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In a generic gauge theory the gauge parameter dependence of individual Green functions is controlled by the
Nielsen identities, which originate from an enlarged BRST symmetry. We give a practical introduction to the
Nielsen identities of the standard mod&M) and to their renormalization and illustrate the power of this
elegant formalism in the case of the problem of the definition of mass. We prove to all orders in perturbation
theory the gauge independence of the complex pole of the propagator for all physical fields of the SM, in the
most general case with mixing ai@P violation. At the amplitude level, the formalism provides an intuitive
and general understanding of the gauge recombinations which makes it particularly useful at higher orders. We
also include in an Appendix the explicit expressions for the fermionic two-point functions in a gétjeric
gauge.

PACS numbgs): 11.15.Bt, 11.10.Gh, 12.15y, 14.70.Fm

I. INTRODUCTION observables, using the Nielsen identities it is possible to
make sure that other quantities are gauge-independent. This
Considering the subtle cancellations between various corapplies to mass and mixing parameters of unstable fields—
tributions necessary to make physical observables gaugerhich we consider in detail—as well as to off-shell objects
parameter independent, it is not surprising that the variatiofike effective charges. From a more practical point of view,
of individual Green functions with respect to the gauge-we believe the Nielsen identities are also a useful tool for
fixing parameters are governed by symmetry relations. Formultiloop calculations both in the electroweak SM and in
mally, these relations can be shown to follow from an en-QCD. The identities for the two, three, and four point func-
larged Becchi-Rouet-Stora-TyutifBRST) symmetry in tions that we obtain in the present paper can also be useful in
which the gauge parameters also undergo a BRST transfothis context. Throughout the paper, we will proceed in a
mation[1,2]. They are nonlinear identities of the same kind pedagogical way and complement the formal treatment with
of the Slavnov-Taylor identitie$STI), satisfied by Green explicit one-loop examples.
functions at arbitrary external momenta, and are usually As a demonstrative ground for the technique of the
called Nielsen identities, after the seminal pa&rin which ~ Nielsen identities we have chosen the problem of the defini-
they were first presented. tion of mass in the SM. This is an important and nontrivial
The power of this technique lies in the possibility of fac- issue which recently has received renewed atterjerl 1],
torizing the gauge parameter dependence in terms of newrompted in part by the high precision measurements of the
objects, the Green functions of BRST sources associated’ mass at the CERN'e™ collider LEP and SLAC Linear
with the gauge parameters. In principle, this factorizationCollider (SLC). It has been shown long add?] that un-
holds at any order in perturbation theory, but its interplaystable particles are compatible with unitarity and causality.
with the renormalization procedure is not trivial. In the caseHowever, what makes the perturbative definition of the pa-
of gauge-independent quantities, the gauge cancellatiorrameters associated to unstable fields a delicate and intrigu-
emerge from the recombination between these new objecisg problem is the interplay between the phenomenon of
and can be verified without an explicit evaluation of multi- resonancéwhich goes beyond perturbation theory as it im-
loop diagrams. As we will see in the following, the mecha-plies the Dyson summation of an infinite number of dia-
nism of gauge recombination is revealed in great simplicitygrams and the perturbative implementation of gauge sym-
in the case of physical amplitudes. metry. In particular, the correct identification of the mass
The Nielsen identities provide the appropriate frameworkparameters of an unstable particle is not obvious: their gauge
to study any problem related to gauge dependence. They aiedependence must be proved in full generality and their
well known to field theory experts and have been used in theonnection to experimental quantities clarified.
study of the effective potenti@B,4] and in high temperature A concept which is generally believed to be gauge-
field theory[5]. Recently, they have also been studied in theindependent is the complex pole of the resummed propaga-
context of the Abelian Higgs mod¢6] and of Yang-Mills  tor. To the best of our knowledge, there exists no general and
theorieq 7] with background fields. Our main purpose in this rigorous proof that this is true. In this paper we use the
paper is to introduce the Nielsen identities of the full stan-Nielsen identities to provide the proof to all orders in pertur-
dard modelSM) and to study their renormalization. From a bation theory and for all physical fields of the SM. The only
conceptual point of view, if all the physical parameters areassumption clearly needed to obtain this result is that the
fixed by normalization conditiongirectly based on physical renormalization conditions for thphysical parameters do

0556-2821/2000/62)/07600217)/$15.00 62 076002-1 ©2000 The American Physical Society



P. GAMBINO AND P. A. GRASSI PHYSICAL REVIEW D62 076002

not introduce spurious gauge dependence. This is the casenormalization of the composite operators generated by the
whenever they are based on a well-defined set of physicalariations of the action with respect to the gauge parameters.
observables. We also discuss how a mass parameter for thiere and henceforth, we used the reduced functional, also
unstable fields can be consistently defined on this basis. defined in Appendix A, in place of the standard functional of

We have organized the paper in the following way. In theproper functions. In the case of linear gauges, this allows us
next section we introduce the Nielsen identity for the 1PIto write STI and Nielsen identities in a more compact way
generating functional at the classical level. After a discussionvithout modifying the Green functions of the physical fields.
of the renormalization conditions, we study the modificationsThe one particle irreduciblélPl) Green functions of the
introduced by quantum corrections in the most general sceheory are obtained differentiatirg with respect to some of
nario. In Sec. lll, as an elementary illustration, we discusghe SM fields. Differentiation of Eq.l) therefore gives the
the Nielsen identities for the one-point Green functions. Ingauge-dependence of a Green function in terms of products
Sec. IV we consider the case of tiiéboson and prove the of other Green functions, which also contain the soyfce
gauge-parameter independence of the complex pole of its We denote b;l‘fp")w _(p1,p2,...) the 1PIGreen function
propagator. Several comments and examples here shoulg e

: . ; . , ¢1,¢5,... at then-loop level. ¢; can be any physical or
help clarify the most important points. As a digression, Weunphysical field of the SM in a general covarid gauge,
also consider the infrared finiteness of Wgpole mass. The

_ o as well as any of the sources, , y; associated to the BRST
analysis is then extended to the case of mixing. In Sec. V we y 9o Xj

consider they, Z° sector and derive an interesting relation for Va"iation of ¢; and of the gauge parametgy. I'y ,, . can

the photon correlator a?=0 in the SM. We then study in be expressed as functional derivatives of the generating func-
Sec. VI the scalar sector and in Sec. VII the fermionic sectortional, the effective actiod”, with respect to the fields and
The following section is devoted to a discussion of theSOUICe€Spy,...,¢m,

mechanism of gauge-cancellations in the case of four-
fermion processes. Section 1X concludes the main text sum-
marizing the most important points. We have collected some

useful material in three appendices: in the first one we dis-

cuss some aspects of the derivation of the Nielsen identitiep,o exchange of two fermionic indices leads to a change in
and present the sector of the Lagrangian containing thgjgn we also adopt the shorthand notatiprfor the partial
BRST sources. In Appendix B we glve_atechmcal pro_of thatderivative with respect to a generic gauge parameter

is crucn_il for the results of Sec. II_. F_mally, we pr_owd_e in \whose associated source is generically cafieSome details
Appendlx C the full oqe—loop fermionic self-energies in an concerning the action of the Slavnov-Taylor operagpron
arbitrary R, gauge. This completes the work of R¢13],  p the precise gauge-fixing term, and the complete source
where the one-loop gauge dependence of the basic elefygrangian are given in Appendix A. Notice thatand its

" |
8¢1(P1)- - 0¢m(Pm)| =0

F(pl...<pm(plv"'!pm): (2)

troweak corrections has been considered. Green functions are renormalized objects, unless explicitly
stated.
Il. THE NIELSEN IDENTITIES IN THE SM Before we consider the quantum counterpart of @gj. it

is necessary to discuss the parametrization of the theory in
'some detail. We distinguish between three different catego-
les of renormalization conditions.

(i) The ones that fix th@hysicalparameterg;, namely

e parameters of the classical gauge-invariant Lagrangian.

The idea behind the Nielsen identities is simple: the varia
tion of the classical action with respect to a gauge paramet
coincides with the BRST variation of a local polynomial in

gauge parameters corresponds to the insertion of the BRSUIonS’ decay rates, resonance parameters etc.

variation of a local term between physical states, which is 0,=f,(p;) &)
known to vanish. The Nielsen identities implement this boonE
simple idea at the quantum level.

