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In a generic gauge theory the gauge parameter dependence of individual Green functions is controlled by the
Nielsen identities, which originate from an enlarged BRST symmetry. We give a practical introduction to the
Nielsen identities of the standard model~SM! and to their renormalization and illustrate the power of this
elegant formalism in the case of the problem of the definition of mass. We prove to all orders in perturbation
theory the gauge independence of the complex pole of the propagator for all physical fields of the SM, in the
most general case with mixing andCP violation. At the amplitude level, the formalism provides an intuitive
and general understanding of the gauge recombinations which makes it particularly useful at higher orders. We
also include in an Appendix the explicit expressions for the fermionic two-point functions in a genericRj

gauge.

PACS number~s!: 11.15.Bt, 11.10.Gh, 12.15.2y, 14.70.Fm
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I. INTRODUCTION

Considering the subtle cancellations between various c
tributions necessary to make physical observables ga
parameter independent, it is not surprising that the varia
of individual Green functions with respect to the gaug
fixing parameters are governed by symmetry relations. F
mally, these relations can be shown to follow from an e
larged Becchi-Rouet-Stora-Tyutin~BRST! symmetry in
which the gauge parameters also undergo a BRST tran
mation @1,2#. They are nonlinear identities of the same ki
of the Slavnov-Taylor identities~STI!, satisfied by Green
functions at arbitrary external momenta, and are usu
called Nielsen identities, after the seminal paper@3# in which
they were first presented.

The power of this technique lies in the possibility of fa
torizing the gauge parameter dependence in terms of
objects, the Green functions of BRST sources associ
with the gauge parameters. In principle, this factorizat
holds at any order in perturbation theory, but its interp
with the renormalization procedure is not trivial. In the ca
of gauge-independent quantities, the gauge cancellat
emerge from the recombination between these new obj
and can be verified without an explicit evaluation of mul
loop diagrams. As we will see in the following, the mech
nism of gauge recombination is revealed in great simplic
in the case of physical amplitudes.

The Nielsen identities provide the appropriate framew
to study any problem related to gauge dependence. They
well known to field theory experts and have been used in
study of the effective potential@3,4# and in high temperature
field theory@5#. Recently, they have also been studied in
context of the Abelian Higgs model@6# and of Yang-Mills
theories@7# with background fields. Our main purpose in th
paper is to introduce the Nielsen identities of the full sta
dard model~SM! and to study their renormalization. From
conceptual point of view, if all the physical parameters a
fixed by normalization conditionsdirectly based on physica
0556-2821/2000/62~7!/076002~17!/$15.00 62 0760
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observables, using the Nielsen identities it is possible
make sure that other quantities are gauge-independent.
applies to mass and mixing parameters of unstable field
which we consider in detail—as well as to off-shell objec
like effective charges. From a more practical point of vie
we believe the Nielsen identities are also a useful tool
multiloop calculations both in the electroweak SM and
QCD. The identities for the two, three, and four point fun
tions that we obtain in the present paper can also be usef
this context. Throughout the paper, we will proceed in
pedagogical way and complement the formal treatment w
explicit one-loop examples.

As a demonstrative ground for the technique of t
Nielsen identities we have chosen the problem of the defi
tion of mass in the SM. This is an important and nontriv
issue which recently has received renewed attention@8–11#,
prompted in part by the high precision measurements of
Z0 mass at the CERNe1e2 collider LEP and SLAC Linear
Collider ~SLC!. It has been shown long ago@12# that un-
stable particles are compatible with unitarity and causal
However, what makes the perturbative definition of the p
rameters associated to unstable fields a delicate and int
ing problem is the interplay between the phenomenon
resonance~which goes beyond perturbation theory as it im
plies the Dyson summation of an infinite number of d
grams! and the perturbative implementation of gauge sy
metry. In particular, the correct identification of the ma
parameters of an unstable particle is not obvious: their ga
independence must be proved in full generality and th
connection to experimental quantities clarified.

A concept which is generally believed to be gaug
independent is the complex pole of the resummed propa
tor. To the best of our knowledge, there exists no general
rigorous proof that this is true. In this paper we use t
Nielsen identities to provide the proof to all orders in pertu
bation theory and for all physical fields of the SM. The on
assumption clearly needed to obtain this result is that
renormalization conditions for thephysical parameters do
©2000 The American Physical Society02-1
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not introduce spurious gauge dependence. This is the
whenever they are based on a well-defined set of phys
observables. We also discuss how a mass parameter fo
unstable fields can be consistently defined on this basis.

We have organized the paper in the following way. In t
next section we introduce the Nielsen identity for the 1
generating functional at the classical level. After a discuss
of the renormalization conditions, we study the modificatio
introduced by quantum corrections in the most general s
nario. In Sec. III, as an elementary illustration, we discu
the Nielsen identities for the one-point Green functions.
Sec. IV we consider the case of theW boson and prove the
gauge-parameter independence of the complex pole o
propagator. Several comments and examples here sh
help clarify the most important points. As a digression,
also consider the infrared finiteness of theW pole mass. The
analysis is then extended to the case of mixing. In Sec. V
consider theg,Z0 sector and derive an interesting relation f
the photon correlator atq250 in the SM. We then study in
Sec. VI the scalar sector and in Sec. VII the fermionic sec
The following section is devoted to a discussion of t
mechanism of gauge-cancellations in the case of fo
fermion processes. Section IX concludes the main text s
marizing the most important points. We have collected so
useful material in three appendices: in the first one we
cuss some aspects of the derivation of the Nielsen ident
and present the sector of the Lagrangian containing
BRST sources. In Appendix B we give a technical proof th
is crucial for the results of Sec. II. Finally, we provide
Appendix C the full one-loop fermionic self-energies in
arbitrary Rj gauge. This completes the work of Ref.@13#,
where the one-loop gauge dependence of the basic e
troweak corrections has been considered.

II. THE NIELSEN IDENTITIES IN THE SM

The idea behind the Nielsen identities is simple: the va
tion of the classical action with respect to a gauge param
coincides with the BRST variation of a local polynomial
the fields. This is clearly necessary in order to guarantee
gauge-independence of physical observables. For exam
the variation of anS-matrix element with respect to th
gauge parameters corresponds to the insertion of the B
variation of a local term between physical states, which
known to vanish. The Nielsen identities implement th
simple idea at the quantum level.

Our starting point is the Nielsen identity for the gener
ing functionalG at the classical level@2,3#:

]

]j
G05SG0S ]

]x
G0D , ~1!

where x5sj is the BRST source associated to a gene
gauge parameterj, s is the classical BRST generator, an
SG0

the linearized Slavnov-Taylor operator whose definiti
is recalled in Appendix A. Notice that the operator coupl
to x is nonlinear in the quantum fields, therefore it require
proper renormalization. The extended BRST automatic
takes into account the renormalization of the theory and
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renormalization of the composite operators generated by
variations of the action with respect to the gauge paramet
Here and henceforth, we used the reduced functional,
defined in Appendix A, in place of the standard functional
proper functions. In the case of linear gauges, this allows
to write STI and Nielsen identities in a more compact w
without modifying the Green functions of the physical field
The one particle irreducible~IPI! Green functions of the
theory are obtained differentiatingG with respect to some o
the SM fields. Differentiation of Eq.~1! therefore gives the
gauge-dependence of a Green function in terms of prod
of other Green functions, which also contain the sourcex.

We denote byGw1w2 ,...
(n) (p1 ,p2 ,...) the 1PIGreen function

of w1 ,w2 ,... at then-loop level.w i can be any physical o
unphysical field of the SM in a general covariantRj gauge,
as well as any of the sourcesgw i

,x j associated to the BRST

variation ofw i and of the gauge parameterj j . Gw1w2 ... can
be expressed as functional derivatives of the generating fu
tional, the effective actionG, with respect to the fields and
sourcesw1 ,...,wm ,

Gw1 ...wm
~p1 ,...,pm!5

dmG

dw1~p1!...dwm~pm!
U

w i50

~2!

The exchange of two fermionic indices leads to a change
sign. We also adopt the shorthand notation]j for the partial
derivative with respect to a generic gauge parametej,
whose associated source is generically calledx. Some details
concerning the action of the Slavnov-Taylor operatorSG on
G, the precise gauge-fixing term, and the complete sou
Lagrangian are given in Appendix A. Notice thatG and its
Green functions are renormalized objects, unless explic
stated.

Before we consider the quantum counterpart of Eq.~1!, it
is necessary to discuss the parametrization of the theor
some detail. We distinguish between three different cate
ries of renormalization conditions.

~i! The ones that fix thephysicalparameterspi , namely
the parameters of the classical gauge-invariant Lagrang
They must be fixed using physical observablesOi ~cross sec-
tions, decay rates, resonance parameters etc.!:

Oi5 f i~pj !. ~3!

A set of renormalization conditions commonly used in p
cision calculations is given by the fine structure constanta,
the Fermi constantGF ~measured in the muon decay!, as
~measured e.g. from the ratioR of hadronic to leptonic de-
cays of theZ0), the mixing parameters of the quark sect
~measured e.g. in hadronic decays!, and the masses of th
Z0, the Higgs bosonH, and all the fermions. In order to kee
the renormalization program simple, it is indeed stand
procedure to adopt mass parameters also for unstable fi
This has the advantage of establishing a direct connec
between an experimental quantity and the two-point Gr
functions,Gff(q2). On the other hand, the identification o
the masses of unstable particles from the resonance pa
eters is not straightforward beyond the lowest orders of p
2-2
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NIELSEN IDENTITIES OF THE SM AND THE . . . PHYSICAL REVIEW D 62 076002
turbation theory. For example, the masses of unstable
ticles are often defined in terms of the zero of the real par
the two-point function, i.e. by imposing

ReGff~Mf
2 !50. ~4!

