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Approximate mass and radius formulas for static and rotating strange stars
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Using the general relativistic conditions of thermodynamic equilibrium and fitting with values obtained from
numerical integration of structure equations we derive approximate mass and radius formulas for static and
uniformly rotating strange stars obeying the bag model equation of state. In the static case our formulas can
reproduce the values of the mass and radius of the quark star with an error smaller than 1%. The maximum
mass and radius of the strange stars can be predicted by fitting only one set of static configuration data. With
the use of results obtained for the static configuration and with some supplementary assumptions about the
behavior of the metric tensor at the center of the star, we can predict the rotational properties of maximally
rotating strange stars within an error of 3%. From the approximate formulas we can derive the “empirical”
formula relating the maximum rotation frequency of the uniformly rotating strange stars to the mass and radius
of the maximum allowable static configuration.

PACS numbds): 97.60.Jd, 12.38.Mh

[. INTRODUCTION must have very soft equation of state, which is consistent
with that of strange stardl4].

It has been argued that strange quark matter, consisting of Assuming that interactions of quarks and gluons are suf-
u, d, ands quarks is energetically the most favorable state officiently small the energy density=pc” and pressure of a
quark matter{1,2]. Witten [1] suggested that there are two quark-gluon plasma at temperatufeand chemical potential
ways to form strange matter: the quark-hadron phase transit (the subscriptf denotes the various quark flavousd,s
tion in the early universe and conversion of neutron stars int€tc) can be calculated by thermal theory. Neglecting quark
strange ones at ultrahigh densities. In the theory of stron§@sses and supposing that quarks are confined to the bag
interactions quark bag models suppose that the breaking of @!ume (in the case of a bare strange star, the boundary of
physical vacuum takes place inside hadrons. As a resuH‘e bag coincides with stellar surfac¢he equation of state
vacuum energy densities inside and outside a hadron becortte
essentially different and the vacuum pressure on the bag wall _

" o (e—4B)
equilibrates the pressure of quarks thus stabilizing the sys- =—,
tem. If the hypothesis of the quark matter is true, then some 3
of neutrons stars could actually be strange stars, built entirel
of strange mattdr3,4]. However, there are arguments against
the existence of strange stdfs.

(€Y

WhereB is the difference between the energy density of the
perturbative and nonperturbative QCD vacu(the bag con-

S | hani h b 4 for the f stan). Equation(1) is essentially the equation of state of a
everal mechanisms have been proposed for the formae, ¢ ot massive particles with corrections due to the QCD

tion of quark stars. For example, strange stars are expected {o,ce anomaly and perturbative interactions. These are al-
form during the collapse of the core of a massive star afteg\,ays negative, reducing the energy density at given tempera-
the supernova explosid6]. Another possibility is that some e by about a factor of PL5]. This equation of state does
rapidly spinning neutron stars in low-mass X-ray binariesnot depend upon quark flavor number, hence it will be cor-
(LXMB'’s) can accrete sufficient mass to undergo a phasgect either for strange quark mattend—0) or for normal
transition to become strange st@r§. Some of the millisec- quark matter fns—). For any intermediate values of
ond pulsars may be strange stars because LXMB's are behe equation of state gives the pressure with error less than
lieved to be the progenitors of millisecond pulsars. Strange%5]. Thus the equation of state of strange matter is mainly
stars have also been proposed as sources of unusual astdetermined by the vacuum energy dendty
physical phenomena, e.g., soffray repeater$8], pulsating The equation of statél) has been the basis for the study
x-ray burster[9], cosmologicaly-ray bursts[7,10], SAX  of most of the static relativistic models of strange stars. A
J1808.4-365811], etc. The mechanism of the phase transi-complete description of static strange stars has been obtained
tion from neutron to quark stars in low LXMB’s also results based on numerical integration of mass continuity and
in the excitation of stellar radial oscillations that can beTolman-Oppenheimer-VolkoTOV) (hydrostatic equilib-
damped by gravitational wave radiation instead of internakium) equations for different values of the bag cons{&n].
viscosity [12]. The discovery of kHz quasiperiodic oscilla- Using numerical methods the maximum gravitational mass
tion in LXMB’s [13] implies that the compact stellar object M 4, the maximum baryon masd g ,,=1.66x 10" 2"kg
X Ng (Ng is the total baryon number of the stellar configu-
ration), and the maximum radiuR,,, of the strange star,
*Email address: hrspksc@hkucc.hku.hk have been obtained, as a function of the bag constant, in the
TEmail address: tcharko@hkusua.hku.hk form[1,4,16-18
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1.9638M 2.625M the case qf strange matter at zero pressue 4B, up to the
max=——— Bmax=——— upper limit of stability of the quark statM=2Mg. The
VBeo VBeo results obtained for static configurations are extended to ro-
tating strange stars whose surface is described by the Kerr
R ~ 10.172km 2 line element. Imposing the condition of the thermodynamic
max™ N 2) equilibrium mass-radius formulas are obtained that depend
60 . . ..
on three unknown functions. An appropridt®it empirical
whereBg,=B/(60 MeV fm3). choice of these parameters leads to the description of the

