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Determination of the quantum part of the truly nonperturbative Yang-Mills vacuum energy
density in covariant gauge QCD

V. Gogohia* and Gy. Kluge
HAS, CRIP, RMKI, Theory Division, P.O.B. 49, H-1525 Budapest 114, Hungary

~Received 1 February 2000; published 11 September 2000!

Using the effective potential approach for composite operators, we formulate a general method of calculation
of the truly nonperturbative Yang-Mills vacuum energy density in the covariant gauge QCD ground state
quantum models. It is defined as an integration of the truly nonperturbative part of the full gluon propagator
over the deep infrared region~soft momentum region!. A nontrivial minimization procedure makes it possible
to determine the value of the soft cutoff in terms of the corresponding nonperturbative scale parameter, which
is inevitably present in any nonperturbative model for the full gluon propagator. We have shown for specific
models of the full gluon propagator explicitly that the use of the infrared-enhanced and finite gluon propagators
leads to the vacuum energy density which is finite, always negative, and has no imaginary part~stable
vacuum!, while the infrared vanishing propagators lead to an unstable vacuum and therefore they are physi-
cally unacceptable.

PACS number~s!: 11.15.Tk, 12.38.Lg
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I. INTRODUCTION

The nonperturbative QCD vacuum is a very complica
medium and its dynamical and topological complexity@1–3#
means that its structure can be organized at various le
~classical, quantum!. It can contain many different compo
nents and ingredients which contribute to the truly nonp
turbative vacuum energy density~VED!, one of the main
characteristics of the QCD ground state. Many models of
QCD vacuum involve some extra classical color field co
figurations such as randomly oriented domains of cons
color magnetic fields, background gauge fields, avera
over spin and color, stochastic colored background fie
etc. ~see Refs.@1,4,5# and references therein!. The most
elaborated classical models are random and interacting
stanton liquid models~RILM and IILM, respectively! of the
QCD vacuum@6#. These models are based on the existe
of the topologically nontrivial instanton-type fluctuations
gluon fields, which are nonperturbative, weak coupling so
tions to the classical equations of motion in Euclidean sp
~see Ref.@6# and references therein!.

Here we are going to discuss the quantum part of
VED which is determined by the effective potential approa
for composite operators@7–9#. It allows us to investigate the
nonperturbative QCD vacuum, in particular, the Yang-Mi
~YM ! one, by substituting some physically well-justified a
satz for the full gluon propagator since the exact solutio
are not known. In the absence of external sources the e
tive potential is nothing but the VED which is given in th
form of the loop expansion where the number of the vacu
loops~consisting in general of the confining quarks and no
perturbative gluons properly regularized with the help
ghosts! is equal to the power of the Plank constant\.

The full dynamical information of any quantum gaug
field theory such as QCD is contained in the correspond
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quantum equations of motion, the so-called Schwing
Dyson ~SD! equations for lower~propagators! and higher
~vertices and kernels! Green’s functions. It is ahighly non-
linear, strongly coupled system of four-dimensional integ
equations for the above-mentioned quantities. The kernel
these integral equations are determined by the infinite se
of the corresponding skeleton diagrams@10–12#. It is a gen-
eral feature ofnonlinear systems that the number of exa
solutions~if any! cannot be fixed a priori. Thus formally it
may have several exact solutions. These equations shou
also complemented by the corresponding Slavnov-Tay
~ST! identities @10–12# which in general relate the above
mentioned lower and higher Green’s functions to each oth
These identities are consequences of the exact gauge in
ance and thereforeare exact constraints on any solution t
QCD @10#. Precisely this system of equations can serve as
adequate and effective tool for the nonperturbative appro
to QCD @13,14#.

Among the above-mentioned Green’s functions, the tw
point Green’s function describing the full gluon propagato

iD mn~q!5$Tmn~q!d~2q2,j!1jLmn~q!%
1

q2 ~1.1!

has a central place@10–15#. Herej is a gauge fixing param
eter (j50, Landau gauge! and Tmn(q)5gmn2qmqn /q2

5gmn2Lmn(q). Evidently, its free perturbative~tree level!
counterpart is obtained by simply setting the full gluon for
factor d(2q2,j)51 in Eq. ~1.1!. In particular, the solutions
of the above-mentioned SD equation for the full glu
propagator, Eq.~1.1!, are supposed to reflect the complexi
of the quantum structure of the QCD ground state. As e
phasized above, it is ahighly nonlinear system of four-
dimensional integrals containing many different, unknown
general, propagators, vertices, and kernels@10–12#. Because
of truncation schemes, this system becomes the equatio
the full gluon propagator only, but it remainsnonlinear, nev-
ertheless. Different truncations could lead to qualitative
different solutions, and the number of these solutions may
©2000 The American Physical Society08-1



th

t
ly

o

ed
ua
c
a
IR

ic
m
in
a

a

e
y
he
al

te
e

ng
is

ve
no

e
th
ve
rtu
n
o

on
e
e

s
on

to
p

ul

in-
the
ry

is
D
n-
m
ite,

n
ga-
or-
on-

m-
en-
nce

o-

c-
b-

eral
ght
er-

of

la-
e

r,

m

of
he
d
ge
ree
on
lu-

ri-
a-

m

in
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increased only. Moreover, to clearly distinguish between
exact or approximate solutions~if any!, we do not know even
the complete set of boundary conditions to attempt
uniquely fix solution of the truncated equation. We certain
know the boundary condition in the ultraviolet~UV! limit
because of asymptotic freedom and certainly we do not kn
the corresponding boundary condition in the infrared~IR!
precisely because of confinement„at this stage it is not even
clear whether the two boundary conditions@in the UV and in
the IR ~if it can be established!# will be sufficient to com-
pletely fix the theory or not…. Because of the above-discuss
highly complicated mathematical structure of the SD eq
tion for the full gluon propagator, there is no hope for exa
solution~s!. However, in any case the solutions of this equ
tion can be distinguished by their behavior in the deep
limit ~the UV limit is uniquely determined by asymptot
freedom!, describing thus many different types of quantu
excitations and fluctuations of gluon field configurations
the QCD vacuum. Evidently, not all of them reflect the re
structure of the QCD vacuum.

