x!#

2d@q01vn~q!# f n̄~2q,x!%, ~11!

corresponds to the states propagating in the reversed
direction and, hence, includes the antineutrino particle st
and neutrino hole states.

To recover the Boltzmann drift term in the on-shell lim
we take the trace on both sides of the transport equation~7!
and integrate over the~anti!neutrino energyq0. The first term
on LHS of Eq. ~7! reduces then to the drift term of th
Boltzmann equation. The single time Boltzmann equat
~BE! for neutrinos is obtained after integrating over the po
tive energy range

@] t1]Wqvn~q!]W x# f n~q,x!

5E
0

`dq0

2p
Tr@V,~q,x!S0

.~q,x!2V.~q,x!S0
,~q,x!#;

~12!

a similar equation follows for the antineutrinos if one int
grates in Eq.~7! over the range@2`,0#.

The different energy integration limits select from th
RHS of the transport equations the processes leadin
modifications of the distribution functions of~anti!neutrinos.
The separation of the transport equation into neutrino
antineutrino parts is arbitrary, however, is motivated by
observation that the fundamental quantities of neutrino ra
tive transport, as the energy densities or neutrino fluxes,
be obtained by taking the appropriate moments of B
These quantities are not symmetric with respect to
neutrino-antineutrino populations in general. For examp
the neutrino emissivities~energy output per unit time per un
volume! for processes based onb-decay reactions are give
by the zeroth order moment of the antineutrino BE, and i
sufficient to consider only the BE for antineutrinos. In t
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case of the bremsstrahlung we have to eventually sum th
equations; still the relation of the transport self-energies
particular processes becomes transparent if one treats
transport equations separately.

C. Collision integrals

We adopt the standard model for the description of
neutrino-neutron interactions and write the neutral curr
interaction Hamiltonian in the form

H int5
G

2A2
GHGL, GH,m5f̄gm~gV2gAg5!f,

GL
m5c̄gm~12g5!c, ~13!

where G is the weak coupling constant,c and f are the
neutrino and neutron field operators,gV and gA are the di-
mensionless weak neutral-current vector and axial ve
coupling constants for the case of the neutrino-neutron in
action treated in the later sections.

The diagrams contributing to the neutrino emission ra
can be arranged in a perturbation expansion with respec
the weak interaction. The lowest order in the weak inter
tion Feynman diagrams which contribute to scattering, em
sion, and absorption processes are shown in Fig. 1. The
responding transport self-energies are read off from
diagram

2 iV.,,~q1 ,x!5E d4q

~2p!4

d4q2

~2p!4
~2p!4d4~q12q22q!

3 iGLq
m iS0

,~q2 ,x!iGLq
†liPml

.,,~q,x!,

~14!

wherePml
.,,(q) are the off-diagonal elements of the matr

of the baryon polarization tensor,GLq
m is the weak interaction

vertex. The contact interaction~13! can be used for the
energy-momentum transfers much smaller than the ve
boson massq!mZ ,mW . Let us first concentrate on the B
for neutrinos. Define the loss and gain terms of the collis
integral as

I n
.,,~q,x!5E

0

`dq0

2p
Tr@V.,,~q,x!S0

.,,~q,x!#. ~15!

FIG. 1. The neutrino Dyson equation in terms of the Feynm
diagrams. The dashed curve corresponds to theSpropagator, which
includes the neutrinos and antineutrino holes moving in the sa
time direction ~reverting the time direction one finds the Dyso
equation for antineutrinos and neutrino holes!. The shaded loop is
the baryon polarization tensor. The wavy lines correspond to
W6,Z0 boson propagators.
2-4



co

s
r

nt

o
no
rg

th

E

n
(1

-in
are
e-
ab-
iled
e

-

ies,
ase

ch
an-

ned

r-
air

COHERENT NEUTRINO RADIATION IN SUPERNOVAE . . . PHYSICAL REVIEW D 62 083002
Substituting the self-energies and the propagators in the
lision integrals we find, for the gain part,

I n
,~q1 ,x!52 i E

0

`dq10

2p
TrH E

2`

` d4q

~2p!4

d4q2

~2p!4

3~2p!4d4~q12q22q!GL
m pq” 2

vn~q2!

3$d@q022vn~q2!# f n~q2 ,x!2d@q021vn~q2!#

3@12 f n̄~2q2 ,x!#%GL
†l

pq” 1

vn~q1!
d@q102vn~q1!#

3@12 f n~q1 ,x!#Pml
. ~q,x!J . ~16!

The loss term is obtained by replacing in Eq.~16! the neu-
trino Wigner functions by the neutrino-hole function
f n(q,x)→@12 f n(q,x)# and the antineutrino-hole Wigne
functions by the antineutrino functions@12 f n̄(2q,x)#
→ f n̄(q,x). The terms proportional (12 f n) f n and (1
2 f n)(12 f n̄) in the gain part of the collision integralI n

,(q)
correspond to the neutrino scattering-in and emission co
butions, respectively. The terms proportionalf n(12 f n) and
f n f n̄ in the loss part of the collision integralI n

.(q) are the
neutrino scattering-out and absorption contributions.

The loss and gain collision integrals for the antineutrin
can be defined in a manner, similar to the case of neutri
with the energy integration spanning the negative ene
range

I n̄
.,,

~q,x!5E
2`

0 dq0

2p
Tr@V.,,~q,x!S0

.,,~q,x!#. ~17!

Using the above expressions for the self-energy and
propagators, we find, for the gain term,

I n̄
,

~q1 ,x!5 i E
2`

0 dq10

2p
TrH E

2`

` d4q

~2p!4

d4q2

~2p!4

3~2p!4d4~q12q22q!GL
m pq” 2

vn~q2!

3$d@q022vn~q2!# f n~q2 ,x!2d@q021vn~q2!#

3@12 f n̄~2q2 ,x!#%GL
†l

pq” 1

vn~q1!

3d@q101vn~q1!# f n̄~2q1 ,x!Pml
. ~q,x!J . ~18!

The loss term is obtained by making replacements in
~18! analogous to those applied to Eq.~16!. The terms pro-
portional f n f n̄ and f n̄(12 f n̄) in the gain part of the collision
integralI n̄

,(q) then correspond to the neutrino absorption a
scattering-out contributions. The terms proportional
2 f n̄)(12 f n) and (12 f n̄) f n̄ in the loss part of the collision
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integral I n̄
.(q) are the neutrino emission and scattering

contributions, respectively. Note that, when the neutrinos
in a thermal equilibrium with the baryons, the collision int
grals for the scattering-in or scattering-out and for the
sorption or emission cancel. Under the conditions of deta
balance the~anti!neutrino distribution function reduces to th
Fermi-Dirac form.

