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Use of new coordinates for the template space in a hierarchical search for gravitational waves
from inspiraling binaries
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We discuss a method to analyze data from interferometric gravitational wave detectors focusing on the
technique of hierarchical search to detect gravitational waves from inspiraling binaries. For this purpose, we
propose new coordinates to parametrize the template space. Using our new coordinates, we develop several
new techniques for a two step search, which would reduce the computation cost by a large amount. These
techniques become more important when we need to implement ax2 test as a detection criterion.

PACS number~s!: 04.80.Nn, 07.05.Kf, 07.60.Ly
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I. INTRODUCTION

The interferometric gravitational wave detectors, such
the Laser Interferometric Gravitational Wave Observat
~LIGO!, VERGO, GEO 600, and TAMA 300@1#, are now
under construction. Especially, TAMA 300 has already do
the first large scale data acquisition for three days in Sept
ber 1999@1#. The primary targets of these detectors are
spiraling binary neutron stars or black holes. These comp
binaries can be produced as a consequence of normal s
evolution in binaries. It is also suggested that they might a
have been produced in the early universe. The analysis o
first 5.7 yr of photometry of 11.9 million stars in the Larg
Magellanic Cloud by the Massive Compact Halo Obje
~MACHO! Collaboration suggests that 0.220.12

10.3 of halo con-
sists of MACHO’s with the most likely mass range betwe
0.15M ( and 0.9M ( @2#. If these MACHO’s are black holes
it is reasonable to consider that they were produced in
early universe, and some of them are in binaries which c
lesce due to the gravitational radiation reaction@3#. Thus, it
is expected that the observation of gravitational waves g
a definite answer to the question whether these MACH
consist of primordial black holes or not.

To search for gravitational waves emitted by these bi
ries, the technique of matched filtering is considered to
the best method. In this method, detection of signals
estimation of binary’s parameters are done by taking
cross-correlation between observed data and predicted w
forms. For this purpose, we need to prepare theoretic
predicted wave forms, often calledtemplates. Generally,
such templates depend on binary’s parameters such as m
spin, coalescing time, phase, and so on. Since these pa
eters are continuous, what we really have to do is prepa
template bank which consists of a finite number of repres
tative templates.

*Email address: tanaka@yukawa.kyoto-u.ac.jp
†Email address: tagoshi@vega.ess.sci.osaka-u.ac.jp
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In this paper, we propose a new parametrization of t
mass parameters of binaries. We show that the use of t
has various advantages in performing the matched filter
These parameters define two dimensional coordinates on
parameter space of templates. We can introduce a dist
between two templates by using the cross correlation
tween them. This distance defines a metric on the temp
space@4#. We shall show that the metric in terms of our ne
parameters approximately becomes a flat Euclidean me
Thus, it becomes very simple in these coordinates to de
mine the grid points corresponding to the bank of templa
The method in which to construct the new coordinates
explained in the succeeding section.

Requiring that the grid in the template space is su
ciently fine so as not to lose real events, the number of te
plates to be searched tends to be very large. Especially, i
lower the minimum mass of binaries to be searchedmmin ,
the number of templates increases asmmin

28/3 @4#. When we
search for gravitational waves from binary black ho
MACHO’s, we need to choosemmin , which is sufficiently
lower than the predicted mass of MACHO’s;0.5M ( . For
example, let us consider that the grid is chosen so that
correlation between nearest neighboring templates beco
0.97. Then, in order to search for binaries composed of co
pact stars in the mass range between 0.2M ( and 10M ( , the
necessary number of templates becomes;23105 for the
‘‘TAMA noise curve’’ @4#. The matched filtering with the
sampling rate of 3000 Hz requires a data processing sp
faster than 80 G FLOPS~floating operations per second! for
the on-line analysis. Now, such a powerful computation
vironment may be available. However it is still very expe
sive. Furthermore, there are various factors in real d
analysis which increase the computation cost. One of them
the non-Gaussian nature of the detector noise, which
shall discuss in this paper. Hence, the computation cost
be much larger than that estimated in an ideal situati
Thus, it is necessary to develop some methods to reduce
computation cost.
©2000 The American Physical Society01-1
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The technique of hierarchical search is thought to b
promising way to realize such reduction in the computat
cost@5#. However, when we apply this technique to real da
the non-Gaussian nature of the detector noise mentio
above causes problems. As we shall explain later, a sim
hierarchical search scheme does not work in the presenc
non-Gaussian noise. To solve this difficulty, we propo
some new computation techniques supplementary to
technique of hierarchical search. These new techniques
pend greatly on our choice of new mass parameters.

