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We discuss a method to analyze data from interferometric gravitational wave detectors focusing on the
technique of hierarchical search to detect gravitational waves from inspiraling binaries. For this purpose, we
propose new coordinates to parametrize the template space. Using our new coordinates, we develop several
new techniques for a two step search, which would reduce the computation cost by a large amount. These
techniques become more important when we need to implemghttest as a detection criterion.

PACS numbeps): 04.80.Nn, 07.05.Kf, 07.60.Ly

I. INTRODUCTION In this paper, we propose a new parametrization of two

mass parameters of binaries. We show that the use of them

The interferometric gravitational wave detectors, such ashas various advantages in performing the matched filtering.
the Laser Interferometric Gravitational Wave ObservatoryThese parameters define two dimensional coordinates on the
(LIGO), VERGO, GEO 600, and TAMA 3001], are nowW  parameter space of templates. We can introduce a distance
under construction. Especially, TAMA 300 has already dong,enveen two templates by using the cross correlation be-
the first large scale data acquisition for three days in Septemyaen them. This distance defines a metric on the template

ber 1999[1]. The primary targets of these detectors are in-, ace4]. We shall show that the metric in terms of our new

- : S
spiraling binary neutron stars or black holes. These Compa‘f:f;rameters approximately becomes a flat Euclidean metric.

binaries can be produced as a consequence of normal Ste”‘?ﬁus it becomes very simple in these coordinates to deter-

evolution in binaries. It is also suggested that they might alsg ine the arid points corresponding to the bank of templates
have been produced in the early universe. The analysis of t grap . P 9 -mpiates.
e method in which to construct the new coordinates is

first 5.7 yr of photometry of 11.9 million stars in the Large ) X : .
Magellanic Cloud by the Massive Compact Halo ObjecteXpIa'ne,d, in the Succeed_'”g section. i i
(MACHO) Collaboration suggests that 0%, of halo con- ' Requmng that the grid in the template space is suffi-
sists of MACHO's with the most likely mass range betweenc'enﬂy fine so as not to lose real events, the numbe_r of t_em-
0.15M;, and 0.M, [2]. If these MACHO's are black holes, plates to be §garched tends to .be \(ery large. Especially, if we
it is reasonable to consider that they were produced in th&Wer the minimum mass of binaries to/be searchgg,,
early universe, and some of them are in binaries which coathe number of templates increasesrag’,’ [4]. When we
lesce due to the gravitational radiation reactiéh Thus, it search for gravitational waves from binary black hole
is expected that the observation of gravitational waves giveMIACHO’s, we need to choosm,;,, which is sufficiently
a definite answer to the question whether these MACHO’dower than the predicted mass of MACHOs0.5M, . For
consist of primordial black holes or not. example, let us consider that the grid is chosen so that the
To search for gravitational waves emitted by these binacorrelation between nearest neighboring templates becomes
ries, the technique of matched filtering is considered to b®.97. Then, in order to search for binaries composed of com-
the best method. In this method, detection of signals angact stars in the mass range betweerM);2and 1M, the
estimation of binary’s parameters are done by taking theecessary number of templates becomezx 10° for the
cross-correlation between observed data and predicted waV&@ AMA noise curve” [4]. The matched filtering with the
forms. For this purpose, we need to prepare theoreticallgampling rate of 3000 Hz requires a data processing speed
predicted wave forms, often callettmplates Generally, faster than 80 G FLOPSloating operations per seconfibr
such templates depend on binary’s parameters such as maise on-line analysis. Now, such a powerful computation en-
spin, coalescing time, phase, and so on. Since these paranironment may be available. However it is still very expen-
eters are continuous, what we really have to do is prepare sive. Furthermore, there are various factors in real data
template bank which consists of a finite number of represenanalysis which increase the computation cost. One of them is
tative templates. the non-Gaussian nature of the detector noise, which we
shall discuss in this paper. Hence, the computation cost can
be much larger than that estimated in an ideal situation.
*Email address: tanaka@yukawa.kyoto-u.ac.jp Thus, it is necessary to develop some methods to reduce the
"Email address: tagoshi@vega.ess.sci.osaka-u.ac.jp computation cost.
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The technique of hierarchical search is thought to be a We denote the parameters distinguishing different
promising way to realize such reduction in the computationtemplates byM*. They consist of the coalescence tiiipe
cost[5]. However, when we apply this technigue to real datathe total massn,(:=m;+m,), the mass ratioy(:=my;m,/
the non-Gaussian nature of the detector noise mentione®2 ), and the spin parameters. The templates corresponding