The deep IR asymptotics of the full gluon propagator c
be generally classified into three different types:~1! the IR
enhanced~IRE! or IR singular~IRS!, ~2! the IR finite~IRF!,
and ~3! the IR vanishing~IRV! ones~for references see th
corresponding sections below!. Let us emphasize that an
deviation in the behavior of the full gluon propagator in t
deep IR domain from the free perturbative one automatic
assumes its dependence on a scale parameter~at least one! in
general different from the QCD asymptotic scale parame
LQCD . It can be considered as responsible for the nonp
turbative dynamics~in the IR region! in the QCD vacuum
models under consideration. If QCD itself is a confini
theory, then such a characteristic scale is very likely to ex
In what follows, let us denote it as, say,LNP . This is very
similar to asymptotic freedom which requires the abo
mentioned asymptotic scale parameter associated with
trivial perturbative dynamics in the UV region~scale viola-
tion!. However, for calculation of the truly nonperturbativ
VED we do not exactly need the deep IR asymptotics of
full gluon propagator, but rather its truly nonperturbati
part, which vanishes when the above-mentioned nonpe
bative scale parameter goes formally to zero, i.e., when o
the perturbative phase survives. So we define the truly n
perturbative part of the full gluon form factor in Eq.~1.1! as
follows:

dNP~2q2,LNP!5d~2q2,LNP!2d~2q2,LNP50!,
~1.2!

which, on the one hand, uniquely determines the truly n
perturbative part of the full gluon propagator. On the oth
hand, the definition~1.2! explains the difference between th
truly nonperturbative partdNP(2q2) and the full gluon
propagatord(2q2) which is nonperturbative itself. Let u
note in advance that in realistic models for the full glu
propagator, the limitLNP→0 is usually equivalent to the
limit 2q2→`. In some cases, the model gluon propaga
does not depend explicitly on the nonperturbative scale
rameter~the dependence is hidden!; then, its behavior at in-
finity should be subtracted. In realistic models of the f
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gluon propagator its truly nonperturbative part usually co
cides with its deep IR asymptotics, emphasizing thus
strong intrinsic influence of the IR properties of the theo
on its nonperturbative dynamics.

It is well known, however, that the VED in general
badly divergent in quantum field theory, in particular QC
@16#. Thus the main problem is how to extract the truly no
perturbative VED which is relevant for the QCD vacuu
quantum model under consideration. It should be fin
negative, and have no imaginary part~stable vacuum!. Why
is it so important to calculate it from first principles, i.e., o
the basis of some realistic ansatz for the full gluon propa
tor only? As was emphasized above, this quantity is imp
tant in its own right as being nothing else but the bag c
stant ~the so-called bag pressure! apart from the sign, by
definition @16#. Through the trace anomaly relation@17# it
helps in the correct estimation of such an important pheno
enological nonperturbative parameter as the gluon cond
sate introduced in the QCD sum rules approach to resona
physics@18#. Furthermore, the YM VED assists in the res
lution of the U(1) problem@19# via the Witten-Veneziano
~WV! formula for the mass of theh8 meson@20#. The prob-
lem is that the topological susceptibility@19–23# needed for
this purpose is determined by a two-point correlation fun
tion from which the perturbative contribution is already su
tracted, by definition@20,23–25#. The same is valid for the
above-mentioned bag constant which is a much more gen
quantity than the string tension because it is relevant for li
quarks as well. Thus to calculate correctly the truly nonp
turbative VED means to understand correctly the structure
the QCD vacuum in different models.

We have already formulated a general method of calcu
tion of the truly nonperturbative YM VED in the axial gaug
QCD in Ref. @26#, where the Abelian Higgs model@27# of
the dual QCD@28# ground state was investigated. Moreove
we have calculated the truly nonperturbative VED~using a
particular method! in the covariant gauge QCD quantu
vacuum model as well@29,30#. The main purpose of this
paper~Sec. II! is to formulate precisely a general method
calculation of the truly nonperturbative quantum part of t
YM VED in the covariant gauge QCD. In Secs. III, IV, an
V this is illustrated by considering different covariant gau
QCD quantum models of its ground state by choosing th
different types of the deep IR asymptotics of the full glu
propagator, IRE, IRF, and IRV, respectively. The conc
sions are presented in Sec. VI.

II. TRULY NONPERTURBATIVE VACUUM ENERGY
DENSITY

In this section we formulate a general method of nume
cal calculation of the quantum part of the truly nonperturb
tive YM VED in the covariant gauge QCD. Let us start fro
the gluon part of the VED which to leading order1 ~log-loop

1Next-to-leading and higher contributions~two and more vacuum
loops! are numerically suppressed by one order of magnitude
powers of\ at least and are left for consideration elsewhere.
8-2
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DETERMINATION OF THE QUANTUM PART OF THE . . . PHYSICAL REVIEW D 62 076008
level ;\) is given by the effective potential for composi
operators@7# as follows:

V~D !5
i

2E dnq

~2p!nTr$ ln~D0
21D !2~D0

21D !11%,

~2.1!

whereD(q) is the full gluon propagator~1.1! andD0(q) is
its free perturbative~tree level! counterpart. Here and below
the traces over space-time and color group indices are un
stood. The effective potential is normalized asV(D0)50;
i.e., the free perturbative vacuum is normalized to zero
order to evaluate the effective potential~2.1! we use the
well-known expression

Tr ln~D0
21D !583 ln det~D0

21D !5834 lnF3

4
d~2q2!1

1

4G .
~2.2!

It becomes zero~in accordance with the above-mention
normalization condition! when the full gluon form factor is
replaced by its free perturbative counterpart. This comp
tion does not depend explicitly on a gauge choice. Go
over to four-dimensional (n54) Euclidean space in Eq
~2.1!, on account of Eq.~2.2!, and evaluating some numer
cal factors, one obtains@eg5V(D)#

eg52
1

p2E dq2q2F ln@113d~q2!#2
3

4
d~q2!1aG ,

~2.3!

where constanta5(3/4)22 ln 2520.6363 and integration
from zero to infinity is assumed. Substituting the definiti
~1.2! into Eq. ~2.3! and doing some trivial rearrangemen
one obtains

eg52
1

p2E dq2q2F ln@113dNP~q2,LNP!#

2
3

4
dNP~q2,LNP!G2

1

p2 I PT , ~2.4!

where we introduce the following notation:

I PT5E dq2q2F lnS 11
3d~q2,LNP50!

113dNP~q2,LNP!
D

2
3

4
d~q2,LNP50!1aG . ~2.5!