In the slow rotation approximation the rotational proper-mass and radius of rapidly rotating equilibrium strange star
ties of strange stars have been investigated 8 and[20].  configurations within a mean precision of 3%. As an appli-
As far as rotational deformations are concerned, there are Gation of the obtained analytical representations for mass and
number of detailed differences between the strange star mog¢iadius we give a derivation of the “empirical” relatiof#)
els and standard neutron stars. Exact numerical calculatior&hd we calculate the expression of the total energy of the
of rapidly rotating strange stars were done [48,21,23.  static strange star. Obtaining general relations for mass and
Rotation increases the maximum allowable mass of strang@dius of stars is also of practical importance. For example,
stars and the equatorial radius of the maximum mass corthe existence of such relations enables rapid and precise cal-
figuration. Referencgl8] obtained for the maximum mass culations of the upper bounds of global parameters of stellar

and radius of quark stars the following two formulas: structures.
The paper is organized as follows. In Sec. Il, the basic
2.83Mg 16.54 km formalism is described and mass and radius formulas for
MI’Ot — rot — (3) . . . .
max- S ' NeqMpa, —\/— . static quark stars are obtained. In Sec. Il we discuss rotating
BGO BGO

strange matter configurations with the vacuum boundary de-

Because of the nonspherical symmetry of rapidly rotatingScfibéd by the Kerr geometry. In Sec. IV we discuss and
stationary stellar configurations and in view of the compli-conclude our results.
cated character of the interplay of the effects of rotation and
of those of general relativity, at first sight it seems difficult to  Il. APPROXIMATE MASS AND RADIUS FORMULAS
find a simple universal relation between the mass and radius FOR STATIC STRANGE STARS
of nonrotating configurations with maximum allowable mass
M and radiusRaa and the maximum rotation frequency.
However,[16,17] have found a simple relation connecting
the maximum rotation frequencé2 o With the maximum
mass and radius of the static configuration

The changes caused by the general theory of relativity in
the conditions of thermal equilibrium are of fundamental im-
portance. In a constant gravitational field we must distin-
guish the conserved energy of any small part of the stellar
object from the energg measured by an observer situated at

pjStat| 172/ pstat |\ —3/2 a given point. These two quantities are related By
_ max max _ . B .
Qmax=C Mo 10 km) , (4) =E\/goo[25], whereggg is the time component of the metric
o)

tensor. A similar change occurs in the condition of the con-

with C a constant which does not sensitively depend on th&@ncy of the chemical potential=(JE/dN)sy throughout

equation of state of dense matter. Equatidh has been the star. _Slnce the partlc_:le _numbHrls a constant for the

checked byi23] for 13 equations of state of dense matter andSte!lar object, at any point inside the gravitating body the

by [24] for 12 realistic equations of state. The value of thechemical potential obeys the relatign/goo=const[26]. _

constantC has been obtained by fitting equatiof) with _ Slnce we suppose _that the strange star is in thermal equi-

data obtained by numerically integrating the gravitationalliorium a similar relation also holds for the temperatdre

field equations. It is given byC=7700sT [23] or by C  TVdoo=const [26]. Consequently,u/T=const inside the

