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Using the effective potential approach for composite operators, we formulate a general method of calculation
of the truly nonperturbative Yang-Mills vacuum energy density in the covariant gauge QCD ground state
guantum models. It is defined as an integration of the truly nonperturbative part of the full gluon propagator
over the deep infrared regidsoft momentum region A nontrivial minimization procedure makes it possible
to determine the value of the soft cutoff in terms of the corresponding nonperturbative scale parameter, which
is inevitably present in any nonperturbative model for the full gluon propagator. We have shown for specific
models of the full gluon propagator explicitly that the use of the infrared-enhanced and finite gluon propagators
leads to the vacuum energy density which is finite, always negative, and has no imaginafgtaiale
vacuum), while the infrared vanishing propagators lead to an unstable vacuum and therefore they are physi-
cally unacceptable.

PACS numbeps): 11.15.Tk, 12.38.Lg

I. INTRODUCTION quantum equations of motion, the so-called Schwinger-
Dyson (SD) equations for lower(propagators and higher
The nonperturbative QCD vacuum is a very complicatedvertices and kernelsGreen’s functions. It is &ighly non-
medium and its dynamical and topological complexity-3]  linear, strongly coupled system of four-dimensional integral
means that its structure can be organized at various leveRduations for the above-mentioned quantities. The kernels of
(classical, quantuin It can contain many different compo- these integral equ_ations are det.ermined by the _infinite series
nents and ingredients which contribute to the truly nonper®f the corresponding skeleton diagrafi§—-12. It is a gen-
turbative vacuum energy densityED), one of the main eral feature ofnonlinear systems that the number of exact
characteristics of the QCD ground state. Many models of th§0!utions(if any) cannot be fixed a prioriThus formally it
QCD vacuum involve some extra classical color field con-may have several exact solutions. These_equatlons should be
figurations such as randomly oriented domains of consta Iso complemented by the corresponding Slavnov-Taylor

color magnetic fields, background gauge fields, average R !dent|t|es [10-12 \.Nh'Ch n geperal rc_alate the above-
. ) ._°mentioned lower and higher Green'’s functions to each other.
over spin and color, stochastic colored background field

. SThese identities are consequences of the exact gauge invari-
etc. (see Refs[1,4,9 and references therginThe mo.st _ance and thereforare exact constraints on any solution to
n ) MCD[10]. Precisely this system of equations can serve as an
stanton liquid model¢RILM and IILM, respectively of the  5qequate and effective tool for the nonperturbative approach
QCD vacuum[6]. These models are based on the existencg, QCD[13,14.
of the topologically nontrivial instanton-type fluctuations of  Among the above-mentioned Green’s functions, the two-

gluon fields, which are nonperturbative, weak coupling solupoint Green’s function describing the full gluon propagator
tions to the classical equations of motion in Euclidean space

(see Ref[6] and references thergin . 2 1
Here we are going to discuss the quantum part of the D (@) ={Tu(@)d(—q 'foL#v(q)}F (1.
VED which is determined by the effective potential approach
for composite operatofg—9]. It allows us to investigate the has a central pladg0—15. Here¢ is a gauge fixing param-
nonperturbative QCD vacuum, in particular, the Yang-Millseter (=0, Landau gauge and T},“V(q)=gM,,—quV/q2
(YM) one, by substituting some physically well-justified an-=g,,,—L,,(q). Evidently, its free perturbativétree leve)
satz for the full gluon propagator since the exact solutiongounterpart is obtained by simply setting the full gluon form
are not known. In the absence of external sources the effe¢actord(—qg?,&)=1 in Eq.(1.1). In particular, the solutions
tive potential is nothing but the VED which is given in the of the above-mentioned SD equation for the full gluon
form of the loop expansion where the number of the vacuunpropagator, Eq(1.1), are supposed to reflect the complexity
loops(consisting in general of the confining quarks and non-of the quantum structure of the QCD ground state. As em-
perturbative gluons properly regularized with the help ofphasized above, it is &ighly nonlinear system of four-
ghosts is equal to the power of the Plank constént dimensional integrals containing many different, unknown in
The full dynamical information of any quantum gauge general, propagators, vertices, and kerh&@-12. Because
field theory such as QCD is contained in the correspondin@f truncation schemes, this system becomes the equation for
the full gluon propagator only, but it remaingnlinear, nev-
ertheless. Different truncations could lead to qualitatively
*Email address: gogohia@rmeki.kfki.hu different solutions, and the number of these solutions may be

0556-2821/2000/62)/07600812)/$15.00 62 076008-1 ©2000 The American Physical Society