This paper is organized as follows. In Sec. II we expla
the definition of our new coordinates which parametrize
post-Newtonian templates. We also explain that the com
tation cost in the template generation process can be red
by using our new coordinates. In Sec. III we discuss a d
culty in the hierarchical search, which has not been poin
out in the literature, and explain a method to overcome
difficulty. Section IV is devoted to summary and discussio

Throughout this paper, we use units such that Newto
gravitational constant and the speed of light are equa
unity. The Fourier transform of a functionh(t) is denoted by
h̃( f ), i.e.,

h̃~ f !ªE
2`

`

dt e2p i f th~ t !. ~1.1!

II. NEW COORDINATES FOR TEMPLATE SPACE

A. The noise spectrum and templates

We assume that the time-sequential data of the dete
output s(t) consists of a signal plus noisen(t). We also
assume that the wave form of the signal is predicted th
retically with sufficiently good accuracy. Hence the signa
supposed to be identical to one of the templates excep
the normalization of its amplitude.

To characterize the detector noise, we define one-s
power spectrum densitySn( f ) by

Sn~ f !52E
2`

`

^n~ t !n~ t1t!&e2p i f tdt, ~2.1!

where ^ & represents the operation of taking the statisti
average. For the purpose of the present paper, the ov
amplitude ofSn is irrelevant. We adopt the ‘‘TAMA phase
II’’ noise spectrum as a model, which is given by@6#

Sn~ u f u!5F f

104 HzG
225

1F f

201 HzG
24

111F f

250 HzG
2

.

~2.2!

We adopt the templates calculated by using the p
Newtonian approximation of general relativity@7#. We use a
simplified version of the post-Newtonian templates in wh
the phase evolution is calculated to 2.5 post-Newtonian
der, but the amplitude evolution contains only the low
Newtonian quadrupole contribution. We also use the stat
ary phase approximation, whose validity has already b
confirmed in Ref.@8#.
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We denote the parameters distinguishing differe
templates byMm. They consist of the coalescence timetc ,
the total massmtot(ªm11m2), the mass ratioh(ªm1m2 /
mtot

2 ), and the spin parameters. The templates correspon
to a given set ofMm are represented in Fourier space by tw
independent templatesh̃c and h̃s as

h̃5h̃c cosf01h̃s sinf0 , ~2.3!

wheref0 is the phase of wave, and

h̃c~Mm, f !5 i h̃s~Mm, f !5Nf 27/6ei [cu( f )1tcf ] ,

for 0, f < f max~Mm!,

h̃c~Mm, f !5h̃s~Mm, f !50,

for f . f max~Mm!. ~2.4!

HereN is a normalization constant, and

cu~ f !5(
i

u i~Mm!z i~ f !, ~2.5!

with

u15
3

128h
~pmtot!

25/3,

u25
1

384h S 3715

84
155h D ~pmtot!

21,

u35
1

128h S ~113286h!xs

1113xa

m22m1

mtot
248p D

3~pmtot!
22/3,

u45
3

128h F15293365

508032
1

27145

504
h

1
3085

72
h21S 301

275

4
h D ~xs

22xa
2!G

3~pmtot!
21/3,

u55
p

128h S 38645

252
15h D ,

z1~ f !5 f 25/3, z2~ f !5 f 21, z3~ f !5 f 22/3,

z4~ f !5 f 21/3, z5~ f !5 ln f . ~2.6!