=7730s " [18]. In the case of strange stars the empiricalcOmpact object anddu/u=dT/T. At constant volume

formula holds with a very good precision, the relative devia-(€qual to unity we havedp=sdT+ndu, wheresandn are

tion not exceeding 29%18]. the entropy and number of particles in unit volume of the
It is the purpose of the present paper to derive approxibody, respectively. With the use dff=T(duw/x) and tak-

mate mass and radius formulas for general relativistic statind into account thaun+sT= e+ p we obtain the following

and rotating equilibrium strange matter configurations de£guation relating the chemical potential to the energy density

scribed by the bag model equation of stéle In order to do ~ and pressure of the stg26]:

this only the general relativistic thermodynamic equilibrium

conditions are used. In the case of the static star the two d_:“: dp

arbitrary integration functions involved are obtained by fit- Mmoo etp’

ting the obtained representations for mass and radius with the

data resulted from the numerical integration of the TOV and Consider now a static equilibrium quark matter configu-

mass continuity equations. The final relations give the masgation satisfying the bag model equation of stélte Let us

and radius of a strange star as a function of the central dersompare the values of the chemical potentiat > w at two

sity and of the bag constant. They exactly describe the basigoints: at the center of the star and at the vacuum boundary.

physical parameterénass and radigsf strange stars from From u+/ggo=const we obtain

®)
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tc(Ndooc = s(Voo)s: (6) M = 16;78 a(7)R?, (11)

where the indice€ andSrefer to the center and to surface

of the quark star, respectively. At the vacuum boundary th&yith a(7) a function describing the variation in the quark
gravitational field of the strange star is described by thesiar mass due to the increase of the central density.
Schwarzschild solution, which givegoo=1s—2GM/c’R The exact form and the values of the functig®&s) and
[25], whereM and R are the total mass and radius of the () can be determined only by numerically integrating the
strange star, respectively. In the following we denote theyrayitational field equations. By fitting the numerical data
time componengg, of the metric tensor at the center of the [27] for the mass and radius of the strange star with the
strange star byod c=C(pc,B). expressiong10) and(11) we obtain the following represen-

From a physical point of viewZ(pc ,B) can be related via tations for these functionén the present paper we consider
the relation 1€ — 1=z, to the redshiftz; of a photon emitted g 104 g/cP=56 MeV/fnP):

from the center of the quark star. For a given static strange
matter configuration the value of the functi@h depends 1 1 1
only on the central density of the quark sgar and on the C(7n)=44.005—%—6.68158— + 2.7403— + 0.0554667,
bag constanB. Therefore, from Eq(6) we obtain n K K

(12
2
pe_ 1 _2GM _ ) a(7)=0.0000521833°—0.00378523/
u% Clpc.B) R
+0.11456;+ 0.624094. (13

With the use of the bag model equation of stidfewe can
integrate Eq(5) to obtainu=Cy(e—B)¥* The integration The numerical constants in E¢d.2) and (13) depend orB
constantC, can be determined by calculating the chemicalbecause the numerical data have been calculated at a given
potential at the center of the quark star. Hence we obtai3. For the polynomial fittingg12) and (13) the correlation
Co=puc/(ec—B)Y*and the variation of the chemical poten- coefficientr =0.9997 and the probabilit?<0.001. There-
tial inside the quark star can be represented as fore, for a given value of the bag constdditwe obtain the
following exact representations for the radius and mass of

B Me va the static strange matter configuration obeying the MIT bag
M= (eC——B)l’Z(E_ B)™" (®  model equation of state:
At the surface of the stats— 4B. Therefore, from Eq(8) Reul 7) = 3c? |13 1-C(y) =1\ |2
it follows that sl )=\ 32xGB| |a(n) 7\73 ’
(14
_ s Mc
ms=(3B) (ea—B) 7™ C) 3/ 2 |12 W
M stal ﬂ)—?(m @(n))
In order to simplify the notation we introduce a dimension-
less parameter=pc/B, so thatC(pc,B)=C(%). Elimi- <l1-c 77;1 V2132 15
nating uc/ us from Egs.(7) and(9) we obtain the following (7) 3 : (19

exact formula for the mass-radius ratio of a strange star:

n— 1 1/2
&

Here, we want to emphasize that E¢s4) and(15) become
incorrect apc— 4B, which corresponds to the zero-pressure
situation.