Our starting point is the Nielsen identity for the generat-
ing functionall” at the classical levdl2,3]:

A set of renormalization conditions commonly used in pre-
cision calculations is given by the fine structure constant
the Fermi constanGg (measured in the muon degayx,
(measured e.g. from the ratR of hadronic to leptonic de-
, (1) cays of thez'), the mixing parameters of the quark sector
(measured e.g. in hadronic decpgyand the masses of the
Z°, the Higgs bosom, and all the fermions. In order to keep
where y=s¢ is the BRST source associated to a generighe renormalization program simple, it is indeed standard
gauge parametef, s is the classical BRST generator, and procedure to adopt mass parameters also for unstable fields.
Sr, the linearized Slavnov-Taylor operator whose definitionThis has the advantage of establishing a direct connection
is recalled in Appendix A. Notice that the operator coupledbetween an experimental quantity and the two-point Green
to y is nonlinear in the quantum fields, therefore it requires afunctions,FM,(qz). On the other hand, the identification of
proper renormalization. The extended BRST automaticalljthe masses of unstable particles from the resonance param-
takes into account the renormalization of the theory and theters is not straightforward beyond the lowest orders of per-

(9 p—
ﬁ—gro—Sro

al’
(9)(0
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turbation theory. For example, the masses of unstable papossible deformations of E@l) induced by quantum effects
ticles are often defined in terms of the zero of the real part ofn complete generalifyand write
the two-point function, i.e. by imposing

d
Rel44(M%)=0. (4) 9 I'=Sp ar +A, (5)

This definition is not gauge independent beyond one-loo - : : :
[8,10] unless¢ is a stable field, but it has been used some[\)Nhere the symmetry breaking teris a dimension four

times also in all-orders analysgg4]. A similar problem of operator with zero ghost number such Bt =0,

auge-dependence may arise if one tries to define the mixin The investigation of the structure df in Eq. (5) can be
gaug per y X ) erformed according to standard cohomological techniques
parameters in the quark sector in terms of two-point func

T . 2_ . _ .
tions only, instead of relying on physical amplitudés]. It [18’1.4’16.' Reggllmg thatSp =0 'f. S(F)—O,che first step
follows that, if physical amplitudes are ndirectly employed consists in WIitingA =X+ S5 with ).#SFE' As can be
like in Eq. (3), the consistency of the renormalization condi- intuitively unders_toc_)d, the part (ﬁ. which can be expressgd
tions has to be proved by means of the Nielsen identities, tﬁs the B.RST Va”é.lt.'on of something else does not contribute
all orders in perturbation theory, and the connection betwee p physical quantities. O_n the other hari,does not de-
theoretical constructs and experimental quantities has to b%OUple from the calculation of observables and is u_sually
elucidated. In our discussion we will fix all the physical pa- called the cohomol(_)gy of_the operats . In the_ SM,X'is
rameters using unambiguously defined physical observabléﬁ?mposed of the dimension four gauge-invariant operators
(cross sections, decays rates, letall sets of physical ob- with zero ghost numbe.r,.each of them representing a coho-
servables are equivalent and are chosen according to the em_ology class. The coefficients of the cohomology classes of

perimental precision of the inputs and to the convenience for'® are the physical parameters OT the theory. Therefore, a
the problem at hand. It is irrelevant for our analysis Whichcontnbunon toX can be absorbed into a renormalization of

set is actually employed. Having defined the physical paramS°Me ©f the physical parameteps and we can writeX

eters in terms of observables, we will show that the position iﬁf(&/api)l_“. For what concerns;-Y, it admits different
of the complex pole of the propagator of all physical fields ofkinds of contributions and is extensively stu_dled in the lit-
the SM is a gauge independent quantity and can be used g§ature[18,21,22. The most general expression for E8)
define the mass parameters, provided the connection betweB#fns out to be
the field-theory concept and the experimental quantities is
clarified. This is the case, for instance, for th& mass pa-
rameter defined from the complex pole, whose relation with
the resonance shape measured at LEP is well-understood—
see the first of Refd.8]. This procedure applies also in the .. or
case of mixing between different fields. + 5tf d*x SH(X) " ©®
(ii) The conditions needed to prevent infrargd) diver-
gences. Due to the presence of massless degrees of freedgm, . . . .
it is necessary to impose some auxiliary conditions that guacr1—n Appendix B we show how this structure is actually imple-

antee the correct IR behavior of the theory. In particular, it ismented and preserved at all orders. In &). p; are the

necessary to impode,,(0)=0 and similar conditions in the re_nprmallzed parameters of the SM? describes the|r ex-
ghost sectof16,14. plicit gauge dependender eq_uwalently that of t_helr corre-

(iii ) Other unphysical renormalization conditions, such asspon_dlng _counterterrmsandgo is any of _the _physmql or un-
wave function renormalizations, tadpole and gauge paranf2hysical fields of the SM. When Eg6) is differentiated to
eter renormalization. Apart from the case of the tadpole, dis?Ptain identities between Green f“r;Ct'O”S’ the operafpr
cussed in Sec. Ill, we do not restrict ourselves to a specifi€Unts the external fields, whilef, ¥, and &, parametrize
choice, but simply require that they dt spoil the STI and the deformation of the Nielsen identiti)l); they correspond

do not affect the nilpotency of the Slavnov-Taylor operator.t0 & renormalization of unphysical parameters. In particular,
An alternative approach is followed [14]. the third term in Eq.(6) renormalizes the external fields

We recall that no invariant regularization is known for the (Wave function renormalizationthe fourth renormalizes the
SM. The implementation of dimensional regularization oftadpoles, an@* rescales the gauge parameters. As in the SM
Ref.[17], for instance, is consistent but breaks the STI. TheyVith restricted 't Hooft gauge-fixing there are four gauge-
have to be restored order by order through the introductiofiXing parameters; (i=2,W,y,g) and as many sourcgs,
of noninvariant counterterms—see €.48,19. This is a pre-
condition to any discussion of the renormalization and it is
necessary to recover the unitarity of the theory and the physi-1jn the case of Yang-Mills theories, a discussion of the renormal-

cal interpretation of th&matrix amplitudes. ization of the Nielsen identity can be found in REZ]; it agrees
Unlike the STI, Eq.(1) does not have to be preserved in with the one given below.

the renormalization process, as the extended BRST symme?We recall that in the SM, in addition to the STI, some auxiliary
try is just a technical tool for the derivation of the Nielsen constraints are needed to identify the gauge invariant operators. For
identities. Therefore, in the following we will consider the a detailed discussion we refer [t20,14,18.

J J
65F=(1+p§)SF(aF +2i B‘gﬂ_pi”% YN, T
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p¢ is in fact a matrix. In the case of mixing between fieldsof the connected generating functiondl The Legendre

characterized by the same quantum numb;zis;md/\/qp are  transform is well-defined only if the linear terms in the fields

also matrices. (tadpoleg are removed at all orders in perturbation theory
Equation (6) shows the most general structure of the[26,27]. This is equivalent to setting the renormalization con-

renormalized Nielsen identity. In many practical cases, howdition

ever, the situation is simpler. First, our assumption on the -

renormalization of the physical parameters in terms of physi- ry’=0, (7

cal quantities implies automaﬂca”@i‘f:_o. This follows d". and also corresponds to minimizing the effective potential at

rectly from Egs.(3), asO; are gauge-independent physical each ordef28].*

objects. If the physmal renormalization conditions were mis-\na now consider how the condition of EQ) affects the

takenly chosen in a gauge-dependent way, nonvanisBing - Njelsen identity. First, we differentiate both sides of E8j.

would arise because spurious gauge dependence would Qg respect toH. Taking into account EA3) and setting

introduced in Eq(1). _ , . ~_ all deformation parameters to zero, but before employing Eq.
In pure QCD, where naive dimensional regularization I(7), we obtain

consistent and respects the STI, it is customary to adopt a
modified minimal subtraction\S) as an intermediate renor- =9 n(0)=TI,, n(0OT'y(0)+T,, (0)Tyu(0). (8

malization conditior?. SuchMS subtraction leads in this case

not only to 8¢=0, because the renormalized parameters aré\l the external momenta are zero and we will drop them in
guaranteed to be gauge-independedi, but also toA =0. the remainder of thls_s_ectlon. Asis the source assqmated to

One can also wonder whether the NI can be realized at aft 92U9€ parameter, it is a Grassman variable which does not
orders by an appropriate set of unphysical renormalizatio epen.d.on the space-time and does not carry any momentum.
conditions. Although a complete analysis of this problem is“} deriving Eq.(8), we have used the fact that tys anq the
beyond the scope of the present paper, the possibility of pref’S Nave ghost number equal t61 and —1, respectively,
serving the form of the NI without modifyingd hoc the and that nonvanishing Green functions mu_st conserve the
structure of the ST operatéas in[2]) seems unlikely6]. on ~ ghost charge. We have also us(éﬂ’ocor?s.erva'tlon' to avoid,
the other hand, the point of view we have followed here hadOr instance, the appearance I8tG™ mixing in higher or-
been to allow for arbitrary deformations of the NI. ders. This assumption will be relaxed later.