V. GOGOHIA AND Gy. KLUGE PHYSICAL REVIEW D62 076008

increased only. Moreover, to clearly distinguish between theluon propagator its truly nonperturbative part usually coin-
exact or approximate solutiorii$ any), we do not know even cides with its deep IR asymptotics, emphasizing thus the
the complete set of boundary conditions to attempt tostrong intrinsic influence of the IR properties of the theory
uniquely fix solution of the truncated equation. We certainlyon its nonperturbative dynamics.
know the boundary condition in the ultraviolétV) limit It is well known, however, that the VED in general is
because of asymptotic freedom and certainly we do not knowadly divergent in quantum field theory, in particular QCD
the corresponding boundary condition in the infraléd) [16]. Thus the main problem is how to extract the truly non-
precisely because of confinemdat this stage it is not even perturbative VED which is relevant for the QCD vacuum
clear whether the two boundary conditidms the UV and in ~ quantum model under consideration. It should be finite,
the IR (if it can be established will be sufficient to com- negative, and have no imaginary péstable vacuum Why
pletely fix the theory or ngt Because of the above-discussedis it so important to calculate it from first principles, i.e., on
highly complicated mathematical structure of the SD equathe basis of some realistic ansatz for the full gluon propaga-
tion for the full gluon propagator, there is no hope for exacttor only? As was emphasized above, this quantity is impor-
solution(s). However, in any case the solutions of this equa-tant in its own right as being nothing else but the bag con-
tion can be distinguished by their behavior in the deep IRstant (the so-called bag pressurapart from the sign, by
limit (the UV limit is uniquely determined by asymptotic definition [16]. Through the trace anomaly relati¢t7] it
freedon), describing thus many different types of quantumhelps in the correct estimation of such an important phenom-
excitations and fluctuations of gluon field configurations inenological nonperturbative parameter as the gluon conden-
the QCD vacuum. Evidently, not all of them reflect the realsate introduced in the QCD sum rules approach to resonance
structure of the QCD vacuum. physics[18]. Furthermore, the YM VED assists in the reso-
The deep IR asymptotics of the full gluon propagator carlution of the U(1) problem[19] via the Witten-Veneziano
be generally classified into three different typ€b: the IR (WV) formula for the mass of the’ meson[20]. The prob-
enhancedIRE) or IR singular(IRS), (2) the IR finite (IRF), lem is that the topological susceptibilift9—-23 needed for
and (3) the IR vanishing(IRV) ones(for references see the this purpose is determined by a two-point correlation func-
corresponding sections belpwLet us emphasize that any tion from which the perturbative contribution is already sub-
deviation in the behavior of the full gluon propagator in thetracted, by definitior]20,23—23. The same is valid for the
deep IR domain from the free perturbative one automaticallyabove-mentioned bag constant which is a much more general
assumes its dependence on a scale parartetierast ongin quantity than the string tension because it is relevant for light
general different from the QCD asymptotic scale parametequarks as well. Thus to calculate correctly the truly nonper-
Agcp- It can be considered as responsible for the nonperturbative VED means to understand correctly the structure of
turbative dynamicgin the IR region in the QCD vacuum the QCD vacuum in different models.
models under consideration. If QCD itself is a confining We have already formulated a general method of calcula-
theory, then such a characteristic scale is very likely to existtion of the truly nonperturbative YM VED in the axial gauge
In what follows, let us denote it as, sajyp. This is very  QCD in Ref.[26], where the Abelian Higgs mod¢R7] of
similar to asymptotic freedom which requires the above-the dual QCD28] ground state was investigated. Moreover,
mentioned asymptotic scale parameter associated with nomve have calculated the truly nonperturbative VEIZBIing a
trivial perturbative dynamics in the UV regidiscale viola-  particular methog in the covariant gauge QCD quantum
tion). However, for calculation of the truly nonperturbative vacuum model as well29,30. The main purpose of this
VED we do not exactly need the deep IR asymptotics of thepaper(Sec. 1)) is to formulate precisely a general method of
full gluon propagator, but rather its truly nonperturbative calculation of the truly nonperturbative quantum part of the
part, which vanishes when the above-mentioned nonpertutM VED in the covariant gauge QCD. In Secs. Ill, IV, and
bative scale parameter goes formally to zero, i.e., when only this is illustrated by considering different covariant gauge
the perturbative phase survives. So we define the truly nonQCD quantum models of its ground state by choosing three
perturbative part of the full gluon form factor in E(L.1) as  different types of the deep IR asymptotics of the full gluon
follows: propagator, IRE, IRF, and IRV, respectively. The conclu-

dNP(— g2 Anp) =d(— g2 Ayp)—d(— 2 A np=0), sions are presented in Sec. VI.
(1.2

. II. TRULY NONPERTURBATIVE VACUUM ENERGY
which, on the one hand, uniquely determines the truly non- DENSITY

perturbative part of the full gluon propagator. On the other _ ) )
hand, the definitiori1.2) explains the difference between the N this section we formulate a general method of numeri-
truly nonperturbative pard"P(—g?) and the full gluon qal caIcuIat|on of the quantum part of the truly nonperturba-
propagatord(—g2) which is nonperturbative itself. Let us tive YM VED in the covariant gauge QCD. Let us start from
note in advance that in realistic models for the full gluonthe gluon part of the VED which to leading ordefog-loop
propagator, the limitAyp—0 is usually equivalent to the

limit —g2?—c. In some cases, the model gluon propagator

does not depend explicitly on the nonperturbative scale pa-!Next-to-leading and higher contributioftsvo and more vacuum
rameter(the dependence is hidderthen, its behavior at in- loops are numerically suppressed by one order of magnitude in
finity should be subtracted. In realistic models of the full powers of# at least and are left for consideration elsewhere.
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level ~7%) is given by the effective potential for composite (2, ,, NPy
operatord 7] as follows: €g= — ?jo dg g In[1+3d"" (g%, Anp) ]
V(D)—i—f ﬂTr{ln(D_lD)—(D_lD)H} 3 L~
-2 @m)" 0 0 ' - ZdNP(qszNP) - ?(l pTt+lp7), (2.6)
(2.1

whereD(q) is the full gluon propagatofl.1) andDy(q) is ~ Where evidently
its free perturbativdtree level counterpart. Here and below

the traces over space-time and color group indices are undet- ) NP, 2 3 NP, 2
stood. The effective potential is normalized Do) =0;  !p1= qqu 97 In[1+3d™7(q% Anp)]— 7d77(a% Anp) |-
i.e., the free perturbative vacuum is normalized to zero. In 0 2.7

order to evaluate the effective potenti@.l) we use the

well-known expression Thus the first integral represents contribution to the YM

3 1 VED which is determined by the truly nonperturbative piece
TrIn(DalD)=8><In de(DalD)=8><4 Inhd(—qz)Jr Z} of the full gluon propagator integrated over the deep IR re-
22 gion. In other words, just this term is the truly nonperturba-

: tive contribution to the YM VED. This means that the two

It becomes zerdin accordance with the above-mentioned "€Maining terms in Eq(2.6) should be subtracted by intro-
normalization conditionwhen the full gluon form factor is ducing corresponding counterterms into the effective poten-
replaced by its free perturbative counterpart. This compositidl- Thus in general the integra2.5) determining the con-
tion does not depend explicitly on a gauge choice. Goindnbutmn from the perturbatlve part.o_f the full gluon
over to four-dimensional (=4) Euclidean space in Eq. propagator and the integrg2.7) determining the contribu-