The variations of the radius and mass for a strange star as

For a given equation of state the mass-radius ratio of tha function of the parameter (B=10g/cn?) are repre-
star depends on the values of the metric tensor component a¢nted in Figs. 1 and 2. For the sake of comparison we have
the center of the staE (%), only. A possible representation also presented the data obtained by numerically integrating
for the function giving the values dy, at the center of the the Tolman-Oppenheimer-VolkoyTOV) and hydrostatic
quark star is in the form of a power seri€{n)=const equilibrium equation$27]. Using Eqs(12)—(15) we can re-
+3(a/7), with a; constants. produce the values of the mass and radius of the quark star

As applied on the star surface the mass continuity equaebtained by numerical integration with an error smaller than
tion leads to a rough approximation of the quark star mass ot%. The maximum radius of the strange star is obtained from
the form dM/dr=~M/R~16mBR?. A mass-radius relation the conditiondR/d»=0. The corresponding algebraic equa-
of this form could also describe zero-pressure quark mattetjon has the solution;,=9.99012(this value depends of
with p=0 andp= p-=4B. But for densities greater tharB4  course on the value d@), giving the value of the ratio of the
the effects determined by the large central density becomeentral pressure and bag constant for the maximum allow-
important. Hence for strange quark stars we propose the folble radiusR,,,, Of the static strange star. This can be ex-
lowing mass-radius relation: pressed as

C2

7 =551~ C(n)

(10

083001-3



K. S. CHENG AND T. HARKO PHYSICAL REVIEW D62 083001

L1 For values of> M static quark star models would be
) unstable to radial perturbations.
1
0.9 Ill. ROTATING EQUILIBRIUM STRANGE STAR
CONFIGURATIONS
© 0.8
0.7 Rotation is a basic property of stellar objects. The general
: relativistic theory of rapidly rotating objects is of great in-
0.6 trinsic interest because of its important applications in astro-
0.5 physics. An analytic vacuum solution to the Einstein gravi-
: tational field equations, the Kerr metri28], which is

0 5 10 15 20 25 30 asymptotically flat and has the general properties expected of
1 an exterior metric of a rotating object has been known for
many years. But up to now attempts to fit a perfect fluid
. . interior solution to this exterior metric have been unsuccess-
static strange star as a function of the paramefetpc/B. The ¢, ‘the stydy of the rotation of neutron or strange stars has
solid curve represents the values of the radius calculated with aneen done mainly using refined numerical methods. Since it
(14), while the points represent the values of the radius of the qU<51rII<S expected that the quark star should be associéted with
star obtained py numerically integrating the general relativisticLXMB,S (one of which has been confirmed to contain a mil-
structure equations. lisecond compact obje¢9,30) the study of the rotational

properties of strange stars can be used to constrain the equa-

stat _ N 3c? tion of state of the ultradense matter.
Rimax=0.569 906¢ 327BG’ (16) To describe the interior of the rotating quark star we adopt
the formalism of 18,31. Under the hypothesis of stationary,
and its numerical value foB=10"g/cn? is Ra,=1.1436 axial symmetry and purely azimuthal motion a coordinate
x10°cm. From the conditiordM/d»=0 it follows that  System {.r,d,¢) can be chosen so that inside the star the
7™ =22.41173 and the maximum mass of the static quarkine element takes the form
star is given by

FIG. 1. Variation of the radiu® (in units of 16 cm) of the

ds?=N2?c2dt?>— B?r? sir (d¢— N%cdt)?

v3 c?) ¥ —A2dr2+r2d6?
M75=0.297 8665 35 —1m E) (17 ! (18

whereN, N%, A, andB are functions ofr and 6 only. The

From Eq.(17) and for the chosen value of the bag con- fluid 3 velocity, as measured by the locally nonrotating ob-
stant, we obtain a value ol ,—=2.018M. These results Server, is given byU=Brsin6[(Q—N’)/N], where Q
are in good agreement with the previously propoed] =d¢/dtis the angular velocity of a fluid element moving in
maximum radius and mass values, given by Ej.[from the ¢ direction (physically it is the angular velocity as mea-