This definition is not gauge independent beyond one-lo
@8,10# unlessf is a stable field, but it has been used som
times also in all-orders analyses@14#. A similar problem of
gauge-dependence may arise if one tries to define the mi
parameters in the quark sector in terms of two-point fu
tions only, instead of relying on physical amplitudes@15#. It
follows that, if physical amplitudes are notdirectly employed
like in Eq. ~3!, the consistency of the renormalization cond
tions has to be proved by means of the Nielsen identities
all orders in perturbation theory, and the connection betw
theoretical constructs and experimental quantities has to
elucidated. In our discussion we will fix all the physical p
rameters using unambiguously defined physical observa
~cross sections, decays rates, etc.!. All sets of physical ob-
servables are equivalent and are chosen according to th
perimental precision of the inputs and to the convenience
the problem at hand. It is irrelevant for our analysis whi
set is actually employed. Having defined the physical para
eters in terms of observables, we will show that the posit
of the complex pole of the propagator of all physical fields
the SM is a gauge independent quantity and can be use
define the mass parameters, provided the connection betw
the field-theory concept and the experimental quantitie
clarified. This is the case, for instance, for theZ0 mass pa-
rameter defined from the complex pole, whose relation w
the resonance shape measured at LEP is well-understo
see the first of Refs.@8#. This procedure applies also in th
case of mixing between different fields.

~ii ! The conditions needed to prevent infrared~IR! diver-
gences. Due to the presence of massless degrees of free
it is necessary to impose some auxiliary conditions that gu
antee the correct IR behavior of the theory. In particular, i
necessary to imposeGAZ(0)50 and similar conditions in the
ghost sector@16,14#.

~iii ! Other unphysical renormalization conditions, such
wave function renormalizations, tadpole and gauge par
eter renormalization. Apart from the case of the tadpole,
cussed in Sec. III, we do not restrict ourselves to a spec
choice, but simply require that they donot spoil the STI and
do not affect the nilpotency of the Slavnov-Taylor operat
An alternative approach is followed in@14#.

We recall that no invariant regularization is known for t
SM. The implementation of dimensional regularization
Ref. @17#, for instance, is consistent but breaks the STI. Th
have to be restored order by order through the introduc
of noninvariant counterterms—see e.g.@18,19#. This is a pre-
condition to any discussion of the renormalization and it
necessary to recover the unitarity of the theory and the ph
cal interpretation of theS-matrix amplitudes.

Unlike the STI, Eq.~1! does not have to be preserved
the renormalization process, as the extended BRST sym
try is just a technical tool for the derivation of the Nielse
identities. Therefore, in the following we will consider th
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possible deformations of Eq.~1! induced by quantum effect
in complete generality1 and write

]jG5SGS ]

]x
GD1D, ~5!

where the symmetry breaking termD is a dimension four
operator with zero ghost number such thatSGD50.

The investigation of the structure ofD in Eq. ~5! can be
performed according to standard cohomological techniq
@18,14,16#. Recalling thatSG

250 if S (G)50, the first step
consists in writingD5X1SGY with XÞSGJ. As can be
intuitively understood, the part ofD which can be expresse
as the BRST variation of something else does not contrib
to physical quantities. On the other hand,X does not de-
couple from the calculation of observables and is usua
called the cohomology of the operatorSG . In the SM,X is
composed of the dimension four gauge-invariant opera
with zero ghost number, each of them representing a co
mology class.2 The coefficients of the cohomology classes
SG are the physical parameters of the theory. Therefore
contribution toX can be absorbed into a renormalization
some of the physical parameterspi and we can writeX
5S ib i

j(]/]pi)G. For what concernsSGY, it admits different
kinds of contributions and is extensively studied in the
erature@18,21,22#. The most general expression for Eq.~5!
turns out to be

]jG5~11rj!SGS ]

]x
GD1(

i
b i

j
]

]pi
G1(

w
gw

j NwG

1d tE d4x
dG

dH~x!
. ~6!

In Appendix B we show how this structure is actually impl
mented and preserved at all orders. In Eq.~6! pi are the
renormalized parameters of the SM,b i

j describes their ex-
plicit gauge dependence~or equivalently that of their corre
sponding counterterms!, andw is any of the physical or un-
physical fields of the SM. When Eq.~6! is differentiated to
obtain identities between Green functions, the operatorNw

counts the external fields, whilerj, gw
j and d t parametrize

the deformation of the Nielsen identity~NI!; they correspond
to a renormalization of unphysical parameters. In particu
the third term in Eq.~6! renormalizes the external field
~wave function renormalization!, the fourth renormalizes the
tadpoles, andrj rescales the gauge parameters. As in the
with restricted ’t Hooft gauge-fixing there are four gaug
fixing parametersj i ( i 5Z,W,g,g) and as many sourcesx i ,

1In the case of Yang-Mills theories, a discussion of the renorm
ization of the Nielsen identity can be found in Ref.@2#; it agrees
with the one given below.

2We recall that in the SM, in addition to the STI, some auxilia
constraints are needed to identify the gauge invariant operators
a detailed discussion we refer to@20,14,16#.
2-3
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rj is in fact a matrix. In the case of mixing between fiel
characterized by the same quantum numbers,gw

j andNw are
also matrices.

Equation ~6! shows the most general structure of t
renormalized Nielsen identity. In many practical cases, ho
ever, the situation is simpler. First, our assumption on
renormalization of the physical parameters in terms of ph
cal quantities implies automaticallyb i

j50. This follows di-
rectly from Eqs.~3!, as Oi are gauge-independent physic
objects. If the physical renormalization conditions were m
takenly chosen in a gauge-dependent way, nonvanishingb i

j

would arise because spurious gauge dependence wou
introduced in Eq.~1!.

In pure QCD, where naive dimensional regularization
consistent and respects the STI, it is customary to ado
modified minimal subtraction (MS) as an intermediate reno
malization condition.3 SuchMS subtraction leads in this cas
not only tob i

j50, because the renormalized parameters
guaranteed to be gauge-independent@24#, but also toD50.

One can also wonder whether the NI can be realized a
orders by an appropriate set of unphysical renormaliza
conditions. Although a complete analysis of this problem
beyond the scope of the present paper, the possibility of
serving the form of the NI without modifyingad hoc the
structure of the ST operator~as in@2#! seems unlikely@6#. On
the other hand, the point of view we have followed here h
been to allow for arbitrary deformations of the NI.

The decomposition ofD in Eq. ~5! into X and SGY be-
comes important in the calculation of physical observab
Since any operator that can be expressed as the BRST v
tion of something else decouples from physical quantit
SGY is completely irrelevant to their calculation. Hence,
contribution to the third, fourth andrj terms in the right-
hand side~RHS! of Eq. ~6! has an effect on physical quan
tities. In Sec. VIII we will consider, in particular, the gaug
cancellations leading to gauge-independent physical am
tudes. Equation~6! tells us that neither the renormalizatio
of the fields, nor the one of the unphysical parameters,
spoil the gauge independence of the amplitudes. OnlyX
5S ib i

j(]/]pi)G can make them gauge dependent@25#. In
other words, only the renormalization of the physical para
eters of the theory affects the gauge dependence of the p
cal observables.

III. TADPOLES

As a preliminary step in our analysis, we consider in t
section the gauge-parameter dependence of the tadp
This is a very simple case and provides a first introduction
the use of the Nielsen identities. Because of the close c
nection between the mass and the tadpole renormalizat
the results of this section will be necessary in all subsequ
applications.

The 1PI generatorG is defined as the Legendre transfor

3This is also common in some one and two-loop electroweak
culations@23#.
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of the connected generating functionalZ. The Legendre
transform is well-defined only if the linear terms in the fiel
~tadpoles! are removed at all orders in perturbation theo
@26,27#. This is equivalent to setting the renormalization co
dition

GH
~n!50, ~7!

and also corresponds to minimizing the effective potentia
each order@28#.4

We now consider how the condition of Eq.~7! affects the
Nielsen identity. First, we differentiate both sides of Eq.~6!
with respect toH. Taking into account Eq.~A3! and setting
all deformation parameters to zero, but before employing
~7!, we obtain

2]jGH~0!5GxgH
H~0!GH~0!1GxgH

~0!GHH~0!. ~8!

All the external momenta are zero and we will drop them
the remainder of this section. Asx is the source associated t
a gauge parameter, it is a Grassman variable which does
depend on the space-time and does not carry any momen
In deriving Eq.~8!, we have used the fact that thex’s and the
g’s have ghost number equal to11 and 21, respectively,
and that nonvanishing Green functions must conserve
ghost charge. We have also usedCP conservation to avoid,
for instance, the appearance ofH-G0 mixing in higher or-
ders. This assumption will be relaxed later.

The renormalization ofGxgH
, which is logarithmically

divergent, has to be fixed explicitly. It follows from Eqs.~8!
and ~7! that for the Nielsen identity not to be deformed w
must impose

GxgH

~n! 50 ~9!

at any ordern of perturbation theory. If we allow the renor
malization ofGxgH

to deform Eq.~6! according to Eq.~6!,
however, we have

~11rj!GxgH
1d tGHH~0!50. ~10!

In the following we will consistently impose Eq.~9!.
In the presence ofCP violation, another tadpole ampli

tude emerges in the SM, connected to the vacuum expe
tion value of theCP-odd neutral would-be Goldstone boso
G0 . As theCP violation in the SM is confined to the fermi
onic sector, this will happen only at higher orders. In e
tended models, any neutral scalar field with zero gh
charge could develop a vacuum expectation value thro
radiative corrections. In all cases the linear terms in the fie

l-

4Incidentally, it is interesting to see that the tadpole counterterm
generated by the BRST variation of a local counterterm:GCT

5dTSG0
(*d4xgH)5dT*d4x@dG0 /dH(x)# where G0 is the tree

level action anddT the coefficient of this counterterm. It then fo
lows that a renormalization of the tadpole amplitude induces a s
proportional todT in the mass parameters of all the SM fields. T
previous equation uncovers also the unphysical nature of the re
malization of the tadpole.
2-4
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must be removed. However, given Eq.~7!, the STI imply the
vanishing of tadpoles of the unphysical fields. Upon diffe
entiation with respect to the neutral ghost fieldcz, Eq. ~A3!
yields

dSG~G!

dcz~0!
U

w50

5Gczg0
GG0

1GczgH
GH50. ~11!