above causes problems. As we shall explain later, a simplg a given set oM* are represented in Fourier space by two
hierarchical search scheme does not work in the presence f?'fdependent templatds, andh, as
non-Gaussian noise. To solve this difficulty, we propose s

some new computation techniques supplementary to the Fi=T. cos¢y+hesin gy, 2.3
technique of hierarchical search. These new techniques de-
pend greatly on our choice of new mass parameters. where ¢ is the phase of wave, and
This paper is organized as follows. In Sec. Il we explain
the definition of our new coordinates which parametrize the EC(MM,f)zi'ﬁs(MM,f)=/\/f*7/6ei[l//e(f)+tcfl,
post-Newtonian templates. We also explain that the compu-
tation cost in the template generation process can be reduced for 0<f<fpa(M#),
by using our new coordinates. In Sec. Ill we discuss a diffi- _ _
culty in the hierarchical search, which has not been pointed h.(M#,f)=hg(M#,f)=0,

out in the literature, and explain a method to overcome this for =1 M~ 24

difficulty. Section IV is devoted to summary and discussion. or f>TmaM*). (2.4
Thrqughout this paper, we use units su_ch that Newton $Here \is a normalization constant, and

gravitational constant and the speed of light are equal to

unity. The Fourier transform of a functidi(t) is denoted by

R(f), ie., iﬁa(f):Ei 6 (M#)¢(f), (2.5

() o= f:dt it (p), (1p With

II. NEW COORDINATES FOR TEMPLATE SPACE

A. The noise spectrum and templates , 1 (3715 1
- - 7= 384, | 8a 227 (TMed)
We assume that the time-sequential data of the detector U
output s(t) consists of a signal plus noisg(t). We also
assume that the wave form of the signal is predicted theo- B= ((113_ 867)x
retically with sufficiently good accuracy. Hence the signal is 128y s
supposed to be identical to one of the templates except for _
the normalization of its amplitude. + 113y Mz M —4877)
To characterize the detector noise, we define one-sided 2 My
power spectrum densitg,(f) by X (M)~ 23
tot ’
Sn(f)=2f (n(t)n(t+7))e?" dr, (2.1 , 3 15293365+ 27145
- ~ 128y| 508032 504 "
where( ) represents the operation of taking the statistical 3085 275
average. For the purpose of the present paper, the overall + 7772+ 30+ Tr;)(;@—xg)
amplitude ofS, is irrelevant. We adopt the “TAMA phase
II” noise spectrum as a model, which is given [ X (mMyey) ~ Y3,
o - fo]? 7 (38645
_ 5_
SiItD=|10am *|201H2 +l+[250Hz : —128,7( 550 +5’7>*

L(H=175 (=11 y(f)=f"28

We adopt the templates calculated by using the post-
Newtonian approximation of general relativity]. We use a L(B)y=f"  (f)=Inf. (2.6)
simplified version of the post-Newtonian templates in which
the phase evolution is calculated to 2.5 post-Newtonian or¥We have quoted the expression for the case in which the spin
der, but the amplitude evolution contains only the lowestvector of each star is aligned or anti-aligned with the axis of
Newtonian quadrupole contribution. We also use the stationthe orbital angular momentum. The spin paramejgrand
ary phase approximation, whose validity has already beel, are related to the angular momenta of constituent Sars
confirmed in Ref[8]. andS, by
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1/S, S, The correlation between two nearby templates with differ-
Xs= 5|2+ 2] (2.7 ent#' is evaluated as
1 2
~ ~ fmax df
1/S, S, (hc(e’+A0'),hc(0'))=2N2f 7 f=7Bcog Ay(f)
Xa— E 2 — 2|, (28) 0 Sn( )
my m;