It contains the contribution which is mainly determined
the perturbative part of the full gluon propagato
d(q2,LNP50). The constanta also should be included sinc
it comes from the normalization of the free perturbati
vacuum to zero. If we separate the deep IR region from
perturbative one@which consists of the intermediate~IM !
and UV regions since the IM region remainsterra incognita
in QCD#, by introducing the so-called soft cutoff explicitl
then we get
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eg52
1

p2E
0

q0
2

dq2q2F ln@113dNP~q2,LNP!#

2
3

4
dNP~q2,LNP!G2

1

p2 ~ Ĩ PT1I PT!, ~2.6!

where evidently

Ĩ PT5E
q0

2

`

dq2q2F ln@113dNP~q2,LNP!#2
3

4
dNP~q2,LNP!G .

~2.7!

Thus the first integral represents contribution to the Y
VED which is determined by the truly nonperturbative pie
of the full gluon propagator integrated over the deep IR
gion. In other words, just this term is the truly nonperturb
tive contribution to the YM VED. This means that the tw
remaining terms in Eq.~2.6! should be subtracted by intro
ducing corresponding counterterms into the effective pot
tial. Thus in general the integral~2.5! determining the con-
tribution from the perturbative part of the full gluo
propagator and the integral~2.7! determining the contribu-
tion from the perturbative region~IM plus UV! are of no
importance for our present consideration. The abo
mentioned necessary subtractions can be done in a mor
phisticated way by means of ghost degrees of freedom~see
below!.

The effective potential at the log-loop level for the gho
degrees of freedom is

V~G!52 i E dnp

~2p!nTr$ ln~G0
21G!2~G0

21G!11%,

~2.8!

whereG(p) is the full ghost propagator andG0(p) is its free
perturbative~tree level! counterpart. The effective potentia
V(G) is normalized asV(G0)50. Evaluating formally the
ghost term egh5V(G) in Eq. ~2.8!, we obtain egh
5p22I gh . The integralI gh depends on the ghost propagato
which remains arbitrary~unknown! within our approach. In
principle, we have to sum up all contributions to obtain t
total VED ~the confining quark part of the vacuum ener
density is not considered here!. However, upon substitution
of definition ~1.2! into the integral over the whole momen
tum range from zero to infinity, Eq.~2.3!, some terms appea
there which may have unphysical singularities below
scaleLQCD @integral ~2.5!#. Thus the initial VED~2.3! is a
formal one; it suffers from unphysical singularities briefl
mentioned above and it is badly divergent as well. In orde
get a physically meaningful expression, one has to subt
two integrals~2.5! and ~2.7! from Eq. ~2.3!. We have done
this subtraction with the help of a ghost term by imposing
following condition: D5 Ĩ PT1I PT2I gh50. The nonpertur-
bative gluon contribution to the VED is determined by su
tracting unwanted terms by means of the ghost contribut
i.e., definingeg1egh5eY M at D50. Thus the truly nonper-
turbative YM VED becomes
8-3
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eY M5
1

p2E
0

q0
2

dq2q2F3

4
dNP~q2,LNP!

2 ln@113dNP~q2,LNP!#G . ~2.9!

In many cases this subtraction is sufficient to obtain the
pression for the truly nonperturbative YM VED. However,
some other cases the truly nonperturbative part of the
gluon propagator which enters Eq.~2.9! continues to suffer
from unphysical singularities below the scaleLQCD ~see the
discussion at the end of Sec. V!. As was noticed, some ad
ditional terms should be included in our subtraction sche
in this case, indicating that the chosen ansatz for the
gluon propagator itself was not realistic.

A few general remarks are in order. In QCD nothin
should explicitly depend on ghosts. By contributing to clos
loops only, the main purpose of their introduction is to ca
cel the unphysical degrees of freedom of gauge bos
~maintaining thus the unitarity of theSmatrix!, for example,
to exclude the longitudinal components, the abo
mentioned unphysical singularities below the QCD sca
etc. This is the main reason why they are to be conside
together with gluons always. In nonperturbative QCD in ge
eral and in our approach in particular the ghost propag
~or equivalently the ghost self-energy! still remains unknown
~in this sense arbitrary! since the exact ghost-gluon verte
~which enters the corresponding SD equation! is not exactly
known ~in Refs. @31,32# some very specific truncatio
scheme is used in order to derive a particular expression
this vertex!. We know, however, that the ghost propaga
contribution to the VED, regular or singular, should be co
bined with the gluon contribution in order to cancel exac
the above-mentioned unphysical singularities of the ga
bosons which are inevitably present in any ansatz for the
gluon propagator. In other words, if one knows the gh
propagator exactly, then the above-mentioned cancella
should proceed automatically~as usual in perturbative calcu
lus if, of course, all calculations are correct!. But if it is not
known exactly~as usual in nonperturbative calculus!, then
one has to impose the condition of cancellation as was d
in our case,D50. Obviously, the above-mentioned cond
tion of cancellation was imposed in the most general fo
Instead of the introduction of some counterterms into
initial effective potential to cancel the most dangerous U
divergences presented in the integral~2.5!, we have used the
ghost term for this purpose as well. Thus our subtract
scheme is in agreement with the general physical interpr
tion of ghosts to cancel all unphysical degrees of freedom
the gauge bosons@10,33#.

The expression~2.9! is our definition of the truly nonper
turbative YM VED as integrated out of the truly nonpertu
bative part of the full gluon propagator over the deep
region ~soft momentum region, 0<q2<q0

2). The soft cutoff
q0

2 ~as a function of the nonperturbative scale! can be deter-
mined by the corresponding minimization procedure~see be-
low!.
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A. LYM as a fixed scale

From this point it is convenient to factorize scale depe
dence of the truly nonperturbative YM VED~2.9!. As was
already emphasized above,dNP(q2) always contains at leas
one scale parameter (LNP) responsible for the nonperturba
tive dynamics in the model under consideration. It is cons
ered as a free one within our general method, i.e., ‘‘runnin
~when it formally goes to zero, then the perturbative pha
only survives in the model!. Its numerical value~if any! will
be used at the final stage only to evaluate numerically
corresponding truly nonperturbative YM VED~if any!. We
can introduce dimensionless variables and parameters by
ing a completely extra scale~which is always fixed in com-
parison with LNP), for example, the flavorless QCD
asymptotic scale parameterLY M , as follows:

z5
q2

LY M
2

, z05
q0

2

LY M
2

, b5
LNP

2

LY M
2

. ~2.10!