(2.1), on account of Eq(2.2), and evaluating some numeri- tion from the perturbative regioiM plus UV) are of no
cal factors, one obtairfse,=V(D)] importance for our present consideration. The above-

mentioned necessary subtractions can be done in a more so-
3 phisticated way by means of ghost degrees of free(ken
|n[1+3d(q2)]—zd(q2)+a} below).
2.3 The effective potential at the log-loop level for the ghost
' degrees of freedom is

1
€=~ pf do’g?

where constana=(3/4)—2In2=-0.6363 and integration

from zero to infinity is assumed. Substituting the definition [ d"p . 71

(1.2) into Eq. (2.3 and doing some trivial rearrangements, V(G)=—i f (ZT),]Tr{In(GO G)—(Gy"G)+1},

one obtains (2.8

In[1+3d"P(g% Anp)] whereG(p) is the full ghost propagator ar@,(p) is its free
perturbative(tree level counterpart. The effective potential
3 1 V(G) is normalized a3/(Gy)=0. Evaluating formally the
_ ZdNP(qZ,ANP)}_ ?|PT, (2.9 gho§t2 term GQPZV(G) in Eq. (2.8, we obtain egp
=a" “lgn. The integral 4, depends on the ghost propagator,
which remains arbitraryunknowr within our approach. In
principle, we have to sum up all contributions to obtain the
3d(g% A yp=0) total VED (the confining quark part of the vacuum energy
nl 1+ 9. Anp density is not considered hgréHowever, upon substitution
( 1+3dNP(q2,ANP)) of definition (1.2) into the integral over the whole momen-
tum range from zero to infinity, Eq2.3), some terms appear
there which may have unphysical singularities below the
' (2.9 scaleAq¢p [integral (2.5)]. Thus the initial VED(2.3) is a
formal one; it suffers from unphysical singularities briefly

It contains the contribution which is mainly determined by mentioned above and itis badly divergent as well. In order to
the perturbative part of the full gluon propagator, 9€t a physically meaningful expression, one has to subtract
d(g? A np=0). The constara also should be included since tWo integrals(2.5 and(2.7) from Eq. (2.3). We have done

it comes from the normalization of the free perturbativethis subtraction with the help of a ghost term by imposing the
vacuum to zero. If we separate the deep IR region from théollowing condition: A=1pr+1pr—14,=0. The nonpertur-
perturbative ongwhich consists of the intermediaigM)  bative gluon contribution to the VED is determined by sub-
and UV regions since the IM region remaitesra incognita  tracting unwanted terms by means of the ghost contribution,
in QCD], by introducing the so-called soft cutoff explicitly i.e., definingey+ €4,= €y at A=0. Thus the truly nonper-
then we get turbative YM VED becomes

1
€=~ pf doq?

where we introduce the following notation:

IPT:J' dq’o?| |

3
_Zd(qzaANP:O)+a
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A. Ayy as a fixed scale

S J“gquq2 Eo|N"(q2 Anp) o : .

YMTR2 ), 4 NP From this point it is convenient to factorize scale depen-
dence of the truly nonperturbative YM VE[2.9). As was
already emphasized abowa\"(g?) always contains at least
one scale parameteA(p) responsible for the nonperturba-
tive dynamics in the model under consideration. It is consid-
ered as a free one within our general method, i.e., “running”

In many cases this subtraction is sufficient to obtain the ex(When it formally goes to zero, then the perturbative phase
pression for the truly nonperturbative YM VED. However, in ONly survives in the modgllts numerical valugif any) will

some other cases the truly nonperturbative part of the fulP® used at the final stage only to evaluate numerically the
gluon propagator which enters E@.9) continues to suffer c0rresponding truly nonperturbative YM VEDF any). We

from unphysical singularities below the scalgcp, (see the can introduce dimensionless variables and parameters by us-
discussion at the end of Sec).\As was noticed, some ad- "9 2 completely extra scalevhich is always fixed in com-

ditional terms should be included in our subtraction schem«?arlson with Ayp), for example, the fiavorless QCD

—In[1+3dNP(q2,ANP)]}. (2.9

in this case, indicating that the chosen ansatz for the fuliisymptOtIC scale parametaryy, as follows:
gluon propagator itself was not realistic. 9 qg Aﬁp

A few general remarks are in order. In QCD nothing 2=——, Zp=——, b=——. (2.10
should explicitly depend on ghosts. By contributing to closed Avm Aym Adm

loops only, the main purpose of their introduction is to can-

cel the unphysical degrees of freedom of gauge bosonserez, is a corresponding dimensionless soft cutoff while
(maintaining thus the unitarity of th®@matrix), for example,  the parameteb has a very clear physical meaning. It mea-
to exclude the longitudinal components, the abovesures the ratio between nonperturbative dynamics, symbol-
mentioned unphysical singularities below the QCD scalejzed byA 2, and nontrivial perturbative dynamicsiolation

etc. This is the main reason why they are to be consideregs scale, asymptotic freedgmsymbolized byAZ,,. When it
together with gluons always. In nonperturbative QCD in gen+s zero only the perturbative phase remains in the model. In
eral and in our approach in particular the ghost propagatofhis case, the gluon form factor obviously becomes a func-
(or equivalently the ghost self-enengstill remains unknown o of z and b, i.e., dNP(q?) =d"P(z,b), and the truly non-