To derive the previous equation, we have used Eqs.~A3! and
~A7! and the fact that one-point functions are not vanish
only for neutral scalars with zero ghost number. As can
seen from Eq.~A7!, GcZg0

(0) differs from zero already at the

tree level, in which case it is proportional tov, the Higgs
VEV. From Eq.~11! it then follows that the vanishing of th
CP-even tadpoleGH

(n) implies the vanishing of theCP-odd
tadpoleGG0

(n) at any order. Moreover, in the presence ofCP

violation a termd t
CP*d4xdG/dG0(x) should be added to Eq

~6!. Using the STI for the two-point functions and the ana
gous of Eq.~8!, and requiringd t

CP50 one then finds that Eq
~9! is also valid, together withGxg0

(n) 50.

In the case of a model with two Higgs doublets@29#, Eq.
~11! takes the form

Gczg0
GG0

1GczgH
GH1Gczgh

Gh1GczgA
GA50. ~12!

whereH, h andA are the physical neutral Higgs fields. It
sufficient to require only the vanishing of the tadpoles of
physical fieldsH,h,A. It then follows that the tadpole of th
unphysical Goldstone boson is zero~identifying aflat direc-
tion in the Higgs potential@30#! at any order in perturbation
theory.

Before closing this section, it is instructive to check e
plicitly Eq. ~8! at the one-loop order. At this order none
the pathologies of~naive! dimensional regularization is ap
parent and we have an elementary example of a calcula
with the x sources. To this end we expand Eq.~8! at O(g)
and consider dimensionally regularized Green functions
fore implementing the renormalization conditions. As a co
sequence of the Feynman rules given in Appendix A,
three level Green functionsGxgHH

(0) andGxgH

(0) vanish. We also

have GH
(0)50 by construction, whileGHH

(0) (0)52MH
2 . We

therefore find

]jGH
~1!5MH

2 GxgH

~1! , ~13!

where the last term is logarithmically divergent. It is straig
forward to computeGxgH

(1) using the Lagrangian given in Ap

pendix A. Only diagrams of the kind displayed in Fig.
contribute and we recover the gauge dependence ofGH

(1)

given in Eqs.~11!,~12! of @13#.

IV. W BOSON

As a first application of the technique to the case of
definition of mass, we consider the case of the chargedW
boson, which is particularly simple because it does not
volve any mixing between different fields. We split the i
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GWW
mn ~q!5S gmn2

qmqn

q2 DGWW
T ~q2!1

qmqn

q2 GWW
L ~q2!.

~14!

Our first aim is to obtain a Nielsen identity for the transver
part of the two-point function. The longitudinal part will b
considered in Sec. VI. As a first step, we differentiate bo
sides of Eq.~1! with respect toWm

1 and Wn
2 , take into ac-

count Eq.~A3!, and set to zero the Green functions which
not conserve the ghost charge. We obtain

]jGWW
T ~q!52(

w
@GxgwWW

T ~q!Gw1Gxgw
GwWW

T ~q!

1tmn
„GxgwWm

~q!GwWn
~q!

1GxWngw
~q!GWmw~q!…#, ~15!

wheretmn5gmn2qmqn/q2 is the transverse projector and th
superscriptT indicates the transverse part of a Green fun
tion. From the discussion of the previous section we kn
that there is no nonvanishing one-point function and t
Gxgw

for w5H,G0 , which describe the gauge-dependence
the tadpoles, must also vanish—see Eq.~9!—if we impose
d t5d t

CP50. The second line of Eq.~15!, on the other hand
is not zero only forw5Wl

6 , so that we obtain, at any orde
in perturbation theory (s5q2),

]jGWW
T ~s!522GxgWW

T ~s!GWW
T ~s!, ~16!

with GxgW1W2
T

5GxgW2W1
T . We now include the possible de

formations present in Eq.~6!: usingb i
j50, Eq.~16! becomes

]jGWW
T ~s!52@2~11rj!GxGWW

T ~s!1gW
j #GWW

T ~s!.

~17!

For what concerns the mass parameter definition, the sig
cance of Eq.~17! is that a gauge invariant and self-consiste
normalization condition onGWW

T (s) canonly be given at the
location of the pole of the propagator. Defining the latter

GWW
T ~ s̄W!50, ~18!

we see that Eq. ~17! leads to ]jGWW
T (s)us5 s̄W

5]j@GWW
T ( s̄W)#, which in turn implies thatthe location s̄W

of the complex pole of the propagator is gauge-independ

FIG. 1. One-loop diagram contributing toGxgH
.
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FIG. 2. One-loop diagrams
contributing toGxWgWW .
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at any order in perturbation theory. This is a remarkably
nontrivial result of perturbation theory, as it concerns t
parameters that describe the nonperturbative phenomeno
resonance. It relies exclusively onb i

j50, which follows
from our use of observables to fix all the physical para
eters. The mass parametermW and the width parameterGW

defined bys̄W5mW
2 2 imWGW are gauge independent quan

ties and, as a consequence of the discussion at point~i! in
Sec. II,mW can be adopted as renormalizedW mass. Clearly,
the precise connection between this parameter and re
experimental quantities must be clarified in order to ad
Eq. ~18! as a renormalization condition that directly fixes t
W mass parameter.

Beyond one-loop order the definition of the mass para
eter of an unstable particle in terms of its two-point functi
is not trivially gauge-independent as in Eq.~18! @8,10#. Con-
sider for instance the case in which the mass of theW boson
is defined by a renormalization condition of the kind in E
~4!, namely

ReGWW
T ~MW

2 !50; ~19!

the W mass counterterm is then ReGWW(MW
2 ). This is the

conventional approach to one-loop mass renormaliza
@31–33#. Taking the real part of Eq.~17! at s5MW

2 , expand-
ing it at two-loop, and droppingrj andgw

j as they would not
affect our conclusions being real, we obtain

]j ReGWW
T~2!522 ReGxgWW

T~1! ReGWW
T~1!12 ImGWW

T~1! Im GxgWW
T~1! ,

where all terms are evaluated atq25MW
2 . Using the normal-

ization condition Eq.~19!, we see that the last term is le
over, so that Eq.~17! is not satisfied. As a consequence, t
mass parameter defined by Eq.~19! is gauge-parameter de
pendent beyond one-loop@10#. As the imaginary part in the
last term of the previous equation originates from gau
dependent thresholds, there exists a class of gauges w
Im GxgWW

T(1) (MW
2 ) vanishes~cf. Fig. 2! and for which the gauge

parameter dependence ofMW is only apparent at the thre
loop level@10#. The actual difference between the two ma
definitions, DM25Re@GWW( s̄W)2GWW(MW

2 )#, can be
evaluated expandingGWW in powers ofus̄W2MW

2 u'GWMW

5O(g2) up to O(g4). The result is DM2

'MWGW Im GWW
(1)8(MW

2 ), which is clearly gauge paramete
dependent. The renormalization condition~19! is an example
of definition of a physical parameter in a gauge-depend
way: beyond one-loop it inducesbMW

j Þ0.

A comment on the factorgW
j is now in order. As ex-

plained in the introduction, this term originates from the p
tential deformation of the Nielsen identity by the renorm
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ization procedure. For instance, there is considera
freedom in the choice of both the wave function renorm
ization of theW field and the renormalization ofGxgWW

T (s).

In case they do not respect the Nielsen identity,gW
j compen-

sates for its breaking. Let us consider, for example, the
lowing two procedures at one-loop. A first possibility is
adopt a minimal subtraction (MS scheme! for both the wave
function renormalization of theW and GxgWW

T,(1) (s). It should

be clear that in this casegW
j,(1)50. A second possibility con-

sists in using the on-shell scheme for theW field rescaling. If
we now insist in using a minimal subtraction forGxgWW

T (s),

Eq. ~16! is not satisfied by the finite parts of the counte
terms, leading to a factor gW

j,(1)5GxgWW
T,(1) (MW

2 )uMS

51/2GWW
T8,(1)(MW

2 )uMS, where the subscriptMS means that
only the finite part of this Green function is considere
Similar considerations apply torj, which appears first at the
two-loop level and is related to the renormalization of t
gauge-fixing parameters.

Like in the case of the tadpole, let us see explicitly wh
happens at the one loop level for regularized Green fu
tions. Using Eq.~13! and noting that the Green function
involving x vanish at the tree level, Eq.~15! reduces to

]j@GWW
T,~1!~s!1TW

~1!#52GxgWW
T,~1! ~s!~s2MW

2 !, ~20!

whereTW
(1) is the contribution of the one-loop tadpole. Th

zero of theW inverse propagator is gauge-independent as
5MW

2 . Notice that GxgWW
T,(1) (s) describes the gauge

dependence of the residue of the physical pole, i.e. of
on-shell wave function renormalization factor.

An explicit calculation of the diagrams in Fig. 2 whic
contribute toGxWgWW

T,(1) leads to the samejW dependence of

AWW
(1) reported in @13#; the same happens for th

jZ,g-dependence.
We have seen that if the renormalization condition is n

properly chosen, the mass parameter is gauge-depende
possible source of confusion, however, is the interplay
mass and tadpole renormalization. To make this point cl
it is sufficient to keep the discussion at the one-loop lev
From Eq.~20! we know that theW mass countertermdMW

2

5ReGWW
T(1)(MW

2 )1TW
(1) is gauge-independent. The tadpo

renormalization according to Sec. III, however, eliminat
TW

(1) from the previous expression and makesdMW
2 gauge-

dependent. Nevertheless, we still havebMW

j 50. This is a

consequence of the unphysical character of the tadpole re
malization. What is essential here is that the renormaliza
condition which fixes the physical parameterMW be gauge-
2-6
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FIG. 3. Schwinger-Dyson
equation for the W two-point
function. The blobs on the interna
lines represent connected prop
gators ~chains of bubbles!, while
the blob on the vertex represents
one-particle irreducible Green
function.
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independent, as is the case for Eq.~18! and not for Eq.~19!.
This and only this guaranteesbMW

j 50.