Here z0 is a corresponding dimensionless soft cutoff wh
the parameterb has a very clear physical meaning. It me
sures the ratio between nonperturbative dynamics, sym
ized byLNP

2 , and nontrivial perturbative dynamics~violation
of scale, asymptotic freedom!, symbolized byLY M

2 . When it
is zero only the perturbative phase remains in the model
this case, the gluon form factor obviously becomes a fu
tion of z andb, i.e., dNP(q2)5dNP(z,b), and the truly non-
perturbative VED~2.9! is @eY M[eY M(z0 ,b)#

Vg~z0 ,b!5
1

LY M
4

eY M~z0 ,b!, ~2.11!

where the gluon effective potential at a fixed scale,LY M ,
@26,29,34# is introduced:

Vg[Vg~z0 ,b!

5
1

p2E
0

z0
dzzF3

4
dNP~z,b!2 ln@113dNP~z,b!#G .

~2.12!

This expression precisely allows us to investigate the
namical structure of the YM vacuum. It is free of scale d
pendence since it has been already factorized in Eq.~2.11!. It
depends only onz0 andb and a minimization procedure with
respect tob, ]Vg(z0 ,b)/]b50 @usually after integrated ou
in Eq. ~2.12!#, can provide a self-consistent relation betwe
z0 andb; that is, we getq0 as a function ofLNP . Let us note
in advance that the final numerical results will depend
LNP only as it should be for the nonperturbative part of t
YM VED ~see Secs. III and IV below!. Obviously, minimi-
zation with respect toz0 leads to a trivial zero. In principle
through the relationLY M

4 5q0
4z0

22 , it is possible to fix the
soft cutoffq0 itself, but this is not the case indeed since th
z0 cannot be varied.
8-4
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B. Soft cutoff as a fixed scale

On the other hand, the scale dependence can be facto
as follows:

z5
q2

LNP
2

, z05
q0

2

LNP
2

; ~2.13!

i.e., b51. For simplicity ~but not losing generality! we use
the same notation for the dimensionless set of variables
parameters as in Eq.~2.10!. In this case, the gluon form
factor obviously becomes a function ofz only, dNP(q2)
5dNP(z), and the truly nonperturbative YM VED~2.9! be-
comes

eY M~z0!5
1

p2 q0
4z0

22E
0

z0
dzzF3

4
dNP~z!2 ln@113dNP~z!#G .

~2.14!

Evidently, to fix the scale is possible in two different way
In principle, we can fixLNP itself, i.e., introducing

Ṽg~z0!5
1

LNP
4

eY M~z0!

5
1

p2E
0

z0
dzzF3

4
dNP~z!2 ln@113dNP~z!#G .

~2.15!

However, the minimization procedure again leads to a triv
zero, which shows that this scale cannot be fixed.

In contrast with the previous case, let us fix the soft cut
itself, i.e., setting@26,29,30#

V̄g~z0!5
1

q0
4 eY M~z0!

5
1

p2 z0
22E

0

z0
dzzF3

4
dNP~z!2 ln@113dNP~z!#G .

~2.16!

In this case the perturbative phase is recovered in thez0
→` (LNP→0) limit. Now the minimization procedure with

respect toz0 is nontrivial. Indeed,]V̄g(z0)/]z050 yields
the ‘‘stationary’’ condition

E
0

z0
dzzF3

4
dNP~z!2 ln@113dNP~z!#G

5
1

2
z0

2F3

4
dNP~z0!2 ln@113dNP~z0!#G , ~2.17!

the solutions of which~if any! allow one to findq0 as a
function ofLNP . On account of this ‘‘stationary’’ condition
the effective potential~2.16! itself becomes simpler for nu
merical calculations, namely,
07600
ed
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.
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f

V̄g~z0
st!5

1

2p2 F3

4
dNP~z0

st!2 ln@113dNP~z0
st!#G ,

~2.18!

wherez0
st is a solution~if any! of the ‘‘stationary’’ condition

~2.17! and corresponds to the minima~if any! of the effective
potential~2.16!. In the next sections, we illustrate how th
method works by considering some quantum models of
covariant gauge QCD ground state explicitly.

III. IRE GLUON PROPAGATOR: ZME QUANTUM
MODEL

Today there are no doubts left that the dynamical mec
nisms of important nonperturbative quantum phenom
such as quark confinement and dynamical~or equivalently
spontaneous! chiral symmetry breaking~DCSB! are closely
related to the complicated topologically nontrivial structu
of the QCD vacuum@1–4,10#. On the other hand, it also
becomes clear that the nonperturbative IR dynamical sin
larities, closely related to the nontrivial vacuum structu
play an important role in the large distance behavior of QC
@35,36#. For this reason, any correct nonperturbative mo
of quark confinement and DCSB necessarily turns out to b
model of the true QCD vacuum and the other way aroun

Our model of the true QCD ground state is based on
existence and importance of such a kind of nonperturbat
quantum excitations of the gluon field configurations~due to
self-interaction of massless gluons only, i.e., without exp
itly involving some extra degrees of freedom! which can be
effectively correctly described by theq24 behavior of the
full gluon propagator in the deep IR domain~at smallq2)
@29,30#. These excitations are topologically nontrivial als
since they lead to the nontrivial YM VED~see below!. Thus
our main definition~1.2! becomes

dNP~2q2,LNP!5d~2q2,LNP!2d~2q2,LNP50!

5
LNP

2

~2q2!
. ~3.1!

In the above-mentioned papers@29,30# the nonperturbative
scale was denoted asm̄, i.e., m̄[LNP . In this way we obtain
the generally accepted form of the deep IR singular asym
totics for the full gluon propagator~for some references se
below!,

Dmn~q!;~q2!22, q2→0, ~3.2!

which may be referred equivalently to as the strong coupl
regime@10#. It describes the zero-momentum-mode enhan
ment ~ZMME! dynamical effect in QCD at large distance
We prefer to use simply ZME~zero-mode enhancemen!
since we work always in momentum space. This is our p
mary dynamical assumption in this section. The main pr
lem due to this strong singularity is its correct treatment
the dimensional regularization method@37# within the distri-
bution theory@38#, which was one of the highlights of ou
8-5
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previous publications@29,30# ~see also Ref.@39#!. There ex-
ist many arguments in favor of this behavior.