The decomposition of in Eq. (5) into X and S;Y be- The renormalization owaH, which is logarithmically
comes important in the calculation of physical observablesdivergent, has to be fixed explicitly. It follows from Ed8)
Since any operator that can be expressed as the BRST variand (7) that for the Nielsen identity not to be deformed we
tion of something else decouples from physical quantitiesinust impose
SrY is completely irrelevant to their calculation. Hence, no o —
contribution to the third, fourth ang, terms in the right- ”H—O ©
hand side(RHS) of Eqg. (6) has an effect on physical quan- .
tities. In Sec. VIII we will consider, in particular, the gauge at any Qrdem of perturbation theory. If we ".i”OW the renor-
cancellations leading to gauge-independent physical ampifalization ofI',  to deform Eq.(6) according to Eq(6),
tudes. Equatior(6) tells us that neither the renormalization however, we have
of the fields, nor the one of the unphysical parameters, can _
spoil the gauge independence of the amplitudes. Ofly (1+p§)FXVH+5tFHH(O)_O' (10

=3 g¢ . _ . . .

=2i5i(a/op)I' can make them gauge dependé_j_’ﬁ]. N in the following we will consistently impose E¢9).

other words, only the renormalization of the physical param- | e presence o€ P violation, another tadpole ampli-
eters of the theory affects the gauge dependence of the phy?h’de emerges in the SM, connected to the vacuum expecta-

cal observables. tion value of theC P-odd neutral would-be Goldstone boson,
Gg. As theCP violation in the SM is confined to the fermi-
IIl. TADPOLES onic sector, this will happen only at higher orders. In ex-
o ] . ~ tended models, any neutral scalar field with zero ghost
As a preliminary step in our analysis, we consider in thischarge could develop a vacuum expectation value through

section the gauge-parameter dependence of the tadpolggdiative corrections. In all cases the linear terms in the fields
This is a very simple case and provides a first introduction to
the use of the Nielsen identities. Because of the close con———
nection between the mass and the tadpole renormalizations, . L _ _
the results of this section will be necessary in all subsequent "cidentally, itis interesting to see that the tadpole counterterm is
applications. generated 4by the BRSI variation of a local cou_nterteﬂh?.
The 1PI generatoF is defined as the Legendre transform = 0TS, (Jdxyy) = STJd'X[ oo /oH(x)] where I’y is the tree
level action andST the coefficient of this counterterm. It then fol-

lows that a renormalization of the tadpole amplitude induces a shift
proportional toST in the mass parameters of all the SM fields. The

3This is also common in some one and two-loop electroweak calprevious equation uncovers also the unphysical nature of the renor-
culations[23]. malization of the tadpole.
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must be removed. However, given K@), the STI imply the et
vanishing of tadpoles of the unphysical fields. Upon differ- L
entiation with respect to the neutral ghost fiefd Eq. (A3)
yields Xw = =]
550(T) g
5(:2(0) B :FCZyOFGO+ FCZ‘}/HFH:O' (11) \\‘~>—’/’
¢=0 G+

To derive the previous equation, we have used E3) and
(A7) and the fact that one-point functions are not vanishing
only for neutral scalars with zero ghost number. As can b

seen from Eq(A7), rgf;)yo differs from zero already at the

tree level, in which case it is proportional tq the Higgs D O« ol T T« (e LR
VEV. From Eqg.(11) it then follows that the vanishing of the Faw(@) =1 ¢ q° Tww(d) + q° CRE
CP-even tadpold“ﬂ‘) implies the vanishing of th€ P-odd (14

(n) ;

tgdpo.IeFGo at ar?;or;jer. Moreover, in the presenceci Our first aim is to obtain a Nielsen identity for the transverse
violation a termé;""[ d"x &'/ 6Go(x) should be added to EQ. part of the two-point function. The longitudinal part will be
(6). Using the STI for the two-point functions and the analo-¢onsidered in Sec. VI. As a first step, we differentiate both
gous of Eq(8), and requirings_"=0 one then finds that Eq. sjdes of Eq.(1) with respect tow,, andW, , take into ac-
(9) is also valid, together witlf(;;’O:O- count Eq.(A3), and set to zero the Green functions which do

In the case of a model with two Higgs doubl¢®9], Eq.  not conserve the ghost charge. We obtain
(11) takes the form

FIG. 1. One-loop diagram contributing lwa.

Qrersew propagator into its transverse and longitudinal parts

T _ T T
FczyoFGo+ FcZ“yHFH + Fcz“yhrh+ r‘cZyAFA: 0. (12 &gFWW(q) a % [FXY¢W\A’(q)F‘P+ F”wF‘PWV"(Q)
whereH, h andA are the physical neutral Higgs fields. It is HT ey w (D pw, ()
sufficient to require only the vanishing of the tadpoles of the
physical fieldsH,h,A. It then follows that the tadpole of the +w,y, (Dl w ()], (15

unphysical Goldstone boson is zdidentifying aflat direc-

tion in the Higgs potential30]) at any order in perturbation Wheret*’=g*”—q*q’/q’ is the transverse projector and the
theory. superscriptl indicates the transverse part of a Green func-

Before closing this section, it is instructive to check ex-tion. From the discussion of the previous section we know

plicitly Eq. (8) at the one-loop order. At this order none of that there is no nonvanishing one-point function and that
the pathologies ofnaive dimensional regularization is ap- Ty, for ¢=H,Go, which describe the gauge-dependence of
parent and we have an elementary example of a calculatiothe tadpoles, must also vanish—see E)—if we impose
with the y sources. To this end we expand E§) at O(g) 6= 5tCP=O. The second line of Eq15), on the other hand,
and ponsider dlimensionally reg_ularized Grggn functions beis not zero only forp=W, , so that we obtain, at any order
fore implementing the renormallzatlpn cqndltlons. As a con-in perturbation theoryg=g?),

sequence of the Feynman rules given in Appendix A, the

three level Green functior{’) , andI'¢) vanish. We also Il S)= =2 w(S)TyulS), (16)
have I''Y)=0 by construction, whilel'\%(0)=—M32. We ;
therefore find with FXYW+W,=I‘IYW7W+ . We now include the possible de-
agF(Hl)z M2T 13 formations present in E@6): using3‘=0, Eq.(16) becomes
X'’

_ o o I w(8) =20~ (L+pE )T }r () + ¥l Tw(S).
where the last term is logarithmically divergent. It is straight- (17)

forward to computd™{") ‘using the Lagrangian given in Ap-
pendix A. Only diagrams of the kind displayed in Fig. 1 For what concerns the mass parameter definition, the signifi-

contribute and we recover the gauge dependenc#(pf  cance of Eq(17) is that a gauge invariant and self-consistent
given in Eqs.(11),(12) of [13]. normalization condition o',,(s) canonly be given at the

location of the pole of the propagator. Defining the latter by

IV. W BOSON w(Sw) =0, (18

As a first application of the technique to the case of the -
definition of mass, we consider the case of the chaiged We see that Eq. (17) leads to delyww(S)ls-3,
boson, which is particularly simple because it does not in= ag[F&,W(EW)], which in turn implies thathe location §,
volve any mixing between different fields. We split the in- of the complex pole of the propagator is gauge-independent
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T 2 <.

Gt , -7 E w e L w
’ " . h
! H . AV FIG. 2. One-loop diagrams
WWVW‘ WQANW\%H%W \,\,4-1‘5: e W S contributing toL, , w-

Zo,'\/ 2017 €z,Cy

at any order in perturbation theoryThis is a remarkably ization procedure. For instance, there is considerable
nontrivial result of perturbation theory, as it concerns thefreedom in the choice of both the wave function renormal-
parameters that describe the nonperturbative phenomenon igation of theW field and the renormalization dT;yWW(s).

resonance. It relies exclusively oﬁ§=0, which follows |, case they do not respect the Nielsen identjﬁg,compen—
from our use of observables to fix all the physical param-gates for its breaking. Let us consider, for example, the fol-
eters. The_masszparametaw and the width parametdfy  |owing two procedures at one-loop. A first possibility is to
defined bysy,=my,—imylI'y, are gauge independent quanti- 5445t 4 minimal subtractioMS schemegfor both the wave

ties and, as a consequence of the discussion at figint " : A T,(1)
' : unction renormalization of th&/ andI’ s). It should
Sec. Il,my, can be adopted as renormalizétimass. Clearly, ”WW( )

the precise connection between this parameter and relatdt§ clear thatin this casgy(V=0. A second possibility con-

experimental quantities must be clarified in order to adop#iSts in using the on-shell scheme for Whdield rescaling. If