Two simple practical applications follow from Eq.~17!,
and we report them as illustrations of the technique. First,
can consider the dependence of theW self-energy on the
QCD gauge-parameterjg . It is easy to show that the defor
mation parameters cannot affect it in this case, and that
controlled byGxggWW

T only. However, the ghost charge ass

ciated to the QCD gauge group and the one associated t
SU~2! group must be conserved independently of each ot
Therefore,GxggWW

T 50 at any order, which implies that theW

two-point function does not depend on the gluon gauge
rameter, as verified in actual calculations at two and th
loops @34#. The second application concerns the contrib
tions to theW self-energy which are leading in an expansi
in the heavy top quark mass. At the one-loop level, they
trivially gauge-independent, like all the fermionic contrib
tions. At higher orders, one can use the fact thatGxgWW

T (s) is

only logarithmically divergent to show that the gauge dep
dence of the heavy top expansion ofGWW starts at the next-
to-leading order. Again, this is not surprising, because
leading contributions inMt can be obtained in the frame
work of a Yukawa Lagrangian where the heavy fermio
only couple to the Higgs boson and to the longitudinal co
ponents of the gauge bosons. This Lagrangian, which co
sponds to thegaugeless limitof the SM @35#, does not re-
quire gauge-fixing.

Infrared finiteness of the W mass

The complex pole definition of mass based on Eq.~18!
avoids also IR problems at higher orders in perturbat
theory. It has been shown in Ref.@10# that the use of the
normalization condition of Eq.~19! leads to severe IR diver
gences in a class of higher order graphs containing the p
ton when the external momentum approaches the mass-
of the W. As a consequence, in the resonance regionus
2MW

2 u&MWGW , the perturbative series fails to converg
while it was found that the pole mass definition avoids
these pathologies. The origin of the problem is similar to
one of the gauge dependence of the mass parameter de
by Eq.~19! and is related to the need to take into account
imaginary part ofGWW

T in the renormalization procedure.
More generally, the problem is common to all particl

coupled to massless quanta, independently of whether
are stable or not, and concerns the perturbative descriptio
the resonance region. For instance, in pure QCD it is w
known @36# that at two-loop order the two-point function o
a massive quark is IR divergent atq25mq

2 unless the quark
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mass is renormalized on the pole. In Ref.@11# it was shown
that this property persists at all orders in QCD, namely t
the perturbative pole mass of the quark in QCD is infrar
safe~or finite!. In the following we would like to approach
the case of theW boson from a slightly different point o
view, along the lines of@11#, generalizing some of the result
of Ref. @10#. We will show that the complex pole mass of th
W is IR safe at any order in perturbation theory, namely t
the renormalization condition of Eq.~18! does not lead to IR
divergences in the resonance region of theW boson, nor to
pathologies in the perturbative expansion. In that respect,
presence of the width does not alter the discussion in a
evant way.

A convenient tool to analyze the IR properties of theW
self-energy from a perturbative point of view are the ren
malized Schwinger-Dyson equations~see e.g.@26#!. These
equations provide a simple iterative way to define the hig
order graphs in terms of sub-diagrams. In the case of thW
boson there are only two topologies containing the pho
which should be considered, as they contain thresholdss
5MW

2 and can lead at higher orders to IR problems. Th
Schwinger-Dyson equations are graphically depicted in F
3.

Diagrams with gauge-dependent threshold~like those
with a charged Goldstone boson in place of theW! and with
thresholds far away from the resonance region~like those
with a Z0 boson instead of the photon! can be discarded
because their expansion arounds5MW

2 does not contain
nonanalytic terms.

We will treat explicitly only the case of the topology o
the left side of Fig. 3, as the other diagram can be discus
along the same lines. In this case the Schwinger-Dyson e
tion has the form

GW
m
1W

n
2

~g!
~p!;E dnkGW

m
1ArW

s
2

~0!
~k,p1k!ZAsAb

c ~k!

3ZW
s
1W

s
2

c
~k1p!GW

a
1AbW

n
2~k,p!, ~21!

whereGW
m
1W

n
2

(g)
(p) is the contribution to the self-energy du

to the exchange of a single photon,GW
m
1ArW

s
2(k,p1k) is the

IPI vertex, the superscript~0! indicates that the vertex is
considered at the three level, and finallyZAsAb

c (k) and

ZW
s
1W

a
2

c
(k1p) are the connected propagator for the phot

and for theW boson, respectively. To study the IR behavi
of Eq. ~21! near the mass-shell, we now consider the tra
verse part of the self-energyGW1W2

(g)
(p) and approach the
m n

2-7
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limit p2→ s̄W . We expand the propagator into the Dys
series of self-energies and tree propagators. Concerning
photon line, we recall that a convenient choice of the n
malization conditions for the neutral gauge boson sector,
GZA

T (0)50, makesGAA
T (0) vanish at all orders~cf. next sec-

tion!. Therefore, the photon propagatorZAsAt

c (k) is always

proportional to 1/k2 in the limit k→0 and has IR dimension
22.

For what concerns theW propagator, the IR divergen
contributions are related only to the transverse componen
ZW1W2

c (k1p) because the propagator of the longitudin
components of theW boson has a gauge dependent pole.
the on-shell limit for the momentump and fork→0, the tree
level W propagators present in the Dyson series
ZW1W2

c,T (k1p) are linearly divergent. Therefore, expandin
ZW1W2

c,T (k1p) aroundk50, p25 s̄W we have

ZW1W2
c,T

~k1p!up25 s̄W
;

k→0

(
n

S 1

2p•kD n11

@GWW
T ~ s̄W!#n.

~22!

Here we consider only the most dangerous terms, which v
ish if and only if GWW

T ( s̄W)50. Under this condition,
ZW1W2

c,T (k1p)up25 s̄W
is at most linearly divergent in the IR

limit. If, on the other hand, Eq.~18! is not satisfied, severe IR
divergences appear in each order. The situation is not m
improved if we move off the pole position in the resonan
region. Indeed, in this case theW width acts as an IR regu
lator in the denominator of Eq.~22!, but leads to a serie
where the denominator 1/(s2 s̄W)'O(1/g2) spoils the con-
vergence of the perturbative expansion in the resonance
gion @10#.

The last information we need concerns the behavior of
vertexGW1AbW2

T (k,p) ~T refers to the transverse componen

of the W bosons! aroundk50, p25MW
2 . By analyticity and

dimensional analysis, the vertex functions can be at m
logarithmically divergent in the limitk→0 ~this can also be
verified exploiting the STI together with a proper use of t
renormalization conditions!. Having IR dimension23, it fol-
lows by power counting that Eq.~21! does not lead to IR
divergences when the integral in the internal momentumk is
performed aroundk50.

In summary, we have seen that the pole mass of theW
boson, defined by Eq.~18!, is IR safe to all orders in pertur
bation theory and that only if this definition is adopted
perturbative description of the resonance region is possi

V. THE Z-g SYSTEM

The main difference between the case of theW boson and
the one of the neutral vector bosons is the presence of m
ing. We now directly use Eq.~6! with b i

j50 and setrj50
for ease of notation~doing otherwise would not modify ou
results!. Following the same steps as in the derivation of E
~17!, and keeping in mind that the Abelian vector field do
not need a BRST source, we find, fori , j 5A,Z,
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]jGi j
T ~s!52„Gxg3i

T ~s!2g i3
j
…@cWGZ j

T ~s!2sWGA j
T ~s!#

2@cWGiZ
T ~s!2sWGiA

T ~s!#„Gxg3 j
T ~s!2g3 j

j
…,

~23!

whereg i3
j 5g3i

j is the deformation induced by the possib
mismatch between the wave function renormalization ma
Zi j and the renormalization ofGxg3 j . We recall thatGik

T (s) is
a symmetric matrix. We now consider the quantity

DAZ
T ~s!5detS GAA

T ~s! GAZ
T ~s!

GZA
T ~s! GZZ

T ~s!
D , ~24!

which appears in the denominator of the propagators of
photon-Z0 system~see, for example,@33#!. If we are inter-
ested in the analytic structure of neutral current amplitude
the typical configuration of a high-energy collider, whe
external fermion masses can be neglected,DAZ

T (s) is what
we need to investigate. It is straightforward to derive

]jDAZ
T ~s!522@cWGxg3Z

T ~s!2cWg3Z
j 2sWGxg3A

T ~s!

2sWg3A
j #DAZ

T ~s!. ~25!

This tells us that the zeros ofDAZ
T identify gauge-

independent quantities. On the other hand, we know from
STI thatDAZ

L (0)50 ~see, for example,@32#; Ref. @16# con-
siders also the case ofCP violation! which in turn implies by
analyticityDAZ

T (0)50. This result ensures the existence o
massless state, the photon.DAZ

T has, however, another zero
corresponding to theZ0 complex pole, atq25 s̄Z . As in the
case of theW boson, this result implies that the position
the complex pole is a gauge independent quantity and
the only self-consistent normalization condition for theZ0

mass is the one given in analogy to Eq.~18!. With the ex-
ception of the IR problems, all the discussion on theW mass
applies directly to the case of theZ0 boson mass@8#. A Ward
Identity similar to the Nielsen identity of Eq.~17! has been
applied in @9# to the case of theZ0 resonance, to the sam
avail.