We have quoted the expression for the case in which the
vector of each star is aligned or anti-aligned with the axis
the orbital angular momentum. The spin parametersxs and
xa are related to the angular momenta of constituent starS1
andS2 by
1-2
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xs5
1

2 S S1

m1
2 1

S2

m2
2D , ~2.7!

xa5
1

2 S S1

m1
2 2

S2

m2
2D , ~2.8!

where a plus~minus! sign is assigned to the angular mome
tum when the spin is aligned~anti-aligned! with the orbital
angular momentum. In Eq.~2.6!, we have neglected the spi
effects at 2.5 PN order. Negative frequency components
given by the reality condition ofh(t) as

h̃~2 f !5h̃~ f !* , ~2.9!

where * means the operation of taking the complex con
gate.

When we consider rather massive binaries,f max must be
chosen at a frequency below which the post-Newtonian t
plates are valid. On the other hand, when we consider
massive binaries, the maximum frequencyf max is deter-
mined by the noise curve alone. In this case, we need
choosef max such that the loss of the signal-to-noise due
the discreteness of the time step,Dtc51/(2f max), is negligi-
bly small.

B. Template space in matched filtering and new parameters

Here, we define the inner product between two real fu
tions a(t) andb(t) as @9#

~a,b!5E
2`

`

d f
ã~ f !b̃* ~ f !

Sn~ u f u!
. ~2.10!

In the matched filtering, we define the filtered signal-
noise ratio after maximization overf0 as

r5A~s,hc!
21~s,hs!

2. ~2.11!

We choose the normalization constantN to satisfy (hc ,hc)
5(hs ,hs)51.

Since the best fit value for the parameters is not known
advance, we must filter the data through many template
different points in the parameter space. In order to determ
representative points in the parameter space, we hav
know how much the value ofr is reduced by using a tem
plate with different mass parameters from the best on
Here, we adopt geometrical description of the template sp
@4#, and investigate which coordinates we should choos
simplify the strategy for determining representative points
the parameter space.

In the following, we assume that the maximum frequen
f max is determined by the noise curve alone independentl
the template parameters. The effect of parameter depend
of f max is discussed at the end of this section. Althoughu i

introduced above are functions ofMm, we regard them as
independent variables for a while. Hence, we paramet
templates likeh̃c(u8), where we definedu8 as the set of
parameters (tc ,u) settingu085tc andu i85u i for i 51, . . . ,5.
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The correlation between two nearby templates with diff
ent u8 is evaluated as

„h̃c~u81Du8!,h̃c~u8!…52N 2E
0

f max d f

Sn~ f !
f 27/3cos@Dcu~ f !

1Dtcf #, ~2.12!

whereDcu( f )5cu1Du( f )2cu( f ). In the same manner, w
have

„h̃c~u81Du8!,h̃s~u8!…52N 2E
0

f max d f

Sn~ f !
f 27/3sin@Dcu~ f !

1Dtcf #. ~2.13!

Here it should be emphasized that these correlations dep
on u8 only throughDu8.

Let us define new functionsG8(Du8) andG(Du) by

G8~Du8!ª$@ h̃c~u81Du8!,h̃c~u8!#2

1@ h̃c~u81Du8!,h̃s~u8!#2%1/2, ~2.14!

and G(Du)ªmaxDtc
G8(Du8), respectively. This functionG

is known as thematch. We expandG8(Du8) with respect to
Du8 as

G8~Du8!5F12
1

2
N 2@@ f 27/3

„Dcu~ f !1Dtcf …2##

1
1

2
N 4@@ f 27/3

„Dcu~ f !1Dtcf …##21•••G ,
~2.15!

where we introduced a notation

@@g~ f !##ªE
0

f max d f

Sn~ f !
@g~ f !1g* ~ f !#. ~2.16!

We define a matrixGmn8 by

G8~Du8!512Gmn8 Du8 mDu8 n1•••. ~2.17!