+ At f], (2.12
where a plugminus sign is assigned to the angular momen-
tum when the spin is alignethnti-aligned with the orbital ~ WhereA(f) =g, 2 o(f) — t4(f). In the same manner, we
angular momentum. In E@2.6), we have neglected the spin have
effects at 2.5 PN order. Negative frequency components are

given by the reality condition oli(t) as (he( 0’ +A0’),F15(6’))=2N2Jfmaxsd(ff) £ 7Bsim Ay F)
0 n
h(=f)=h(t)*, 2.9 +ALf]. (2.13

‘évgtzre * means the operation of taking the complex Conju'Here it should be emphasized that these correlations depend
. . . S on #’ only throughAé’.

When we consider rather massive binarigs,, must be . S /
chosen at a frequency below which the post-Newtonian tem- Let us define new functions’(A6") andG(A ) by
plates are valid. On the other hand, when we consider less / NVl TR0 A0 P02
massive binaries, the maximum frequenty,, is deter- G'(A07)={lhe(0"+A0"),he(67)]
mined by the noise curve alone. In this case, we need to +[Re(0+A0") R(0)]AY2 (2.14
choosef ,ax such that the loss of the signal-to-noise due to
the discreteness of the time stéyt,=1/(2f 5y, is negligi-  and G(A 6) ::maxmcg’(A 0"), respectively. This functior
bly small. is known as thamatch We expand;’ (A6') with respect to

A6 as
B. Template space in matched filtering and new parameters

Here, we define the inner product between two real func-  g/(A¢')=|1— ENZ[[f_7/3(A Po(£)+AtH?]]

tionsa(t) andb(t) as[9] 2

-~ o~ 1
» a(f)b*(f ZNATETR 24 ...
@b=[ ot 219 SN A1)+ AP+,
— Sy(f])
(2.19
In the matched filtering, we define the filtered signal-to- h introduced tati
noise ratio after maximization ovef, as where we introduced a notation
fmax df
p=\(s,hc)*+(s,hy)?. (2.11) [[g(f)]]==f0 m[g(ng*(f)]- (2.1
\iv(ehchr?c))s:elthe normalization constavitto satisfy ,h) We define a matri >G;w by
sills .
Since the best fit value for the parameters is not known in / "N_ , / v
G'(A9')=1-G,,A0"*AO" "+ - . (2.17

advance, we must filter the data through many templates at
different points in the parameter space. In order to determingy, yefinition, this matrixG/,, is a constant matrix indepen-
representative points in the parameter space, we have nt of ', and it is determined once the noise spectrum is
glne?t\(lav Cv?t\;]v r(;]i?fgr]e;hter;]/:gse p?;r:nzgfeur(s:egow l:ﬁéngbgsiegnr;esspecified. In order to take the maximum@f with respect to
H !

Here, we adopt geometrical description of the template spac%tc’ we projectG,,, on to the space orthogonal toas
[4], and investigate which coordinates we should choose to Vo~

I o : o G/,G/,
simplify the strategy for determining representative points in G.=G' — Ly (2.18
the parameter space. S T

In the following, we assume that the maximum frequency

fmaxis determined by the noise curve alone independently oThe matrixG;; can be considered as a five dimensional met-
the template parameters. The effect of parameter dependentie analogous to the two dimensional one introduced in Ref.
of fmax is discussed at the end of this section. Althoufih [4].
introduced above are functions &#, we regard them as Next, we orthonormaliz&;; as

independent variables for a while. Hence, we parametrize

templates likeh.(6'), where we definedd’ as the set of
parameterst(, 6) settingd,=t. and /=6, fori=1,... 5.