Another interesting application of Eq.~23! concerns the
photon correlator atq250. As is well known@32#, using the
renormalization conditionGAZ

T (0)50 the resultDAZ
T (0) that

we have used above impliesGAA
T (0)50. In this case it is

straightforward to verify from Eq.~23! that the derivative
with respect toq2 of the photon two-point function calcu
lated atq250 is gauge-independent at all orders. Imposi
the conditionGAZ

T (0)50 in the expression of]jGAZ
T (0), we

obtain the constraintGxg3A
T (0)2g3A

j 50. We can now differ-

entiate]jGAA
T with respect tos and evaluate it ats50. Using

the various constraints we have obtained, we immedia
derive

]j

]

]s
GAA

T ~s!U
s50

50. ~26!
2-8
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Notice that no particular renormalization condition on t
derivative (]/]s)GAA

T us50 has been imposed, so one shou
think, for instance, of a minimal subtraction. This interesti
and nontrivial result shows that under the conditionGAZ

T (0)
50 and ats50 there exists in the full SM something anal
gous to what happens in QED, where the vacuum polar
tion of the photon is gauge-independent for anys ~see, for
example, Ref.@37#!. An alternative derivation of Eq.~26! can
be obtained starting from the physical photon-electron a
plitude ats50, proceeding along the lines of the discussi
of Sec. VIII, and taking the gauge independence of the
shell amplitude for granted.

VI. THE SCALAR SECTOR

In the previous section we have studied a first example
mixing. Indeed, mixing occurs in several other cases in
SM and in most of its extensions; all can be treated in a w
very similar to the$g,Z% case discussed above. In this se
tion, we first consider the matrixGf(s) of the two point
functions relative to the scalar fieldsf5$f1 ,f2 ,...,fn% in
the general case of mixing and show that the gauge de
dence of its determinant follows an equation analogous
Eq. ~25!, if the rank ofGf(s) is equal to its dimensionn. As
CP violation is present in the SM, we then consider t
system formed by$AL ,ZL ,G0 ,H%, where the subscriptL
denotes the longitudinal component of the vector bo
fields. This system is highly constrained by the STI and
show that in this case the complex pole of the only phys
field, the Higgs boson, is gauge-invariant. In an analog
way one can consider the$WL

6 ,G6% system, which howeve
has no physical degree of freedom and is completely c
strained by the STI.

The general form of the Nielsen identity in the case o
system f of fields characterized by the same conserv
quantum numbers can be obtained in analogy to Eq.~23! and
reads

]jGf~s!5L~s!Gf~s!1Gf~s!L8~s!, ~27!

where we do not need to specify the matricesL andL8 any
further. Using ln detGf5tr lnGf and exploiting the proper
ties of the trace, one finds forDf[detGf

]jDf~s!5tr@L~s!1L8~s!#Df~s!, ~28!

which generalizes Eq.~25! in the case the rank ofGf(s) at
arbitrary s is equal to its dimensionality. In the case ofn
scalar fields this ensures the gauge-independence ofn com-
plex poles. Notice that the physical information contained
the matrixGf is not restricted to the physical poles. Indee
the higher order definition of the mixing parameters is
fected by the off-diagonal elements ofGf. In general, it does
not seem possible to form gauge-independent quantitie
the basis of two-point functions only, i.e., ofGf, and to
employ them to renormalize the mixing parameters@15#. On
the other hand, the mixing parameters can be safely defi
in terms of physical observables such as mesonic decay r

Neutral current processes are mediated by photons
Z0, as well as by scalar fields, likeG0 and the physical Higgs
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field. As it is well known, the propagator matrix is obtaine
by inversion of the two-point function matrix and, in th
process of inversion, the transverse and longitudinal com
nents of the vector boson fields decouple. Having conside
the transverse degrees of freedom in the preceding sec
we can now limit ourselves to the system formed by t
longitudinal components of the photon and of theZ0 and by
the Higgs and the neutral Goldstone bosons, which we
note byS5$AL ,ZL ,G0 ,H%. The two point functions involv-
ing one vector boson and one scalar are defined extrac
qm. In this way, GS is the 434 matrix of the two-point
functions ofS.

The systemS includes unphysical degrees of freedom. A
we have noted in the introduction, even at the tree level
Green functions of unphysical fields are modified by t
choice to use the reduced generating functionalG in place of
the complete functionalGc ~see Appendix A!. For the pur-
poses of this section, however, the reduced functional s
plifies significantly the derivation without affecting th
physical information we can extract fromGS. In a way, this
can be viewed as a consequence of the fact that the ca
lation between the unphysical degrees of freedom occurs
dependently of the gauge-fixing sector@32,20#.

Each row ofGS is connected by a STI. For instance, d
ferentiating Eq.~A3! with respect toAm and cA, we obtain
for the first row

~cW
2 2sWGcAg3

!GAA
L 1~sWcW1cWGcAg3

!GAZ
L 1GAG0

GcAg0

1GAHGcAgH
50. ~29!

Similar identities can be derived for the other row
so that the STI for the two-point functions can b
written as GSVcA

50, where VcA

T 5(cW
2 2sWGcAg3

,sWcW

1cWGcAg3
,GcAg0

,GcAgH
). Since f includes the unphysica

components of the photon andZ0 fields and since we have
eliminated the gauge fixing sector of the tree level Lagra
ian in using the reduced functional@see Eq.~A2!#, it is per-
haps not surprising that there is no propagator forAL andZL
and that detGS50 or the rank ofGS is less than 4. In fact,GS

has another linearly independent eigenvectorVcZ
with zero

eigenvalue, corresponding to the set of STI obtained by
ferentiation with respect tocz . Therefore, the rank ofGS is at
most 2 and that we cannot use Eq.~28! at this stage. More-
over, the submatrix ofGS identified by the indicesG0 andH
has the same rank asGS. This can be seen by noting thatVcZ

andVcA
can be orthogonalized in the subspace of theAL and

ZL components because

detS cW
2 2sWGcAg3

sWcW2sWGcZg3

sWcW1cWGcAg3
sW

2 1cWGczg3

D 511O~\!Þ0.

~30!

Having eliminated the unphysical longitudinal comp
nents of the vector bosons, we can now concentrate on
submatrix
2-9
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GH5S GG0G0
GG0H

GHG0 GHH
D , ~31!

whose rank is equal to the one ofGS. Indeed, at arbitraryq2,
its rank is 2, so that Eq.~28! is satisfied.GH is very similar to
theg-Z0 transverse mixing matrix. Even if theCP violation
mixes up physical and unphysical scalar fields at high p
turbative orders, it is not difficult to disentangle them taki
advantage of the STI. Atq250 the two STI obtained by
differentiating with respect tocA,Z and G0 imply that det
GH(0)50. This zero is related to theG0 field and is located
at q250 ~in the standardRj gauge it would be atq2

5jZMZ
2) as a consequence of the use of the reduced fu

tional. The remaining zero, atq25 s̄H , corresponds instea
to the physical pole of the Higgs boson and its location in
complex plane is therefore gauge-independent, as it follo
from Eq. ~28!. A discussion of the relation between the po
mass and the conventionally renormalized mass of the H
boson in this case can be found in Ref.@38#.

VII. FERMIONS

The treatment of the fermionic sector is only slight
more involved than that of the scalar sector. Again, we c
sider the most general case of mixing and callGf the matrix
of the fermionic two-point functions,G f̄ f 8 . In the case of
massless neutrinos, there is no mixing in the leptonic se
and Glept is a diagonal matrix. As a first step, we need
decomposeGf into scalar pieces:

Gf~p!5SL~p2!p”PL1SR~p2!p”PR1SD~p2!PL

1SD
† ~p2!PR , ~32!

wherePL,R51/2(17g5) are the left and right-handed pro
jectors. As can be seen by invertingGf , the relevant quantity
for the fermion propagator matrix is the matrix@39#

K f~p2!5p2SL2SD
† SR

21SD , ~33!

where we have dropped thep2 dependence of theS matrices.
Since the determinant of this matrix appears in the deno
nator of the fermion propagators, we want to study its ze
i.e., the zeros of the eigenvalues ofK f . We recall that by
pseudo-HermiticityGf5g0

†Gf †g0 , so thatSL
†(p2)5SL(p2)

andSR
†(p2)5SR(p2) ~this is actually true below thresholds

but it does not affect our conclusions!. Hence, the matrix
K f(p2) is Hermitian and can be diagonalized by means o
unitary transformation. Under the usual assumptionb i

j50,
the gauge-parameter dependence ofGf is described by a
Nielsen identity which has exactly the same form of E
~27!. Setting furthermorerj5gw

j 50 for ease of notation~the
results would not change!, we haveL52Gx f̄ h f 8

and L8

52Gxh̄ f f 8 , which have a Dirac structure and undergo a d
composition analogous to Eq.~32!. Again by pseudo-
Hermiticity, we find that in this caseLL,R5(LL,R8 )† and
LD5LD8 . It is then straightforward to verify that the com
ponents ofGf satisfy
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]jSL5LLSD1SLLD1LD
† SL1SD

† LL
† , ~34!

]jSR5LDSR1SRLD
† 1LRSD

† 1SDLR
† ,

]jSD5p2~LRSL1SRLL
†!1LDSD1SDLD ,

from which it follows that

]jK f5K fF1F†K f , ~35!

with F5LD2LR
†SR

21SD . Without using pseudo-
Hermiticity, we would haveF8ÞF† in place of F† in the
previous equation. Equation~35! is in the form of Eq.~27!
and thereforeDf[detKf satisfies Eq.~28!. We have there-
fore algebraically reduced the problem in the fermionic ca
to the scalar one. In the case of mixing betweenn fermions,
the gauge-parameter independence ofn complex poles is
thus warranted. Again, this result holds for any choice of
fermion wave function renormalization and relies solely
the b i

j50 assumption.
The above proof is new and valid in the full SM. For wh

concerns pure QED and QCD, the result that the pole ma
of the electron and of the quark are gauge-independent is
new and has been obtained both using the Nielsen ident
@37# and in different ways@11,40#. In QED ~QCD! the situ-
ation simplifies considerably: writingG f̄ f5Bp”2mA, where
m is the mass of the electron~quark!, and decomposingL in
an analogous way, we find

2]jA5
p2

m
BLB1mALA ; 2]jB5m~ALB1BLA!.

