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Extrapolating SU„3… breaking from D to B decays
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We consider two SU~3! breaking parametersR1(mB) and R2(mB) appearing in a relation betweenB1

→Kp andB1→pp amplitudes, which plays an important role in determining the weak phaseg. In the heavy
quark limit, we identify an isospin-related quantityR2(mD) measured inD decays, exhibiting large SU~3!
breaking which is likely due to nonfactorizable effects. Applying heavy quark symmetry to semileptonicD and
B decay form factors, we find that factorizable SU~3! breaking inR2(mB)/R1(mB) may be significantly larger
than estimated from certain model calculations of form factors.

PACS number~s!: 12.15.Hh, 11.30.Er, 13.25.Hw
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Flavor SU~3! symmetry of strong interactions plays a
essential role in some of the methods proposed to determ
Cabibbo-Kobayashi-Maskawa~CKM! weak phases fromB
meson hadronic decays@1#. First order SU~3! breaking may
be parametrized in a completely general way in terms
several unknown parameters@2#, some of which can be de
termined from experiments. Inb→c decays, such as inB
→D̄p, experimental evidence exists for factorization@3#,
and SU~3! breaking parameters are given by ratios ofK and
p decay constants and ratios ofB/Bs to D/Ds form factors.
In charmless decays, which are useful for weak phase de
minations @4#, experimental evidence for factorization o
hadronic matrix elements is still lacking. It was argued
cently @5# that nonfactorizable corrections due to hard glu
exchange are calculable and those which are due to sof
changes are suppressed byLQCD/mb . Actual calculations of
these corrections, controlling the former in a mod
independent manner and showing that the latter are ind
small, are both desirable and challenging. Furthermore
order to treat SU~3! breaking within the factorization ap
proximation, one still needs the values of certain ratios
unmeasured form factors, for which one oftens relies on t
oretical models.

The purpose of this Brief Report is to learn about SU~3!
breaking inB decays from the corresponding measured
fects in D decays. SU~3! breaking does not necessarily d
crease monotonically with the decaying heavy quark ma
We will address the two relevant questions, of factoriza
and nonfactorizable SU~3! violating corrections to hadronic
decays, and of SU~3! breaking in semileptonic form factor
which are used in the factorization approximation.

Soft final state interactions which spoil factorization a
expected to affectD and B decays differently. It was often
argued@6#, and it has recently been shown by an actual c
culation@7#, thatD decay amplitudes involve large contribu
tions from nearby lightqq̄ resonances which induce larg
SU~3! breaking effects. Such effects are not expected inB
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decays. To avoid resonance effects, and thus studyD andB
decays on common grounds, we will consider only decay
‘‘exotic’’ final states involving pp in I 52 and Kp in I
53/2.

We consider an SU~3! relation between the isospinI
53/2 amplitude inB→Kp and the I 52 amplitude inB
→pp @8#:

A~B1→K0p1!1A2A~B1→K1p0!

5A2tanuc~R12d1e2 igR2!A~B1→p0p1!,

d1[2@3/~2luVub /Vcbu!#@~c91c10!/~c11c2!#

50.6660.15. ~1!

This generalizes a triangle relation proposed in@9# by includ-
ing, in addition to the current-current~‘‘tree’’ ! contributions,
also the effects of dominant electroweak penguin~EWP! am-
plitudes given by the second term on the right-hand s
~RHS!. Equation~1! and its charge conjugate were propos
as a way for determining the weak phaseg[ArgVub* .

The complex coefficientsR1,2 in Eq. ~1! parametrize
SU~3! breaking effects. Knowledge of the precise values
R1 andR2 /R1, in the presence of SU~3! breaking, is crucial
for an accurate determination ofg @8,10,11#. Using the fac-
torization approximation, it is customary to apply the val
R1. f K / f p51.22 to the tree part. SU~3! breaking correc-
tions to the EWP-to-tree ratioR2 /R1 were estimated in the
generalized factorization approximation, assuming a cer
model-dependent value for the ratio ofB to K and B to p
form factors, and were found to amount to a few percent@8#.
Our main concern will be the SU~3! breaking parameterR2.