Eq. (18) as a renormalization condition that directly fixes the We now insist in using a minimal subtraction fBf, (s),

W mass parameter. Eg. (16) is not satisfied by the finite parts of the counter-
Beyond one-loop order the definition of the mass paramterms, leading to a factor y§4"=T7"(MZ)|ws

eter of an unstable particle in terms of its two-point function T (D)2 "

is not trivially gauge-independent as in E¢8) [8,10]. Con- 128 yiy .(MW)|'V'S’ whe_re the SUbSC”F’MS .means_that

sider for instance the case in which the mass oMhieoson NIy the finite part of this Green function is considered.

is defined by a renormalization condition of the kind in Eq. Similar considerations apply o, which appears first at the
(4), namely two-loop level and is related to the renormalization of the

gauge-fixing parameters.
Reﬂvvx/('\/'\%v):(); (19 Like in the case of the tadpole, let us see explicitly what
happens at the one loop level for regularized Green func-
the W mass counterterm is then IE@,W(M\ZN). This is the tions. Using Eqg.(13) and noting that the Green functions
conventional approach to one-loop mass renormalizatiomvolving y vanish at the tree level, E4L5) reduces to
[31—33. Taking the real part of Eq17) ats=M3,, expand-
ing it at two-loop, a_;md droppingf and yi as .they would not 3§[F\TA}§/\1/)(S)+TW]:ZF;&(&,{N(S)(S_ Miv), (20)
affect our conclusions being real, we obtain

deRel\ya)=—2 ReF;(vlm),W Rel'\\&)+2 ImIJ\H) Im F;(vlm)/W' whereT{) is the contribution of the one-loop tadpole. The
zero of theW inverse propagator is gauge-independens at

where all terms are evaluatedgt=M2,. Using the normal- =M. Notice that F;'y(\i,%/v(s) describes the gauge-
ization condition Eq.(19), we see that the last term is left dependence of the residue of the physical pole, i.e. of the
over, so that Eq(17) is not satisfied. As a consequence, theon-shell wave function renormalization factor.

mass parameter defined by H@9) is gauge-parameter de-  An explicit calculation of the diagrams in Fig. 2 which

pendent beyond one-lodfi0]. As the imaginary part in the  contribute toI'};\}) , leads to the samé,, dependence of
last term of the previous equation originates from gauge-, (1) ww

dependent thresholds, there exists a class of gauges wherg/'Ww reported in [13, the same happens for the

T(1) 2 ; ; : z.,-dependence.
Im FXVWW(MW) vanishegcf. Fig. 2) and for which the gauge We have seen that if the renormalization condition is not

parameter dependence bfy, is only apparent at the three properly chosen, the mass parameter is gauge-dependent. A
loop level[10]. The actual difference between the two masspossible source of confusion, however, is the interplay of

definitions, AM?=Reyw(Sw) ~Tww(M{)], can be mass and tadpole renormalization. To make this point clear,
evaluated expandinB\y,y in powers of[sy,—Mg|~TwMy, it is sufficient to keep the discussion at the one-loop level.
=0(g®) up to O(g*). The result is AM?  From Eq.(20) we know that thelV mass counterterraM2,
~MulwImT{E(M2), which is clearly gauge parameter =Rel\\W(M3)+T{ is gauge-independent. The tadpole

dependent. The renormalization conditid®) is an example renormalization according to Sec. Ill, however, eliminates
of definition of a physical parameter in a gauge—dependenTW from the previous expression and maI@\ﬂ\zN gauge-
way: beyond one-loop it inducegy, #0. dependent. Nevertheless, we still hagg =0. This is a

A comment on the factoryé\, is now in order. As ex- consequence of the unphysical character of the tadpole renor-
plained in the introduction, this term originates from the po-malization. What is essential here is that the renormalization
tential deformation of the Nielsen identity by the renormal-condition which fixes the physical parametds, be gauge-
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FIG. 3. Schwinger-Dyson
equation for the W two-point
function. The blobs on the internal
lines represent connected propa-
gators(chains of bubblgs while
the blob on the vertex represents a
one-particle irreducible Green

2t w- 2 tw- function.

independent, as is the case for Et8) and not for Eq(19). mass is renormalized on the pole. In Réfl] it was shown
This and only this guaranteﬁ\f 0. that this property persists at all orders in QCD, namely that
Two simple practical applications follow from E¢L7), the pertqrpative pole mass of the quark ip QCD is infrared
and we report them as illustrations of the technique. First, weatfe (or finite). In the following we would like to approach
can consider the dependence of Meself-energy on the the case of thaV boson from a slightly different point of

QCD gauge-paramete . It is easy to show that the defor- view, along the Iin_es of11], generalizing some of the results
mation parameters cannot affect it in this case, and that it i€f Ref-[10]. We will show that the complex pole mass of the

controlled byF;g,/WW only. However, the ghost charge asso- Wis IR safe at any order in perturbation theory, namely that

. ) the renormalization condition of E¢18) does not lead to IR
ciated to the QCD gauge group and the one associated to t ol

b 4ind dentlv of h oth IE'J"?vergences in the resonance region of Yéoson, nor to
SU(2) group must be conserved independently of each othel i qjgies in the perturbative expansion. In that respect, the

Thereforer;g,/ww=0 atany order, which implies that W yresence of the width does not alter the discussion in a rel-
two-point function does not depend on the gluon gauge paevant way.

rameter, as verified in actual calculations at two and three A convenient tool to analyze the IR properties of the
loops [34]. The second application concerns the contribu-self-energy from a perturbative point of view are the renor-
tions to theW self-energy which are leading in an expansionmalized Schwinger-Dyson equatiosee e.g[26]). These

in the heavy top quark mass. At the one-loop level, they arequations provide a simple iterative way to define the higher
trivially gauge-independent, like all the fermionic contribu- order graphs in terms of sub-diagrams. In the case ofAthe
tions. At higher orders, one can use the fact Iﬁ}\}ww(s) is  boson there are only two topologies containing the photon

On|y |Ogarithmica”y divergent to show that the gauge depenWh|Ch should be ConSIdeI’ed, as they contain thresholds at
dence of the heavy top expansionlaf,, starts at the next- =Mg and can lead at higher orders to IR problems. Their
to-leading order. Again, this is not surprising, because théchwinger-Dyson equations are graphically depicted in Fig.
leading contributions iV, can be obtained in the frame- 3.
work of a Yukawa Lagrangian where the heavy fermions Diagrams with gauge-dependent threshdlike those
only couple to the Higgs boson and to the longitudinal com-with a charged Goldstone boson in place of Weand with
ponents of the gauge bosons. This Lagrangian, which corrdhresholds far away from the resonance regiltke those
sponds to theyaugeless limibf the SM[35], does not re- With a Z° boson instead of the photpan be discarded
quire gauge-fixing. because their expansion arouséM3, does not contain
nonanalytic terms.
We will treat explicitly only the case of the topology on
the left side of Fig. 3, as the other diagram can be discussed
The complex pole definition of mass based on Ef)  along the same lines. In this case the Schwinger-Dyson equa-
avoids also IR problems at higher orders in perturbatiortion has the form
theory. It has been shown in RdfLO] that the use of the

Infrared finiteness of the W mass

normalization condition of Eq19) leads to severe IR diver- (y) _ n11~(0) c

gences in a class of higher order graphs containing the pho- FW;W;(p) d kFW;ApW;(k’p+k)ZAaAB(k)

ton when the external momentum approaches the mass-shell c

of the W. As a consequence, in the resonance regjen, XZW;W;('(JF PITwiaw, (kp), (2D

—M\2,V|5MWFW, the perturbative series fails to converge,

while it was found that the pole mass definition avoids all

these pathologies. The origin of the problem is similar to th%/vherel“wlw_(p) is the contribution to the self-energy due

one of the gauge dependence of the mass parameter defined 'y

by Eq.(19) and is related to the need to take into account thd0 the exchange of a single photdny:a w_ (k,p+k) is the

imaginary part oﬂ“&,win the renormalization procedure. IPI vertex, the superscrip0) indicates that the vertex is
More generally, the problem is common to all particlesconsidered at the three level, and finalj Aﬁ(k) and

coupled to massless quanta, independently of whether th g

are F;table or not, and goncerns thepperturbaﬁive description %VIW;(kJF p) are the connected propagator for the photon

the resonance region. For instance, in pure QCD it is welland for theW boson, respectively. To study the IR behavior

known [36] that at two-loop order the two-point function of of Eq. (21) near the mass-shell, we now consider the trans-

a massive quark is IR divergent qi=mg unless the quark verse part of the self-energﬂ\%w_(p) and approach the
MmooV
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. . 2 —_— .
limit p>—~S,. We expand the propagator into the Dyson &gl—‘?}(S):_(F;yai(s)_7i§3)[CWF;j(S)_SWF1j(S)]
series of self-energies and tree propagators. Concerning the

photon line, we recall that a convenient choice of the nor- _[CWFiTZ(S)_SWFiTA(S)](FIy i(s)— ygj),
malization conditions for the neutral gauge boson sector, i.e., ’
I'},(0)=0, makesI'} ,(0) vanish at all orderécf. next sec- (23

tion). Therefore, the photon propagatdf , (k) is always . . o )
proportional to 14 in the limit k—0 and has IR dimension “N€'€ 7ia= 73 is the deformation induced by the possible
Y mismatch between the wave function renormalization matrix

. . T .