~36!

which could be tested up toO(as
2) against the generalRj

gauge calculation of Ref.@41#.
The proof of the IR finiteness of the fermions in the S

follows Ref. @11# and the final discussion in Sec. III and
already presentin nuce in Ref. @10#. For completeness, in
Appendix B we present the explicit gauge-parameter dep
dence of the one-loop fermionic self-energies in a generaRj

gauge for the full SM. Remembering thatL first occur at the
one-loop level, it is straightforward to see that they sati
the Nielsen identities Eq.~34!. This completes the set o
expressions given in Ref.@13# and is very useful in particula
applications. For instance, Eqs.~C1!–~C3! have been used in
Ref. @15# to discuss the gauge dependence of the one-l
definition of the Cabibbo-Kobayashi-Maskawa~CKM! ma-
trix. Indeed, as noted in the previous section, the renorm
ization of the mixing parameters is a delicate subject
what concerns the gauge-parameter dependence. An
equate framework for studying it is the background fie
method@16#. In the case of the fermion mixing a comprehe
sive analysis has been presented in Ref.@15#.

VIII. APPLICATION TO PHYSICAL AMPLITUDES

In this section we apply the formalism of the Nielse
identities to four-fermion physical amplitudes and study t
mechanism of gauge cancellations at any order in pertu
tion theory. Our purpose here is not to prove the gau
2-10
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independence of the physical amplitudes, a result which
accomplished in full generality long ago at the level of t
generating functional@25#. We would rather like to study a
specific example and carry out the analysis at an arbit
order in perturbation theory. The use of the Nielsen identi
allows us to uncover the regularities of the gauge recom
nations between the different components~vertices, boxes
and self-energies! in great generality. The following deriva
tion is formally independent of the perturbative expansion
the Green functions. In other words, if we work at ordern in
perturbation theory the Green functions have to be expan
up to this order, but the factorization works independently
that. At the one-loop level, a similar factorization is al
accomplished diagrammatically by the pinch technique~PT!
@42#, whose extension at higher orders has however pro
problematic. Unlike the PT, the Nielsen identities cont
only the gauge parameter variation and cannot be use
construct explicitly gauge-independent proper functio
which satisfy basic requirements and tree-level-like W
identities. However, they may prove useful in the search
the higher-order extension of the PT. The analysis of t
section gives us also the opportunity to present explicitly
Nielsen identities for vertices and boxes involving fermion
which are interesting in their own respect as they appea
most phenomenological applications.

We first consider the truncated Green functionZ
Ī JK̄N

trunc
~see

e.g.@26#! for a generic four fermion processf Ī f J→ f K̄ f N and
we decompose it in terms of irreducible diagrams and pro
gators. We will use capital and lowercase letters to den
fermions and bosonic fields~scalar as well as gauge vect
bosons!, respectively. Therefore,Z

Ī J

c
and Zi j

c are the propa-
gator functions of fermions and bosons. Following the co
vention of the preceding sections, irreducible boxes and
tices are denoted byGĪ JK̄N , GĪ Ji , and Gj K̄N . To keep the
notation simple, we drop Lorentz indices and the depende
on the external momenta. The physical amplitudeMĪ JK̄N for
our process is obtained fromZ

Ī JK̄N

trunc
using the Lehmann-

Symanzik-Zimmermann~LSZ! reduction formula @26#,
which in the case of fermion with mixing reads@32#

MĪ JK̄N5 lim
on-shell

Z̃
Ī I 8

1/2
Z̃

J̄8J

1/2
Z

Ī 8J8K̄8N8

trunc
Z̃

K̄K8

1/2
Z̃

N̄8N

1/2
, ~37!

where the on-shell limit includes the projection on t
asymptotic states andZ̃ controls the relation between th
asymptotic states and the renormalized spinors:

Z̃
Ī J

1/2
ua,s,J5uI . ~38!

The matrix Z̃ can be computed from the conditions@32#
~quantum equations of motion!

GĪ JuJ~mJ!50; ūI~mI !GĪ J50,

Z̃II

p”2mI
GII uI~mI !5uI~mI !; ūI~mI !GII

Z̃II

p”2mI
5ūI~mI !,

~39!
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using the fact that (p”2mJ)uas(mJ)50 at any order by defi-
nition. Of course,Z̃ should be decomposed in left and righ
handed parts,Z̃5Z̃LPL1Z̃RPR . Notice that the first line of
Eqs. ~39! implies detKf50 and consequently includes th
requirement that the mass parameters of the external fe
ons are renormalized on the poles of the propagators~see
Sec. VII!. Strictly speaking, the LSZ formalism applies on
to stable external states, i.e., to the electron and neutr
and, to a good approximation, to the muon. Nevertheless
will consider here the general case of mixing. We also str
that the LSZ factorsZ̃ should not be confused with the wave
function renormalization factors for the external fields.
course, the latter can bechosenby imposing Eqs.~39! to-
gether withZ̃51 ~on-shell scheme@32#!, but there is in gen-
eral no restriction on their choice~see also@15#! and it is
even possible to avoid them altogether, in which caseZ̃ is
divergent. Once the wave-function renormalization has b
defined, for instance through a minimal subtraction, the f
tors Z̃ can be computed from Eqs.~39!

As a first step, we consider the gauge variation of
truncated Green functionZ

Ī JK̄N

trunc
. In the most general case o

mixing, Z
Ī JK̄N

trunc
is decomposed in the following blocks~we

sum over repeated indices!:

Z
Ī JK̄N

truncc
5 i GĪ JK̄N2GĪ Ji

Zi j
c Gj K̄N2GĪ Ni

Zi j
c Gj K̄ J , ~40!

from which we obtain

]jZĪ JK̄N

trunc
5 i ]jGĪ JK̄N2~]jGĪ Ji!Zi j

c Gj K̄N2GĪ Ji~]jZi j
c !Gj K̄N

2GĪ JiZi j
c ]jGj K̄N2~]jGĪ Ni!Zi j

c Gj K̄ J

2GĪ Ni~]jZi j
c !Gj K̄ J2GĪ NiZi j

c ]jGj K̄ J . ~41!

We can compute the different contributions]jGJ ĪNK̄ ,
]jGJ Ī i , and ]jZi j

c using the Nielsen identities. The identit

for the propagator functionsZi j
c and Z

Ī J

c
is easily derived

from the identity for the irreducibletwo-point functionsGi j
andGĪ J . As we have seen, the general form of the latter

]jGab52GacGxbgc
2Gxagc

Gcb , ~42!

where the indicesa,b apply to both the bosonic and ferm
onic case. As usual, we employ the procedure of Sec
remove all tadpoles, setd t5d t

CP50, and assumeb i
j50,;i

~this is consistent with the LSZ use of pole masses, as
have seen!. Concerning therj andgw

j factors, we avoid them
here in order to keep the formulas simple.

However, following the discussion in Sec. II, they a
bound to drop out of the amplitude and this can be explic
verified. Equation~42! can be graphically represented in th
very simple way shown in Fig. 4. Notice that the momentu
flows along the horizontal line and that the insertion of t
static sourcex does not carry momentum, unlike the one
gw .
2-11



P. GAMBINO AND P. A. GRASSI PHYSICAL REVIEW D62 076002
FIG. 4. Nielsen identity for the two-point functionGf if j
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Using the relationsZi j
c Gjk5 id ik and Z

Ī K

c
GK̄J5 id Ī J1,

where1 is the identity matrix for the Dirac indices, we ob
tain the Nielsen identities for thepropagator functions,
which read

]jZi j
c 5Zik

c Gxkg j
1Gxg i k

Zk j
c , ~43!

]jZĪ J

c
5Z

Ī K

c
Gx k̄hJ1Gxh̄ IK

Z
K̄J

c
, ~44!

for bosons and fermions, respectively. Graphically, th
identities can be represented by Fig. 4 after replacing
blobs with thex insertion by their mirror images and ex
changing the corresponding indices. For thethree-point func-
tions we have

2]jGĪ Ji5GxgmĪ JGmi1Gx igm
GmĪJ1GĪ KiGxh̄KJ1GĪ KGx i h̄KJ

1Gx Ī hK
GK̄Ji1Gx i Ī hk

GK̄J . ~45!

We see that the gauge-dependent terms of the form ofGxg i j
introduced by the propagators in Eq.~41! are exactly can-
celled by the last term in the first line of Eq.~45!, i.e., by the
vertices alone. Therefore, the boxes are not necessary t
move the gauge-dependence of the internal self-energ
The identity for thefour-point functionsis

2]jGĪ JK̄N5GĪ JmGxgmK̄N1GĪ NmGxgmK̄J1GxgmĪ JGmK̄N

1GxgmĪ NGmK̄J1GĪ SGxh̄SJK̄N1GK̄SGx Ī Jh̄SN

1Gx Ī JK̄hS
GS̄N1Gx Ī hSK̄NGS̄J1GĪ JK̄SGxh̄SN

1GĪ SK̄NGxh̄SJ1Gx Ī hS
GS̄JK̄N1GxK̄hS

GĪ JS̄N .

~46!

We now distinguish between the different Green functio
containing the sourcex.

~1! Terms of the formGxg i IJ
are present both in the gaug

variation of the boxes~first line! and in the one of the verti
ces ~first term!. They cancel against each other in the su
~41! according to the pattern

where we have specified which part of Eq.~41! generates
each term.

~2! The factors containingGx i h̄KJ in the second line of Eq

~45! andGxh̄SJK̄N @the whole second line of Eq.~46!# always
07600
e
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multiply a two-point function of the external fermions lik
GĪ J . When they are contracted with the external spino
these terms vanish, as a consequence of Eq.~39!.