For completeness, and in order to defineR1 and R2 in
broken SU~3! and to prove Eq.~1!, we start by quickly re-
viewing the SU~3! structure of the amplitudes entering E
~1!. The tree and electroweak penguin four-quark opera
describing charmless decays transform under flavor SU~3! as
a sum of3, 6, and15 @12#:
H T
DS511H T

DS501H EWP
DS515

GF

A2
lu

(s)F1

2
~c12c2!~23I 50

(a) 26I 51!1
1

2
~c11c2!S 215I 512

1

A2
15I 501

1

A2
3I 50

(s) D G
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1
GF

A2
lu

(d)F1

2
~c12c2!~6I 5 1/223I 51/2

(a) !1
1

2
~c11c2!S 2

2

A3
15I 5 3/22

1

A6
15I 5 1/21

1

A2
3I 51/2

(s) D G
2

GF

A2

l t
(s)

2 Fc92c10

2
~3•6I 5113I 50

(a) !1
c91c10

2 S 23•15I 512
3

A2
15I 502

1

A2
3I 50

(s) D G , ~2!
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(q8)5Vqb* Vqq8 .

The left side of Eq.~1! receives only contributions from
the I 51 terms which transform as6 and 15, while the I
53/2 amplitude on the RHS transforms as pure15:

A~B1→K0p1!1A2A~B1→K1p0!

5lu
(s)@~C15I 51

1C6I 51
!2d1e2 ig~C15I 51

2C6I 51
!#, ~3!

A2A~B1→p1p0!5lu
(d)C15I 53/2

, ~4!

where C15I 51
~mB!5

GF

A2

1

2
~c11c2!~^K0p1u215I 51uB1&

1A2^K1p0u215I 51uB1&!,

C6I 51
~mB!5

GF

A2

1

2
~c12c2!~^K0p1u26I 51uB1&

1A2^K1p0u26I 51uB1&!,

C15I 53/2
~mB!5

GF

A2
~c11c2!A2

3
^p1p0u215I 53/2uB1&.

In B→Kp we used (c91c10)/(c11c2)'(c92c10)/
(c12c2), which holds to better than 3%@13#, and in B
→pp we neglected very small EWP contributions@12#.

Taking the ratio of Eqs.~3! and~4! reproduces the facto
on the right-hand side of Eq.~1! with R1~mB!
5~C15I 51

1C6I 51
!/~C15I 53/2

! , R2(mB)5(C15I 51
2C6I 51

)/

(C15I 53/2
).Both final states on the left side of Eqs.~3! and~4!

belong to a27 multiplet of SU~3!, such that the matrix ele
ments of15I 51 and 15I 53/2 are related in the SU~3! limit,
C15I 51

5C15I 53/2
. The matrix element of6 in Eq. ~3! vanishes

in the same limit, such thatR15R251. In broken SU~3!
C15I 51

ÞC15I 53/2
, C6I 51

Þ0, and henceR1Þ1, R2Þ1.

WhereasR1(mB) andR2(mB) are purely theoretical quan
tities, we prove now that another SU~3! breaking parameter

R2~mD!52
Vus

Vud

A~D2→K0p2!

A2A~D2→p2p0!
, ~5!

measured inD decays, is related toR2(mB) by isospin in a
fictitious heavy quark limitmc5mb .

The final states in the numerator and denominator
R2(mD) have quantum numbersuI 5 3

2 ,I 352 3
2 & and uI 52,
07730
f

I 3521&, respectively, and belong to the same isospin m
tiplets as the statesuK0p1&1A2uK1p0& andup1p0& in Eq.
~1!. The initial statesD2 andB1 are related to each other b
isospin in the limit of identical heavy quarks. The wea
Hamiltonian responsible for the relevantD̄ decays is

HW5
GF

A2
Vud* VcsF1

2
~c12c2!A26I 512

1

2
~c11c2!A2 15I 51G

1
GF

A2
Vus* VcsF ~c11c2!S 1

A3
15I 53/22A2

3
15I 51/2D

1~c12c2!6I 51/2G , ~6!

where we neglect a smallCP-violating contribution propor-
tional to 1

2 (Vus* Vcs1Vud* Vcd)5O(l5) in the Cabibbo-
suppressed part and very small contributions of penguin
erators@14#.

TheDS51 (DS50) I 51, I 3521 (I 5 3
2 ,I 352 1

2 ) op-
erators in~6! are the isospin partners of theI 51,I 350 (I
5 3

2 ,I 35 1
2 ) operators in theB decay Hamiltonian~2!. There-

fore, in the limit of identical heavy quarks, isospin symme
of strong interactions implies A(D2→K0p2)
5Vud* Vcs@C15I 51

(mD)2C6I 51
(mD)#, A2A(D2→p2p0)

52Vus* VcsC15I 53/2
(mD). The ratio of these amplitude

yields R2(mD) as defined in Eq.~5!.
The experimental value ofR2(mD) is @15# uR2(mD)u

50.5660.08. This large SU~3! breaking is somewhat sur
prising since the relevant final states are exotic,I 5 3

2 and 2,
and receive no resonant contributions@7#. The large devia-
tion of the ratio uR2(mD)u from 1 raises the concern of
similar large SU~3! breaking effect in theB case. In view of
this possibility, let us review previous attempts and difficu
ties in explaining the numerical value ofR2(mD).