Eq. (2) and forB="56 MeV/fm® we obtainM ,,=2.03Vl,].  sured by an observer at spatial infinity18,31]. From the
point of view of our thermodynamic approach the most im-

portant result is the equation of the stationary motion, which

2 results from the Bianchi identities and which for a perfect
fluid reduces td31]
1.5
1 ap+av alr— FaQ 19
apad T DT (19
s 1
where we denoted =I"?(A2B/N)Ur siné, v=InN, andI"
0.5 =(1-U?%c? Y2 If Q=const(case called uniform or rigid
rotation and with the use of the bag equation of stélg
0 ] Eqg. (19) can be integrated to give the following fundamental
0 5 10 15 20 25 30 result describing the stationary equilibrium of a rotating
n strange star:

FIG. 2. Variation of the mas$ (in solar mass unijsof the
static strange star as a function of the parameter The solid
curve represents the values of the mass calculated with(15g,.
while the points represent the values of the mass of the strange star
obtained by numerically integrating the general relativistic structure =
equations.

1 u?
2V+§|n(€_B)_|n 1—?
center

1 u?
2v+=In(e—B)—In|1— — . (20
2 c
surface
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Equation(20) is the generalization to the case of rotation ations. But for the sake of simplicity in the present paper
of the well-known static Bianchi identitydv/dr=—2/(e¢ = we assume that the vacuum boundary of the rotating
+p)dp/dr [25]. strange star is described by the Kerr metfi28] in

The metric outside rotating stars has been computethe Boyer-Lindquist coordinates, which has the form
numerically for both neutron and quark star configur-[32,33:

2GMr/c? 212 r2+a?cog 6/c?
2t aZcof 0ic2) © r’+a%/c?>—2GMrlc

ds?= ( 1- 5 dr2—(r?+a?co¢ 6/c?)dr?— (r2+a?sir? 6/c?)d 6>

2GMra?sin® 6/¢? ) 2GMrasir? 6/c?

_ 2 21 A2\ o} _
(r2+a?/c?)sir? 6+ Tl ool aic? |99 27 a2 ood gcz CUtde (21

In this form the Kerr metric is manifestly axially symmet- M c? a2 7—1
ric and closely resembles the Schwarzschild solution in its R ~2G 1+ R )(1 cd T) (22
standard formM is the mass of the source and the parameter p

ais the ratio between the angular momentidiend the mass

of the rotating quark matter configuratioa= —J/M. The ) . )
negative sign in the definition @fshould be stressed: a body equatorial plan of the rotating quark star: at the center of the

rotating in a positive sense will have a positivand a nega- star and at the equato.r, respectlvely. Al the equatoR.
tive a [32]. =const andd= 7/2 (R, is the equatorial radius of the star

We apply Eq(20) at two points: at the center of the dense Rotation in general changes the distribution of the mass in
core and at the pole of the rotating quark star. At the cente e body a_nd the moment of Inertia Is a function of the_an—
of the star and along the rotation axis=0. We denotec® gular velocity(). But as a first approximation we shall define

rot . . . . _ 2 2
; it via the Newtonian expression=:MRg, then a
as the value of the metric tensor com ong@)tat the center . ) ST e

P = 2RZQ For a uniform rotation the rotation angle of the

of the star. At the polar poirt=0 andr =R,=const, where q h Q K
R, is the polar radius of the star. Therefore, in this point theSource and/or observer at the equatogis (2. Taking into
I|ne element is given by account these results we obtain the Kerr metric at the equator

of the rotating strange star in the form

Let us apply now Eq(20) for two points situated in the

q - 2GM 1 2412
%ol —2——2— c .

1+ e

aQ\?