By definition, this matrixGmn8 is a constant matrix indepen
dent of u8, and it is determined once the noise spectrum
specified. In order to take the maximum ofG8 with respect to
Dtc , we projectGmn8 on to the space orthogonal totc as

Gi j 5Gi j8 2
Gi08 Gj 08

G008
. ~2.18!

The matrixGi j can be considered as a five dimensional m
ric analogous to the two dimensional one introduced in R
@4#.

Next, we orthonormalizeGi j as

Gi j 5 (
a51

5

laPa
i P

a
j , ~2.19!
1-3



by

ffe
ry
th
l
io

te
-

ha
na
a

b

r
.

r

-
er

n

ne
he

e
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wherela are the eigenvalues andPa
i is an orthogonal ma-

trix composed of the eigenvectors ofGi j . Rotating the axis
further by using another orthogonal matrixQA

a , we define
new coordinates of the five dimensional template space

xA
ª (

a51

5

(
i 51

5

QA
ala

1/2Pa
iu

i ~A51, . . . ,5!. ~2.20!

Let us denote our five dimensional template space asG. In
this paper, we simply assume that we can neglect the e
of spins of binary stars~though further study is necessa
about the effects of spins on detection of signal and on
estimation of binary parameters@10#!. Therefore, the actua
template space to be searched becomes a two dimens
hypersurfaceS in G. Sinceu i are functions ofmtot andh, we
find that Eq.~2.20! defines a map from the actual templa
space parametrized by (mtot ,h) to G. Then, this map natu
rally specifiesS.

One of the most important points that we wish to emp
size in this paper is that the geometry of this two dimensio
surfaceS becomes almost flat. Because of this fact, we c
chooseQA

a so that thex1 andx2 axes lie approximately on
S. Taking into account the extension of the area to
searched onS, we chooseQA

a by solving the following set
of equations,

x~mmin ,mmin!2x~mmax,mmax!5~a11,0,0,0,0!,

x~mmin ,mmin!2x~mmin ,mmax!5~a21,a22,0,0,0!,
~2.21!

wheremmin and mmax are the minimum and the maximum
mass of templates, respectively. Settingmmin50.2M ( and
mmax53M ( , the explicit formulas become

x150.0000784185u110.00118756u210.00397916u3

10.00988564u420.142671u5,

x251.3887131027u120.000193717u220.0010248u3

20.00356328u410.0673325u5.

The directions of the other axes are not important he
~Hence, we do not specify how to choose them explicitly!

By solvingX15x1(mtot ,h) andX25x2(mtot ,h) for mtot
and h, we obtain the inverse functionsmtot(X

1,X2) and
h(X1,X2), and we can useX1 and X2 as parameters fo
the template space instead ofmtot and h. Furthermore,
we can define a map from (X1,X2) to G by xA

5xA
„mtot(X

1,X2),h(X1,X2)… for A53, 4, and 5.
In the following, we verify that the two dimensional hy

persurfaceS is almost flat. First we check that the paramet
x3, x4, andx5 are approximately zero on any points onS. To
show this, we plot (x3,x4,x5) as functions ofX1 andX2 in
Fig. 1. These figures show that the surfaceS is almost flat
and (X1,X2) can be regarded as Cartesian coordinates oS
in a good approximation.

The metric associated with the new coordinates is defi
by
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gIJª (
i , j 51

5

Gi j

]u i

]XI

]u j

]XJ

5 (
A,B51

5

dAB(
m51

5 S ]xA

]Mm

]Mm

]XI D (
n51

5 S ]xB

]M n

]M n

]XJ D ,

~ I ,J51,2!. ~2.22!

This metric turns out to be almost an identity matrix. T
deviation from a unit matrix is limited asug1121u,3
31027, ug12u,1024, andug2221u,1025.