In the generalized factorization approach@16# one finds

R2~mD!5
a2

(DKp)

a1
(Dpp)1a2

(Dpp)

f K

f p

F0
Dp~mK

2 !

F0
Dp~mp

2 !

1
a1

(DKp)

a1
(Dpp)1a2

(Dpp)

mD
2 2mK

2

mD
2 2mp

2

F0
DK~mp

2 !

F0
Dp~mp

2 !
. ~7!

The phenomenological parametersa1,2, describing the exter-
nal and internalW-emission amplitudes, respectively, are r
lated to corresponding Wilson coefficients througha1,2
1-2
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5c1,21zc2,1. The parameterz is process and scale depe
dent and is determined from experiments. When fitting n
leptonic two-bodyD→Kp decays, usingF0

DK(mp
2 )50.77

@17# and F0
Dp(mp

2 )50.7 @18#, one obtains@16# a1
(DKp)

51.26 and a2
(DKp)520.51, corresponding toz(mc)50.

This fit neglects, however, resonance contributions in non
otic channels which, when included, modify the extrac
values ofa1,2 to becomea1

(DKp)51.06, a2
(DKp)520.64 @7#.

An attempt was made@19# to explain the large SU~3!
breaking inR2(mD) by using Eq.~7!. This attempt faced
three kinds of problems. First, there is an uncertainty in
values ofai

(DKp) due to resonance contributions in fitted no
exotic D decays. Second, the values ofai

(Dpp) may differ
from those ofai

(DKp) . A determination ofai
(Dpp) from the

corresponding Cabibbo suppressed decays~neglecting reso-
nance contributions! gives very different results@20# for a2

compared with theD→Kp case, a1
(Dpp)51.05, a2

(Dpp)

520.07, whenF0
Dp(mp

2 )50.7 @18# is used. Finally, there is
an uncertainty due to the present experimental error in
ratio of form factorsF0

DK(0)/F0
Dp(0). The average value

obtained from four experiments@21# is F0
DK(0)/F0

Dp(0)
51.0060.08.

We conclude that it is difficult to evaluateR2(mD) and to
explain its experimental value in a reliable manner within
generalized factorization approach. It is not entirely imp
sible that the failure to account for this large SU~3! breaking
is due to resonant contributions in otherD decay processe
which modify the extracted values ofai . Assuming, for in-
stance, a2

(DKp)/a1
(DKp)520.6 @7#, ai

(Dpp)5ai
(DKp) ,

F0
DK(0)/F0

Dp(0)51.1, one finds using Eq.~7! the value
R2(mD)50.64, consistent with experiment. Still, a probab
explanation for this failure is the presence of significant n
factorizable nonresonant contributions.

In view of the situation ofR2(mD), one should be aware
of the possible presence of nonfactorizable SU~3! breaking
terms at theB mass. Keeping this in mind, we disregard su
terms for the rest of the discussion and studyR1(mB) and
R2(mB) in the generalized factorization approximation

R1,2~mB!5
a1,2

(BKp)

a1
(Bpp)1a2

(Bpp)

f K

f p

F0
Bp~mK

2 !

F0
Bp~mp

2 !

1
a2,1

(BKp)

a1
(Bpp)1a2

(Bpp)

mB
22mK

2

mB
22mp

2

F0
BK~mp

2 !

F0
Bp~mp

2 !
. ~8!

The parametersai
(BKp) andai

(Bpp) cannot be determined di
recly from experiments. The closest one can get empiric
is to measure these parameters at a different scale in had
b→c decays. An analysis ofB→D (* )p(r) yields values
@3,22# a1

BDp.1 anda2
BDp50.220.3. A recent perturbative

QCD calculation ofB→pp decays@5#, including nonfactor-
izable contributions due to hard gluon exchange, sugg
that the corresponding value of the effectivea2 for two light
pions is smaller, aroundua2

(Bpp)u50.1, involving a sizable
complex phase. This calculation does not include nonfac
izable terms due to soft exchanges, which are argued t
power suppressed in the heavy quark limit. In our estim
07730
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below of R1,2 we will use the rangea250.1-0.3, assuming
for simplicity ai

(BKp)5ai
(Bpp) and neglecting complex

phases which have a small effect on our estimates. Note
under these assumptions the sumR11R2 can be estimated
more reliably than the difference, since it is independent
(a12a2)/(a11a2).