C2

2GM
c’R,

R202

C2

c?dt?.
(23

1—

ds?,=

q

L a’
+
c’R2

From the definition of the angular momenturs 1€}, where

| is the moment of inertia of the star. Consequently, from Eq. With the use of Egqs(20) and (23) we obtain the follow-
(20) we obtain the following exact mass-polar radius relationing exact mass-equatorial radius relation for rotating strange
for strange stars: stars:

n—1 Rgm( 4R§QZ)

(2) =
1-C (ﬂyQ.Re) + 25 C2

M C2 rot
R, 2G 2 R207?\2
i

(24)

In Eq. (24) we have defined a new arbitrary function strange star we assume that the condition
ClR(7.Q,R)=C(7,Q,RI[(1-U%c?) 2 _r. We a?/c?RO=(4/25)’Ri0?*<1  holds. ~Therefore, from
denote the ratio of the polar radius and equatorial radhes  Eqs.(22) and(24) we obtain the oblateness of the star in the

oblateness of the stey e, e=R,/R,. For a rapidly rotating form

083001-5
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Ry
e= R, 3.5
-1 R20? 4 R302
2 n—1 e e 3
1-Cii(17,Q,Re) 3 2 1+ =2 .
= %o2.5
2 R20?%\? " 7—1 =
iz 1-Cii{(7,Q,Re) 3 2
(25 158
In the case of the static strange star we have proposed Eq 6 8 10 12 14 16
(11) as the mass-radius relation. We generalize this relation n

to the rotating case by assuming that the mass of the rotating
strange star is related to its equatorial radius and to the pa- FIG. 3. Mass-equatorial radius ratim units of 167 g/cm) of
rametere by rotating strange stars as a function of the central density of the star,
for values of the angular velocity in the range 7648 030s™.
Values obtained from the analytical expressi@olid curve are
compared with data obtained by Stergiouddsal. [22] numerically
integrating the gravitational field equatioffoints.
with Cﬁgg(n,Q,Re) being a function describing the com- ) ) . )
bined general relativistic effects due to rotation and variatiorPf the mass-equatorial ratio for rotating strange stars, given
of central density. In the static caf=R,, e=1, and Eq. by Eq.(24) and the values presented|i22], calculated for
(26) reduces to Eq11). Equationg22) and(24)—(26) give a the same values o_f the central density and angular velocity.
complete description of the mass and radius of the rotatinJhe mean of the dlfferen_ce between these two sets of values
strange star. is smaller than 2%. In Fig. 4 we present the oblateness pa-
The present approach, which is basically thermodynami¢ametere. The values obtained with the use of ER5) also
in its essence, cannot predict the exact form and the values ggree with the ones obtained by numerically integrating the
the functionsCﬂ))t, i=1,2,3. The only thing we can do is to grawta_tlonal field equations W|th|r_1 a mean error range of
assume, also based on the static case, some empirical forra&: Figure 5 represents the variation of the mass of the
for these functions and to check if the resulting formulas caf@Pidly rotating strange matter configuration in the two ap-
give a satisfactory description of rotating strange star conProaches.

figurations. Therefore, we propose the following approxi- rom Egs.(24) and (26) we obtain the following repre-
sentation of the equatorial radius of the rotating strange star

mate empirical expressions for these unknown parameters: . ) ;
as a function of the central density and angular velocity only:

1 R202
Nil-—= )—7 C(m), (27 R~C\/ 6(1—C(7)(n—1)13)

167B _,
M="73—RICI(7.0.Ro)e, (26)

Clot(7.Q,Re)~ 5

(30

647GBa(7) — 27Q%C(5)\(n—1)/3

RE_QZ 32
1-—| C(n), (28)

C(7,9,R) =

C(n,Q,R)=a(n), (29

rot

the best fitting with the numerical data is obtained for

20)2
)

CH(7,0,R) = 4.4634f€1— = )—3.4340(7;).