~a! Such singular behavior of the full gluon propagator
the IR domain leads to the area law for static quarks~indica-
tive of confinement! within the Wilson loop approach@40#.

~b! The cluster property of the Wightman functions
QCD fails and this allows such singular behavior like E
~3.2! for the full gluon propagator in the deep IR doma
@41#.

~c! After the pioneering papers of Mandelstam in the c
variant ~Landau! gauge@42# and Baker, Ball, and Zachari
asen in the axial gauge@43#, the consistency of the singula
asymptotics~3.2! with direct solution of the SD equation fo
the full gluon propagator in the IR domain was repeate
confirmed~see, for example, Refs.@13,14,44,45# and refer-
ences therein!.

~d! Moreover, let us underline that without this comp
nent in the decomposition of the full gluon propagator
continuum theory it is impossible to ‘‘see’’ the linearly risin
potential between heavy quarks by lattice QCD simulatio
@46# not involving some extra~besides gluons and quark!
degrees of freedom. This should be considered as strong
tice evidence~though not direct! of the existence and impor
tance ofq24-type excitations of gluon field configurations
the QCD vacuum. There exists also direct lattice evide
that the zero modes are enhanced in the full gluon propag
indeed@47#.

~e! Within the distribution theory@38# the structure of the
nonperturbative IR singularities in four-dimensional Eucl
ean QCD is the same as in two-dimensional QCD, wh
confines quarks at least in the largeNc limit @48#. In this
connection, let us note that theq24 IR singularity is the
simplest nonperturbative power singularity in fou
dimensional QCD as well as theq22 IR singularity being the
simplest nonperturbative power singularity in tw
dimensional QCD. The QCD vacuum is a much more co
plicated medium than its two-dimensional model; nevert
less, the above-mentioned analogy is promising even in
case of the nonperturbative dynamics of light quarks.

~f! Some classical models of the QCD vacuum also
voke theq24 behavior of the gluon fields in the IR domain
For example, it appears in the QCD vacuum as a conde
tion of the color-magnetic monopoles~the QCD vacuum is a
chromomagnetic superconductor! proposed by Nambu, Man
delstam, and ’t Hooft and developed by Nair and Ros
zweig ~see Ref.@49# and references therein. For recent d
velopments in this model see Di Giacomo@1#! as well as in
the classical mechanism of the confining medium@50# and in
effective theory for the QCD vacuum proposed in Ref.@51#.

~g! It is also required to derive the heavy quark poten
within the recently proposed exact renormalization gro
flow equations approach@52#.

~h! It has been shown in our papers that the singular
havior~3.2! is related directly to light quark confinement an
DCSB @29,30#. Moreover, very good agreement has be
obtained with the phenomenological values of the topolo
cal susceptibility, the mass of theh8 meson, and the gluon
condensate@21,22#.
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Thus we consider our main ansatz~3.1!,~3.2! as physi-
cally well motivated. Let us emphasize thatdNP(2q2,j)
5LNP

2 /(2q2) is the truly nonperturbative part of the fu
gluon propagator since it vanishes in the perturbative li
(LNP

2 →0, when the perturbative phase survives only! and
simultaneously it correctly reproduces the deep IR asymp
ics of the full gluon propagator; i.e.,dNP(2q2) coincides
with dIR(2q2).

A. Set of dimensionless variables ofA type

The truly nonperturbative YM VED is given now by Eq
~2.9! with dNP(q2)5LNP

2 /q2 in Euclidean space. Let us firs
introduce theA-type set of dimensionless variables, Eq
~2.10!. Then dNP(q2) becomesdNP(z,b)5b/z. Performing
almost trivial integration in the effective potential at a fixe
scale~2.12!, one obtains

Vg~z0 ,b!5
1

2p2 F9b2 lnS 11
z0

3bD2
3z0

2
b2z0

2 lnS 11
3b

z0
D G .

~3.3!

It is easy to show that as a function ofb, the effective po-
tential ~3.3! linearly approaches zero from below and it d
verges also linearly at infinity while as a function ofz0 itself
it approaches zero from above and also diverges as;2z0 at
infinity. Thus as a function ofb it has a local minimum
~relating b to z0) at which the truly nonperturbative YM
VED will be always finite and negative. The minimizatio

procedure with respect tob, ]V̄g(z0 ;b)/]b50, yields the
following ‘‘stationary’’ condition: n54 ln@11(n/3)#, where
n5z0 /b. Its solution isnmin52.2. Using this ‘‘stationary’’
condition, the effective potential~3.3! can be written as

Vg~nmin,b!5
b2nmin

2p2 F3

4
2nmin lnS 11

3

nminD G
520.1273b2, ~3.4!

so the truly nonperturbative YM VED~2.11! becomes

eY M520.1273LNP
4 , ~3.5!

where the relationLNP
4 5b2LY M

4 has been already used. De
termined in this way, it is always finite~since the character
istic scale of our model,LNP , is finite, evidently it cannot be
arbitrarily large!, automatically negative~as it should be for
the truly nonperturbative energy!, and it has no imaginary
part ~stable vacuum!. Obviously the characteristic scale o
our model,LNP, cannot be determined within the YM theor
alone. Its numerical value should be taken from the go
physical observable in full QCD by implementing the phy
cally well-motivated scale setting scheme. Precisely this
been done in our papers@29,30# where the nonperturbative
VED was numerically evaluated from first principles. Mor
over, in recent publications@21,22# it is shown that our nu-
merical results are of the necessary order of magnitude
order to nicely saturate the large mass of theh8 meson in the
chiral limit as well as the phenomenological value of t
8-6
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DETERMINATION OF THE QUANTUM PART OF THE . . . PHYSICAL REVIEW D 62 076008
topological susceptibility. Thus the existence of the no
trivial VED in the ZME quantum model, which agrees we
with QCD topology, is one more serious argument in
favor. It is worthwhile to present the numerical value for t
soft cutoff in terms ofLNP , namely,q051.48324LNP . This
follows from the solution of the ‘‘stationary’’ condition, o
course.