(in t_his sense arbitrajysince 'ghe exact ghc_)_st-gluon vertex perturbative VED(2.9) is [ ey = €ym(Zo,b)]
(which enters the corresponding SD equalimnnot exactly

known (in Refs. [31,32 some very specific truncation
scheme is used in order to derive a particular expression for
this vertey. We know, however, that the ghost propagator
contribution to the VED, regular or singular, should be com-
bined with the gluon contribution in order to cancel exactly _ . .
the above-mentioned unphysical singularities of the gaug&here the gluon effective potential at a fixed scalg,,
bosons which are inevitably present in any ansatz for the full26,29,34 is introduced:

gluon propagator. In other words, if one knows the ghost

propagator exactly, then the above-mentioned cancellation Qg=Q4(20,b)

should proceed automaticalfgs usual in perturbative calcu-

1
Qg(zoab):ATeYM(ZO’b)a (2.11)

YM

lus if, of course, all calculations are corredBut if it is not 1 (% 3 P NP

known exactly(as usual in nonperturbative calculushen B szo dz 4d (z,b)=In[1+3d"(z,b)]).
one has to impose the condition of cancellation as was done

in our case A=0. Obviously, the above-mentioned condi- (212

tion of cancellation was imposed in the most general form.
Instead of the introduction of some counterterms into theThis expression precisely allows us to investigate the dy-
initial effective potential to cancel the most dangerous UVnamical structure of the YM vacuum. It is free of scale de-
divergences presented in the intediab), we have used the pendence since it has been already factorized inZEdg1). It
ghost term for this purpose as well. Thus our subtractiordepends only oz, andb and a minimization procedure with
scheme is in agreement with the general physical interpretaespect td, 9{24(z,b)/db=0 [usually after integrated out
tion of ghosts to cancel all unphysical degrees of freedom oifn Eq. (2.12], can provide a self-consistent relation between
the gauge bosond0,33. Zo andb; that is, we getyg as a function ofA yp. Let us note
The expressioif2.9) is our definition of the truly nonper- in advance that the final numerical results will depend on
turbative YM VED as integrated out of the truly nonpertur- Ap only as it should be for the nonperturbative part of the
bative part of the full gluon propagator over the deep IRYM VED (see Secs. Il and IV belowObviously, minimi-
region (soft momentum region, s@qzsqg). The soft cutoff  zation with respect t@, leads to a trivial zero. In principle,
g2 (as a function of the nonperturbative soatan be deter- through the relatiom\y,,=qgz, 2, it is possible to fix the
mined by the corresponding minimization proced(gee be-  soft cutoffqg itself, but this is not the case indeed since then
low). Z, cannot be varied.
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B. Soft cutoff as a fixed scale 1 NPy st NPy st
S S
On the other hand, the scale dependence can be factorized 9(20) d (Z9) = In[1+3d™(z )]}’

as follows: (2.18
_ g % ) 9 wherezg' is a solution(if any) of the “stationary” condition
z= Aﬁp, Z0= A2 ' (2.13 (2.17 and corresponds to the mininG&any) of the effective

potential (2.16). In the next sections, we illustrate how this
method works by considering some quantum models of the

e.,b=1. For simplicity (but not losing general e use : .
i implicity (bu nd 9 fywe u variant gauge QCD ground state explicitly.

the same notation for the dimensionless set of variables and®
parameters as in Eq2.10. In this case, the gluon form

factor obviously becomes a function af only, d\P(g?) lll. IRE GLUON PROPAGATOR: ZME QUANTUM
=d"P(z), and the truly nonperturbative YM VEI2.9) be- MODEL
comes

Today there are no doubts left that the dynamical mecha-
1 2 3 nisms of important nonperturbative quantum phenomena
evm(Zo)= _quzazf dzz{_dNP(z)_|n[1+3dNP(z)] ) such as quark confinement and dynami@al equivalently
™ 0 4 spontaneoyschiral symmetry breakingDCSB) are closely
(2.14 related to the complicated topologically nontrivial structure
) ) ) o ) of the QCD vacuum1-4,10. On the other hand, it also
Evidently, to fix the scale is possible in two different ways. yacomes clear that the nonperturbative IR dynamical singu-

In principle, we can fixAyp itself, i.e., introducing larities, closely related to the nontrivial vacuum structure,
play an important role in the large distance behavior of QCD

o 1 [35,36. For this reason, any correct nonperturbative model
Qg(20)= ANPGYM(ZO) of quark confinement and DCSB necessarily turns out to be a

model of the true QCD vacuum and the other way around.
_ 0 3 NP NP Our model of the true QCD ground state is based on the
—?JO dz Zd (z2)=In[1+3d™(2)]|. existence and importance of such a kind of nonperturbative,
quantum excitations of the gluon field configuratigdse to
(2.19 self-interaction of massless gluons only, i.e., without explic-
itly involving some extra degrees of freedpmhich can be
However, the minimization procedure again leads to a triviakffectively correctly described by thg * behavior of the

zero, which shqws that thig scale cannot be_ fixed. full gluon propagator in the deep IR domaiat smallg?)
~In contrast with the previous case, let us fix the soft cutoff[29,3(. These excitations are topologically nontrivial also
itself, i.e., settind 26,29,3Q since they lead to the nontrivial YM VE[see below Thus
our main definition(1.2) becomes
— 1
Oy (zg)=—3 z
of20) = g evlzo) 0"~ 0, Ap) = d(— 0%, Ap) ~ A~ G2 Ap=0)
1 2y A
— -2 NP NP
=—Z dzz-d""(z)—In[1+3d""(z =
22 fo { )—In[ (2)]]- e 2) (3.2
(2.19

In the above-mentioned pap€dr29,30 the nonperturbative

In this case the perturbative phase is recovered inzthe scale was denoted as i.e.,u=Ayp. In this way we obtain
—o (Ayp—0) limit. Now the minimization procedure with the generally accepted form of the deep IR singular asymp-

respect toz, is nontrivial. |ndeed,a§g(zo)/gzozo yields totics for the full gluon propagatdifor some references see
the “stationary” condition below),

D, (@)~(@) "% g°—0, (3.2

Z
JOdzz{ngP(z)—In[1+3dNP(z)]
0 which may be referred equivalently to as the strong coupling
regime[10]. It describes the zero-momentum-mode enhance-
(2.17) ment (ZMME) dynamical effect in QCD at large distances.
We prefer to use simply ZMEzero-mode enhancement
since we work always in momentum space. This is our pri-
the solutions of which(if any) allow one to findqy as a mary dynamical assumption in this section. The main prob-
function of A\ p. On account of this “stationary” condition, lem due to this strong singularity is its correct treatment by
the effective potentia(2.16) itself becomes simpler for nu- the dimensional regularization methf@¥7] within the distri-
merical calculations, namely, bution theory[38], which was one of the highlights of our