The form factorsF0
Bp(K) at q250 were computed in a

variety of quark models@18,23#, light front model@24#, MIT
bag model@25#, QCD sum rules@26–28# and lattice QCD
@29#. The results span a wide range of values
F0

BK(0)/F0
Bp(0), from 0.7@23# to 1.3@24#. The ratio of form

factorsF0
Bp(mK

2 )/F0
Bp(mp

2 ) is expected to differ from 1 by
less than 1%; this difference will be neglected in the follo
ing discussion. Using the numerical values from@18,28#
gives a typical value for the form factor ratio appearing
the second term of Eq.~7!, F0

BK(mp
2 )/F0

Bp(mp
2 )51.16. It is

hard to assign a theoretical uncertainty to this value, con
ering the large spread of model predictions, some of wh
@23# involve values smaller than one. This particular val
implies R151.21 (1.20) andR251.16 (1.17), correspond
ing to a250.1 (0.3). Thus, with this choice of the form
factor ratio, SU~3! breaking inR2 /R1 is at most about 4%.

In view of the wide range of model-dependent results
F0

BK(0)/F0
Bp(0), and inorder to narrow this range, we pro

pose an alternative calculation of this ratio, which is bas
on the measured ratio of corresponding form factors inD
decays,F0

DK(0)/F0
Dp(0)51.0060.08. SemileptonicB andD

decay form factors, at points of equalp(K) energy in the
rest frame of the decaying meson, are related by a he
quark symmetry scaling law@30#

F0
BP~q

*
2 !5S as~mb!

as~mc!
D 26/25AmD

mB
F0

DP~0!, P5p,K.

The momentum transfer forB form factors corresponding to
q250 in D decays isq

*
2 518.0 GeV2, for K in the final

state, andq
*
2 517.6 GeV2 for p. Taking the double ratio of

B andD form factors@31# cancels the leadingO(1/mQ) and
O(ms /LxSB) corrections to the scaling laws of the ind
vidual form factors:

F0
BK~q

*
2 !/F0

Bp~q
*
2 !

F0
DK~0!/F0

Dp~0!
511O~ms /mc2ms /mb!. ~9!

We use this relation to predict the ratio ofB form factors in
terms of the corresponding ratio forD decays. The extrapo
lation of the former fromq

*
2 down to q250 is made by

assuming pole dominance by the 01 statesB0(s) for which
we takemB0

55.7–5.8 GeV,mBs0
55.8–5.9 GeV. This gives

F0
BK~0!

F0
Bp~0!

5~1.01360.002!
F0

BK~q
*
2 !

F0
Bp~q

*
2 !

.1.0160.11, ~10!

where we introduced an error of 7% associated with
O(ms /mc) term in Eq.~9! @31#. The rest of the uncertainty is
due to the error inF0

DK(0)/F0
Dp(0). This uncertainty is ex-

pected to be reduced in future experiments of semileptoniD
1-3
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decays. The relation between ratios of form factors inD and
B decays can be tested by measuringB→pl n and B
→Kl 1l 2.

The value ~10! is somewhat lower than the abov
mentioned result,F0

BK(0)/F0
Bp(0)51.16, taken from certain

models. Inserting Eq.~10! into Eq. ~8! we find the central
values R151.20 (1.17) and R251.02 (1.05) for a2
50.1 (0.3). This implies very small SU~3! breaking inR2
and larger SU~3! breaking in R2 /R1, at a level of
15% (10%). This is significantly higher than the 4% effe
estimated from F0

BK(0)/F0
Bp(0)51.16. An even larger

SU~3! breaking inR2 /R1 is obtained in the factorization ap
proximation for values of the form factor ratio which a
smaller than 1.

We conclude with an interesting observation. Our disc
sion of the large measured SU~3! breaking in hadronicD
decays indicates the likely need for a significant nonfac
izable nonresonant contribution. Such effects may be sma
in B decays but ought to be considered with care. In spite
this warning, one may argue from rather simple grounds
s

v

o
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in the generalized factorization approximation SU~3! break-
ing in R2(mD) is expected to be much larger than inR2(mB).
Assuming universal values forai , separately forB and D
decays, bothR2(mB) in Eq. ~8! andR2(mD) in Eq. ~7! con-
sist of two SU~3! breaking contributions weighed b
a2 /(a11a2) and a1 /(a11a2). In B decays, wherea2 /a1

;0.1–0.3, the dominanta1 term involves SU~3! breaking
given by F0

BK(0)/F0
Bp(0)21 which is expected to be at

level of 10%. On the other hand, inD decays in which
a2 /a1;(20.6) –(20.4) is large and negative, the 22
SU~3! breaking off K / f p in the a2 term may be effectively
roughly doubled by the destructive interference of this te
with the a1 term.
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