For what concems th& propagator, the IR divergent Zij and the renormalization df,., . We recall that’y (s) is
contributions are related only to the transverse component ¢ Symmetric matrix. We now consider the quantity
Z\°N+W,(k+ p) because the propagator of the longitudinal . .
components of th&V boson has a gauge dependent pole. In T o—d Faa(s)  Taz(s)
the on-shell limit for the momentumpand fork— 0, the tree Dpz(s)=det 7 T '

. : I'za(s)  T'z4(s)

level W propagators present in the Dyson series for

Zyy+w-(k+p) are linearly divergent. Therefore, expanding hich appears in the denominator of the propagators of the
Z\C,(,wa(kJr p) aroundk=0, p?='s,, we have photonZ°® system(see, for example,33]). If we are inter-
ested in the analytic structure of neutral current amplitudes in
K0 1 \n+1 the typical cqnfiguration of a high-energy coIIid_er, where
z\j\;[wf(kjL p)|92:?w ~ 2 (ﬂ) [F&/v\/@w)]n- external ferr_mon masses can b(_e neglec@ﬁz(s) is what
n P we need to investigate. It is straightforward to derive

(24)

(22)

_ _ 9¢Daz(S)= = 2[ eIy, 2(S) — Cw¥sz— Swl |, A(S)
Here we consider only the most dangerous terms, which van- 3 3
ish if and only if T'\,(Sw)=0. Under this condition, —SwY5alDA(S). (25
Z\C,\',Z\,v_(kﬁL p)|P2=§N is at most linearly divergent in the IR

limit. If, on the other hand, Eq18) is not satisfied, severe IR This tells us that the zeros ODXZ identify gauge-
divergences appear in each order. The situation is not mudhdependent quantities. On the other hand, we know from the
improved if we move off the pole position in the resonanceSTI thatDk,(0)=0 (see, for exampld,32]; Ref.[16] con-
region. Indeed, in this case the width acts as an IR regu- siders also the case 6fP violation) which in turn implies by
lator in the denominator of Eq22), but leads to a series analyticity D5,(0)= 0. This result ensures the existence of a
where the denominator B¢S,)~0O(1/g%) spoils the con-  massless state, the photdh),, has, however, another zero,
vergence of the perturbative expansion in the resonance r@orresponding to th#® complex pole, at2=—s, . As in the

gion [10]. case of thew boson, this result implies that the position of

The last information we need concerns the behavior of thgy o complex pole is a gauge independent quantity and that
T

vertexIy. 5 w-(k,p) (Trefers to the transverse componentsthe only self-consistent normalization condition for &
of the W boson$ aroundk=0, p?=M2,. By analyticity and mass is the one given in analogy to Eg8). With the ex-
dimensional analysis, the vertex functions can be at mosgeption of the IR problems, all the discussion on Wenass
logarithmically divergent in the limik— 0 (this can also be applies directly to the case of ti@ boson masfg]. A Ward
verified exploiting the ST together with a proper use of theldentity similar to the Nielsen identity of E¢17) has been

renormalization conditionsHaving IR dimension-3, it fol-  applied in[9] to the case of th&® resonance, to the same
lows by power counting that Eq21) does not lead to IR avail.

divergences when the integral in the internal momenkuis Another interesting application of E¢23) concerns the
performed aroundt=0. photon correlator ag?=0. As is well known[32], using the

In summary, we have seen that the pole mass ofwthe renormalization COﬂditiOTXZ(O)=O the resulﬂ)XZ(O) that
boson, defined by Eq18), is IR safe to all orders in pertur- we have used above implidé}A(O)zo. In this case it is
bation theory and that only if this definition is adopted astraightforward to verify from Eq(23) that the derivative
perturbative description of the resonance region is possiblewith respect tog? of the photon two-point function calcu-
lated atq®=0 is gauge-independent at all orders. Imposing
the conditionI';,(0)=0 in the expression of.I'x,(0), we
obtain the constrairit‘}YSA(O)— ¥5,=0. We can now differ-
The main difference between the case ofWi&oson and entiated,I'} , with respect tes and evaluate it as=0. Using

the one of the neutral vector bosons is the presence of Mixpe yarious constraints we have obtained, we immediately
ing. We now directly use Eq6) with 8f=0 and sep*=0  gerive

for ease of notatioridoing otherwise would not modify our

results. Following the same steps as in the derivation of Eq. P

(17), and keeping in mind that the Abelian vector field does ag—FI\A(s) =0. (26)

not need a BRST source, we find, iQf=A,Z, s s=0

V. THE Z-y SYSTEM
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Notice that no particular renormalization condition on thefield. As it is well known, the propagator matrix is obtained
derivative (/)T Asls—o has been imposed, so one shouldby inversion of the two-point function matrix and, in the
think, for instance, of a minimal subtraction. This interestingprocess of inversion, the transverse and longitudinal compo-
and nontrivial result shows that under the Condiﬂbh(O) nents of the vector boson fields decouple. Having considered
=0 and ats=0 there exists in the full SM something analo- the transverse degrees of freedom in the preceding section,
gous to what happens in QED, where the vacuum polariza#€ can now limit ourselves to the system formed by the
tion of the photon is gauge-independent for angsee, for longitudinal components of the photon and of #feand by
example, Ref[37]). An alternative derivation of Eq26) can  the Higgs and the neutral Goldstone bosons, which we de-
be obtained starting from the physical photon-electron amnote byS={A,Z, ,Gy,H}. The two point functions involv-
plitude ats=0, proceeding along the lines of the discussioning one vector boson and one scalar are defined extracting
of Sec. VIII, and taking the gauge independence of the ond”. In this way, I'® is the 4x4 matrix of the two-point

shell amplitude for granted. functions ofS. _
The systenBincludes unphysical degrees of freedom. As
VI. THE SCALAR SECTOR we have noted in the introduction, even at the tree level the

Green functions of unphysical fields are modified by the

In the previous section we have studied a first example o¢hoice to use the reduced generating functidhal place of
mixing. Indeed, mixing occurs in several other cases in thehe complete functional™ (see Appendix A For the pur-
SM and in most of its extensions; all can be treated in a wayoses of this section, however, the reduced functional sim-
very similar to the{y,Z} case discussed above. In this sec-plifies significantly the derivation without affecting the
tion, we first consider the matrik'®(s) of the two point  physical information we can extract frol®. In a way, this
functions relative to the scalar fields={¢,,¢,,...,¢} i can be viewed as a consequence of the fact that the cancel-
the general case of mixing and show that the gauge depeiation between the unphysical degrees of freedom occurs in-
dence of its determinant follows an equation analogous telependently of the gauge-fixing secfé2,20.
Eq. (25), if the rank ofI'*(s) is equal to its dimension. As Each row ofI'S is connected by a STI. For instance, dif-
CP violation is present in the SM, we then consider theferentiating Eq.(A3) with respect toA* andc”, we obtain
system formed by{A, ,Z, ,Gy,H}, where the subscript  for the first row
denotes the longitudinal component of the vector boson
fields. This system is highly constrained by the STl and we .2 _ L L
show that in this case the complex pole of the only physical (Cw SWFCA“)FAAJF(SWCWJF CWF°A73)FAZ+ FAGOF
field, the Higgs boson, is gauge-invariant. In an analogous +Tu0
way one can consider t{&V, ,G*} system, which however

h hysical d f freed di letel . . .
ngi:é)dpb;il]ceasﬁgree ot freedom and Is completely ConS|m|lar identities can be derived for the other rows,