3
=525 70" (zo) ~In[1+3d""(29)]|,
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previous publication$29,30 (see also Ref.39]). There ex- Thus we consider our main ansdi2.1),(3.2) as physi-
ist many arguments in favor of this behavior. cally well motivated. Let us emphasize that'"(—g? &)

(a) Such singular behavior of the full gluon propagator in =Aﬁpl(—q2) is the truly nonperturbative part of the full
the IR domain leads to the area law for static qudikdica-  gluon propagator since it vanishes in the perturbative limit
tive of confinementwithin the Wilson loop approacht0]. (A,z\,P—>0, when the perturbative phase survives ordnd

(b) The cluster property of the Wightman functions in simultaneously it correctly reproduces the deep IR asymptot-
QCD fails and this allows such singular behavior like Eq.ics of the full gluon propagator; i.ed""(—g?) coincides
(3.2) for the full gluon propagator in the deep IR domain with d'?(—g?).

[41].

(c) After the pioneering papers of Mandelstam in the co- A. Set of dimensionless variables oA type

variant (Landay gauge[42] and Baker, Ball, and Zachari-

asen in the axial gaudd3], the consistency of the singular ( o NPy A2Y A2 2 : }

. ) ; . . 2.9 with d = A p/q° in Euclidean space. Let us first
asymptotics(3.2) with direct solution of the SD equation for =/ " - the(,g-tg/pe ggtqof dimensionlesz variables, Eqs.
the full gluon propagator in the IR domain was repeatedly(zl@_ Thend“P(q?) becomesdNP(z,b)=b/z. Perform,ing
confirmed(see, for example, Ref$13,14,44,4% and refer- - 51mos; trivial integration in the effective potential at a fixed

ences therein _ _ _ scale(2.12), one obtains
(d) Moreover, let us underline that without this compo-
3b }
1+—1].
zZ

nent in the decomposition of the full gluon propagator in ) Zy
continuum theory it is impossible to “see” the linearly rising Qg(zovb):ﬁ 9b%In 1+% 0
potential between heavy quarks by lattice QCD simulations (3.3
[46] not involving some extrdbesides gluons and quaiks
degrees of freedom. This should be considered as strong Idt-is easy to show that as a function bf the effective po-
tice evidencethough not diregtof the existence and impor- tential (3.3) linearly approaches zero from below and it di-
tance ofq~4-type excitations of gluon field configurations in Verges also linearly at infinity while as a functionzfitself
the QCD vacuum. There exists also direct lattice evidencd @pproaches zero from above and also diverges as, at
that the zero modes are enhanced in the full gluon propagatdfinity. Thus as a function ob it has a local minimum
indeed[47]. (relatlng b to z5) at vyhlch the truly _nonperturbat_lvc_a YM
(€) Within the distribution theory38] the structure of the YED Will be always finite and negative. The minimization
nonperturbative IR singularities in four-dimensional Euclid- procedure with respect tb, d{)4(zq;b)/db=0, yields the
ean QCD is the same as in two-dimensional QCD, whicHollowing “stationary” condition: =4 In[1+(2/3)], where
confines quarks at least in the lartg limit [48]. In this ~ ¥=Zo/b. Its solution isy™"=2.2. Using this “stationary”
connection, let us note that thg * IR singularity is the condition, the effective potenti@B.3) can be written as
simplest nonperturbative power singularity in four-

The truly nonperturbative YM VED is given now by Eq.

3z
—7°b—z3|n

dimensional QCD as well as thg ? IR singularity being the i b2y i 3
simplest nonperturbative power singularity in two- Qg(v™b)= o2 |4 " Inj 1+ _min
dimensional QCD. The QCD vacuum is a much more com-
plicated medium than its two-dimensional model; neverthe- =-0.1273?, (3.9
less, the above-mentioned analogy is promising even in the
case of the nonperturbative dynamics of light quarks. so the truly nonperturbative YM VEI2.11) becomes
(f) Some classical models of the QCD vacuum also in-
voke theq™* behavior of the gluon fields in the IR domain. eym=—0.1273\p, (3.5

For example, it appears in the QCD vacuum as a condensa-
tion of the color-magnetic monopoléhe QCD vacuum is a Where the relatiom\ o= b?A{,, has been already used. De-
chromomagnetic supercondudtproposed by Nambu, Man- termined in this way, it is always finitésince the character-
delstam, and 't Hooft and developed by Nair and Rosenistic scale of our modelA \p, is finite, evidently it cannot be
zweig (see Ref[49] and references therein. For recent de-arbitrarily large, automatically negativéas it should be for
velopments in this model see Di Giacorfid) as well as in  the truly nonperturbative energyand it has no imaginary
the classical mechanism of the confining med{a@] and in  part (stable vacuum Obviously the characteristic scale of
effective theory for the QCD vacuum proposed in R&tL]. our model,A \p, cannot be determined within the YM theory
(g) It is also required to derive the heavy quark potentialalone. Its numerical value should be taken from the good
within the recently proposed exact renormalization groupphysical observable in full QCD by implementing the physi-
flow equations approad2]. cally well-motivated scale setting scheme. Precisely this has
(h) It has been shown in our papers that the singular bebeen done in our papef29,3Q where the nonperturbative
havior(3.2) is related directly to light quark confinement and VED was numerically evaluated from first principles. More-
DCSB [29,30. Moreover, very good agreement has beenover, in recent publicationg21,22] it is shown that our nu-
obtained with the phenomenological values of the topologiimerical results are of the necessary order of magnitude in
cal susceptibility, the mass of the¢' meson, and the gluon order to nicely saturate the large mass of #iemeson in the
condensat§21,22. chiral limit as well as the phenomenological value of the
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0.10

i.e., eym=ARpQg(r™",b) =qgQy(z5"") = —0.1273\{p. In
some cases, th8-type calculation is preferable. For ex-
ample, to calculate the confining quark contribution into the
total VED is much easier using precisely this set of the di-
0.05 4 mensionless variablesee our paperf29,3Q and the next
section as wejl

IV. IRF GLUON PROPAGATOR

0.00 - Let us consider now a possible IRF behavior of the full
gluon propagatofin the Landau gaugen the deep IR do-
main, which was suggested by recent lattice calculations in
Ref.[53]. The main definition1.2) in this case becomes

0.0 20 4.0 6.0 8.0 10.0 d"P(—g%,M)=d(—g*>M)—d(—qg?M=0)
ZO
ZAM?%(—q?)