B. Set of dimensionless variables ofB type

It is instructive to calculate the truly nonperturbative Y
VED by choosing theB-type set of dimensionless variable
Eqs.~2.13!. ThendNP(q2)5LNP

2 /q2 becomesdNP(z)51/z.
Performing almost trivial integration in the effective pote
tial at a fixed scale~2.16! in this case, one obtains

V̄g~z0!5
1

2p2 z0
22F9 lnS 11

z0

3 D2
3

2
z02z0

2 lnS 11
3

z0
D G .
~3.6!

It is easy to show now that as a function ofz0, the effective
potential~3.7! diverges as;z0

21 at smallz0 and converges
as;2z0

21 at infinity ~perturbative limit!; see Fig. 1. Thus as
a function of z0 it has a local minimum atz054 ln@1
1(z0 /3)#, the so-called ‘‘stationary’’ condition in this case
Its solution again isz0

min52.2. At the ‘‘stationary’’ state the
effective potential~3.6! can be written

V̄g~z0
min!5

1

2p2F3

4
~z0

min!212 lnS 11
3

z0
minD G520.0263,

~3.7!

so the truly nonperturbative YM VED~2.16! becomes

eY M520.0263q0
4520.1273LNP

4 , ~3.8!

where the relationq0
45(z0

min)2LNP
4 has been already used

Thus we have explicitly demonstrated that the truly nonp
turbative YM VED does not indeed depend on how one
troduces dimensionless variables into the effective poten

FIG. 1. Effective potential~3.7! as a function ofz0.
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i.e., eY M5LNP
4 Vg(nmin,b)5q0

4V̄g(z0
min)520.1273LNP

4 . In
some cases, theB-type calculation is preferable. For ex
ample, to calculate the confining quark contribution into t
total VED is much easier using precisely this set of the
mensionless variables~see our papers@29,30# and the next
section as well!.

IV. IRF GLUON PROPAGATOR

Let us consider now a possible IRF behavior of the f
gluon propagator~in the Landau gauge! in the deep IR do-
main, which was suggested by recent lattice calculation
Ref. @53#. The main definition~1.2! in this case becomes

dNP~2q2,M !5d~2q2,M !2d~2q2,M50!

5
ZAM2a~2q2!

~2q21M2!11a
. ~4.1!

HereM is the mass scale parameter responsible for the n
perturbative dynamics in this model, i.e.,M5LNP in our
notation. When the parameterM formally goes to zero, the
perturbative phase only remains in this model. Again as
the previous case, the truly nonperturbative part vanishe
the perturbative limit (M→0) and it reproduces the IR as
ymptotics of the full gluon propagator correctly as well. Th
best estimates for the parametersM and A are M5(1020
6100625) MeV andA5(9.810.120.9). As was empha-
sized above, the numerical value of the parameterM will be
used only at the final stage in order to estimate numeric
the truly nonperturbative YM VED in this model. The expo
nent in general isa521d, whered.0 and small, while
Z'1.2 is the renormalization constant.

In this case, it is convenient to choose theB-type set of
variables and parameters, Eqs.~2.13!. ThendNP(q2) in Eu-
clidean space becomes

dNP~z!5
a1z

~11z!11a
, ~4.2!

where the parametera15ZA511.76 is fixed. Substituting
this into the effective potential~2.16!, one obtains

V̄g~z0 ;a1!5
1

q0
4 eY M52

1

p2 z0
22$I 1~z0 ;a1!2I 2~z0 ;a1!%,

~4.3!

where the integrals are given as follows:

I 1~z0 ;a1!5E
0

z0
dzzlnS 11

3a1z

~11z!11aD ,

I 2~z0 ;a1!5
3a1

4 E
0

z0
dzz

z

~11z!11a
. ~4.4!

The asymptotic behavior of the effective potential~4.3! de-
pends on the asymptotic properties of the integralI 1(z0 ;a1)
8-7
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V. GOGOHIA AND Gy. KLUGE PHYSICAL REVIEW D62 076008
since the integralI 2(z0 ;a1) in Eq. ~4.4! can be taken explic-
itly: namely ~in what follows in this section,a52),

I 2~z0 ;a1!5
3a1

4 S ln~11z0!12@~11z0!2121#

2
1

2
@~11z0!2221# D . ~4.5!

From these expressions it is almost obvious that the asy
totics of the effective potential~4.3! at z0→0,̀ to leading
order can be easily evaluated analytically. Thus the effec
potential ~4.3! as a function of the soft cutoffz0 has two
local minima; see Fig. 2. The corresponding ‘‘stationar
condition can be evaluated as follows:

@ I 1~z0 ;a1!2I 2~z0 ;a1!#5
1

2
z0

2H lnS 11
3a1z0

~11z0!3D
2

3a1z0

4~11z0!3J . ~4.6!

Using this ‘‘stationary’’ condition, the effective potentia
~4.3! at the ‘‘stationary’’ state becomes

V̄g~z0
st;a1!52

1

2p2 H lnS 11
3a1z0

st

~11z0
st!3D 2

3a1z0
st

4~11z0
st!3J ,

~4.7!

wherez0
st is a solution~s! to the ‘‘stationary’’ condition~4.6!.

The two solutions of the ‘‘stationary’’ condition~4.6! corre-
sponding to the two local minima arez0

st50.19 andz0
st

52.37 with almost equal numerical values for the cor
sponding effective potentials at the ‘‘stationary’’ state

namely, V̄g(0.19;a1)520.0309 and V̄g(2.37;a1)
520.0310, respectively. However, the numerical values
the nonperturbative YM VED~4.3! are drastically different,

eY M~0.19!520.0309q0
4~0.19!520.00123M4 ~4.8!

and

FIG. 2. Effective potential~4.3! as a function ofz0.
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eY M~2.37!520.0310q0
4~2.37!520.174M4, ~4.9!

where the relationq0
45(z0

min)2M4 and the corresponding val
ues ofz0

min([z0
st) were applied. How to distinguish betwee

the two solutions for the truly nonperturbative YM VED
~4.8! and ~4.9!? This question is discussed in the followin

Discussion

In the first case, on account of the numerical value of
nonperturbative scaleM'1 GeV, Eq.~4.8! numerically be-
comes

eY M~0.19!520.00123 GeV4. ~4.10!

It is the same order of magnitude as the VED due to inst
tons @22#. Thus summing up this and instantons with ZM
values, one obtains a fair agreement with chiral QCD top
ogy @20#. Also the soft cutoff in this case isq0'0.463M
'463 MeV. This is quite reasonable value for the deep
region ~in continuum theory! where the smooth-type behav
ior of the full gluon propagator effectively takes place.