5
Gij= 21 NP4 PY;, (219
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where\ , are the eigenvalues arRl*; is an orthogonal ma-
trix composed of the eigenvectors Gf; . Rotating the axis
further by using another orthogonal mat@¢,, we define
new coordinates of the five dimensional template space by

5 5
XAi= 21 .Zl QA APy (A=1,...,5. (2.20

Let us denote our five dimensional template spade.ds
this paper, we simply assume that we can neglect the effect

of spins of binary stargthough further study is necessary <025
about the effects of spins on detection of signal and on the 0 500 1000 1500 2000 2500 3000 3500
estimation of binary parametef$0]). Therefore, the actual X1

template space to be searched becomes a two dimensional
hypersurfaceSin I'. Since#' are functions ofm,,; and 5, we

find that Eq.(2.20 defines a map from the actual template
space parametrized byn{,;,7) to I'. Then, this map natu-
rally specifiesS.

One of the most important points that we wish to empha-
size in this paper is that the geometry of this two dimensional
surfaceS becomes almost flat. Because of this fact, we can
chooseQ”, so that thex! andx? axes lie approximately on
S Taking into account the extension of the area to be
searched or§, we chooseQ”, by solving the following set
of equations,

0 500 1000 1500 2000 2500 3000 3500
X(Mpin s Minin) = X(Mmax, Myay) = (@11,0,0,0,0, ) X1

X(Mmin, Mmin) = X(Mmin, Mypax) = (a21,@22,0,0,0, X2 240+
(2.2) f

where mp,in, and my, 5, are the minimum and the maximum
mass of templates, respectively. Settimg,;,=0.2M, and
Mmax=3Mg , the explicit formulas become

x1=0.0000784188'+0.00118756%+ 0.00397916°
+0.00988564*—0.142671°,

x?=1.38871x 10" 76*—0.00019371%%— 0.0010248°

—0.00356328%+ 0.067332%5. 0 500 1000 1500 %&00 2500 3000 3500

(©

The directions of the other axes are not important here.

(Hence, we do not specify how to choose them expligitly. G- 1. Contour plots of the value 6 x, (b) x*, and(c) x* as
By solving X:=xX(Myy(, 7) andX2=X2(mmt 7) for My, functions of X! and X2. The thick curve in each plot shows the

and 7, we obtain the inverse funCtiOI’mtot(Xl,Xz) and boundary of the search area correspondingnig,=0.2M, and

2(X%,X?), and we can us&® and X2 as parameters for Mma—3Mo-

the template space instead of,,; and ». Furthermore, 5 i i
we can define a map fromX¢,X?) to I' by x* 9yi= Gﬁﬁ
= XA (Mol (XE,X2), (XL, X?)) for A=3, 4, and 5. M T ax! ax?

In the following, we verify that the two dimensional hy-

persurfacesis almost flat. First we check that the parameters > > axA aM#\ 2 [ axB aM”

x3, x* andx® are approximately zero on any points 8rTo = 2 5ABZ PR Z -5 |

show this, we plot X3,x* x%) as functions ofX* and X? in AB=L T a=1 A gM#E gXT Jv=1 M X

Fig. 1. These figures show that the surf&&es almost flat (1,9=1,2. (2.22

and (X*,X?) can be regarded as Cartesian coordinate$ on ' ’

in a good approximation. This metric turns out to be almost an identity matrix. The
The metric associated with the new coordinates is definedeviation from a unit matrix is limited a$g;;—1|<3

by X 1077, |91 <1074, and|gy,— 1|<107°.
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_ These facts suggest the usefulnes; of the new Coord'”at%rrelations(g(f),F(f)) for severak 10000 templates with
First of all, the flatness of the metric allows us to use ayitferent mass parametefd1].> The computation cost to
uniform square grid to generate the template bank. In addigya1yate such a large number of correlations is very expen-
tion, there are se?’vere}ll advar;tages. As long as we considergye One promising idea to reduce the computation cost is
small area inl’, x*, x", andx®, they can be treated as COn- \he technique of hierarchical search. The basic idea of hier-
stants. We can make use of this fact to develop an efficient;chical search is as follows. At the first step, we examine
algorithm to generate templates in frequency domain as Wge correlations with a smaller number of templates located
shall see in the succeeding subsection. more sparsely. In order not to lose the candidates of events,
we set a sufficiently low threshold of the filtered signal-to-
noisep at the first step. If a set of paramete¥&' (X2, andt,)