:(_q2+M2)1+a' (41)

FIG. 1. Effective potentia(3.7) as a function of,.
topological susceptibility. Thus the existence of the non-
trivial VED in the ZME quantum model, which agrees well
with QCD topology, is one more serious argument in its
favor. It is worthwhile to present the numerical value for the
soft cutoff in terms ofA yp, Namely,qo=1.48324\ \p. This
follows from the solution of the “stationary” condition, of
course.

HereM is the mass scale parameter responsible for the non-
perturbative dynamics in this model, i.eM=Ayp in our
notation. When the parametbt formally goes to zero, the
perturbative phase only remains in this model. Again as in
the previous case, the truly nonperturbative part vanishes in
the perturbative limit 1 —0) and it reproduces the IR as-
ymptotics of the full gluon propagator correctly as well. The
) ) ) best estimates for the parametdfisand A are M= (1020

B. Set of dimensionless variables oB type +100+25) MeV andA=(9.8+0.1-0.9). As was empha-

It is instructive to calculate the truly nonperturbative YM sized above, the numerical value of the parambteill be
VED by choosing theB-type set of dimensionless variables used only at the final stage in order to estimate numerically
Egs.(2.13. Thend"P(q?) =A% p/q? becomesiN(z)=1/z.  the truly nonperturbative YM VED in this model. The expo-
Performing almost trivial integration in the effective poten- nent in general isx=2+ 6, where >0 and small, while

tial at a fixed scalg€2.16) in this case, one obtains Z~1.2 is the renormalization constant.
In this case, it is convenient to choose tBdype set of
— 1 z5) 3 3 iabl d ters, Eq®.13. Thend“P(g?) in Eu-
_ 2 Z| S 5 S variables and parameters, e (99 u
Q4(20)= 2220 9 In( 1+ 3) 2% Zoln| 1+ Z0 } clidean space becomes
. . . NP a1z
It is easy to show now that as a functionzf the effective d™ ()= Lrpe 4.2

potential (3.7) diverges as-z, ! at smallzy and converges
as~ —zgl at infinity (perturbative limif; see Fig. 1. Thus as
a function of z; it has a local minimum atzy=4 In[1

+(2,/3)], the so-called “stationary” condition in this case.
min__

where the parametea;=ZA=11.76 is fixed. Substituting
this into the effective potentigR.16), one obtains

Its solution again iz; '=2.2. At the “stationary” state the _ 1 1
effective potential3.6) can be written Oy(zg;a1) = qh M=~ ?ZGZU 1(Zg;a1) —15(zp5a1)},
0
4.3
Qy(z27M = . §(z”“”)*l—ln 1+ ||=—0.0263
9170 22 4770 ZOmin ' ' where the integrals are given as follows:
3.7
. Zp 38.12
so the truly nonperturbative YM VEIR.16) becomes l1(z0381) = fo dzzin 1+(1+Z)l+a)'
eym=—0.0263)3=—0.1273\ %, (3.8
| 5(z 'a)——fZo zz; (4.4
where the relatiorgg=(z1"")2A4» has been already used. 2T 4 o T (a4 gtte '

Thus we have explicitly demonstrated that the truly nonper-
turbative YM VED does not indeed depend on how one in-The asymptotic behavior of the effective potenti&l3) de-
troduces dimensionless variables into the effective potentiahends on the asymptotic properties of the integyéty;a,)
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eym(2.37=—0.031@3(2.37)= - 0.17M*, (4.9
0.00 1
where the relationg=(z§'")*M* and the corresponding val-
ues ofzy""(=z5") were applied. How to distinguish between
the two solutions for the truly nonperturbative YM VED

(4.8 and(4.9)? This question is discussed in the following.

-0.02 Discussion

In the first case, on account of the numerical value of the
nonperturbative scal®l~1 GeV, Eq.(4.8) numerically be-
comes

0.0 20 40 60 80 10.0 eyw(0.19=-0.00123 GeV. (4.10
“ It is the same order of magnitude as the VED due to instan-
FIG. 2. Effective potentiai4.3) as a function ofz,. tons[22]. Thus summing up this and instantons with ZME
values, one obtains a fair agreement with chiral QCD topol-
since the integrall,(zo;a;) in Eq. (4.4) can be taken explic- 09y [20]. Also the soft cutoff in this case igo~0.463M
itly: namely (in what follows in this sectiong=2), ~463 MeV. This is quite reasonable value for the deep IR
region(in continuum theorywhere the smooth-type behav-
ior of the full gluon propagator effectively takes place.
In the second case, on account of the numerical value of
the nonperturbative scaM~1 GeV, Eq.(4.9 numerically
becomes

3a; _
1,(z9;81)= T( IN(1+29)+2[(1+29) 1—1]

1 -2
~5l(1+z972-1]). 4.9

o . eym(2.30=-0.174 Ge\. (4.11
From these expressions it is almost obvious that the asymp-

totics of the effective potentiah.3) atzo—0c to leading |, Refs [21,27 an analytical formalism has been developed

order can be easily evaluated analytically. Thus the effectivgvhich allows one to calculate the topological susceptibility

potential (4.3 as a function of the soft cutoff, has tWo 55 5 fynction of the truly nonperturbative YM VED. The
local minima; see Fig. 2. The corresponding “stationary” corresponding expression is

condition can be evaluated as follows:

2
1 3a,2, _ (4
[|1(Zo:a1)—|z(zo;a1)]=Ezé[ln 1+ mg) Xe=~| 73| €rm (4.12
_ 3a,29 4.6 where the parametef has two different values, namely,
4(1+z0)3" ' Ensv~=2/11 and¢,>=4/33 (see Ref[22]). Evaluating Eq.