D. Bremsstrahlung emissivity

The neutrino-pair emissivity~the power of the energy ra
diated per volume unit! is obtained by multiplying the left-
hand sides of the neutrino and antineutrino by their energ
respectively, summing the BEs, and integrating over a ph
space element

enn̄5
d

dtE d3q

~2p!3
@ f n~q!1 f n̄~q!#vn~q!

5E d3q

~2p!3
@ I n

,,em~q!2I n̄
.,em

~q!#vn~q!, ~19!

where in the collision integrals we kept only the terms whi
correspond to the processes with the neutrino and
tineutrino in the final state~bremsstrahlung!

E d3q1

~2p!3
I n

.,,,em~q1!vn~q1!

5 i E d3q1

~2p!32vn~q1!

d3q2

~2p!32vn~q2!

d4q

~2p!4

3~2p!4d3~q11q22q!d@vn~q1!1vn~q2!2q0#

3vn~q1!$12 f n@vn~q1!#%$12 f n̄@vn~q2!#%

3Lml~q1 ,q2!Pml
.,,~q,x!, ~20!

andLml5Tr@gm(12g5)q” 1gn(12g5)q” 2#. The collision in-
tegrals for neutrinos and antineutrinos can be combi
if one uses the identities Pml

, (q)5Plm
. (2q)

52igB(q0)Im Pml
R (q); heregB(q0) is the Bose distribution

function andPml
R (q) is the retarded component of the pola

ization tensor. With these modifications the neutrino-p
bremsstrahlung emissivity becomes

enn̄522S G

2A2
D 2

(
f
E d3q2

~2p!32vn~q2!

3E d3q1

~2p!32vn~q1!
E d4q

~2p!4
~2p!4d3~q11q22q!

3d@vn~q1!1vn~q2!2q0#@vn~q1!1vn~q2!#

3gB~q0!$12 f n@vn~q1!#%$12 f n̄@vn~q2!#%

3Lml~q1 ,q2!Im Pml
R ~q!. ~21!
2-5
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We note that Eq.~21! has been derived under the assumpt
that the neutrinos and antineutrinos are on shell. Provi
that the on-shell constraint is satisfied, the departure of t
distribution functions from their equilibrium Fermi-Dira
form can be arbitrary large. The polarization function of t
baryons in Eq.~21! is not constrained by either equilibrium
and/or on-shell considerations.

III. TWO-LOOP BARYON POLARIZATION FUNCTION

In this section we start the implementation of the pert
bative scheme motivated in the Introduction. Our strateg
the separation of the long and short-range phenomena in
ph and pp channels. Here we carry out the first step
expanding the particle-hole channel and truncating it at
loops. This fixes the amount of the long-range correlation
the theory. The short-range effects are condensed in
width of the particle-hole propagators, which is specified i
later section by summing the ladder diagrams.

A. Baryon propagators

Although we shall treat the baryon sector in the equil
rium limit, it is still useful to define the six Green’s function
of the nonequilibrium theory, as in the case of neutrinos. T
matrix Green’s function of nonrelativistic baryons is defin
in the standard way

iG125 i S G12
c G12

,

G12
. G12

a D
5S ^Tf~x1!f†~x2!& 2^f†~x2!f~x1!&

^f~x1!f†~x2!& ^T̃f~x1!f†~x2!&
D

5 i S G12
22 G12

21

G12
12 G12

11D , ~22!

wheref(x) are the baryon field operators. In terms of the
operators the retarded and advanced function are define

iG12
R 5u~ t12t2!^$f~x1!,f†~x2!%&,

iG12
A 52u~ t22t1!^$f~x1!,f†~x2!%&.

~23!

The structure of the proper self-energy matrixS is identical
to Eq. ~22! and its elements are defined via the Dyson eq
tion for baryons:

G~x1 ,x2!5G0~x1 ,x2!1G0~x1 ,x3!S~x3 ,x2!G~x2 ,x1!

5G0~x1 ,x2!1G~x1 ,x3!S~x3 ,x2!G0~x2 ,x1!.

~24!

In a complete analogy to the neutrino sector, we approxim
the Green’s functions by their quasiclassical counterparts
defining center-of-mass and relative space-time coordin
and Fourier transform with respect to the relative space-t
coordinates. In the equilibrium limit the dependence of
quasiclassical Green’s functions on their center-of-m
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space-time coordinate is trivial and can be dropped. The
tribution function of the baryons is related to the off-diagon
elements of the matrix Green function by the exact relatio

2 iG,~p!5a~p! f N~p!, iG.~p!5a~p!@12 f N~p!#,
~25!

wherea(p)5 i @GR(p)2GA(p)#5 i @G.(p)2G,(p)# is the
baryon spectral function,f N(p)5@exp(b(v2m))11#21 is
the Fermi-Dirac distribution function,b5T21 is the inverse
temperature, andm is the chemical potential@relations~25!
will be referred to as the Kadanoff-Baym ansatz in the f
lowing#. The quasiparticle energy «p5p2/2m
1ReSR(p)uv5«p

follows from the solution of the Dyson

equationGR(p)5@v2«p1 i Im SR(p)#21. When damping
of quasiparticle states is small, ImSR(p)!ReSR(p), the
propagators can be decomposed into quasiparticle and b
ground contributions, e.g.,

G,~p!.2p iz~p! f N~p!d~v2«p!2S,~p!
P

~v2«p!2

1O~g2!. ~26!

Note that the self-energy appearing in the denominator of
second term of Eq.~26! via the dispersion relation is re
stricted, to the leading order in damping, to the mass shel
equilibrium,

iS,~p!5g~p! f N~p!, 2 iS.~p!5g~p!@12 f N~p!#,

~27!

whereg(p)522 ImS(p) is the width of the baryon spec
tral function. The wave-function renormalizationz(p) in the
same approximation is

z~p!512E dv8

2p
Im S~v8,p!

P
~v82v!2U

v5«p

, ~28!

where we used the integrodifferential form of the Krame
Kronig relation

d

dv
ReS~v,p!5E dv8

p
Im S~v8,p!