We can expres§' as linear functions of” by solving Eq.  is selected as a candidate, we examine the correlations be-
(2.20 inversely. Thus, the phase functiof,(f) is also a tween the data and the neighboring templates by using a finer
linear function of xA. Since the effect of variation of mesh.

(x3,x4,x5) within a small area is negligibly small, the differ- A simple scheme for two step search has been already
ence of the phase function discussed in Ref5]. However, there seems to be a problem
in realizing the basic idea mentioned above. It has been
Ay(f)=thxaraxtxerax))(F) =¥ xz(f) (229 pointed out that the distribution of the amplitude of the de-
. . 2 tector noise will not follow the simple stationary Gaussian
is almost |n<_jepende'rlt¢%);<(1,x ). Therefore, we carli preg)are statistic§ 12]. The nonstationary and non-Gaussian nature of
ihe phase difference for various values of4 X% AX%) the detector noise will produce a lot of events with large
n advance. Theh we can. c-alculate the tem_plat(?/alue ofp. Namely, there seems to exist a non-Gaussian tail
hixt+axt x2+ax2)(f) just by multiplying the corresponding part in the distribution of. In order to identify real events,

C. An efficient algorithm to generate templates

phase difference by the template &'(X?) as we need to keep the expected number of fake events small by
~ ~ . hoosing the threshold op as being sufficiently large.
_ Au(f) ¢
hoxt axtxz+ax?) (F) =hexa xo) ()€ . (229 Hence, the existence of the non-Gaussian tail requires a

Hence, once we calculate one template, we do not have {grger value of the thigshold of Th.is leads to a significant
call subroutines of the sinusoidal functions to generatdoSs Of detector sensitivity. To avoid such a loss, it was pro-

neighboring templates of it. Since the computation of sinu{0sed to use &’ test as a supplementary criterion.
soidal functions is slow in general, this algorithm signifi-  Here,x” is defined as follows. First we divide each tem-
cantly reduces the computation cost to generate templatesPlate into mutual independentpieces,

Before closing this section, we remark on the choice of - =(1) =2) =)
the maximum frequencf,, .. So far, we have been neglect- hie,s(F)=hicly(H) +hicg(f) +- - - +hily(f), (3.2)
ing the fact that, in general, the maximum frequerigy,
depends on the template parameters. When we consider t#d we calculate
naries with large masses, the frequency at the last stable
circular orbit becomes lower than the maximum frequency,
which is determined by the shape of the noise power spec-.
trum. Since our post-Newtonian templates are no IongeiNIth
valid beyond the last stable orbit, the maximum frequency
should be chosen below the corresponding frequency. Even
in that case, we think that our new coordinates are still usefujl_h 2 is defined b
due to the following reason: Thenatch determined with enx™ IS defined by
larger f,ax IS likely to underestimate the correct value. h
Hence, the grid spacing determined by using our new coor- x2= 2 (
dinates tends to be closer than that determined by more ac- =1
curate estimation. Therefore, to adopt consfgnt, in deter-
mining the template bank would be safe in the sense that it iThis quantity must satisfy the/? statistics with 2 —2
less likely to miss detectable events. Although the number oflegrees of freedom and must be independent pof
templates increases with the choice of consfant,, such =\/E(C)ng, as long as the detector noise is Gaussian.
effect is very small. This is because the number of templategjowever, as reported in Ref12], events with largey? in
with relatively large mass is not very large. Recall that thereality occur more often than in the case of Gaussian noise.
number of templates are dominated by those with small masgnere is a strong tendency that events with laygenave a
M~ Mpin [11]. large value ofp on average. Thus, by changing the threshold

