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New results are reported for the ground-state configurations of the Faddeev-Skyrme model. We started
minimization runs on a large set of initial states and found topologically new ground states for the Hopf
chargeQ=4 and 5, and a symmetry-breaking deformation@ot 6. The corresponding energies improve the
fit to the Vakulenko-Kapitanskii behavidgo|Q|%.

PACS numbds): 11.27+d, 11.10.Lm

The recent increased interest in knotted solitons with avherec is a constanty is the coupling constant ifl), andQ
nonzero Hopf charge is due to Faddeev and Nigthiwho is the Hopf charge. The comprehensive resultf4dfollow
first suggested that Faddeev’s Lagrandiah the predictedQ dependence fairly well. However, f@=4
and especially foQ=5 the value of the normalized energy
1 (E/|Q|*"%) obtained in[4] is noticeably higher than that for
Lzzf [(&Mn)2+gFiv]d3x, the otherQ values. This raises a question about the true
lowest energy state, especially sincé%hthe minimum con-
figuration is different forQ=4. One purpose of the present
F= eabcnaaﬂnbaync, n’=1, (1)  work is to clarify the question of the true minimum energy
state.
has stable ring-like solutions with the Hopf charge of 1 or 2. Another open question is connected to the type of the ring
The Hopf charge characterizes the unit-vector fields fol- ~ configuration. Using the stereographic projection, the unit
lows: the unit-vector field itself can be considered as a poin¥€ctor field can be represented in terms of a complex func-
on the spher&?, and furthermore, we assume that at spatiafion U:
infinity all vectors point to the same direction and therefore
we can compactifyR® to S3. The vector field then provides a _[u+ur u-U* |UlP-1
mapn:S*—S?, and sincems(S?) =Z these maps are classi- n= 1+|U|2'_| 1+[U2'1+|U2)’
fied by an integeQ, the Hopf charge.
The results forQ=1,2 in[1,3] were obtained under the \yhereU o asr—x. Let us now use toroidal coordinates
assumption of rotational symmetry, but soon after results”’d), ¢ defined by
with full three-dimensional minimization were obtained in
[4—6]. These results show that although tQe=1,2 cases sinh7 cos¢ sinh siné sing
may have rotational symmetry in the minimum energy state, Xx=a y=a z=
this is not the case for higher charges.[H| the starting

point was a slightly perturbed ring un-knot wi@=1-8  \yhere ¢ is the angle around theaxis, ¢ the angle around
and the following minimum configurations were fourQ:  he torus ring(located az=0, x2+y2=a?), and 7 the dis-
=1,2 a rotationally symmetric ring2=3,4,5 a twisted ring;  tance from the ring. Un-knot vector fields are then obtained,
Q=6 two linked charge 2 ringRQ=7 a trefoil knot;Q=8 ¢ g withU=f(7)e' ™M+ which yields

two doubly linked charge 2 rings. If6] we started with

coshy—cosé’ “coshy—cosé’ © “coshy—cosé’

linked un-knots of various charges and linking numbers. One of of 2
difference between our results and those/4i is that for n= cogmé+nag), sin(mé+ng), ——|,
Q=4 we obtained a different minimum configuration: two f2+1 f2+1 f2+1
linked un-knots of charge [i5]. (3

Soon after Faddeev proposed his model, Vakulenko and

Kapitanskii (VK) obtained[7] (see alsq8]) a lower bound Where it is assumed thé{7)—» as»—0 andf(7)—0 as
for the energy of Eqs(1) in the form n—. The Hopf charge corresponding to such a configura-

tion will be Q=—nm [9]. In previous studies it has always
been assumed tham|=1 above, and we also wanted to

3
E=c\g|Q|7, (20 know if lower energy configurations could be obtained with
|m|>1.
Here we report new results obtained with further con-
*Also at the Helsinki Institute of Physics. tinuing minimization on our previously obtained configura-
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(1,1) (2,1 (1,2) (2,2)

FIG. 1. The final configurations forn(m) with 1<|n|,/m|<2. The top view and the cut-out side view show timeinner ring’s)
(isosurfacen;= —0.9) and the transpareng= 0 larger ring. The dark band on tihhg=0 isosurface is where the vector points to a particular
fixed direction(perpendicular to the vacuum directjon

tions for Q=4,6 and(ii) new minimization on the linked but this was apparently too lax, and for the present results we
configurations 2+2 and 1+3+2, and on configurations stopped the minimization only after the change was of the
with [m|>1 in Eq. (3). order 10°°.