~3! The remaining terms contain Green functions of t
kind Gxh̄ I J

and Gx Ī hJ
which multiply vertices and boxes in

Eqs.~45! and~46!, respectively. As we will see in a momen
they are cancelled by the LSZ factors. Adding together
various pieces, the gauge-parameter variation of the on-s
truncated Green function can be expressed in terms of
truncated function itself:

2]jZĪ JK̄N

trunc uon-shell5Gx Ī hS
Z

S̄JK̄N

trunc
1GxK̄hS

Z
Ī JS̄N

trunc
1Z

Ī SK̄N

trunc
Gxh̄SJ

1Z
Ī JK̄S

trunc
Gxh̄SN , ~47!

according to the usual form for the Nielsen identities.
course, this on-shell factorization holds in general for a
amputated Green function, as it follows from the gauge
dependence of theS-matrix.

We are now ready to apply the LSZ reduction formu
The gauge variation of the factorZ̃ can be computed from
Eq. ~38! and Eq.~39! using the Nielsen identities for th
two-point functions and the gauge-independence of
asymptotic spinorsuas,I . We then obtain

lim
on-shell

]jZ̃Ī J

1/2
uas,J5Gx Ī hS

Z̃
S̄J

1/2
uas,J , ~48!

whereGx Ī hS
is calculated on-shell, from which the final can

cellation of the gauge-dependence follows.
If some of theb i

j do not vanish, the cancellations do n
operate any longer and the amplitude turns out to be ga
parameter dependent@25#. An explicit example has been
considered in@15#, for theW decay into quarks: if the CKM
counterterm is gauge-dependent, the amplitude depend
the gauge parameters too. On the other hand, the above p
relies neither on a specific choice of renormalization of
unphysical parameters, nor on the regularization sche
adopted~provided the STI have been restored order by
der!.

IX. SUMMARY

We have introduced the Nielsen identities of the SM a
used the problem of the definition of mass as a demonstra
example. In this context we have obtained some new res
we have proven to all orders in perturbation theory t
gauge-parameter independence of the complex pole as
ated with any physical particle of the SM. We have cons
ered the cases of the vector bosons, scalars and fermio
2-12
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NIELSEN IDENTITIES OF THE SM AND THE . . . PHYSICAL REVIEW D 62 076002
great generality, allowing for arbitrary mixing patterns. P
ticular attention has been paid to the case of theW boson,
which is simpler because of the absence of mixing and
been chosen to illustrate some features common to all ca
Most of the proofs hold without modifications also in som
extensions of the SM, such as nonsupersymmetric t
Higgs-doublet models.

We have derived identities for the gauge dependenc
all the two-point functions of the SM, both for bosons a
fermions, as well as for vertices and boxes involving exter
fermions. Using these expressions, we have shown the
plicit mechanism of gauge cancellations which leads
gauge-independent four fermion amplitudes to all orders
the most general case of fermion and boson mixings an
CP violation. The formalism introduced in this pape
supplemented by the material given in Appendix A~the La-
grangian involving the BRST sources!, should allow for a
very simple derivation of the Nielsen identities for an
proper Green function in the electroweak SM and in QC

We have also extensively discussed the renormaliza
of the Nielsen identities with an arbitrary regularization,
the case the Nielsen identities~but not the STI! are broken by
renormalization. In that case the identities are deformed
new terms, which we have identified in full generality a
computed in a few cases of particular interest. We have
derived new results concerning the infrared-finiteness of
W pole mass and the photon two-point function atq250 in
the SM. For completeness, we report in Appendix C
expressions for the fermionic one-loop self-energies in a
neric Rj gauge.

In conclusion, the formalism of the Nielsen identities c
be useful in various applications:~i! at the conceptual level
for the identification of gauge-independent quantities such
invariant charges@7# and for the gauge-independent defin
tion of renormalized parameters@15#; ~ii ! at the practical
level, because in higher orders calculations it is gener
simpler to compute the gauge-dependence using the Nie
identities, and because these identities allow for powe
checks. It deserves to be better known to theorists.
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APPENDIX A: NIELSEN IDENTITIES FOR PEDESTRIANS

The aim of this appendix is to review very briefly th
formalism of Slavnov-Taylor identities~STI! in the case of
the Nielsen identities and to provide some material neces
for the explicit calculation of the Green functions involvin
the BRST sources. For a non-expert introduction to the
for specific physical amplitudes, we refer to@19#. First, we
recall that in our conventions the gauge-fixing term in t
SM Lagrangian is given by
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LGF52
1

2jA
~]mAm!2

2
1

2jZ
~1! S ]mZm2

jz
~2!Ag821g2

2
vG0D 2

2
1

jW
~1! U]mWm

1

2
i jW

~2!g

2
vG1U2

2
1

2jg
~]mGm

b !2. ~A1!

We always setjW,Z>jW,Z
(1) 5jW,Z

(2) ; i.e., we confine ourselves
to the restricted ’t Hooft gauge. Our starting point is t
complete generating vertex functionalGc, which generates
the one-particle-irreducible Green functions. In order to si
plify the structure of the STI, it is convenient to introduce f
linear gauge-fixings a reduced generating functionalG

~sometimes indicated byĜ in the literature!, which differs
from Gc by a local term, corresponding to the gauge-fixi
part of the Lagrangian:

G5Gc2E d4xLGF . ~A2!

In practice, the STI obtained fromG coincide with the STI
obtained fromGc after implementation of the ghost equatio
@26#. Of course, one should keep in mind that the Gre
functions involving unphysical fields generated byG coin-
cide with the ones generated byGc only up to constant terms
For example, one hasGWmWv

(0) 5GWhWm

c(0) 1pmph/jW and

GG1G2
(0)

5GG1G2
c(0)

1jWMW
2 at the tree level, while the differ-

ence at higher orders depends only on the renormalizatio
the W field and of the gauge parameters. As we have eli
nated the classical gauge-fixing, it is clear thatGW1G2Þ0
already at tree level.

The invariance of the action under BRST transformatio
implies the STI for the functionalG ~see for example@26#!:

S~G!5E d4xF ]mc0
dG

dBm
1(

w

dG

dgw

dG

dwG50, ~A3!

whereBm andc0 are the gauge boson for theU(1) Abelian
factor of the gauge group and the corresponding ghosw
stands for any other quantum field in the SM Lagrang
~gauge fields, scalars, ghosts, and fermions! and gw is the
BRST source associated tow and is coupled to thenonlinear
BRST variation ofw in the classical action. In the case of
fermion f I the spinorial source is denoted byh I . We also
introduce the Slavnov-Taylor operatorSG defined by

SG5E d4xH ]mc0
d

dBm
1(

w
F dG

dgw

d

dw
1

dG

dw

d

dgw
G J .

~A4!

By functional differentiation of Eq.~A3! with respect to
some SM fields one gets the Slavnov-Taylor identities~STI!.
Electric and ghost charge conservation, as well as Lore
invariance, should be taken into account, according to
examples given in the text.
2-13
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In order to obtain the Nielsen identities for the gau
parameter dependence of irreducible Green functions,
have to consider the case of extended BRST symmetry@1#,
which involves also the transformation of the gauge para
eters; Eq.~A3! then takes the form

S ~G!1(
i

x i]j i
G50, ~A5!

from which Eq.~1! follows after differentiating with respec
to x and settingx50. In the fermionic sector the expressio
are slightly complicated by the anticommutation relatio
and the Nielsen identity becomes

]jGf er5(
I

F GdQ

dc I

dW ]xG

dh̄ I
2

]xGdQ

dc I

dW G

dh̄ I
1~c I↔h I !G ,

~A6!
n

th
an

ce
it

he

c
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where ]x5]/]x and the arrows indicate the direction
which the functional derivative with respect to the fermion
field acts~this is important for anticommuting fields!.

We have seen that both the Nielsen identities and the
contain Green functions involving the BRST sourcesgw and
h f ~for fermions! associated to the various fields of the SM
If we want to compute these Green functions at a given or
in perturbation theory, we need to know how the sources
coupled to the fields. To this end, we give below the co
plete action involving the BRST sources, which can be u
ful as a reference and to obtain the Feynman rules neces
for actual calculations involvinggw andh f . Apart from the
well-known Feynman rules of the SM~see for instance the
second paper in@33#!, nothing else is needed to evaluate t
unconventional objects that appear in the identities. Us
the conventionZm5cWWm

3 1sWBm , whereWm
3 ,Bm are the

third component of the triplet ofSU(2)L and theUY(1)
gauge boson, respectively, we have
LBRST5g3
m$cW]mcZ2sW]mcA2 ig@Wm

1c22Wm
2c1#%1gW

7mH ]mc67 ieWm
6S cA2

cW

sW
cZD6 iec6FAm2

cW

sW
ZmG J

1gam$]mca2gsf
abcGm

b cc%2gc3$ igc1c2%1gc7H 7
ie

2
c6S cA2

cW

sW
cZD J 1gcaH gs

2
f abccbccJ

1gHH ig

2
@G1c22G2c1#1

g

2cW
G0cZJ 1g7H 6

ig

2
@H1v6 iG0#c67 ieG6S cA2

cW
2 2sW

2

2cWsW
cZD J

1g0H g

2
@G1c21G2c1#2

g

2cW
~H1v !cZJ 1 i ~ h̄n ,h̄ l

L!S g

&
l Lc11

g

2

cZ

cW
n

g

&
nc22eFQlc

A1S 1

2sW
1QlsWD cZ

cW
G l L D

1 i ~ h̄u
L ,h̄d

L!S gVud

&
dLc12eFQucA2S 1

2sW
2QusWD cZ

cW
GuL1gs

la

2
uLca

gVud*

&
uLc22eFQdcA1S 1

2sW
1QdsWD cZ

cW
GdL1gs

la

2
dLca

D 2 i h̄ l
RH eQl S cA1

sW

cW
cZD l RJ

1 i h̄u
RH 2eQuS cA1

sW

cW
cZDuR1gs

la

2
uRcaJ 1 i h̄d

RH 2eQdS cA1
sW

cW
cZDdR1gs

la

2
dRcaJ 1H.c., ~A7!
,

wherela are the Gell-Mann matrices,R and L indicate the
right- and left-handed components of the fermion fields, a
sW5sinuW, cW5cosuW. The Hermitian conjugate for the
fermionic part is added at the end. The ghost charge of
various sources, which is important in writing the STI, c
be inferred by Eq.~A7!, assigning a number11 to the ghosts
and requiringL to be ghost charge neutral. No BRST sour
needs to be introduced for the Abelian vector field and for
ghost.gm

3 is the source of the BRST transformation of t
third component of the gauge boson triplet.