FIG. 1. Contour plots of the value of~a! x3, ~b! x4, and~c! x5 as
functions of X1 and X2. The thick curve in each plot shows th
boundary of the search area corresponding tommin50.2M ( and
mmax53M ( .
1-4
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USE OF NEW COORDINATES FOR THE TEMPLATE . . . PHYSICAL REVIEW D62 082001
These facts suggest the usefulness of the new coordin
First of all, the flatness of the metric allows us to use
uniform square grid to generate the template bank. In a
tion, there are several advantages. As long as we consid
small area inG, x3, x4, andx5, they can be treated as con
stants. We can make use of this fact to develop an effic
algorithm to generate templates in frequency domain as
shall see in the succeeding subsection.

C. An efficient algorithm to generate templates

We can expressu i as linear functions ofxA by solving Eq.
~2.20! inversely. Thus, the phase functioncu( f ) is also a
linear function of xA. Since the effect of variation o
(x3,x4,x5) within a small area is negligibly small, the differ
ence of the phase function

Dc~ f !5c (X11DX1,X21DX2)~ f !2c (X1,X2)~ f ! ~2.23!

is almost independent of (X1,X2). Therefore, we can prepar
the phase differenceeiDc( f ) for various values of (DX1,DX2)
in advance. Then we can calculate the templ
h̃(X11DX1,X21DX2)( f ) just by multiplying the corresponding
phase difference by the template at (X1,X2) as

h̃(X11DX1,X21DX2)~ f !5h̃(X1,X2)~ f !eiDc( f ). ~2.24!

Hence, once we calculate one template, we do not hav
call subroutines of the sinusoidal functions to gener
neighboring templates of it. Since the computation of sin
soidal functions is slow in general, this algorithm signi
cantly reduces the computation cost to generate templat

Before closing this section, we remark on the choice
the maximum frequencyf max. So far, we have been neglec
ing the fact that, in general, the maximum frequencyf max
depends on the template parameters. When we conside
naries with large masses, the frequency at the last st
circular orbit becomes lower than the maximum frequen
which is determined by the shape of the noise power sp
trum. Since our post-Newtonian templates are no lon
valid beyond the last stable orbit, the maximum frequen
should be chosen below the corresponding frequency. E
in that case, we think that our new coordinates are still us
due to the following reason: Thematch determined with
larger f max is likely to underestimate the correct valu
Hence, the grid spacing determined by using our new co
dinates tends to be closer than that determined by more
curate estimation. Therefore, to adopt constantf max in deter-
mining the template bank would be safe in the sense that
less likely to miss detectable events. Although the numbe
templates increases with the choice of constantf max, such
effect is very small. This is because the number of templa
with relatively large mass is not very large. Recall that t
number of templates are dominated by those with small m
m;mmin @11#.

III. NEW FAST ALGORITHM FOR HIERARCHICAL
SEARCH

If we try to search gravitational waves from coalesci
binaries with massM>0.2M ( , we have to calculate the
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correlations„s̃( f ),h̃( f )… for several310000 templates with
different mass parameters@11#.1 The computation cost to
evaluate such a large number of correlations is very exp
sive. One promising idea to reduce the computation cos
the technique of hierarchical search. The basic idea of h
archical search is as follows. At the first step, we exam
the correlations with a smaller number of templates loca
more sparsely. In order not to lose the candidates of eve
we set a sufficiently low threshold of the filtered signal-t
noiser at the first step. If a set of parameters (X1,X2, andtc)
is selected as a candidate, we examine the correlations
tween the data and the neighboring templates by using a
mesh.

A simple scheme for two step search has been alre
discussed in Ref.@5#. However, there seems to be a proble
in realizing the basic idea mentioned above. It has b
pointed out that the distribution of the amplitude of the d
tector noise will not follow the simple stationary Gaussi
statistics@12#. The nonstationary and non-Gaussian nature
the detector noise will produce a lot of events with lar
value ofr. Namely, there seems to exist a non-Gaussian
part in the distribution ofr. In order to identify real events
we need to keep the expected number of fake events sma
choosing the threshold ofr as being sufficiently large
Hence, the existence of the non-Gaussian tail require
larger value of the threshold ofr. This leads to a significan
loss of detector sensitivity. To avoid such a loss, it was p
posed to use ax2 test as a supplementary criterion.