P
~v2v8!2

. ~29!

On inserting the expression of the wave-function renorm
ization ~28! in the expansion~26! we find the final form of
the propagator

G,~p!.2p i f N~p!22p i E dv8

2p
g~p8!

P
~v82«p!2

3@d~v2«p!2d~v2v8!# f N~v!. ~30!

Note that this form of propagator renders the strict fulfi
ment of the spectral sum rule

E dv

2p
a~p!51, ~31!
2-6
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at any order in the expansion with respect to the dampin
Using the linear relations among the propagators, liste

Appendix A, we find for the causal propagator:

G22~p!5
v2@ep1ReS~p!2m#

$v2@ep1ReS~p!2m#%21@ Im S~p!#2

2
i Im S~p!

$v2@ep1ReS~p!2m#%21@ Im S~p!#2

3tanhS bv

2 D , ~32!

where tanh(v/2)[@122 f N(v)# and ep5p2/2m. As the
evaluation of the baryon polarization function requires
causal and acausal Green’s functions of the typeG22(q
1p), we note here that, the denominator of such a funct
can be expanded in the limitvq!v, wherev!1 is the char-
acteristic velocity of a baryon

~v1«p!2«pW 1qW.v2p•q/m2q
]

]p
ReS~p!2eq.v,

~33!

to the leading order. The approximation~33! will be referred
in the following as thesoft-neutrino approximation. We also
employed the nonrelativistic limit for baryons. If we use t
ansatzg(2v)5g(v), which is exact in the phenomenolog
cal Fermi-liquid theory and will be verified in our micro
scopic calculations, then

G22~6v,p!56
v

v21g~v,p!2/4

7 i
g~v,p!/2

v21g~v,p!2/4
tanhS bv

2 D , ~34!

2G11~6v,p!56
v

v21g~v,p!2/4

6 i
g~v,p!/2

v21g~v,p!2/4
tanhS bv

2 D , ~35!

where the second equation follows from the relati
@G22(p)#* 52G11(p), valid in the momentum represen
tation ~see Appendix A!. Thus both propagators are odd u
der the exchange of the sign ofv, a property which will be
important in establishing the vector current conservation
the radiation processes discussed below. Since the de
dence of the quasiparticle width on the momentum is w
in the density and temperature range of interest it is usefu
define momentum average quasiparticle width which i
function only of the frequency. This approximation is impl
mented in the phase space integrations below.
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B. The interactions

The central ingredient of a bremsstrahlung process is
modelling of the strong interaction. For the particle-hole
teraction a reasonable, but not unique, choice is the one-
exchange interaction combined with a contact interaction
the spirit of the Fermi-liquid theory:

V[ ph]~k!5S f p

mp
D 2

~s1•k!D22~k!~s2•k!1 f 01 f 1~s1•s2!,

~36!

where f p is the pion decay constant,mp is the pion mass,
D22(k) is the one-shell causal pion propagator,f 0 and f 1
are the coupling parameters of the Fermi-liquid theory,s is
the vector of the Pauli matrices. The nonrelativistic reduct
of the neutrino-neutron interaction vertex~13! is

Gm
H52~dm02gAdm is i !, ~37!

wheregA51.25 is the axial-vector coupling constant.

C. Direct contribution to the polarization function

The three topologically differentdirect diagrams ~i.e.,
those which do not involve an exchange of outgoing p
ticles! are shown in Figs. 2~a!–2~c!.

The analytical expression, corresponding to Fig. 2~a!, is

iPmn
21,a~q!

5E )
i 51

4 F d4pi

~2p!4G d4k

~2p!4
~2p!8d~q1p42k2p3!

3d~k1p22p1!Tr@V~k!G21~p1!V~k!G12~p2!#

3Tr@GmG22~q1p4!V~k!D22~k!G21~p3!

3V~k!D11~k!G11~q1p4!GnG12~p4!#, ~38!

where V(k) is the strong interaction vertex, which can b
read off from Eq.~36!. The contribution of this diagram is
readily recognized as apropagator dressingin the ph chan-
nel by means of a self-energy corresponding to an excita
of a single particle-hole collective mode. The analytical e

FIG. 2. The Feynman diagrams for neutrino-nucleon interact
in the 2p-2h approximation. The vertical dashed lines correspo
to the baryon-baryon interaction and the wavy lines to theZ0 vector
bosons. Exchange diagrams are shown in Fig. 3.
2-7
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pression, corresponding to Fig. 2~b!, is

iPmn
21,b~q!5E )

i 51

4 F d4pi

~2p!4G d4k

~2p!4

3~2p!8d~q1p42k2p3!d~k1p22p1!

3Tr@V~k!G21~p1!V~k!G12~p2!#

3Tr@GmG22~q1p4!V~k!

3D22~k!G21~p3!Gn

3V~k!D11~k!G11~p32q!G12~p4!#.

~39!

The contribution of this diagram corresponds to avertex cor-
rection in the ph channel by an effective interaction, whic
incorporates an intermediate particle-hole collective mo
excitation. The contribution of Fig. 2~c! reads

iPmn
21,c~q!5E )

i 51

4 F d4pi

~2p!4G d4k

~2p!4

3~2p!8d~q1p42k2p3!d~k1p22p1!

3Tr@GmG22~q1p4!V~k!D22~k!G21~p3!

3V~k2q!G12~p4!#

3Tr@V~k!G21~p1!GnG11~p12q!

3V~k2q!D11~k2q!G12~p2!#. ~40!

The latter diagram may be interpreted as a particle-hole fl
tuation. The diagrams~a!–~c! are evaluated in Appendix B
for the interaction given by Eq.~36!. There we show that~i!
the vector current contributions from diagrams~a! and ~b!
mutually cancel;~ii ! the diagram~c! does not contribute be
cause the axial-vector contribution involves traces over
number ofs matrices and the vector-current contribution
cancels because diagram~c! and the diagram generated fro
~c! by flipping one of the loops upside down contribu
equally but with opposite signs;~iii ! all contributions due to
the Fermi-liquid interaction cancel after summing the d
grams ~a! and ~b!. For the contraction of the trace of th
neutrino current with the polarization function we find (i , j ,
51, . . . ,3),

Cdir~q,q1 ,q2!5 i Tr~L i j !@P i j
21,a~q!1P i j

21,b~q!#

516gA
2G2S f p

mp
D 4E )

i 51

4 F d4pi

~2p!4G
3

d4k

~2p!4
G22~v!2D22~k!2

3k4Fv1v22
~q1•k!~q2•k!

uku2
G

3G21~p1!G12~p2!G21~p3!G12~p4!
08300
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3~2p!4d~q1p42k2p3!~2p!4

3d~k1p22p1!. ~41!