The last ingredient for the calculation of the Green fun
d

e

s

-

tions involving the sourcex, characteristic of the Nielsen
identities, are the couplings ofx with the other fields. There
is a sourcex i associated to any gauge parameterj i .5 The
relevant Lagrangian takes the form

5Having set the two gauge parametersj i
(1,2) equal to each other

we can work with only one sourcex i . This differs slightly from the
procedure adopted in@15#, where two distinct sourcesx i

(1,2) were
kept.
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Lx52
xg

2jg
c̄a]mGa,m2

xA

2jA
c̄A]mAm

2
xZ

2jZ
c̄Z~]mZm1jZMZG0!

2
xW

2jW
@ c̄1~]mWm

22 i jWMWG2!

1 c̄2~]mWm
11 i jWMWG1!#. ~A8!

APPENDIX B: NIELSEN IDENTITIES
AND REGULARIZATION

In this appendix we clarify the meaning of Eq.~6! and
show how its structure is preserved if the STI are enforce
each perturbative order by means of appropriate noninvar
counterterms.

Let us consider a noninvariant regularization, such as
mensional regularization in the implementation of Ref.@17#,
and proceed to impose the renormalization conditions
cording to the procedure outlined in Sec. II. At a given ord
n in perturbation theory the STI are violated. We now a
sume that at ordern21 the STI have been restored by th
introduction of appropriate non-invariant counterterms. F
lowing the discussion of Sec. II, the Nielsen identity cor
sponding to the extended BRST symmetry can be written
ordern21, in the following form~here we consider explic
itly different gauge-fixing parameters!:

FS ~G!1(
i

x~]j i
G1Dx i

•G!G ~n21!

50, ~B1!

where

~Dx i
•G!~n21!5 (

m51

n21

Dx i

~m!
•G~n2m21!

5 (
m51

n S r i j
j,~m!]j j

1(
j

b j
j i ,~m! ]

]pj

1(
w

gw
j i ,~m!Nw

1d t
j i ,~m!E d4x

d

dH~x! DG~n2m21!.

~B2!

The matrices b j
j i ,(m) , gw

j i ,(m) , d t
j i ,(m) , and r i j

j,(m) are
straightforward extensions of the parameters introduced
Eq. ~6!. Following the general theorem of renormalizatio
theory known as quantum action principle~QAP! @43#, the
terms breaking the Nielsen identity at ordern are local poly-
nomial of the fields and we have
07600
at
nt

i-

c-
r
-

l-
-
at

in

FS ~G!1(
i

x i~]j i
G1Dx i

•G!G ~n!

5D0
~n!1(

i
x iDx i

~n!1O~x ix j !, ~B3!

where the new termsD0
(n)1S ix iDx i

(n) are local operators. We

do not consider here the termsO(x ix j ) as they will not enter
our forthcoming discussion. Now we can use the nilpoten
of the operatorSG0

1S ix i]j i
to establish the following con-

sistency conditions for the breaking terms of Eq.~B3!:

SG0
D0

~n!50, ]j i
D0

~n!2SG0
Dx i

~n!50. ~B4!

In the absence of anomalies the first equation can be i
grated obtaining the general solution@14,16#

D0
~n!52SG0

GCT
~n! , ~B5!

whereGCT
(n) are local noninvariant counterterms. These cou

terterms are needed to restore the symmetries~in our case the
STI! to the ordern and are computed by standard techniqu
of algebraic renormalization@19,18#. The removal of the
breaking termsD0

(n) by means of the countertermsGCT
(n) is

essential in order to recover the unitarity of the theory a
the physical interpretation of theS-matrix amplitudes. For
what concerns the other breaking terms, namelyDx i

(n) , they

do not play the essential roˆle of the previous ones, but con
tain the information on the gauge dependence ofGCT

(n) .
The new functional given byG(n)1GCT

(n) satisfies the STI
identity at ordern. On this basis we can study the gau
parameter dependence of the Green functions accordin
the Nielsen identities. Combining the second of Eqs.~B4!
with Eq. ~B5! we obtain

]j i
SG0

GCT
~n!1SG0

Dx i

~n!5SG0
@]j i

GCT
~n!1Dx i

~n!#50, ~B6!

where we have also used@]j i
,SG0

#50.6 Finally, the last
equation can be solved using the cohomological meth
outlined in Sec. II,

GCT
~n!1Dx i

~n!5X~n!1SG0
Y~n!. ~B7!

As discussed in the text, the terms inX(n) belong to the
cohomology and represent the gauge parameter depend
of the physicalparameters. On the other hand, the terms
SG0

Y(n) are cohomologically trivial and contribute only t
the unphysical parameters such as the renormalization o
fields, of the gauge fixing parameters, etc. Therefore the
sertion of the noninvariant counterterms at ordern does not

6In the framework of Ref.@14# the situation is more complicate a
the operatorSG0

does not commute explicitly with the derivativ
with respect to the gauge parameters.
2-15
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affect b j
j i ,(n) ,gw

j i ,(n) ,d t
j i ,(n) , at the same order and does n

spoil the simple physical interpretation we have given th
in the text.

In summary, we have explicitly seen how the structure
Eq. ~6! is preserved at all orders. When the renormalizat
conditions are chosen according to the scheme presente
Sec. II and all the steps are properly performed, the resu
the whole renormalization program are Green functio
which at each ordern are finite, satisfy the symmetry prop
erties of the model and provideS-matrix elements which are
bound to be gauge-parameter independent.

APPENDIX C: GAUGE DEPENDENCE OF THE
FERMIONIC SELF-ENERGIES

In this appendix we present the explicit gauge-param
dependence of the one-loop fermionic unrenormalized s
he

07600
t

f
n
in

of
s

er
lf-

energies in the SM. We consider the most general cas
mixing and define the fermionic self-energyS i j as1 i times
the standard Feynman amplitude for the transitionj→ i and
extract a factorg2. The expressions in the ’t Hooft–Feynma
gauge (j i51) can be found, for example, in Ref.@44#. At the
one-loop level, instead of Eq.~32!, we can use the decom
position

S i j ~p!5S i j
L ~p2!p”PL1S i j

R~p2!p”PR

1S i j
S~p2!~mi PL1mj PR!.

The individual components of the self-energies are th
given in an arbitrary gauge by~similar formulas are also in
@45#!
S i j
s 5S i j

s uj511~jg21!d i j sW
2 Qi

2bg i1~jW21!(
k

lk
i j

mk
2

2
cWk1~jZ21!

d i j

cW
2 F l i r ibZi1S l i r ijZMZ

21
mi

2

4 D cZiG , ~C1!

S i j
L 5S i j

L uj511~jg21!d i j

sW
2

2
Qi

2@p2~12xi !
2cg i2~12xi !ag2~11xi !bg i

#

1~jW21!(
k

lk
i j

4
@p2~123xk!cWk2bWk2jWMW

2 cWk2aW#

1~jZ21!
d i j

2cW
2 H p2cZiF l i

2~12xi !
22

xi

4
~11xi !G2S l i

2~12xi !1
xi

4 DaZ

2F l i
2~11xi !2

xi

4 G~bZi1jZMZ
2cZi!J , ~C2!

S i j
R5S i j

Ruj511~jg21!d i j

sW
2

2
Qi

2@p2~12xi !
2cg i2~12xi !ag2~11xi !bg i #2~jW21!(

k
lk

i j mimj

4p2

3@aW2bWk1~mk
21p22jWMW

2 !cWk#1~jZ21!
d i j

2cW
2 H p2cZiF r i

2~12xi !
22

xi

4
~11xi !G

2S r i
2~12xi !1

xi

4 DaZ2F r i
2~11xi !2

xi

4 G~bZi1jZMZ
2cZi!J , ~C3!
r-

be

ces
where we have used the following notation for t
n-dimensional integrals (i , j 5g,Z0,W, f ):

a i5 im42nE dnk

~2p!n

1

@k22mi
2#@k22j imi

2#
,

bi j 5 im42nE dnk

~2p!n

1

@k22mi
2#@~k1p!22mj

2#
,

ci j 5 im42nE dnk

~2p!n

1

@k22mi
2#@k22j imi

2#@~k1p!22mj
2#

.

~C4!
We have also usedxi5mi
2/p2, while l i5I i

32QisW
2 and r i

52QisW
2 are the left and right-handed couplings of the fe

mion flavor i and Qi and I i
3561/2 its electric charge and

isospin. In the case of quarks, the mixing matrix factorlk
i j

equalsVikVjk* , where V is the CKM matrix, if i,j ~k! are
up~down! quarks andlk

i j 5Vki* Vk j if the opposite is true. For
leptons with massless neutrinoslk

i j 5d i j dkn i
or d i j dkli

, i.e.
there is no mixing. The gluon exchange diagrams can
obtained from the photonic ones settingQi51 and multiply-
ing by the color factorCF . Notice thatag andcg i are infra-
red divergent and an infrared regulator~like a photon mass!
should be introduced. Of course, the infrared divergen
cancel out in Eqs.~C2!–~C3!. It is straightforward to verify
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@46# that in the diagonal case the mass counterte
dmi /mi5S i i

S(mi
2)11/2S i i

L (mi
2)11/2S i i

R(mi
2)1Ti , whereTi

is the tadpole contribution, is independent of the gauge
s.

. B

26
t.

B

07600
,

a-

rameters. From the off-diagonal parts of Eqs.~C1!–~C3! it is
easy to derive some of the results of Ref.@15# on the gauge
dependence of the CKM counterterm.
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