2g=(shly), Zdg=0f)x(hes), (3.2
U(Zi)=(ﬁ?3> ,EEL)))=(FE2) FIEL))) (3.3

2~ 2)*+ (2~ 29)°
2

(i)

(3.9

IIl. NEW FAST ALGORITHM FOR HIERARCHICAL

SEARCH ) ) ) )
1Iif we take into account the effect of spins of binary stars, this

If we try to search gravitational waves from coalescingnumber will increase about three times or more. We will discuss
binaries with massM=0.2M,, we have to calculate the this issue in a separate pagpéo].
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of p depending on the value qf, we can reduce the number TABLE 1. Tables of maximum correlations for various choices
of fake events without any significant loss of detector sensiof AX (a) with 5000 Hz sampling and (b) with 1250 Hz sampling.
tivity. Hence, it will be necessary to implement tiyé test

even in the simple one step search case. However, if we tr —X!

to evaluate y?, the computation cost becomes more @ 0.0 05 1.0 15 20

expensive. Thus, it is strongly desired to implement an ef- 20 | 0774 0760 0757 0746  0.717

ficient algorithm to reduce the computation cost. - 15 | 088 080 0777 0765 0733
Now, we discuss a method of two step hierarchical searc 10 | 0889 0857 0804 0771 0733

taklng into account the presence of non-Gausglan noise. fy2 05 | 0947 0918 0821 0742  0.682

the first step search, a large number of candidates for thT 00 | 1000 0914 0765 0644 0592

second step search with largevalue will appear due to the
non-Gaussianity of noise. As is mentioned above, in orde
not to lose the detector sensitivity, it is desired to introduce
the x? test, and to keep the threshold pfsmall. Further-
more, by introducing thee? test at the first step, we can
reduce the number of candidates for the second step searc

—0.5 0.947 0.886 0.774 0.653 0.553
-1.0 0.889 0.865 0.791 0.692 0.589
-15 0.828 0.831 0.794 0.724 0.637
—-2.0 0.774 0.787 0.777 0.737 0.674

Thus, the)(2 test is also effective to reduce the computation (b) 0.0 0.5 10 LS 20

cost for the second step. However, tfetest at the first step 20 | 0781 0759 0770 0747  0.735
increases the computation cost for the first step. This increas 15 0.838 0817 0.797 0.766 0.739
in the computatio_n cost can be very large in the presence C 10 | 0004 0873 0812 0764 0710
non-Gaussian noise because the numbgr of fake events whiy2 05 | 0961 0907 0809 0728 0673
exceed the threshold pfat the first step is much larger than . 00 | 0984 0911 0791 0663  0.608
that expected in the case of Gaussian noise. Then, we mu —05 | 0961 0893 0777 0666 0565

compute a lot ofy? values at the first step. When we take
into account these effects, the advantage of the two ste
search, which is estimated to be about factor 30 in compari
son with the simple one step search in the case of Gaussi
noise[5], it will be significantly reduced or it will be totally

lost. Hence, in order to make use of the potential advantag _ .
of the two step search, we need other ideas to reduce tF ax= 2500 Hz in both cases of Tablé) and Table b). On

tai ¢ further. H it id e other hand, the search template is normalized Wwith
fﬁ?ﬁ;g 10N costurther. Here we present tWo NEW 1deas oL 5500 Hz in the case of Tabléa) and withf ,,,,=625Hz in
: the case of Table(b). We find that the difference of the

The first one is very simple. At the first step search, W€ alues ofmatchbetween these two cases are very small es-

can reduce the sampling rate of the data. The low samplin ecially for largel AX|. Therefore, detection probability for a
rate results in the reduction in the filtered signal-to-noise. . L :
ixed threshold op is not significantly lost even if we adopt

mainly due to the mismatch ity,. However such reduction . 4 .
rather small sampling rate at the first step search, at which
can be compensated by a very small change of the threshoﬁge adopt a relatively large spacing for the template bank
of p. In the case of the “TAMA noise curve,” we can allow P y 1arge sp 9 P '

the sampling rate as low as about 1000 Hz. The values o-’f—he feduction in the sampling ratg directly reduces 'the com-
matchbetween two templates with variodsx alre shown in putation cost. The usual FFT routine requires effective float-