The general form of the Nielsen identity in the case of a>° that the STI for the two-point functions can be

system ¢ of fields characterized by the same conservedV!tten as IV, =0, where V¢ =(cly—swlc,y, SuCw
quantum numbers can be obtained in analogy to(Z8).and  +cwl'c,,..I'c,,.Ic,5,). Since ¢ includes the unphysical
reads components of the photon a&f fields and since we have
eliminated the gauge fixing sector of the tree level Lagrang-
Iel?(s) = A(s)I*(s) +T?(s)A'(s), @7 jan in using thegreguced fgnctionﬁxlee Eq(A2)], itis pgr- ’
haps not surprising that there is no propagatorAprandZ;
and that deF'S=0 or the rank oS is less than 4. In fact®
has another linearly independent eigenvedter with zero

eigenvalue, corresponding to the set of STI obtained by dif-
9:Dy(s) =t A(S)+ A'(S)]Dy(s), (28)  ferentiation with respect to,. Therefore, the rank dfSis at
. ) . most 2 and that we cannot use E88) at this stage. More-
which generalizes E¢25) in the case the rank df’(s) at  gyer, the submatrix of S identified by the indice€, andH
arbitrary s is equal to its dimensionality. In the case 0f pas the same rank &S. This can be seen by noting theg

scalar fields this ensures the gauge-independencecom- . .
plex poles. Notice that the physical information contained inandVCA can be orthogonalized in the subspace ofAheand

the matrixI'? is not restricted to the physical poles. Indeed,Z" Components because
the higher order definition of the mixing parameters is af-
fected by the off-diagonal elementsBf. In general, it does ( c\z,\,— syl

CA%0

0. (29

CAYH

where we do not need to specify the matriceand A’ any
further. Using In deF?=trInI'* and exploiting the proper-
ties of the trace, one finds fd%zdeﬂ“‘f’

cars  Swlw—Swlc,,,

not seem possible to form gauge-independent quantities onde 2

the basis of two-point functions only, i.e., &%, and to swewtCuwl'c,y;  Swtcwle,,

employ them to renormalize the mixing parame{drs]. On (30)

the other hand, the mixing parameters can be safely defined

in terms of physical observables such as mesonic decay ratédaving eliminated the unphysical longitudinal compo-
Neutral current processes are mediated by photons amknts of the vector bosons, we can now concentrate on the

Z°, as well as by scalar fields, likg, and the physical Higgs submatrix

=1+ 0O(%h)+0.
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. (I‘GOGO FGOH) a IS =A S+ Ap+ AL +3]AT, (34)
= , 31

thoy - T 0Sr=AoZatTeAb+ AnZb+SoAl,

whose rank is equal to the one BY. Indeed, at arbitraryg?, —n2 t

its rank is 2, so that Eq28) is satisfiedI'" is very similar to IeZo =P (ArSL+2RALF Ao F 2o,

the y-Z° transverse mixing matrix. Even if th@P violation  from which it follows that

mixes up physical and unphysical scalar fields at high per-

turbative orders, it is not difficult to disentangle them taking IKi=KF+FTKy, (35
advantage of the STI. A§?=0 the two STI obtained by N ) )
differentiating with respect t@, , and G, imply that det ~ With F=Ap—AgEg Zp. W'ttr‘o_“t using Tp_seudo-
T(0)=0. This zero is related to th@° field and is located Hermiticity, we would haveF"#F' in place ofF' in the

at g?=0 (in the standardR, gauge it would be ag? previous equation. Equatlo@s) is in the form of Eq.(27)

— £,M2) as a consequence of the use of the reduced fun@nd thereforeD;=detK; satisfies Eq(28). We have there-
tional. The remaining zero, a?=s,,, corresponds instead fore algebraically reduced the problem in the fermionic case

to the physical pole of the Higgs boson and its location in the® the scalar one. In th_e ((j;ase (g m|xmg¢betwlee‘erm||ons_,
complex plane is therefore gauge-independent, as it follow € gauge-parameter independencenotomplex poles is
from Eq.(28). A discussion of the relation between the polet us_warranted. quln, this resul_t hqlds for any_ch0|ce of the
mass and the conventionally renormalized mass of the Higgtgrm|on wave function renormalization and relies solely on

g_ .
boson in this case can be found in REFS]. the g7=0 assumption. o
The above proof is new and valid in the full SM. For what

concerns pure QED and QCD, the result that the pole masses

of the electron and of the quark are gauge-independent is not
The treatment of the fermionic sector is only slightly new and has been obtained both using the Nielsen identities

more involved than that of the scalar sector. Again, we cont37] and in different way$11,4Q. In QED (QCD) the situ-

sider the most general case of mixing and #lthe matrix ~ ation simplifies considerably: writing's;=Bp—mA, where

of the fermionic two-point functionsI'f;, . In the case of Mis the mass of the electrdquark, and decomposing in

massless neutrinos, there is no mixing in the leptonic sectgin analogous way, we find

VII. FERMIONS

and I"*P! is a diagonal matrix. As a first step, we need to 2
decomposd™ into scalar pieces: — 9,A= %BABJF MAA,; —3:B=m(AAg+BA,).
I'(p)=3(p?) PP +Zr(P*)PPr+p(p?) P (36)
+3L(p?)Pg, (320 which could be tested up t®(a?) against the generdR,

_ gauge calculation of Ref41].
where P z=1/2(1% y5) are the left and right-handed pro- ~ The proof of the IR finiteness of the fermions in the SM
jectors. As can be seen by invertilig, the relevant quantity follows Ref.[11] and the final discussion in Sec. Ill and is

for the fermion propagator matrix is the matfiz9] already presenin nucein Ref.[10]. For completeness, in
5 ) fe1 Appendix B we present the explicit gauge-parameter depen-
Ki(p)=p“ZL—2p2g 2p, (33 dence of the one-loop fermionic self-energies in a geryal

] gauge for the full SM. Remembering thatfirst occur at the
where we have dropped tip€ dependence of thE matrices.  one-loop level, it is straightforward to see that they satisfy
nator of the fermion propagators, we want to study its zerosexpressions given in RefL3] and is very useful in particular
.e., the zeros of the eigenvalues 6. We recall that by  gpplications. For instance, Eq€1)—(C3) have been used in
pseudo-Hermiticityl'= y{T" Ty, so that2[(p?)=3%,(p?)  Ref.[15] to discuss the gauge dependence of the one-loop
and3 L(p?) =3g(p?) (this is actually true below thresholds, definition of the Cabibbo-Kobayashi-MaskaW@KM) ma-
but it does not affect our conclusionHence, the matrix trix. Indeed, as noted in the previous section, the renormal-
K:(p?) is Hermitian and can be diagonalized by means of dzation of the mixing parameters is a delicate subject for
unitary transformation. Under the usual assumptﬁfn=0, what concerns the gauge-parameter dependence. An ad-
the gauge-parameter dependenceléfis described by a equate framework for studying it is the background field
Nielsen identity which has exactly the same form of Eq.method[16]. In the case of the fermion mixing a comprehen-
(27). Setting furthermor@®= 5 =0 for ease of notatiofthe ~ sive analysis has been presented in [RE5].
results would not changewe haveAz—FX?,?f, and A’
=—T 7,1, Which have a Dirac structure and undergo a de-  VIll. APPLICATION TO PHYSICAL AMPLITUDES
composition analogous to Eq32). Again by pseudo- In this section we apply the formalism of the Nielsen
Hermiticity, we find that in this case\; g=(A{ g)" and identities to four-fermion physical amplitudes and study the
Ap=Aj. Itis then straightforward to verify that the com- mechanism of gauge cancellations at any order in perturba-
ponents ofl"" satisfy tion theory. Our purpose here is not to prove the gauge-
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independence of the physical amplitudes, a result which wassing the fact thatff—m;)u,s(m;) =0 at any order by defi-

accomplished in full generality long ago at the level of thepition. Of courseZ should be decomposed in left and right-

generating functiondl25]. We would rather like to study a handed partsZ=7"P,+ZRPg. Notice that the first line of

specific example and carry out the analysis at an.arbi'gr.ar%qs_ (39 implies de,=0 and consequently includes the

" ﬁequirement that the mass parameters of the external fermi-
allows us to uncover the regularities of the gauge recombi-

. . . ons are renormalized on the poles of the propagatees
hations betwet_an.the different cqmponemertlcgs, boxgs Sec. VII). Strictly speaking, the LSZ formalism applies only
and self-energigsn great generality. The following deriva-

tion is formally independent of the perturbative expansion Ofto stable external states, i.e., to the electron and neutrinos
the Green functions. In other words, if we work at orden and, 0 a.good approximation, to the muon. Nevertheless, we
. : ; ill consider here the general case of mixing. We also stress
perturbation theory the Green functions have to be expande ~ )
up to this order, but the factorization works independently oftnat the LSZ factorg should not be confused with the wave-
that. At the one-loop level, a similar factorization is also function renormalization factors fc_)r the_external fields. Of
accomplished diagrammatically by the pinch technigei®  COUrSe, the latter can behosenby imposing Eqs(39) to-
[42], whose extension at higher orders has however provegether withZ=1 (on-shell schemg32]), but there is in gen-
problematic. Unlike the PT, the Nielsen identities controleral no restriction on their choicesee als15]) and it is
only the gauge parameter variation and cannot be used ®@ven possible to avoid them altogether, in which cZsis
construct explicitly gauge-independent proper functionsdivergent. Once the wave-function renormalization has been
which satisfy basic requirements and tree-level-like Warddefined, for instance through a minimal subtraction, the fac-
identities. However, they may prove useful in the search fokors7 can be computed from Eqe39)
the higher-order extension of the PT. The analysis of this aAg g first step, we consider the gauge variation of the

section gives us also the opportunity to present explicitly the, - +104 Green functiod™™ . In the most general case of
Nielsen identities for vertices and boxes involving fermions, IJKN