This result is valid in the soft-neutrino and nonrelativis
baryon limits. The second term on the RHS in the squ
bracket can be dropped, as it does not contribute after
phase space integrations. Note that the total number of
grams of the type~a!–~c! is four, if one allows for all pos-
sible relabeling of incoming and outgoing~identical! bary-
ons; this form factor is equal to the symmetry factor
which the total rate must be reduced. We do not inclu
these factors explicitly.

D. Exchange contribution to the polarization function

Theexchangediagrams are generated from the direct on
by means of interchanging the outgoing propagators i
strong vertex. There is a complete set of diagrams analog
to ~a! and ~b! with exchanged labeling of the hole propag
tors. These contribute to the contraction

Cex~q!516gA
2G2S f p

mp
D 4

v1v2G22~v!2

3E d4kk4D22~k!2E )
i 51

4 F d4pi

~2p!4G
3G21~p1!G12~p2!G21~p3!G12~p4!

3~2p!4d~q1k1p22p3!d~k1p42p1!,

~42!

in the soft neutrino approximation. The skeleton diagra
which correspond to the interference between the direct
exchange contributions are shown Figs. 3~a!–3~d!. There are
eight diagrams of each type if one allows for all possib
relabeling of the propagators. The analytical expressions
e.g., diagrams~a! and ~c! are

FIG. 3. The exchange Feynman diagrams for baryon-baryon
teraction in the 2p-2h approximation. Conventions are the same
in Fig. 2.
2-8
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iPmn
21,a,ex~q!5E )

i 51

4 F d4pi

~2p!4G d4k

~2p!4

3dk8~2p!8d~q1p42k2p3!

3d~k81p22p3!d~k1p22p1!

3Tr@GmG22~q1p4!

3V~k!D22~k!G21~p3!

3V~k8!D11~k!G12~p2!V~k8!G21~p1!

3V~k8!G11~q1p4!GnG12~p4!#, ~43!

iPmn
21,c,ex~q!5E )

i 51

4 F d4pi

~2p!4G d4k

~2p!4

3dk8~2p!8d~q1p42k2p3!

3d~k81p22p3!d~k1p22p1!

3Tr@GmG22~q1p4!V~k!D22~k!G21~p3!

3V~k8!D11~k!G12~p2!V~k8!G21~p1!

3GnG11~q1p4!V~k8!G12~p4!#, ~44!

and their computation is a complete analogue of that for
direct diagrams~Appendix B!. The vector current contribu
tion again cancels among the diagrams~a! and~c! and, simi-
larly, ~b! and~d!. The contribution from the interference be
tween the direct and exchange diagrams to the contractio
neutrino and baryon currents is

Cint~q!516gA
2G2S f p

mp
D 4

v1v2G22~v!2

3E dkE dk8k2k82D22~k!D22~k8!

3E )
i 51

4 F d4pi

~2p!4GG21~p1!G12~p2!G21~p3!

3G12~p4!3~2p!4d~q1p42k2p3!

3d~k1p22p1!d~k81p42p1!, ~45!

where we dropped the terms which vanish in the phase s
integrations. Later on we will show that for the interactio
which depend only on the momentum transfer the curr
contractionCdir(q) can be written as a convolution of th
phase space integrals over a single loop. The phase s
integrations in the interference contribution are more com
cated, since the momentum integrations do not decouple
two separate loops. The disentanglement can be achieve
constraining the momentum transfer in one of the p
propagators at the valueuk8u52pF , as the main contribution
to the integral originates near this value of the moment
transfer.
08300
e

of

ce

t

ace
i-
to
by

n

IV. QUASIPARTICLE WIDTH

The purpose of this section is to specify the width
baryon propagators. To this end we carry out a full resu
mation in the particle-particle (pp) channel by solving the
scatteringT matrix at finite temperatures. Our approach
based on the Brueckner theory with the continuous ene
momentum spectrum of baryons. The nonperturbative tr
ment of thepp channel is mandatory for including the e
fects of the short-range correlations due to the repulsive
of the nucleon-nucleon force. These correlations are then
sponsible for the width of quasiparticle propagatorsg in our
perturbation expansion in the particle-hole (ph) channel.
The ph interactions are dominated by the weaker long-ran
part of the nucleon-nucleon interaction, which makes p
sible the perturbative treatment of this channel by a trun
tion at two loops. The contour orderedT matrix in the con-
figuration space is

T~x1 ,x2 ;x3 ,x4!5V [ pp]~x1 ,x2 ;x3 ,x4!

1 i V [ pp]~x1 ,x2 ;x3 ,x4!G~x7 ,x5!

3G~x8 ,x6!T~x5 ,x6 ;x3 ,x4!, ~46!

where V[ pp] (x1 ,x2 ;x3 ,x4)5szV[ pp] (x1 ,x2 ;x3 ,x4) is the
time-local baryon-baryon interaction in the particle-partic
channel. Note that the time locality implies that thepp
propagator productGG[G[ pp] should be considered as
single matrix. The components of the scattering amplitud
needed for complete specification of the self-energies, ca
chosen as the retarded or advanced ones; the remaining
ponents are provided by the optical theorem. In the qu
classical limit the retarded/advancedT matrices obey the in-
tegral equation

TR/A~p,p8;P!5V[ pp]~p,p8!

1 i E d3p9

~2p!3
V[ pp]~p,p9!G[ pp]

R/A ~p9,P!

3TR/A~p9,p8,P!, ~47!

where we kept the leading order terms in the gradient exp
sion of the productG[ pp]

R/ATR/A. Here the subscript@pp#
indicates the particle-particle channel andp, P are the rela-
tive momentum and total four-momentum, respectively. T
two-particle Green’s function, appearing in the kernel of E
~47!, is defined as

G[ pp]
R/A ~p1 ,P1!5E dv1

2p E d4P2

~2p!4
$G.~P2/21p1!

3G.~P2/22p1!2G,~P2/21p1!

3G,~P2/22p1!%
~2p!3d3~P12P2!