The minimum energy configurations were obtained nu- The stability of the final configuration was tested by dis-
merically using the steepest descent method, which was infurbing it and then checking if it evolved back to its original
proved by also taking into account the gradients of the preconfiguration or to another, lower minimum configuration.
vious step. The system was discretized on the cubic latticd;or this purpose the most efficient Hopf charge preserving
for details sed5]. In order to avoid singularities created by Jolt was a 1:2 squeeze along some direction, but we also tried

the stereographic projection we used the unit-vector field stretching, especially in initial configurations, and also ran-
itself (we normalizedn|=1 after each iteration stgpThe dom force. In some cases we could not get out of the local

boundaries of the lattice were fixed to the vacuum Valuénin;mumt_with any tSUCht ngletr;od,lwhigh indicates that the
n=(0,0,). For g we used the value 0.125. The fact that theconfiguration was at a stable focal minimum.
system is discretized and put into a box with fixed bound-

aries introduces some errors to the energy and we will return 1.10 A A ' T ]
to this question below. Our initialization method, also de- 108 | S 1
scribed in[5], enables us to make almost any kind of linked 106 | " ;
configuration. — 3 g i
The size of the grid was 13®@r 246 depending on how T 104y o o i
large the gradients of the vector fialdwere. Whenever any Li‘/ 102 F ;,';/6 o g 9
nearest-neighbor vectors in the lattice differed by an angle of % ;50 & £ . |
more than 30° in the sparser grid we put the system into the - kY a,;’}/
denser grid to ensure that no topology breakup occurred. The 098 1 N j
present computations were done on a Cray T3E parallel su- 08— s T s s 7
percomputer. Each round of iteration took about two seconds Q
for the 12§ and 248 grid with 8 and 64 processors, respec-

FIG. 2. Normalized energies for different configurations vs

. . . Hopf chargeQ. Filled circles represent our global minima fQr
The total number of iterations was typically betweenzl_?, open circles our local minimaQ=2.4.5,6), diamonds

190 000 and 200000 fd@=4. The computations were ter- our previous local minim@5] for Q=4 and 6, crosses our rotation-
minated Whgn we coulq see .that the result was close gnqug{ny symmetric local minima@=3,4), andopen squares the glo-
to a known final statésimilar isosurfaces and energy within pa| minima[4] for Q=1—8. The long-dashed line is a linear fit to
0.25% from the best resijtor the minimization satisfied the our bent ringsQ=1-5, the dashed line a linear fit @=1-5 of
convergence criterion. Previously we used the criterion of4], and the dotted line a quadratic fit to our symmetric rif@s
the order 107 per iteration for the relative change in energy, =1—4. The horizontal line represents tQg** behavior.

tively.
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4 i b N
; FIG. 4. Deformation of #1+2 into (2,2). (Isosurfaces
None of the other configurations witim|>1 were stable.
As an example we give in Fig. 3 the steps by which the

initial (1,3) un-knot deforms into the (3,1) bent ring found in
[4]. We did similar studies for (i) up tom=7, as well as
(2,3) and (3,2). Usually the process was as in Fig. 3: the
multipole inner ring opens into multiple rings which connect,
forming a single ring, which then twists and reconnects fur-
ther into the usual final configuration. The results are col-
lected in Table I.

In addition to these new configurations we studied further
I%e state of the previously obtained minima. As noted before,

e Q=45 energies reported i@] deviate noticeably from
Cfhe best fit VK bound?2). Our best result foQ=4 in [5]
was obtained by a linked£1+2, but when we continued
the minimization further we found that the rather symmetric
1+1+2 configuration slowly developed some asymmetry
and then quickly deformed into a (2,2) configuration, which
Jas a still considerably lower energy. Some steps in this
sequence are shown in Fig. 4. Thus in some cases the local
minimum is more like a very gentle slope or terrace where
the system stays a long time until it starts to evolve toward a
lower minimum.

For Q=5 the minimum configuration reported 4] was
a bent ring. However, we have now found that the linked

TABLE I. All initial configurations listed together with the final Cﬁnflgu;agon 324_—2 has a lmUCh smaILeIr Ienelrgy_. _The
state, its shapesymmetric, bent, linked, knott¢dnd its energy. An charge entring is apparently a metastable local minimum,

asterisk star means that the system first relaxed into a metastad@'d indeed, after squeezing, it deformed into &2k 2
state and the final state was obtained only after the minimizationinked configuration, shown in Fig. 5. This same configura-
was restarted from a modifiggbpologically identical state. tion also followed when we started from the initial state

FIG. 3. Deformation of (1,3) into (3,1). We display a small tube
(defined by the isosurfaces= —0.875) around the comne;=—1.

To indicate the form of the initial configuration we use the
notation (,m) for any un-knot topologically identical to Eq.
(3). For 1<|n|,|m|<2 the final configuration differs from
the initial one only slightly; in particular the rotational sym-
metry seems to be preserved. Figure 1 shows the final stat
for these low ,m) cases. We can see that counts the
number of times the vector field turns when we go aroun
the small circle of the torus, while counts the turns around
the large circle. Iffm|=2 the initial vector field looks like a
dipole field around the ring; in the final state this dipole is
split into two rings on top of each other.