_ _ _ - _ ~ (4.12 numerically, on account of Eq4.11), one obtains
Using this :“stat;onary”” condition, the effective potential xNSV%=(550.8 MeV) and xH'?=(259.6 MeVY, while its
(4.3 at the “stationary” state becomes phenomenological value igP"®"=(180.36 MeV). Thus,

Eq. (4.11) substantially overestimates the phenomenological

value of the topological susceptibilityin both modes and

consequently the mass of thg meson in the chiral limit,
indeed. The soft cutoff in this case igy~1.54M
~1.54 GeV. It is also hard to imagine that the deep IR
wherezy'is a solutioits) to the “stationary” condition(4.6).  region (in continuum theorycan be effectively extended up
The two solutions of the “stationary” conditio®.6) corre-  to ~1.54 GeV especially for the smooth-type behavior of
sponding to the two local minima arg'=0.19 andzy'  the full gluon propagator there. The continuum limit of the
=2.37 with almost equal numerical values for the corre-scale parametel is not known, so its realistic numerical
sponding effective potentials at the “stationary” states,value still remains to be well established, and so does the
namely, 59(0_1931): ~0.0309 and 59(2_3731) ;election from sol_utions, Eqg61.8) and(4.9). Let us note that
— —0.0310, respectively. However, the numerical values of? accordance with the general scheme of our method we

the nonperturbative YM VEDI4.3) are drastically different, distinguish the nonperturbative scale of this model from the
perturbative one but for simplicity we retain the same nota-

eym(0.19 = _o_ogogqg(o_lg): —0.001231* (4.9 tion. Evidently, one will obtain the same numerical results
for the truly nonperturbative YM VED by choosing the set of
and variables ofA type.

3a,z3 ) 3a,z3'

— 1
Qy(zha)=——1In| 1+ - ,
o(2032) 2#[ ( (1+23)%)  4(1+23)°

4
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V. IRV GLUON PROPAGATOR in their investigation. Our result, however, is a general one
since it does not require the particular choice of the dressed-

The IRV full gluon propagator is represented by the So'quark-gluon vertex.

called Zwanziger-StingléZS) formula[54,55

, (_q2)2 B. Fixing the soft cutoff
d(=a9= (=) %+ u® 6.0 Within the B-type set of variables, Eq$2.13, d""(g?)

from Eq. (5.2) becomesdNP(z)=—(1/1+2%) (Euclidean
in the whole range, wherg* is again the mass scale param- spacg. After almost trivial integration over four-dimensional
eter responsible for the nonperturbative dynamics in thi€uclidean space in E¢2.16), one obtains
model, i.e.,u=Ayp, in our notation. When it is zero, then
the ZS gluon propagatdi5.1) becomes a free perturbative _ 1
one, indeed. Though the full gluon propagatbrl) is non- Oy(z0)= 8_2252{_8 In2+81In(2—2z2)
perturbative itself, however, its truly nonperturbative part is m

determined by the subtractidd.?), i.e., +(1+4z§)|n(1+z§)—4z§In(z§—2)}.

4
NP 2\ (g2 4 2 4_(y— ~ (5.9
dm (@) =d(a%u) —d(a%,p = 0)= = oz a
(5.2
From this expression it obviously follows that the effective
Since this expression is rather simple, it will be instructive topotential at any finite value of the soft cutaff will always

perform calculations in both schemes,Eqgs.(2.10, andB,  contain the imaginary part, which is a direct manifestation of

Eqgs.(2.13. So let us start from th& scheme. the vacuum instabilityf56] as was indicated above. Its as-
ymptotics atzo— 0, to leading order can be easily evalu-
A. Fixing Ay, ated analytically. Omitting all intermediate calculations, one

Within the A-type set of variables, Eq$2.10, d\P(g?)  finally obtains Q4(20)~ 5,0~ (1/87%)[3+4In(-2)] and
from Eq. (5.2) becomesd"?(z,b) = —(b*/b*+2%) (Euclid- () (z9)~, ..(9/872)z;2InZ, s0 the vacuum of this model
ean space After integration over four-dimensional Euclid- i nstaple, indeed. In order to confirm this, let us consider
ean space in Eq2.12, one obtains the corresr;onding formal “stationary” condiiion which is

1
Oy(29,b)= =—5{—8b?In 2b?+8b?In(2b%— 73 z
o(Z0:0)= gt ( 2 3z3+ (1+25)In(1+23)+8(1+23)In 1—50 =0.
+(b2+42%)In(b%+2)) (5.6)
—4z5In(z5—2b% —b?Inb?}. (5.3 It has only a trivial solutiorgy=0.

In Ref.[57] a modification of the ZS propagat(s.1) was
From this expression it follows obviously that the effective proposed which took into consideration the renormalization
potential(5.3) at any finite relation between the soft cutaff  group improvements to leading order for the running cou-
and parameteb will always contain the imaginary part, pling constant in the UV region, namely,
which is a direct manifestation of the vacuum instabil&@]
in this model. Its asymptotics &t— 0, to leading order can

be easily evaluated analytically. Omitting all intermediate d(—q?)= (-9%)? const 5.7
calculations, one finally  obtains, 4(zg,b)~p o (—g%)°+ u? @\
—(9/879)b2Ink2  and  Q4(z9,b)~p ..~ (1/87%)[3 In| 7+—