Here,x2 is defined as follows. First we divide each tem
plate into mutual independentn pieces,

h̃(c,s)~ f !5h̃(c,s)
(1) ~ f !1h̃(c,s)

(2) ~ f !1•••1h̃(c,s)
(n) ~ f !, ~3.1!

and we calculate

z(c,s)
( i ) 5~ s̃,h̃(c,s)

( i ) !, z̄(c,s)
( i ) 5s ( i )

2 3~ s̃,h̃(c,s)!, ~3.2!

with

s ( i )
2 5~ h̃(c)

( i ) ,h̃(c)
( i ) !5~ h̃(s)

( i ) ,h̃(s)
( i ) !. ~3.3!

Thenx2 is defined by

x25(
i 51

n F ~z(c)
( i ) 2 z̄(c)

( i ) !21~z(s)
( i ) 2 z̄(s)

( i ) !2

s ( i )
2 G . ~3.4!

This quantity must satisfy thex2 statistics with 2n22
degrees of freedom and must be independent ofr
5Az(c)

2 1z(s)
2 , as long as the detector noise is Gaussi

However, as reported in Ref.@12#, events with largex2 in
reality occur more often than in the case of Gaussian no
There is a strong tendency that events with largex2 have a
large value ofr on average. Thus, by changing the thresh

1If we take into account the effect of spins of binary stars, t
number will increase about three times or more. We will discu
this issue in a separate paper@10#.
1-5



r
s

t
re
f-

rc
.
t

de
c

n
ar
on

a
e
h
n
m
e

st
a
s

ag
t

s

w
lin
is

ho

s

te
i

s
r

es-
a
t
hich
nk.
m-
at-

ec-

g a
ely.

to

a

ry

st

ra

va
. I
e

TAKAHIRO TANAKA AND HIDEYUKI TAGOSHI PHYSICAL REVIEW D 62 082001
of r depending on the value ofx2, we can reduce the numbe
of fake events without any significant loss of detector sen
tivity. Hence, it will be necessary to implement thex2 test
even in the simple one step search case. However, if we
to evaluate x2, the computation cost becomes mo
expensive.2 Thus, it is strongly desired to implement an e
ficient algorithm to reduce the computation cost.

Now, we discuss a method of two step hierarchical sea
taking into account the presence of non-Gaussian noise
the first step search, a large number of candidates for
second step search with larger value will appear due to the
non-Gaussianity of noise. As is mentioned above, in or
not to lose the detector sensitivity, it is desired to introdu
the x2 test, and to keep the threshold ofr small. Further-
more, by introducing thex2 test at the first step, we ca
reduce the number of candidates for the second step se
Thus, thex2 test is also effective to reduce the computati
cost for the second step. However, thex2 test at the first step
increases the computation cost for the first step. This incre
in the computation cost can be very large in the presenc
non-Gaussian noise because the number of fake events w
exceed the threshold ofr at the first step is much larger tha
that expected in the case of Gaussian noise. Then, we
compute a lot ofx2 values at the first step. When we tak
into account these effects, the advantage of the two
search, which is estimated to be about factor 30 in comp
son with the simple one step search in the case of Gaus
noise@5#, it will be significantly reduced or it will be totally
lost. Hence, in order to make use of the potential advant
of the two step search, we need other ideas to reduce
computation cost further. Here we present two new idea
this kind.