In the second case, on account of the numerical value
the nonperturbative scaleM'1 GeV, Eq.~4.9! numerically
becomes

eY M~2.37!520.174 GeV4. ~4.11!

In Refs.@21,22# an analytical formalism has been develop
which allows one to calculate the topological susceptibil
as a function of the truly nonperturbative YM VED. Th
corresponding expression is

x t52S 4j

3 D 2

eY M , ~4.12!

where the parameterj has two different values, namely
jNSVZ52/11 andjHZ54/33 ~see Ref.@22#!. Evaluating Eq.
~4.12! numerically, on account of Eq.~4.11!, one obtains
x t

NSVZ5(550.8 MeV)4 and x t
HZ5(259.6 MeV)4, while its

phenomenological value isx t
phen5(180.36 MeV)4. Thus,

Eq. ~4.11! substantially overestimates the phenomenolog
value of the topological susceptibility~in both modes! and
consequently the mass of theh8 meson in the chiral limit,
indeed. The soft cutoff in this case isq0'1.54M
'1.54 GeV. It is also hard to imagine that the deep
region~in continuum theory! can be effectively extended u
to '1.54 GeV especially for the smooth-type behavior
the full gluon propagator there. The continuum limit of th
scale parameterM is not known, so its realistic numerica
value still remains to be well established, and so does
selection from solutions, Eqs.~4.8! and~4.9!. Let us note that
in accordance with the general scheme of our method
distinguish the nonperturbative scale of this model from
perturbative one but for simplicity we retain the same no
tion. Evidently, one will obtain the same numerical resu
for the truly nonperturbative YM VED by choosing the set
variables ofA type.
8-8
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V. IRV GLUON PROPAGATOR

The IRV full gluon propagator is represented by the s
called Zwanziger-Stingle~ZS! formula @54,55#

d~2q2!5
~2q2!2

~2q2!21m4 , ~5.1!

in the whole range, wherem4 is again the mass scale param
eter responsible for the nonperturbative dynamics in
model, i.e.,m[LNP , in our notation. When it is zero, the
the ZS gluon propagator~5.1! becomes a free perturbativ
one, indeed. Though the full gluon propagator~5.1! is non-
perturbative itself, however, its truly nonperturbative part
determined by the subtraction~1.2!, i.e.,

dNP~q2!5d~q2,m4!2d~q2,m450!52
m4

~2q2!21m4 .

~5.2!

Since this expression is rather simple, it will be instructive
perform calculations in both schemes,A, Eqs.~2.10!, andB,
Eqs.~2.13!. So let us start from theA scheme.

A. Fixing LYM

Within the A-type set of variables, Eqs.~2.10!, dNP(q2)
from Eq. ~5.2! becomesdNP(z,b)52(b2/b21z2) ~Euclid-
ean space!. After integration over four-dimensional Euclid
ean space in Eq.~2.12!, one obtains

Vg~z0 ,b!5
1

8p2 $28b2 ln 2b218b2 ln~2b22z0
2!

1~b214z0
2!ln~b21z0

2!

24z0
2 ln~z0

222b2!2b2 ln b2%. ~5.3!

From this expression it follows obviously that the effecti
potential~5.3! at any finite relation between the soft cutoffz0
and parameterb will always contain the imaginary part
which is a direct manifestation of the vacuum instability@56#
in this model. Its asymptotics atb→0,̀ to leading order can
be easily evaluated analytically. Omitting all intermedia
calculations, one finally obtains, Vg(z0 ,b);b→0
2(9/8p2)b2 ln b2 and Vg(z0 ,b);b→`2(1/8p2)@3
14 ln(22)#z0

2, confirming the vacuum instability. Let us als
consider the corresponding formal ‘‘stationary’’ conditio
]Vg(z0 ,b)/]b50, which yields

3t0
21~11t0

2!ln~11t0
2!18~11t0

2! lnS 12
t0
2

2 D 50,

~5.4!

wheret0
25(z0

2/b2). It has only a trivial solutiont05z050.
Thus the vacuum of this model is unstable, indeed, s

has no relation to quark confinement and DCSB. Our c
clusion is in full agreement with conclusion given in Re
@57#. The particular type of expressions for the dress
quark-gluon vertex free from ghost contributions were us
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in their investigation. Our result, however, is a general o
since it does not require the particular choice of the dress
quark-gluon vertex.

B. Fixing the soft cutoff

Within the B-type set of variables, Eqs.~2.13!, dNP(q2)
from Eq. ~5.2! becomesdNP(z)52(1/11z2) ~Euclidean
space!. After almost trivial integration over four-dimensiona
Euclidean space in Eq.~2.16!, one obtains

V̄g~z0!5
1

8p2 z0
22$28 ln 218 ln~22z0

2!

1~114z0
2!ln~11z0

2!24z0
2 ln~z0

222!%.

~5.5!

From this expression it obviously follows that the effecti
potential at any finite value of the soft cutoffz0 will always
contain the imaginary part, which is a direct manifestation
the vacuum instability@56# as was indicated above. Its a
ymptotics atz0→0,̀ to leading order can be easily evalu
ated analytically. Omitting all intermediate calculations, o

finally obtains V̄g(z0);z0→02(1/8p2)@314 ln(22)# and

V̄g(z0);z0→`(9/8p2)z0
22 ln z0

2, so the vacuum of this mode
is unstable, indeed. In order to confirm this, let us consi
the corresponding formal ‘‘stationary’’ condition which is

3z0
21~11z0

2!ln~11z0
2!18~11z0

2!lnS 12
z0

2

2 D 50.

~5.6!

It has only a trivial solutionz050.
In Ref. @57# a modification of the ZS propagator~5.1! was

proposed which took into consideration the renormalizat
group improvements to leading order for the running co
pling constant in the UV region, namely,

d~2q2!5
~2q2!2

~2q2!21m4

const

lnS t1
q2

LQCD
2 D . ~5.7!

Here ‘‘const’’ obviously depends on the first coefficient
the b function and an unphysical parametert is introduced
in order to regulate the unphysical singularity—Land
pole—atq25LQCD

2 ~Euclidean space!. The truly nonpertur-
bative part now is

dNP~q2!5d~q2,m4!2d~q2,m450!