+4 In(—2)]z§, confirming the vacuum instability. Let us also QCD

consider the corresponding formal “stationary” condition

90 4(z9,b)/9b=0, which yields Here “const” obviously depends on the first coefficient of

the B function and an unphysical parameters introduced

t2 in order to regulate the unphysical singularity—Landau
3t2+ (1+t3)In(1+1t3) +8(1+1t3) In( 1—50 =0, pole—atq?= A%, (Euclidean spade The truly nonpertur-
bative part now is
(5.9
wheret3=(z3/b?). It has only a trivial solutiorty=2z,=0. dVP(g?) =d(g? u*)—d(g? u*=0)
Thus the vacuum of this model is unstable, indeed, so it 4

has no relation to quark confinement and DCSB. Our con- _ M const 58
clusion is in full agreement with conclusion given in Ref. (=gt @\ 5.8
[57]. The particular type of expressions for the dressed- In| 7+ — )

quark-gluon vertex free from ghost contributions were used AQep
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However, it is possible to show that the YM VED continues zero, the perturbative phase only survives in all models of
to contain imaginary part in this case as well. It is worththe QCD ground state. Equivalently, we can minimize the
noting that in the derivation of the corresponding expressiomuxiliary effective potentia(2.16 as a function of the soft
for the YM VED (2.9 all terms depending in general on cutoff z, itself. When it goes to infinity, then again the per-
some unphysical parameteis this caser) should be addi-  turbative phase survives only. On the other hand, both effec-
tionally subtracted by means of ghostss was mentioned tjve potentials(2.12 and (2.16 should go to zero in the
above in Sec. Il just after Eq2.9)]. Concluding, let us note  perturbative limit since the perturbative contributions have
that neither Eq(5.2) nor (5.8) coincides with the deep IR pgen already subtracted from the very beginnisge Sec.
asymptotics of the corresponding full gluon propagators) as was emphasized above, both methods lead to the
(5.2) and (5.7). same numerical value for the truly nonperturbative YM
VED.
We have shown explicitly that the IRE gluon propagator
(3.2 as well as IRF4.1) corresponds to the nontrivial VED
VI. CONCLUSIONS which is always finite, negative, and has no imaginary part
stable vacuum In this way they reflect some physical types
f excitations of gluon field configurations in the QCD
vacuum. At the same time, the IRV gluon propagai@rd)

) O : and(5.2) lead to an unstable vacuum and therefore are physi-
sign, by definition in the covariant gauge QCD guantum cally impossible. However, these results are by no means

models of its ground state using the effective potential ap L F I h lusion for th
proach for composite operators. It is defined as integrated o@c"era!. For example, to come to the same conclusion for the

of the truly nonperturbative part of the full gluon propagator!RV gluon propagator obtained and investigated in Refs.
over the deep IR regiofsoft momentum region Eq. (2.9). [31,32 it is necessary to proceed 'along the lines of our
The nontrivial minimization procedure makes it possible tomethod. Thus the proposed method is a precisely general one
determine the value of the soft cutoff as a function of theand each particular model for the full gluon propagator
corresponding nonperturbative scale parameter which is irshould be separately analyzed within its framework. How-
evitably present in any nonperturbative full gluon propagatot€Ver, it seems to us that the unstable vacuum is a fundamen-
model. If the chosen ansatz for the full gluon propagator is dal defect of all vacuum models based on the IRV-type be-
realistic one, then our general method gives the truly nonperavior of the full gluon propagator. It is worthwhile also
turbative YM VED which is always finite, automatically noting that, in contrast to the IRE gluon propagator, the
negative, and has no imaginary péstable vacuum(Secs. smooth behavior of the full gluon propagator in the IR do-
[l and 1V). Its numerical value does not, of course, dependmnain is hard to relate to quark confinement and DCSB.
on how one introduces the scale dependence by choosing Thus our method can serve as a test of any different QCD
different scale parameters as was described above in Seagcuum modelfquantum or classicalksince it provides an
IIA and IIB; i.e., both sets of variables lead to the sameexact criterion for the separation of “stable versus unstable
numerical value of the truly nonperturbative YM VED. vacuum.” Vacuum stability in classical models is important
From a comparison of Eq$2.3) and(2.9), a prescription as well. For example, we have already sho®6] that the
can be derived as to how one can obtain the relevant expregacuum of the Abelian Higgs model without string contribu-
sion for the truly nonperturbative YM VED. For this purpose tions is unstable against quantum corrections.
the full gluon propagator in Eq2.3) should be replaced by ~ There is no general method of calculation of the confining
its truly nonperturbative part in accordance with E#.2).  quark contribution to the total VED. In quantum theory it
The constant should be omittedit has already been ex- heavily depends on the particular solutions of the corre-
plained why and the soft cutofqg on the upper limit should sponding quark SD equation, on account of the chosen an-
be introduced. Now it looks like the UV cutoff. Neverthe- satz for the full gluon propagator. If it is correctly calculated,
less, let us underline once more that it separates the deep tRen it is of opposite sign to the nonperturbative gluon part
region from the perturbative one, which includes the IM re-and it is one order of magnitude le&see, for example, our
gion as well. It has a clear physical meaning as determiningapers[21,22,29,30). Our method is not a solution for the
the range where the deep IR asymptotics of the full gluorfundamental badly divergent problem of VED in QCD.
propagator is valid. By definition it cannot be arbitrary large Moreover, it is even not necessary to deal with this problem.
as the UV cutoff is. As far as one chooses the ansatz for th&/hat is necessary, indeed, is to be able to extract the finite
full gluon propagator, the separation of “nonperturbativepart of the truly nonperturbative VED in a self-consistent
versus perturbative” is exact because of the definitibi2).  way. Just this is provided by our method which thus can be
The separation of “soft versus hard” momenta is also exactpplied to any nontrivial QCD vacuum quantum and classi-
because of the above-mentioned minimization procedurecal models.
Thus the proposed determination of the truly nonperturbative In conclusion, let us make some remarks. In some cases
YM VED is uniquely defined. The nontrivial minimization together with the nonperturbative scale some other param-
procedure can be done only by two ways: first, to minimizeetels) should be considered as “running” in accordance
the effective potential at a fixed scal2.11),(2.12 with re-  with the general scheme of our method. For example, such a
spect to the physically meaningful parameter. When it issituation will arise in the IRF model gluon propagator sug-

In summary, we have formulated a general method as t
how to numerically calculate the quantum part of the truly
nonperturbative YM VED(the bag constant, apart from the
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gested by lattice calculations in RE58] (see also Ref59)).
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