Here C(n) anda(#) are the functions corresponding to
the static case given by Eqgél2) and (13). We compare
our results obtained with the use of E¢82) and (24)—(29) 7 7.5 8 8.5 9 9.5 10
with the results provided by22] obtained by numerically
integrating the gravitational field equations for maximally |G, 4. Polar radius-equatorial radius ratio for rotating strange
rotating strange stars. The results[@2] are also in very  stars as a function of the angular velodity units of 16 s7%), for
good agreement with the results of the exact numerical modyalues of the central density in the range=[5,16.63. Values
els of rotating strange stars built of self-bounded quark matobtained from the analytical expressiesolid curve are compared
ter of [18], the difference between these two works beingwith data obtained by Stergioulas al.[22] numerically integrating
smaller than 1%. In Fig. 3 we have represented the variatiothe gravitational field equatior(goints.
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only by numerical methods and leads to results very similar

2.75 to those published in the previous studies.
The previous results can be also extended to study stellar
2.5 objects having strong gravitational fields but uniform and
2;25 slow rotation(slow as compared to the critical angular ve-
o locity Q.= (GM/R®)¥2 of the centrifugal breakypSlow ro-
2 tation has usually been considered by using the prescription
195 of [36]. Homogeneous neutron stars rotating at the secular
: instability limit =0.52)., which is relevant for pulsars,
1.5 are within this bound37]. For a slowly rotating body the
. exterior line element can be obtained by neglecting the terms
L T T T e T proportional to 172 in the Kerr metric[38]. Using the con-

o) dition of thermodynamic equilibrium and fitting to the results
) ] of numerical investigations or using some supplementary as-
FIG. 5. The mass of maximally rotating strange stars eXpressegumptions, high precision mass and radius formulas for

in soljr mass units, as a function of the angglar yelo(a:tyjnlts of slowly rotating strange stars can also be constructed.
10®s™Y), for values of the central density in the range

€[5,16.63. Values obtained from the analytical expression
(solid curveg are compared with data obtained by Stergio@tal.
[22] numerically integrating the gravitational field equations

IV. DISCUSSIONS AND FINAL REMARKS

! As an application of the mass and radius formulas ob-

(points. tained for the static strange stars we shall derive an explicit
. . . expression for the total energy of the quark star. The total

The equatorial radius can be expressed as a function of magfe gy (including the gravitational field contributiprinside

and radius of the static configuration in the form an equipotential surfac& can be defined, according to

Maal I M 902 2GMgq) |22 139,40/ to be
Re~ R 3 4G - ZR (31) 4
stat Rstat C " Rstat _ __¢©
E=Eu+Er=g_5¢& | [Klds, (33
S
The equatorial radius is defined only for values of the
angular velocity satisfying the condition whereé' is a Killing vector field of time translatiort, is its
5 value atS and[K] is the jump across the shell of the trace of
907 2GMgq) _ Mg the extrinsic curvature of, considered as embedded in the
4G C?Rgat Rﬁtat' 2—spacet=const.EM=fST!‘§' V—gdS and E; are the en-

ergy of the matter and of the gravitational field, respectively.
Therefore, we obtain for the maximum admissible angulafThis definition is manifestly coordinate invariant. For a static
velocity of the uniformly rotating strange star the relation strange star we obtain for the total enefgiso including the

gravitational contributionthe following expression:
2G MmaN) —-1/2  max 1/2
stat stat

Mg

2pmax
C*Rgtar

stat \ —3/2
5 )

max C5 3
(32 E:ESQM+EF:_W§ \ 32,8 (7
whereCqs=2/3\G[ (M) Y%10°]=7699 s ™.

10 km
1 9-1 —1 12

Equation(32) is very similar to the “empirical” formula, X a(p) 3 1-C(nm) 3 '
given by Eq.(4), obtained by{16,17 and further discussed (34)
by [23,24). The coefficient of proportionality in Eq32) is
independent of the equation of state of the dense matter. ThehereEgqy is the total energy of the quark matter.
concordance of the numerical value of the cons@gé ob- The variation of the total energy of the strange star as a
tained in this derivation and the values [df8,23 is very  function of the parameter, is represented in Fig. 6. The
good, the difference being smaller than 1%. Previous atminimum value of the total-matter plus gravitational-energy
tempts to derive the “empirical” relatior{4) in the slow of the strange matter configuration is obtained fa,
rotation limit, but without satisfactory results, are those of =5.681 71. The most stable static stellar configuration made
[20] and[34,35. of strange matter is given by quark stars with radRig,,