52
m4

~2q2!21m4

const

lnS t1
q2

LQCD
2 D . ~5.8!
8-9
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V. GOGOHIA AND Gy. KLUGE PHYSICAL REVIEW D62 076008
However, it is possible to show that the YM VED continu
to contain imaginary part in this case as well. It is wor
noting that in the derivation of the corresponding express
for the YM VED ~2.9! all terms depending in general o
some unphysical parameters~in this caset) should be addi-
tionally subtracted by means of ghosts@as was mentioned
above in Sec. II just after Eq.~2.9!#. Concluding, let us note
that neither Eq.~5.2! nor ~5.8! coincides with the deep IR
asymptotics of the corresponding full gluon propagat
~5.1! and ~5.7!.

VI. CONCLUSIONS

In summary, we have formulated a general method a
how to numerically calculate the quantum part of the tru
nonperturbative YM VED~the bag constant, apart from th
sign, by definition! in the covariant gauge QCD quantu
models of its ground state using the effective potential
proach for composite operators. It is defined as integrated
of the truly nonperturbative part of the full gluon propaga
over the deep IR region~soft momentum region!, Eq. ~2.9!.
The nontrivial minimization procedure makes it possible
determine the value of the soft cutoff as a function of t
corresponding nonperturbative scale parameter which is
evitably present in any nonperturbative full gluon propaga
model. If the chosen ansatz for the full gluon propagator
realistic one, then our general method gives the truly nonp
turbative YM VED which is always finite, automaticall
negative, and has no imaginary part~stable vacuum! ~Secs.
III and IV!. Its numerical value does not, of course, depe
on how one introduces the scale dependence by choo
different scale parameters as was described above in S
II A and II B; i.e., both sets of variables lead to the sam
numerical value of the truly nonperturbative YM VED.

From a comparison of Eqs.~2.3! and~2.9!, a prescription
can be derived as to how one can obtain the relevant exp
sion for the truly nonperturbative YM VED. For this purpos
the full gluon propagator in Eq.~2.3! should be replaced by
its truly nonperturbative part in accordance with Eq.~1.2!.
The constanta should be omitted~it has already been ex
plained why! and the soft cutoffq0

2 on the upper limit should
be introduced. Now it looks like the UV cutoff. Neverthe
less, let us underline once more that it separates the dee
region from the perturbative one, which includes the IM
gion as well. It has a clear physical meaning as determin
the range where the deep IR asymptotics of the full glu
propagator is valid. By definition it cannot be arbitrary lar
as the UV cutoff is. As far as one chooses the ansatz for
full gluon propagator, the separation of ‘‘nonperturbati
versus perturbative’’ is exact because of the definition~1.2!.
The separation of ‘‘soft versus hard’’ momenta is also ex
because of the above-mentioned minimization proced
Thus the proposed determination of the truly nonperturba
YM VED is uniquely defined. The nontrivial minimization
procedure can be done only by two ways: first, to minim
the effective potential at a fixed scale~2.11!,~2.12! with re-
spect to the physically meaningful parameter. When it
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zero, the perturbative phase only survives in all models
the QCD ground state. Equivalently, we can minimize t
auxiliary effective potential~2.16! as a function of the soft
cutoff z0 itself. When it goes to infinity, then again the pe
turbative phase survives only. On the other hand, both ef
tive potentials~2.12! and ~2.16! should go to zero in the
perturbative limit since the perturbative contributions ha
been already subtracted from the very beginning~see Sec.
II !. As was emphasized above, both methods lead to
same numerical value for the truly nonperturbative Y
VED.

We have shown explicitly that the IRE gluon propaga
~3.2! as well as IRF~4.1! corresponds to the nontrivial VED
which is always finite, negative, and has no imaginary p
~stable vacuum!. In this way they reflect some physical type
of excitations of gluon field configurations in the QC
vacuum. At the same time, the IRV gluon propagators~5.1!
and~5.2! lead to an unstable vacuum and therefore are ph
cally impossible. However, these results are by no me
general. For example, to come to the same conclusion for
IRV gluon propagator obtained and investigated in Re
@31,32# it is necessary to proceed along the lines of o
method. Thus the proposed method is a precisely genera
and each particular model for the full gluon propaga
should be separately analyzed within its framework. Ho
ever, it seems to us that the unstable vacuum is a fundam
tal defect of all vacuum models based on the IRV-type
havior of the full gluon propagator. It is worthwhile als
noting that, in contrast to the IRE gluon propagator, t
smooth behavior of the full gluon propagator in the IR d
main is hard to relate to quark confinement and DCSB.

Thus our method can serve as a test of any different Q
vacuum models~quantum or classical! since it provides an
exact criterion for the separation of ‘‘stable versus unsta
vacuum.’’ Vacuum stability in classical models is importa
as well. For example, we have already shown@26# that the
vacuum of the Abelian Higgs model without string contrib
tions is unstable against quantum corrections.

There is no general method of calculation of the confin
quark contribution to the total VED. In quantum theory
heavily depends on the particular solutions of the cor
sponding quark SD equation, on account of the chosen
satz for the full gluon propagator. If it is correctly calculate
then it is of opposite sign to the nonperturbative gluon p
and it is one order of magnitude less~see, for example, ou
papers@21,22,29,30#!. Our method is not a solution for th
fundamental badly divergent problem of VED in QCD
Moreover, it is even not necessary to deal with this proble
What is necessary, indeed, is to be able to extract the fi
part of the truly nonperturbative VED in a self-consiste
way. Just this is provided by our method which thus can
applied to any nontrivial QCD vacuum quantum and clas
cal models.

In conclusion, let us make some remarks. In some ca
together with the nonperturbative scale some other par
eter~s! should be considered as ‘‘running’’ in accordan
with the general scheme of our method. For example, su
situation will arise in the IRF model gluon propagator su
8-10
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gested by lattice calculations in Ref.@58# ~see also Ref.@59#!.
In this case the general procedure of calculation of the tr
nonperturbative YM VED~if any! remains, of course, un
changed. However, because of some technical details@for
example, the corresponding ‘‘stationary’’ condition~2.17!
will be more complicated#, this case requires a separate co
sideration. Brief recent reviews on both continuum and
tice gluon propagators can be found in Refs.@15,53#. An
attempt at a VED calculation by the introduction of a rath
controversial gluon mass was made in a recent paper@60#.
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