The first one is very simple. At the first step search,
can reduce the sampling rate of the data. The low samp
rate results in the reduction in the filtered signal-to-no
mainly due to the mismatch intc . However such reduction
can be compensated by a very small change of the thres
of r. In the case of the ‘‘TAMA noise curve,’’ we can allow
the sampling rate as low as about 1000 Hz. The value
matchbetween two templates with variousDX are shown in
Table I~a!, where we adopted 5000 Hz as the sampling ra
The same quantities for 1250 Hz sampling are shown
Table I~b!. Here, one of the templates is considered a
normalized signal without noise, and the other as a sea
template. The signal is normalized to satisfy (h,h)51 with

2If we try to evaluatex2 naively, the computation cost necessa
for the second step search simply becomesn times larger. Sincen
will be chosen as beingO(10), the increase of the computation co
is unacceptable. If one calculates the values ofx2 only for a few
varieties of coalescence time at which a large value ofr is
achieved, the computation cost forx2 might be kept small. In this
case, we can use the direct summation instead of fast Fourier t
form ~FFT! to calculate the values ofx2. But, the question is for
how many varieties of coalescence time we must calculate the
ues ofx2 not to lose real events. This is not a simple question
this number is sufficiently small, this naive strategy will work in th
case of one step search.
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f max52500 Hz in both cases of Table I~a! and Table I~b!. On
the other hand, the search template is normalized withf max
52500 Hz in the case of Table I~a! and with f max5625 Hz in
the case of Table I~b!. We find that the difference of the
values ofmatchbetween these two cases are very small
pecially for largeuDXu. Therefore, detection probability for
fixed threshold ofr is not significantly lost even if we adop
a rather small sampling rate at the first step search, at w
we adopt a relatively large spacing for the template ba
The reduction in the sampling rate directly reduces the co
putation cost. The usual FFT routine requires effective flo
ing point operations proportional to;N ln N to compute the
Fourier transform of the data with lengthN. Furthermore, for
most of FFT routines and computer environments, the eff
tive FLOPS value for FFT is larger for smallerN. Thus, the
reduction factor for the computation cost due to adoptin
smaller FFT length is much larger than one expects naiv

The second idea is more important. What we need
evaluate is the correlation

Z5~ h̃,s̃!

5E
2 f max

f max
d f

h̃X~ f !s̃* ~ f !

Sn~ f !

'ND f (
j 51

N F s̃* ~ f j !e
icX( f j )

f j
7/6Sn~ f j !

Ge2p i f j tc, ~3.5!

where we take into account that in reality we deal with
discrete time sequence of data with lengthN. D f is given by

ns-

l-
f
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the sampling rate divided byN, and f jªD f ( j 2N/2). The
correlations for various values oftc are calculated simulta
neously by taking the Fourier transform of the array defin
by the quantity inside the square brackets in the last line
the above equation. This scheme is efficient enough when
do not have any guess abouttc . However, when we perform
the second step search we have a good estimate oftc at
which the maximum correlation is expected to be achiev
We denote it byt̂ c . In this case, we need to evaluateZ only
for tc which are close tot̂ c . Also for templates, we have
good guess for the mass parameters,X̂. Thus, we need to
calculate the correlationZ only for a cluster of the template
neighboring toX̂.

Once t̂ c and X̂ are specified, we can rewrite the abo
expression in a very suggestive form as

Z'ND f (
k51

N/m21

(
j 5m(k21/2)11

m(k11/2)

Aj3Bj , ~3.6!

with

Aj5
s̃* ~ f j !e

icX̂( f j )12p i f j t̂ c

f j
7/6Sn~ f j !

, ~3.7!

Bj5eiDc( f j )12p i f jDtc. ~3.8!

Here Dc( f j )ªcX( f j )2c X̂( f j ) and Dtcªtc2 t̂ c . We have
also introducedm as a certain integer which dividesN. As
long as bothuX2X̂u and utc2 t̂ cu are sufficiently small, the
factor B is a slowly changing function of frequency. Henc
unlessm is not large,B can be moved outside the seco
summation in Eq.~3.6!. Then, introducing

Ak85 (
j 5m(k21/2)11

m(k11/2)

Aj , ~3.9!

we obtain

Z'ND f (
k51

N/m21

Ak83Bmk

5ND f (
k51

N/m21

@Ak8e
iDc( f mk)#3e2p i f k8Dtc, ~3.10!

where f k8ªmD f (k2N/2m). The expression in the last lin
can be evaluated by applying the FFT routine to the ar
defined by the quantity inside the square brackets. The
relation between two templates for various values ofDX and
Dtc are calculated by using this method. The results
shown in Table II forN/m51024, 2048, and 4096. We fin
that N/m can be taken as small as 2048 without signific
loss in accuracy.