Substituting the radius given by E(O) into Eq.(26) we ~ =9.97179< 10° cm and with mas# = 0.96558/, cor-
obtain an approximate mass equation relating the mass oésponding to values of the central density of the order of
rotating strange star to its central density and to the angulgs.=5.681x B=5.681x 10'*g/cnt.
velocity only. But this equation has a very complicated alge- In the present paper we have obtained approximate for-
braic form and we shall not present it here. The investigatiormulas which give the dependence of the radius and mass of
of the maximum mass and radius of the rotating strange stahe static and rotating strange stars, built of self-bounded
can be done even by using the exact formulas obtained abowgiark matter described by the MIT bag model, on the central

Qmax: CQS( 1-
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tion of the moment of inertia of the star with the angular
velocity. The authors of Ref41] have presented a formula

—0.5 ] valid for a broad range of realistic equations of state of dense
matter expressing the moment of inertia in terms of stellar

-0.55 mass and radius. We have not used these results, obtained in
B the slow rotation limit because, at least in the case of strange

stars, the Newtonian expression of the moment of inertia also
leads to a quite accurate physical description of the rotating

~0.65 quark objects. As an application of the obtained formulas we
had given a derivation of the “empirical” formula relating
_O . 7 . . .
the maximum angular velocity to the mass and radius of the
0 5 10 i5 20 25 30 static quark star configuration. In the present paper we com-

n pared our results only with data obtained for maximally ro-
tating (so-called “Keplerian models)’so the given expres-
FIG. 6. Variation of the total energig (in the normalization sions could be not valid for stars rotating less rapidly. But a
c®(G)¥2/3/32rB=1) of the static strange quark star. similar analysis leads to high-precision mass and radius for-

: : , , mulas valid for a given angular velocity and central densit
density of the stellar object and of its angular velocity. In therange g g y y

static case this is made possible due to the constancy of the |, ye hresent analysis we restricted ourselves to the case

c_heml_cal poter_mal inside the star. The two unkno_w_n func-of strange stars with superdense quark surface, built exclu-
tions involved in the model must be obtained by fitting the

sively of strange quark mattébare strange starsin prin-

exact formulas with data obtained from the numerical 'nte'ciple, one should also consider models of strange stars cov-

gration of the structure equations of the quark star. The rared by an envelopgrus) consisting of nuclei immersed in

sulting expression can reproduce the radius and mass of t% electron ga$3]. The nuclei, forming a crystal lattice of

. - 0 , _
static strange star with an error smaller than 1%. .the crust, are separated from strange matter by a repulsive
_ Inthe rotating case, with the use of the hydrostatic equit,,jomp parrier. The maximum mass of the crust was origi-
librium condition that is the consequence of the B|anch|na”y estimated to be T¢M , [3], but more recent estimates
identities, we have also obtained mass-radius relations, d%’lve even a lower value I(?GM '[42] Within the version of
pending on three functions describing the effect of rotationSIOW rotation approximation ?he aﬁthors of RE20] have
on stratrrl]g? trs]tar ﬁtructgre. Tht;ets_e rglatl_?r?s ?re exact 'ml trEEhown that rapid rotation will increase the maximum mass of
senset_ a Bey ave been obtained wi tOL]f any fspetﬁa e strange star crust, but its effect on the mass and radius of
sumplions. By assuming Some appropriaté 1orms 1or th€ Ung, o g5 i sl expected to be small. Therefore, the formulas

gﬂgﬁg;&gcg??ﬁev‘;gtggxg g?r?rllgids?a(rj:?/\c/:rzligﬂogaﬁf rt:;g:j%%btained in the present paper are also applicable for strange
the values obtained by numerical integration of the gravita- ars with crust with a very good approximation. Hence they
. : . . give an accurate description of mass and radius of all stellar-
tional field equations with a mean error of around 3%. The, . quark-matter configurations
expressions of the unknown parameters have been chosew '
following a close analogy with the static case, whose rel-
evance for the study of rotating general relativistic configu-
rations seems to be more important than previously believed. This work is partially supported by a RGC grant from the

These functions also incorporate some other general relattHong Kong Government, K.S.C. was supported by a grant

istic effects not explicitly taken into account, like the varia- from the Croucher Foundation.
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