. ing point operations proportional te N In N to compute the
$ﬁgleS§2éWh5; t;lt\:gsa?grptf%goeg ';';ris I?Ee Sale:renrjsl;]no%vrr]atﬁ]Fourier transform of the data with length Furthermore, for
q piing ar most of FFT routines and computer environments, the effec-

Table Kb). Here, one of the templates is considered as

) : . . ive FLOPS value for FFT is larger for smallsk Thus, the
normalized signal without noise, and the other as a searc

. : . ! _ . reduction factor for the computation cost due to adopting a
template. The signal is normalized to satisfyf)=1 with smaller FFT length is much larger than one expects naively.

The second idea is more important. What we need to
evaluate is the correlation
2If we try to evaluatey? naively, the computation cost necessary

-1.0 0.904 0.869 0.803 0.699 0.598
-15 0.838 0.841 0.809 0.732 0.646
—-2.0 0.781 0.803 0.787 0.750 0.681

for the second step search simply becomesnes larger. Sinca Z:(E,Ns)

will be chosen as bein@(10), the increase of the computation cost _ _

is unacceptable. If one calculates the valueg®fonly for a few fmax  hy(f)s*(f)

varieties of coalescence time at which a large valuepofs = f de

achieved, the computation cost fef might be kept small. In this ~ max

case, we can use the direct summation instead of fast Fourier trans- N "é*(f.)ei Px(f))

form (FFT) to calculate the values of?. But, the question is for ~NATY, {1—1 2mifjte (3.5
how many varieties of coalescence time we must calculate the val- j=1 fl-7/65n(fl-)

ues ofy? not to lose real events. This is not a simple question. If ) ] ) .
this number is sufficiently small, this naive strategy will work in the Where we take into account that in reality we deal with a
case of one step search. discrete time sequence of data with lendthAf is given by
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the sampling rate divided b, and f;:=Af(j —N/2). The TABLE Il. Tables of maximum correlations for various choices
correlations for various values of are calculated simulta- of mandAt,=t,—t{ with (8 AX=(0,0), (b)AX=(1,0), and(c)
neously by taking the Fourier transform of the array definedAX=(0,2).

by the quantity inside the square brackets in the last line of
the above equation. This scheme is efficient enough when we @

do not have any guess abdyut However, when we perform Atc(seg m=4096 m=20438 m=1028
the second step search we have a good estimate af

. - Lo . 0.0000 1.000 1.000 1.000
which the maximum correlation is ex hiev
ch the .a mu co_ elation is expected to be achie ed0.0128 1.000 0.999 0.994
We dengte it byt.. In th|§ case, we need to evalua@enly g jo4g 0.999 0.994 0.975
for t. which are close td.. Also for templates, we have a
good guess for the mass parametéts, Thus, we need to (b)
calculate the correlatiod only for a cluster of the templates
neighboring toX. 0.0000 0.765 0.765 0.765
Oncet. and X are specified, we can rewrite the above 0-0128 0.764 0.763 0.760
expression in a very suggestive form as 0.0248 0.763 0.760 0.746

N/m—1 m(k+1/2)

Z~NAf D > A% B, (3.6
k=1 j=m(k—1/2)+1

(©

0.0000 0.774 0.774 0.774
with 0.0128 0.774 0.773 0.769
0.0248 0.773 0.769 0.755

o (fj)ei U (f)) +2mif i

J £7%8(f))
_ _ second step search. Since the agyis independent oA X,
B;=e'Avlf) 2midle, (3.8)  the quantity inside the square brackets in 8410 for vari-
- ous values ofAX is simply given byA, times the precalcu-