E12E26 id
,

~48!

where we dropped the irrelevant dependence of the qu
classical functions on their center-of-mass space-time c
dinates. If the particle-hole symmetry is kept in the kernel
2-9
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A. SEDRAKIAN AND A. E. L. DIEPERINK PHYSICAL REVIEW D 62 083002
the integral equation, theT matrix diverges at the critica
temperature of the superfluid phase transition. To be abl
apply our computation to the low-temperature regime~and
thereby avoid the pairing instability in theT matrix! we drop
the hole-hole propagators. This is a common approxima
in the Brueckner theory and is justified in terms of the Bet
Goldstone hole-line expansion. We treat the intermed
state two-particle propagation in the quasiparticle limit. U
ing the angle averaging procedure for thepp propagator and
after partial wave expansion, the thermodynamic retardeT
matrix is given by

Tll 8
Ra

~p,p8,P,v!5V[ pp] l l 8
a

~p,p8!

1
2

p (
l 9

E dp9p92V[ pp] l l 9
a

~p,p9!

3^G[ pp]
R ~p9,P,v!&Tl 9 l 8

Ra
~p9,p8,P,v!,

~49!

wherea collectively denotes the quantum numbers (S,J,M )
in a particular partial wave,p and P are the magnitudes o
the relative and total momentum, respectively,V(p,p8) is
the bare nuclear interaction. Here^G[ pp]

R & is the angle aver-
aged two-particle propagator

^G[ pp]
R ~p,P,v!&

5E dV

4p

$12 f N@«~P/21p!#%$12 f N@«~P/22p!#%

v2«~P/21p!2«~P/22p!1 id
,

~50!

with «(p)5ep1ReS(«p ,p), i.e., the intermediate stat
propagation is treated in the quasiparticle approximati
The retarded self-energy is given by

SR~p,v!5
1

p (
la

~2J11!E dp8p82

3Tll
Ra@p,p8;p,p8;v1«~p8!# f N@«~p8!#, ~51!

which also defines its real and imaginary parts. The coup
equations~49! and ~51! are subject to normalization to th
total density at a given temperature.

V. PHASE SPACE INTEGRATIONS

Let us turn to the task of evaluating the phase space i
grals in the expressions for the current contractions. We s
stitute the Kadanoff-Baym ansatz in Eq.~41! and use the
identity f N(«1) f N(2«2)5g(«12«2)@ f N(«2)2 f N(«1)#,
which is exact in the equilibrium limit. We then find tha
the contributions from each loop decouple, i.e.,

Cdir~q!516gA
2G2S f p

mp
D 4

v1v2G22~v!2E d4k

~2p!4
k4

3D22~k!2g~vk!g~v2vk!L~k!L~q2k!, ~52!

wherevk5k0 and the elementary loop is defined as
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L~k!5E d4p1

~2p!4

d4p2

~2p!4
a~p1!a~p2!@ f N~«2!2 f N~«1!#

3~2p!4d~k1p22p1!. ~53!

The exchange contributionCex leads to an additional factor o
two. The interference contribution decouples only under c
tain constrains. The single loop, Eq.~53!, can be evaluated to
arbitrary order in the spectral width in general@21#. We shall
restrict ourselves to the limit of small quasiparticle dampi
and use the expansion with respect to the width of the sp
tral function given by Eq.~30!. Note that the elementary loo
~53! can be extended to include RPA-type resummation of
infinite number of the bubble diagrams~see Ref.@5#!.

A. Leading order

The lowest order approximation corresponds to the qu
particle ~i.e., zero width! limit. The contribution from a
single loop vanishes in the timelike region of the phase sp
where vk>uku. This result is found only if the relativistic
kinematics is applied; nonrelativistic kinematics leads to s
rious terms}exp(2m/q). In the spacelike region of the
phase space the result is finite. We carry out the energy
tegrations keeping only the leading order term. Remov
one of the trivial momentum delta functions we find

L0~k!5E d3p

~2p!3
@ f N~«p!2 f N~«p1k!#~2p!

3d~vk1«p2«p1k!. ~54!

The integrations can be carried out exactly

L0~k!5E d3p

~2p!3
@ f N~«p!2 f N~«p1k!#~2p!

3d~vk1«p2«p1k!

5
m* 2

2pbuku
L~vk ,k!, ~55!

wherem* is the effective mass of a quasiparticle and

L~vk ,k!5 lnU11exp$2b@«2~k!2m#%

11exp$2b@«1~k!2m#%
U, ~56!

with «6(k)5(vk
21«k

2)/4«k6vk/2. Note that the quasiparti
cle loop~55! is zero in the timelike region (vk>uku), which
sets a natural cutoff in the phase space integrations belo

B. Next-to-leading order

The next-to-leading order contribution~which is linear in
g) is
2-10
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L1~vk ,k!52E d4p

~2p!4
~2p!d~«1vk2«p1k!

3E dv8

2p
g~p8!

P
~v82«p!2

$d~«2«p!

2d~«2v8!%@ f N~«!2 f N~«1vk!#, ~57!

where we summed the two terms arising from the produc
the leading and next-to-leading order contribution toG,(p).
The angular integral can be carried out analytically to
accuracyO(g2). One finds

L1~vk ,k!52
4m* 2

k E d«p

~2p!2
@ f N~«p!2 f N~«p1v!#

3$Z~«p ,k!2F~«p ,k,vk!%, ~58!

where the first term in the curly brackets is due to the wa
function renormalization

Z~«p ,k!5u~«p2«min!E dvg~v!
P

~v2«p!2
,

«min5
~vk2«q!2

4«q
. ~59!

The second term is the off-pole contribution and is given

F~vk ,k,«p!5arctanFek2vk2m12Aepek

g~«p1vk!/2
G

2arctanFek2vk2m22Aepek

g~«p1vk!/2
G . ~60!

The current contraction, which so far includes contrib
tions to all orders ing, now can be decomposed in the lea
ing and next-to-leading order terms with respect tog, em-
ploying the corresponding decomposition for the loops. F
example, for the direct contribution one finds

Cdir~q!516gA
2G2S f p

mp
D 4

v1v2G22~v!2E d4k

~2p!4
k4D22~k!2

3g~vk!g~v2vk!@L0~k!L0~q2k!1L1~k!L0

3~q2k!1L0~k!L1~q2k!#. ~61!

The exchange and interference terms can be decompose
similar manner.