.. trunc . . .
which are interesting in their own respect as they appear ifnixing, Z 7\ is decomposed in the following blocksve

most phenomenological applications. sum over repeated indices
We first consider the truncated Green functﬂﬁjﬁf\‘ (see
e.g.[26]) for a generic four fermion processf ;— ffy and :—r;%cNC= il kN~ ITJiZiCj Cjkn— F,‘NiZiCJ- Iy, (40

we decompose it in terms of irreducible diagrams and propa-
gators. We will use capital and lowercase letters to denot

. o from which we obtain
fermions and bosonic fieldscalar as well as gauge vector

bosong, respectively. ThereforeZIEJ and Zicj are the propa- g7 o e 2O T (9 7T
gator functions of fermions and bosons. Following the con- ¢ kn = H2elin = (0130 2 Diien = o962 T
vention of the preceding sections, irreducible boxes and ver- —T5Z8 0 Djion— (3T i) ZE Tk

tices are denoted b¥'jxn, I'i5i, andTjky. To keep the

notation simple, we drop Lorentz indices and the dependence —ITNi(ﬁgzﬁ)Fjgj—ITNiij ks - (41

on the external momenta. The physical amplitudeg;y for

our process is obtained frorﬂ%u%ﬁI using the Lehmann- We can compute the different contributionsI';/yy,
Symanzik-Zimmermann(LSZ) reduction formula [26], d 'y, and ﬁngj using the Nielsen identities. The identity

which in the case of fermion with mixing reafi32] for the propagator functionZf, and Z; is easily derived
from the identity for the irreducibléwo-point functiond’;;
_ . =1/2=1/2 _t =1/2 =1/2 1)
Mign= lim 27252 e Za 2 (37) andI';;. As we have seen, the general form of the latter is
on-shell
where the on-shell limit includes the projection on the Ielab= ~Facl oy, = Tyay Leb, (42)
asymptotic states and controls the relation between the o . .
asymptotic states and the renormalized spinors: where the indices,b apply to both the bosonic and fermi-
onic case. As usual, we employ the procedure of Sec. Il,
~ _ CP_ —
Z%ZUa,s,Jzuu- (39  remove all tadpoles, se},= 57 "=0, and assumgf=0Y,

(this is consistent with the LSZ use of pole masses, as we
have seen Concerning the?¢ and yi factors, we avoid them
here in order to keep the formulas simple.

However, following the discussion in Sec. Il, they are
bound to drop out of the amplitude and this can be explicitly
verified. Equation(42) can be graphically represented in the
very simple way shown in Fig. 4. Notice that the momentum
flows along the horizontal line and that the insertion of the
static sourcey does not carry momentum, unlike the one of

(39 Yo

The matrixZ can be computed from the conditiofi32]
(quantum equations of motipn

I'iuy(my)=0;  u(m)I';=0,

Z
Lmlrl_lul(ml):ul(ml); E(ml)an_—%fE(m.),

p_
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& Yﬁm A 4
X
FIG. 4. Nielsen identity for the two-point functioﬁ(,)i(bj.

Using the reIationsZﬁ-ij=i5ik and Z%KFEJZMTJL multiply a two-point function of the external fermions like
where1 is the identity matrix for the Dirac indices, we ob- L13- When they are contracted with the external spinors,
tain the Nielsen identities for th@ropagator functions th€se terms vanish, as a consequence of(&).

which read (3) The remaining terms contain Green functions of the
kind FX;IJ and FXT,,J which multiply vertices and boxes in
0L = Zickl_‘Xkyj +T 0 Zij s (43)  Eqgs.(45) and(46), respectively. As we will see in a moment,
they are cancelled by the LSZ factors. Adding together the
c c c ) ) i A i
0eZ= ZTKkanJJFFxZ.KZEJ' (44) various pieces, the gauge-parameter variation of the on-shell

truncated Green function can be expressed in terms of the

for bosons and fermions, respectively. Graphically, thesdruncated function itself:

identities can be represented by Fig. 4 after replacing the

trunc trunc —  trunc | trunc

blobs with the y insertion by their mirror images and ex- —ﬁgZ,—JKNIW.Sm": Dyin st Uxknisan T Zisind x7ed
changing the corresponding indices. For timee-point func- rune
tions we have TZ s N (47)

0=y 13l mit Uiy, Fna P Uyt Pilyizy s according to the usual form for the Nielsen identities. Of

course, this on-shell factorization holds in general for any
amputated Green function, as it follows from the gauge in-

We see that the gauge-dependent terms of the forin, gf dep\ﬁgd;rr;ch?:l trhe§<';131yattrcl>x;alppIy the LSZ reduction formula
introduced by the propagators in E@l) are exactly can- o ~ '
celled by the last term in the first line of E@5), i.e., by the 1€ gauge variation of the factar can be computed from
vertices alone. Therefore, the boxes are not necessary to rgd- (38) and Eq.(39) using the Nielsen identities for the
move the gauge-dependence of the internal self-energie®V0-POINt functions and the gauge-independence of the
The identity for thefour-point functionss asymptotic spinorsias . We then obtain

+T.0, Tryi+ T Ty - (45)

X! g Xil 7y

— 3T T3kn= T3y, i+ Tl . Ko+ Ty 73l mich im f;%fuasf Ty Uass (48)
on-she
Ty NP mka T sl gakn+ Picsl gz o _ _
wherel,, 7g 1S calculated on-shell, from which the final can-
x7sN cellation of the gauge-dependence follows.
= If some of the? do not vanish, the cancellations do not
1SN operate any longer and the amplitude turns out to be gauge
(46) parameter dependefi25]. An explicit example has been
considered i 15], for the W decay into quarks: if the CKM
We now distinguish between the different Green functionscounterterm is gauge-dependent, the amplitude depends on
containing the sourcg. the gauge parameters too. On the other hand, the above proof
(1) Terms of the fornT", , 7; are present both in the gauge relies neither on a specific choice of renormalization of the
variation of the boxesfirst line) and in the one of the verti- unphysical parameters, nor on the regularization scheme
ces (first term. They cancel against each other in the sumadopted(provided the STI have been restored order by or-

+ FxI]EnSFgN + Fxl_nSENl_‘gJ + FFJESF

sl gt Dy Jsikn+ T

xKng

(41) according to the pattern den.
Ly, it UmiZiiCien =i gy 5Lk =0, IX. SUMMARY
Vv ~ We have introduced the Nielsen identities of the SM and
@107 ign 10l kn used the problem of the definition of mass as a demonstrative

» ) example. In this context we have obtained some new results:
where we have specified which part of £41) generates e have proven to all orders in perturbation theory the

each term. o _ _ gauge-parameter independence of the complex pole associ-
(2) The factors containingy,;, , in the second line of Eq.  ated with any physical particle of the SM. We have consid-
(45 andFX;SJQN [the whole second line of E@46)] always ered the cases of the vector bosons, scalars and fermions in
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great generality, allowing for arbitrary mixing patterns. Par- )
ticular attention has been paid to the case of Widoson, — Lor=— 57 (9“A,)
which is simpler because of the absence of mixing and has A

been chosen to illustrate some features common to all cases. 1 £ \Jg'%+g? 2 1
Most of the proofs hold without modifications also in some - W( Zym———5 v 0) — < | W,
extensions of the SM, such as nonsupersymmetric two- z w
Higgs-doublet models. i§{,§>g 2 q