In Fig. 2 we present the normalized minimum energie

&=Eq/(E1Q¥%. We will discuss the figure in detail be-
low; here we just want to point out that f@=2 the con-
ventional (2,1) case is below the standard level, while (1,2)
which seems to be a local minimum, is far abdttee open
circle at 1.098).

(1,5).
Q] initial final form Eo For Q=6 we tried several initial states, (1,6), (2,3),
(3,2), 1+3+2, and we also continued from the previously
! LD (.0 symm 1352 gptained 2+ 2+ 2. All initial configurations relaxed into ei-
2 (2, 2,0 symm  220.6 ther 1+3+2 or 2+2+2 (see Table)l We used squeezing
12 (1,2 symm  249.6
3 39, (1,3 (3, bent  308.9
(3.9 (3, symm 3113
4 (2,2, 1+1+2 2,2 symm 385.5
(4,*,(1,9 4,9 bent  392.7
(4,9) (4.9 symm  405.0
5 (5,)*, (1,5, 1+2+2  1+2+2 link 459.8
(5,9 (5, bent  479.2
6 2+2+2*,(3,2 2+2+2 link 521.0
1+3+2, (1,6, (2,3 1+3+2 link 536.2 1+2+2 1+3+2 24242
7 4+5-2,(7,0*%, (1,7) trefoil knot 589.0 FIG. 5. Final states for £2+2, 1+3+2, and 2+2+2. (Iso-

surfacesn;=0 andnz=—0.9)
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in order to get out of the previously obtained-2+2 sym-  (2)]. For this purpose we can use the paramitgproposed
metric local minimum, and then the system deformed into &y Ward [8]. In our caseKy=111.7 and we find that
butterfly-shape 2 2+ 2 structure(see Fig. 5 with a some-  Eq/(Q*'K)=1.21-1.23, except that f@=2 we get 1.17.
what lower energy. This is also the final configuration ob-This is in good agreement with the resultd 8f and supports
tained from (3,2). Several other initial states relaxed into 1Ward’s conjecture that the soliton energies are about 20%
+3+2, which apparently is a local minimum with a higher higher than the bounH,,.

energy than that of 22+ 2. It is interesting that for +3 We have also studied the systematic error related to
+2 the rings are not clearly separated, but almost glued tboundary pressure and discretization. In order to study the
each other at one point. boundary effects we embedded every final global minimum

We have also studied some more complicated systemsonfiguration calculated with a 12attice into the center of
with linked un-knots(with low total Hopf chargg and it a 24C lattice and allowed it to relax there. Similarly, the
turned out that the linked configuration ofi;(m;) and discretization effects were studied by making the grid twice
(n,,m,) always deformed into one of the previously found as dense. The results show that putting the boundaries further
configurations with the Hopf charge—-n;m;—n,m, away decreases the energy by 0—0.5% while doubling the
+2m;m,. Further details will be reported elsewhere. discretization increases the energy by 1.2—-1.8%. Since these

Let us now return to Fig. 2, which gives the normalizedtrends are the same for all configurations the relative error of
energies. Our best minindilled circles forQ=3—7 in Fig.  the normalized energies is quite small, and thus the energies
2) seem to fit well into the predicteB=Q%* behavior. In  for different configurations can be compared with each other.
particular the fit reported i4] is considerably improved In summary, we have reported new results for the ground-
with the new minimum configurations f@=4: (2,2) and state configurations of the Faddeev-Skyrme model, in par-
Q=5: 1+2+2. The slightly asymmetric deformation ob- ticular topologically new ground states fQr=4 and 5. With
tained forQ=6 improves the fit as well. these new results the energy can be seen to follow quite

The energies of the mostly metastable bent ritgen-  nicely the Q% law. It would now be interesting to find an
metric forQ=1,2 and bent foQ=3—5; see also Table)l explanation for the anomalously low energy for chaf@e
turn out to be well described by a linear fiE§/E;=0.36 ~ =2. Another open question is the full characterization of the
+0.64Q) proposed recently[10]. A similar fit (0.36  vector-field deformation process.
+0.65Q) works for the energies of the bent configurations
for Q=1-5 given in[4]. (In Fig. 2 the dashed lines appear
curved because we have plottEd which contains &~ %4
factor) It should be noted, however, that the linear fitis good We would like to thank L. Faddeev, A. Niemi, P. Sut-
only if it is limited to the bent un-knots. For the energies of cliffe, and W. Zakrzewski for discussions and M. @ J.
the rotationally symmetric un-knots, which are reported herd’irhonen, and J. Ruokolainen for help in the visualization
and those given if4], a small quadratic term improves the aspects of this work. We are grateful to the Center for Sci-
fit further (0.39+0.59Q-+ 0.015Q2, dotted line. entific Computing, Espoo, for computer time on the Cray

The absolute energies can be compared after the differed3E parallel machine, where most of the computations re-
choices for coupling constants are taken into accdeoft ported here were made.
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