C. Neutrino emissivity

After the preparatory work above, the computation of t
neutrino emissivity is straightforward. We first relate the c
rent contraction to our original expression for the neutr
emissivity by using the relation22gB(q0)Im Pmn

R (q)
5 iPmn

, (q). Expression~21! takes the form
08300
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enn̄5(
f
E d3q2

~2p!32vn~q2!
E d3q1

~2p!32vn~q1!
E d4q

~2p!4

3~2p!4d4~q11q22q!@vn~q1!1vn~q2!#C~q!,

~62!

whereC(q) is the sum of the direct, exchange and interfe
ence contributions. Let us first compute the contributi
from the direct term by substituting Eq.~41! for the current
contraction. We carry out the integrations over the neutr
phase space and the summation over the three neutrino
vors to find

enn̄5
16

5~2p!7
gA

2GF
2 S f p

mp
D 4E

0

`

dvv6G22~v!2E dkk6

3D22~k!2E dvkg~vk!g~v2vk!@L0~k!L0~q2k!

1L1~k!L0~q2k!1L0~k!L1~q2k!#, ~63!

where we usedd4k54pk2dkdvk . Normalizing the energy
scales by the temperature and the momenta by 2pF we obtain

enn̄5
32

5~2p!9
GF

2gA
2 S f p

mp
D 4S m*

m D 4

pFIT8

55.531019I 3T9
8 ~erg cm23 s21!, ~64!

where T9 is the temperature in units of 109 K, I 3 is the
integral I in units 103 defined as1

I 5E
0

`

dyy6G22~y!2Q~y!E
0

`

dxx4D22~x!2

3E
2`

`

dzg~z!g~y2z!HL~z,x!L~y2z,x!

1
2

p
zL~y2z,x!@F~z,x!2Z~z,x!#1

2

p
~y2z!L~z,x!

3@F~y2z,x!2Z~y2z,x!#J . ~65!

The explicit dependence of Eq.~64! on the temperature an
density is the generic one@1–6#. Additional dependence on
these parameters is contained in the integral~65!. Note that
to avoid spurious contributions from the quasiparticle p
@the first term in curly brackets in Eq.~65!#, one should re-
strict the z integration to the spacelike region. For the n
merical evaluation of the neutrino emissivity we use, follo
ing Ref. @4#, the free space pion propagator

D22~k!5@k21mp
2 #21.

1It is understood that the functions of new variables are relabe
2-11



it
ne

re
u

na

ly
u

e
e

on

on
ra

eu

e
s
th

d

he

ter.
y is
he

The
d
-

tral

is
a-

rate
a-

alf-
sity
re
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The free-space approximation should be valid in the vicin
of the nuclear saturation density. The softening of the o
pion exchange~a precursor of the pion-condensation! in-
creases the neutrino emissivity by large factors@5#. We do
not attempt to accommodate this effect as our main inte
here is the role of the finite width of quasiparticles. The Pa
blocking factor

Q~y!530E
0

1

dww2~12w!2@12 f n~wy!#

3$12 f n̄@~12w!y#%, ~66!

accounts for the occupation of neutrino and antineutrino fi
states. In the dilute~anti!neutrino limit bmn f

!1 ~wheremn f

is the chemical potential of neutrinos of flavorf ) Q(y)51.
In the low-temperature limitL(z)5z and thez integration

decouples from thex integration. On imposingg(v)→0
~quasiparticle limit! one finds thatF50 and G22(v)
5v22. Then thez integration can be carried out analytical
upon dropping the wave-function renormalization contrib
tion

E
2`

`

dzg~z!g~y2z!z~y2z!5
y~y214p2!

6~ey21!
. ~67!

After these manipulations Eq.~64! reduces to Friman and
Maxwell’s result@Ref. @4#, Eq. ~47!#. The numerical coeffi-
cient in Eq. ~64!, however, is by a factor 3 larger, sinc
Friman and Maxwell do not carry out the summation ov
the three neutrino flavors at that stage.

The contribution from the exchange current contracti
Eq. ~42!, leads to a factor of 2 in the integral~65!. The
contribution of the interference term, in the approximati
where one of the momentum transfers is fixed at the cha
teristic value 2pF , is

I int5E
0

`

dyy6G22~y!2Q~y!E
0

`

dxx2D22~x!D22~1!

3E
2`

`

dzg~z!g~y2z!HL~z,x!L~y2z,1!

1
2

p
zL~y2z,x!@F~z,1!2Z~z,1!#1

2

p
~y2z!L~z,1!

3@F~y2z,x!2Z~y2z,x!#J . ~68!

VI. RESULTS

The numerical calculations were carried out for pure n
tron matter using the ParisNN interaction keepingJ<4 par-
tial waves. Figure 4 displays the real part of the on-sh
self-energy and the half width of the spectral function a
function of the particle momentum for several values of
temperature at the saturation densityns50.17 fm23. The
width of the quasiparticle propagators can be parametrize
08300
y
-

st
li

l

-

r

,

c-

-

ll
a
e

in

terms of the reciprocal of the quasiparticle lifetime in t
Fermi-liquid theory:

g5aT2F11S v

2pTD 2G , ~69!

wherea is a density dependent phenomenological parame
The parabolic dependence of the width on the frequenc
justified for temperatures below 30 MeV in the range of t
densitiesns<n<2ns . The quadratic dependence ofg on the
temperature breaks down at slightly lower temperatures.
value of the parametera weakly depends on the density an
is approximately 0.2 MeV21. The emergent neutrino spec
trum can be characterized by their spectral function

S~y!5G22~y!2Q~y!E
0

`

dxx4D22~x!2E
2`

`

dzg~z!g~y2z!

3HL~z,x!L~y2z,x!1
2

p
zL~y2z,x!@F~z,x!

2Z~z,x!#1
2

p
~y2z!L~z,x!@F~y2z,x!