Furthermore, as an advantage of our new coordinates
factor eiDc( f mk) can be well approximated by the one o
tained by settingDx35Dx45Dx550. It means that this fac
tor is almost independent of the values of (X1,X2). Thus, we
have to calculate this factor only once at the beginning of
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second step search. Since the arrayAk8 is independent ofDX,
the quantity inside the square brackets in Eq.~3.10! for vari-
ous values ofDX is simply given byAk8 times the precalcu-
lated factoreiDc( f mk). This fact manifestly leads to an add
tional reduction in the computation cost.

The same technique can be used to evaluatex2, i.e., Z( i ),
just by replacing the arrayAk8 with the same quantities mul
tiplied by an appropriate window function.

IV. CONCLUSION

We discussed a method of analyzing data from interfe
metric gravitational wave detectors to detect gravitatio
waves from inspiraling compact binaries based on the te
nique of matched filtering. We described a brief sketch
several new techniques which would be useful in hierarch
search of gravitational waves.

First, we proposed new parameters which label templa
of gravitational waves from inspiraling binaries. These n
parameters are chosen so that the metric on the temp
space becomes almost constant. We found that the tem
space can be well approximated by two dimensional flat
clidean metric in the case of the ‘‘TAMA phase II’’ nois
spectrum. Thus, by using these parameters as coordinate
the template space, the problem of the template placem
becomes very simple. We can use a simple uniform squ
grid to specify the grid points for the bank of template
Furthermore, we found that, by using new parameters,
can introduce an efficient method to generate template
frequency domain. The reduction in the computation cos
achieved by using the property of our new coordinates
that one template can be translated into another with dif
ent mass parameters by just multiplying an array of prec
culated coefficients. Therefore, we can generate a set of

TABLE II. Tables of maximum correlations for various choice

of m andDte5 t̂ e2te
(c) with ~a! DX5(0,0), ~b!DX5(1,0), and~c!

DX5(0,2).

~a!

Dte~sec! m54096 m52048 m51028

0.0000 1.000 1.000 1.000
0.0128 1.000 0.999 0.994
0.0248 0.999 0.994 0.975

~b!

0.0000 0.765 0.765 0.765
0.0128 0.764 0.763 0.760
0.0248 0.763 0.760 0.746

~c!

0.0000 0.774 0.774 0.774
0.0128 0.774 0.773 0.769
0.0248 0.773 0.769 0.755
1-7
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plates from one template avoiding calculation of t
sinusoidal functions.

Next, we discussed a method of two-step hierarch
search. Due to the nonstationary and non-Gaussian natu
the detector noise, we will have to introduce ax2 test when
we analyze real data. When we take into account this fac
becomes very difficult to obtain a large reduction in the co
putation cost by applying naive two-step hierarchical sea
strategy. To solve this difficulty, we proposed two new tec
niques to reduce the computation cost in the two step sea
One is to use a lower sampling rate for the first step sea
By using this technique, we can reduce the length of FFT
factor two or four keeping the loss of correlation within a
acceptable level. The second technique, which is more
portant, makes use of the fact that a good guess for the
lescence time and the mass parameters has been obtain
a result of the first step search at the time when we perf
the second step search. We found that the length of FFT
the second step search can be reduced down to about 2
th

-

tro
,

-
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Based on the new techniques discussed in this paper
have developed a hierarchical search code to analyze
from the TAMA300 detector. The details of this code and t
result of the analysis of the first TAMA300 data will b
presented elsewhere.
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