Here Ay(f)):=x(f)) — () and Ate:=t;—t.. We have |ateq factore’®“md. This fact manifestly leads to an addi-
also introducedn as a certalg integer which dividé&é As  tional reduction in the computation cost.
long as bothX—X| and|t.—t.| are sufficiently small, the The same technique can be used to evalyaré.e., Z(,
factor B is a slowly changing function of frequency. Hence, just by replacing the arrag, with the same quantities mul-
unlessm is not large,B can be moved outside the secondtiplied by an appropriate window function.
summation in Eq(3.6). Then, introducing

: 3.7

i IV. CONCLUSION
j=m(k=1/2)+1 We discussed a method of analyzing data from interfero-
. metric gravitational wave detectors to detect gravitational
we obtain T L

waves from inspiraling compact binaries based on the tech-

N/m-1 nigue of matched filtering. We described a brief sketch of

Z~NAf E AL X Bk several new techniques which would be useful in hierarchical

k=1 search of gravitational waves.

N/m—1 First, we proposed new parameters which label templates

= NVAf 2 [AlieiAw(fmk)]XeZTrif{(Atc, (3.10 of gravitational waves from inspiraling bingries. These new
k=1 parameters are chosen so that the metric on the template
space becomes almost constant. We found that the template
wheref, :=mAf(k—N/2m). The expression in the last line space can be well approximated by two dimensional flat Eu-
can be evaluated by applying the FFT routine to the arraglidean metric in the case of the “TAMA phase II” noise
defined by the quantity inside the square brackets. The cospectrum. Thus, by using these parameters as coordinates for
relation between two templates for various valuedsfand the template space, the problem of the template placement
At. are calculated by using this method. The results ardyecomes very simple. We can use a simple uniform square
shown in Table 1l forN/m=1024, 2048, and 4096. We find grid to specify the grid points for the bank of templates.
that N/m can be taken as small as 2048 without significant~urthermore, we found that, by using new parameters, we
loss in accuracy. can introduce an efficient method to generate templates in
Furthermore, as an advantage of our new coordinates, tifeequency domain. The reduction in the computation cost is
factor e 2%('md can be well approximated by the one ob- achieved by using the property of our new coordinates so
tained by settingox3=Ax*=Ax®=0. It means that this fac- that one template can be translated into another with differ-
tor is almost independent of the values &f(X?). Thus, we ent mass parameters by just multiplying an array of precal-
have to calculate this factor only once at the beginning of theulated coefficients. Therefore, we can generate a set of tem-
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plates from one template avoiding calculation of the Based on the new techniques discussed in this paper, we
sinusoidal functions. have developed a hierarchical search code to analyze data
Next, we discussed a method of two-step hierarchicafrom the TAMA300 detector. The details of this code and the
search. Due to the nonstationary and non-Gaussian nature gfsult of the analysis of the first TAMA300 data will be
the detector noise, we will have to introducecatest when presented elsewhere.
we analyze real data. When we take into account this fact, it
becomes very difficult to obtain a large reduction in the com-
putation cost by applying naive two-step hierarchical search
strategy. To solve this difficulty, we proposed two new tech-
niques to reduce the computation cost in the two step search. T.T. thanks B. Allen and A. Wiseman for their useful
One is to use a lower sampling rate for the first step searctsuggestions and encouragements given during his stay in
By using this technique, we can reduce the length of FFT byMilwaukee at the beginning of this study. We thank P.
factor two or four keeping the loss of correlation within an Brady, N. Kanda, and M. Sasaki for discussion. We also
acceptable level. The second technique, which is more imthank K. Nakahira for her technical advice in the develop-
portant, makes use of the fact that a good guess for the coaent of our computer code. This work is supported in part
lescence time and the mass parameters has been obtainedbgsMonbusho Grant-in-Aid 11740150 and by Grant-in-Aid
a result of the first step search at the time when we perfornfor Creative Basic Research 09NP0801. Some of the numeri-
the second step search. We found that the length of FFT fazal calculations were done by using the gravitational wave
the second step search can be reduced down to about 204&ata analysis library GRASPL3].
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