2Z~y2z,x!#J , ~70!

which is depicted in Fig. 5. The dependence of the spec
function on the neutrino frequency is shown forT
520 MeV, at the saturation densityns50.17 fm23, for
three cases of vanishing width~dashed line!, including the
leading order contribution in the quasiparticle width~dashed-
dotted line!, and ~iii ! the full nonperturbative result~solid
line!. The energy carried by neutrinos is of order ofv;5T
in all three cases, as the peak in the spectral function
independent of the approximation to the width of the prop
gators. The integralI 3 is shown in Fig. 6. The finite width of
propagators leads to a suppression of the bremsstrahlung
as a result of the LPM effect. Keeping the full nonperturb

FIG. 4. The real part of the on-shell self-energy and the h
width as a function of particle momentum at the saturation den
ns50.17 fm23 for different temperatures; the zero temperatu
Fermi momentum is 1.7 fm21.
2-12
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COHERENT NEUTRINO RADIATION IN SUPERNOVAE . . . PHYSICAL REVIEW D 62 083002
tive expression for the causal propagators enhances the v
of the integral, as the higher order terms contribute ad
tively to the leading order result. The LPM effect sets
roughly whenv;g. As neutrinos are produced thermall
the onset temperature of the LPM effect is of the order ofg.
Equation~69! shows that the value of the parametera con-
trols the onset temperature which turns out of the order o
MeV in agreement with the previous results of Refs.@8–11#
and our numerical computation~see Fig. 6!.

FIG. 5. The neutrino spectral function~70! at the temperature
T520 MeV and densityns50.16 fm23. The dashed curve is th
zero width limit, the dashed-dotted curve includes only the lead
order ing contribution from the causal propagator, the solid cur
is the full nonperturbative result.

FIG. 6. The integral~65! ~including the exchange terms! as a
function of temperature at the densityns50.16 fm23. The dashed
curve is the zero width limit, the dashed-dotted curve includes o
the leading order ing contribution from the causal propagator, th
solid curve is the full nonperturbative result. In the low-temperat
limit the dashed curve corresponds to the result of Ref.@4#.
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VII. CONCLUSIONS

In this work we formulated a transport theory for neut
nos in the framework of real-time Green’s functions form
ism, with particular attention to the collision integrals for th
neutrino-pair bremsstrahlung. The main focus was a fi
principle calculation of the bremsstrahlung emissivity i
cluding the width of propagators. This allows us to answ
questions, not covered by the semiphenomenological the
such as the magnitude of the contribution of higher or
terms in the expansion with respect to the quasiparticle w
or the cancellation of the vector current contribution at
orders in the quasiparticle width.

The central quantity of the theory is the particle-hole p
larization tensor in theph channel truncated at two loops
The pp channel is treated nonperturbatively within the fin
temperature Brueckner theory. We find that the only con
bution to the bremsstrahlung rate comes from the contrac
of the tensor force with the axial vector current to all orde
in the quasiparticle width. Other contributions, which ari
from the contraction of the Fermi-liquid-type interactio
with the axial vector current and the contraction of the n
strong interaction with the vector current, cancel when
take the sum of the diagrams corresponding to vertex cor
tions and propagator renormalization in theph channel.
Thereby the vector current conservation is established a
orders in the quasiparticle width. These cancellations are
dependent of the approximations to the propagators and
effective both in the quasiparticle limit and beyond. T
three ingredients crucial to the cancellations are~i! the anti-
commutation of the tensor force with the axial vector cu
rent, ~ii ! the odd parity of the causal propagator under
exchange of its energy argument,~iii ! the soft neutrino and
nonrelativistic baryon approximations. The first two ingred
ents are based on the symmetry arguments with respe
the time-reversal and parity, and are in this respect univer
The last approximation breaks down as the density of
system increases. The relativistic corrections become com
rable, or even larger, that those discussed above, in the
density regime~typically several times the nuclear saturatio
density!. Also the contribution from the off-shell region t
the strong interaction amplitude become important as the
ergy transfer in the reaction increases with the density. Th
issues are beyond the scope of this paper.

Our numerical evaluation of the neutrino emissivity of h
neutron matter, carried out at two loops, shows that
LPM-type suppression sets in at temperaturesT>g, in
agreement with the previous work limited to the first ord
terms in the quasiparticle width~see Ref.@10#, and refer-
ences therein!. The higher order terms enhance the mag
tude of the neutrino emissivity compared to the leading or
result. The nonperturbative result, however, is still su
pressed compared to the quasiparticle limit.

Our formalism can be extended in various ways. One
vious extension is allowing for two different chemical pote
tials of scattering baryons. This will include the Urca proce
~theb decay in the second order in the virial expansion! and
the effects of the Pauli spin paramagnetism, which beco
important in strong magnetic fields. The formalism can

g

ly

e
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A. SEDRAKIAN AND A. E. L. DIEPERINK PHYSICAL REVIEW D 62 083002
adapted, with minor changes, for a computation of the spa
like analogous of the bremsstrahlung and, in particular,
neutrino opacities of the supernova matter. The perturba
scheme, employed here, itself requires further improvem
in several direction, such as the inclusion of the RPA corr
tions at the single loop level, and the renormalization of
one-boson exchange interaction in theph channel.
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APPENDIX A: REAL-TIME GREEN’S FUNCTIONS

The six Green’s functions of the nonequilibrium theo
are not independent. For completeness we summarize
the linear relations among them, which can be easily veri
from their definitions. The four components of the mat
Green’s function are related to each other by the relation

S22~x1 ,x2!5u~ t12t2!S12~x1 ,x2!

1u~ t22t1!S21~x1 ,x2!, ~A1!

S11~x1 ,x2!5u~ t22t1!S12~x1 ,x2!

1u~ t12t2!S21~x1 ,x2!, ~A2!

S22~x1 ,x2!1S11~x1 ,x2!5S21~x1 ,x2!1S12~x1 ,x2!.

~A3!

The following Hermitian conjugation relations hold:

S22~x1 ,x2!52S11* ~x2 ,x1!, ~A4!

S21~x1 ,x2!52S21* ~x2 ,x1!, ~A5!

S22~x1 ,x2!52S12* ~x2 ,x1!. ~A6!

The retarded and advanced Green’s functions are relate
the components of the matrix Green’s function via the re
tions

SR~x1 ,x2!5u~ t12t2!@S12~x1 ,x2!2S21~x1 ,x2!#

5S22~x1 ,x2!2S21~x1 ,x2!

5S12~x1 ,x2!2S11~x1 ,x2!, ~A7!

SA~x1 ,x2!52u~ t22t1!@S12~x1 ,x2!2S21~x,y!#

5S22~x1 ,x2!2S12~x1 ,x2!

5S21~x1 ,x2!2S11~x1 ,x2!. ~A8!

They are Hermitian conjugates, i.e.,

SA~x1 ,x2!5SR* ~x1 ,x2!. ~A9!
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In addition, we note that in the momentum representat
they satisfy the equations

S22~v,p!52@S11~v,p!#* , SA~v,p!5@SR~v,p!#* .
~A10!

The relations above are valid for the baryon and pion pro
gators in general, and we do not repeat them here.

Similar relations hold among the self-energies. These
be identified by performing a unitary orthogonal transform
tion affected by the matrixR5(11 isy)/2 by means of for-
mula S85R21SR. The form of the original Dyson equatio
in the matrix form~3! is invariant under the transformation

S8~x1 ,x2!5S08~x1 ,x2!1S08~x1 ,x3!V8~x3 ,x2!S8~x2 ,x1!,
~A11!

where the primed quantities have the ‘‘triangular’’ form

S128 5S 0 S12
A

S12
R S12

K D , V128 5S V12
K V12

R

V12
A 0

D , ~A12!

where

SK~x1 ,x2!5Sc~x1 ,x2!1Sa~x1 ,x2!

5S.~x1 ,x2!1S,~x1 ,x2!, ~A13!

VR~x1 ,x2!5Vc~x1 ,x2!1V,~x1 ,x2!,
~A14!

VA~x1 ,x2!5Vc~x1 ,x2!1V.~x1 ,x2!,

VK~x1 ,x2!5Vc~x1 ,x2!1Va~x1 ,x2!

52V.~x1 ,x2!2V,~x1 ,x2!. ~A15!

APPENDIX B: DETAILS OF THE COMPUTATION
OF THE POLARIZATION FUNCTION

As an example we compute here the direct contribution
the polarization function, represented by the diagrams~a!
and~b! in Fig. 2. The cancellation among the various cont
butions from these diagrams does not depend on the de
of the structure of the baryon propagators~quasiparticle or
dressed!, but solely on the odd parity of the causal Green
function with respect to a change of the sign of the ene
argument in the soft neutrino approximation.

In the first step we substitute the vertices. As the con
bution of the Landau-Fermi-liquid part of the interaction w
cancel out, to save space, we shall drop its contribution fr
the outset. For the diagrams~a! and~b! ~excluding the factors
for the topologically equivalent diagrams! we find

iPmn
21,a~q!5S G

2A2
D 2S f p

mp
D 4E )

i 51

4 F d4pi

~2p!4G dk

~2p!4

3Tr@~dm02gAdm is i !G
22~q1p4!

3~s•k!D22~k!G21~p3!

3~s•k!D11~k!G11~q1p4!~dn0
2-14
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2gAdn js j !G
12~p4!#Tr@~s•k!G21~p1!

3~s•k!G12~p2!#~2p!8d~q1p42k2p3!

3d~k1p22p1!, ~B1!

iPmn
21,b~q!5S G

2A2
D 2S f p

mp
D 4E )

i 51

4 F d4pi

~2p!4G dk

~2p!4

3Tr@~dm02gAdm is i !G
22~q1p4!

3~s•k!D22~k!G21~p3!~dn02gAdn js j !

3~s•k!D11~k!G11~p32q!G12~p4!#

3Tr@~s•k!G21~p1!~s•k!G12~p2!#

3~2p!8d~q1p42k2p3!d~k1p22p1!.

~B2!

Next we apply the approximation~33! to the causal and
acausal Green’s functions and fix their momenta at the
responding Fermi momentum. Combining diagrams~a! and
~b!, we find

iPmn
21,a~q!1 iPmn

21,b~q!

5S G

2A2
D 2S f p

mp
D 4E )

i 51

4 F d4pi

~2p!4G dk

~2p!4

3G22~v!2D22~k!23G21~p1!G12~p2!G21~p3!

3G12~p4!Tr$~dm02gAdm is i !~s•k!~s•k!

3~dn02gAdn js j !2~dm02gAdm is i !~s•k!

3~dn02gAdn js j !~s•k!%Tr@~s•k!~s•k!#~2p!8

3d~q1p42k2p3!d~k1p22p1!, ~B3!

where we used the conjugation relation~A10!. The terms
under the trace}d0m ,d0n vanish. TheP00 component of the
polarization is hence zero and the vector current is c
served. The remainder simplifies to

iP i j
21,a~q!1 iP i j

21,b~q!

5gA
2S G

2A2
D 2S f p

mp
D 4E )

i 51

4 F d4pi

~2p!4G dk

~2p!4

3@G22~v!2D22~k!2G21~p1!G12~p2!

3G21~p3!G12~p4!Tr@s i~s•k!~s•k!s j

2s i~s•k!s j~s•k!#Tr@~s•k!~s•k!#
v.

08300
r-

-

3~2p!8d~q1p42k2p3!d~k1p22p1!. ~B4!

The computation of the trace using thes algebra gives

Tr@~s•k!~s•k!#Tr@s i~s•k!~s•k!s j2s i~s•k!s j~s•k!#

58k2~k2d i j 2kikj !. ~B5!

The contraction of the polarization tensor with the trace
neutrino currents, given by

TrL i j 58@q1iq2 j1q1 jq2i1~v1v21q1•q2!d i j 1e in jmq1
nq2

m#,

~B6!

leads to

8k2 Tr L i j ~k2d i j 2kikj !5128k4Fv1v22
~q1•k!~q1•k!

k2 G .

~B7!

Combining Eqs.~B4! and ~B7! we recover Eq.~41!.
Let us turn to the fluctuation diagram in Fig. 1~c!. From

the original diagram one can generate three additional o
by turning each of the loops upside down. Let us comb
the diagram in Fig. 1~c! with its counterpart, say (c8), which
results from~c! by turning the upper loop upside down. Th
analytical expression corresponding to their sum is

iPmn
21,c~q!1 iPmn

21,c8~q!

5S G

2A2
D 2S f p

mp
D 4E )

i 51

4 F d4pi

~2p!4G dk

~2p!4

3G22~v!2D22~k!2G21~p1!G12~p2!

3G21~p3!G12~p4!$Tr@~dm02gAdm is i !

3~s•k!~s•k!#Tr@~s•k!~dn02gAdn js j !~s•k!#

2Tr@~s•k!~dm02gAdm is i !~s•k!#Tr@~s•k!

3~dn02gAdn js j !~s•k!#%~2p!8

3d~q1p42k2p3!d~k1p22p1!, ~B8!

where we droppedq compared withk in the strong interac-
tion vertex. The contribution due to the axial-vector curre
vanishes because the traces are over odd number ofs ma-
trices; the contribution due the vector current cancels
these are identical for diagrams~c! and (c8) and are of op-
posite sign.
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