We have derived identities for the gauge dependence of - ——vG*H| - —(a"GfL)Z. (A1)
all the two-point functions of the SM, both for bosons and 2 2

fermions, as well as for vertices and boxes involving extern . )
> : g e always set, ;= £, =& - ie., we confine ourselves
fermions. Using these expressions, we have shown the ex- : ' :

plicit mechanism of gauge cancellations which leads toto the restricted 't Hooft gauge. Our starting point is the

gauge-independent four fermion amplitudes to all orders icomplete generating vertex functiorlf, which generates

the most general case of fermion and boson mixings and o I'e cirklle—p?rtuile—lrr?(:ﬁcgl_?lG:{gen funct|.onst.tln.otrd%r to sf|m—
CP violation. The formalism introduced in this paper, F'fy € struc l];'.re. orthe c’il |sdconven|en. 0 '? ro yclzlizlor
supplemented by the material given in AppendixXthe La- Inear _gaugg- |>_<|ngs a Ar? uce ] generating ] unc_tlo
grangian involving the BRST sourdesshould allow for a (sometimes indicated b¥' in the I|ter.ature, which d|ffer.s.
very simple derivation of the Nielsen identities for any from I'® by a local term, corresponding to the gauge-fixing
proper Green function in the electroweak SM and in QCD. Part of the Lagrangian:

We have also extensively discussed the renormalization
of the Nielsen identities with an arbitrary regularization, in
the case the Nielsen identitidsut not the ST) are broken by
renormalization. In that case the identities are deformed by
new terms, which we have identified in full generality and In practice, the STI obtained frofi coincide with the STI
computed in a few cases of particular interest. We have alsobtained fromI'® after implementation of the ghost equation
derived new results concerning the infrared-finiteness of th€26]. Of course, one should keep in mind that the Green
W pole mass and the photon two-point functiongd&=0 in  functions involving unphysical fields generated Bycoin-
the SM. For completeness, we report in Appendix C thecide with the ones generated BY only up to constant terms.
expressions for the fermionic one-loop self-energies in a geFor example, one had“&S)WU:F\C,\(,O\)N +p*p”léw and
neric R, gauge. ©)  _ e - .

) . . . . _ _+&wM3, at the tree level, while the differ-
m m G*tG G*G whViw ,
In conc'lu5|on', the for .alls., 9_f the Nielsen identities Canence at higher orders depends only on the renormalization of
be useful in various application§) at the conceptual level,

for the identification of gauge-independent quantities such atshve'eld and of the gauge parameters. As we have elimi-

invariant charge$7] and for the gauge-independent defini- hated the classical gauge-fixing, it is clear thgj-g-#0

tion of renormalized parametefd5]; (i) at the practical already at tree level.
lized p ’ . ° P The invariance of the action under BRST transformations
level, because in higher orders calculations it is generall

simpler to compute the gauge-dependence using the Nielsiﬁ]p“eS the STI for the functiondr’ (see for exampl¢26)):

identities, and because these identities allow for powerful
checks. It deserves to be better known to theorists. S(F):f d%x

r=re— f d**LgE. (A2)

P T Y 3
CO — =—|=0,
K8, < 5y, o¢
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APPENDIX A: NIELSEN IDENTITIES FOR PEDESTRIANS

(o 0 or 6 oI 6

The aim of this appendix is to review very briefly the Sf_f d*x} duC Ejqu:’ 5_%5_¢+ 5_905_% :
formalism of Slavnov-Taylor identitieéSTI) in the case of (A4)
the Nielsen identities and to provide some material necessary
for the explicit calculation of the Green functions involving By functional differentiation of Eq.(A3) with respect to
the BRST sources. For a non-expert introduction to the STsome SM fields one gets the Slavnov-Taylor identi{®&§l).
for specific physical amplitudes, we refer [tb9]. First, we  Electric and ghost charge conservation, as well as Lorentz
recall that in our conventions the gauge-fixing term in theinvariance, should be taken into account, according to the

SM Lagrangian is given by examples given in the text.
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In order to obtain the Nielsen identities for the gaugewhere d,=d/dx and the arrows indicate the direction in
parameter dependence of irreducible Green functions, wehich the functional derivative with respect to the fermionic
have to consider the case of extended BRST symnijéfry field acts(this is important for anticommuting fielgls
which involves also the transformation of the gauge param- We have seen that both the Nielsen identities and the STI
eters; Eq(A3) then takes the form contain Green functions involving the BRST sourggsand

n; (for fermiong associated to the various fields of the SM.
If we want to compute these Green functions at a given order
S(I')+ 2 XiagiFZO- (A5) in perturbation theory, we need to know how the sources are
: coupled to the fields. To this end, we give below the com-
t plete action involving the BRST sources, which can be use-

from which Eq.(1) follows after differentiating with respec ful ¢ d to obtain the F |
to y and settingy= 0. In the fermionic sector the expressions ul as a reterence and to obtain the ~eynman ru'es necessary
for actual calculations involving, and ;. Apart from the

are slightly complicated by the anticommutation relations .
and thg Niilsen i%entity be>(/:omes well-known Feynman rules of the Skéee for instance the

second paper ifi33]), nothing else is needed to evaluate the

unconventional objects that appear in the identities. Using

the conventionZ,,=cy W +syB,, whereW> B, are the

third component of the triplet 06U(2), and theUy(1)
(AB) gauge boson, respectively, we have

ré s, 9,I's T
= T ~— t (=)
oYy om Sy o

(9§Ffer= Z

. _ - . Cw . Cw
_ z A_ + - + ¥ *+— | A W 7 * —
LersT™ v5{Cwd,.C7—swd,c —ig[W,c” =W, c ]}+7W"{z9#c +|ewﬂ(c SWc *iect|A, sWZ“]
. _ e c g
+929,c3— gsfA°GE % — yealige e yes 1§C(CA—S—WCZ + Yea Esfab"cbcc}
W

L Ry
2[Gc Gc]+2 G"c

y o L T Y Clv— Siw z)
+ +yT = =[H+v+ *FieG™| cA—
vy G vy 2[ v*iG”lcTFie c ZCWSWC
z
c
g|"C+-|-g—1/
9 9 o V2 2 Cw
+‘y0 E[G+C_+G_C+]—2—(H+U)CZ +i(n,, ) 5
Cw g 3 Q A+ 1 +Q )C |L
—vc —e Qch+| =—+Qisw|—
V2 I 2sy PWicw
vV 1 c? a
Mch+—e QUCA—<—— Qusw)— ut+gs=utc,
| V2 25w Cw 2 —R A Z||R
+i(7y,74) , a —ipeQlci+ —cl
g—VzduLc‘—e Qqci+ i+Q S a d-+ }\—ch
V2 d ZSW d=w Cw gSZ a
- Sw A2 - Sw A2
+imh —eQy| i+ ENCZ UR+QS7URCa +imh —eQqy| A+ avcz dR+gs7dRca +H.c., (A7)

where\? are the Gell-Mann matrice® andL indicate the tions involving the sourcey, characteristic of the Nielsen

right- and left-handed components of the fermion fields, anddentities, are the couplings gfwith the other fields. There

sw=sinéy, cw=coshy. The Hermitian conjugate for the is a sourcey; associated to any gauge paramejer The

fermionic part is added at the end. The ghost charge of theelevant Lagrangian takes the form

various sources, which is important in writing the STI, can

be inferred by Eq(A7), assigning a numbet 1 to the ghosts

and requiringl to be ghost charge neutral. No BRST source

needs to be introduced for the Abelian vector field and for its SHaving set the two gauge parametéf$? equal to each other,

ghost. ¥ is the source of the BRST transformation of the we can work with only one sourgg . This differs slightly from the

third component of the gauge boson triplet. procedure adopted ifl5], where two distinct sourceg(*? were
The last ingredient for the calculation of the Green func-kept.
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(n)
Xg —a a,u XAﬂ N
== e + ’ + .
L, 2ggc 9,6 T d,A S(I) }I) Xi(9T+A - T)
Xz —
XW . _ _
- E[c*(&“wﬂ —iEWMWGT) where the n.ew termAg“)+2i)(iA§('i‘) are local op.erators. We
do not consider here the terr@¥ x; x;) as they will not enter
+F*(&sz+i§WMWG*)]. (A8) our forthcoming discussion. Now we can use the nilpotency

of the operatorS‘Fo+EiXia§i to establish the following con-
sistency conditions for the breaking terms of E§3):
APPENDIX B: NIELSEN IDENTITIES
AND REGULARIZATION Sr,Ag"=0, d;AG"—Sr AV=0. (B4)

In this appendix we clarify the meaning of E() and ) , ) )
show how its structure is preserved if the STl are enforced df the absence of anomalies the first equation can be inte-
each perturbative order by means of appropriate noninvariairated obtaining the general solutiftv, 16
counterterms. M _ -

Let us consider a noninvariant regularization, such as di- Ay'= _SFOFCTv (B5)
mensional regularization in the implementation of R&f7],
and proceed to impose the renormalization conditions acwherel’'{") are local noninvariant counterterms. These coun-
cording to the procedure outlined in Sec. Il. At a given orderterterms are needed to restore the symmetimesur case the
n in perturbation theory the STI are violated. We now as-STI) to the ordem and are computed by standard techniques
sume that at orden—1 the STI have been restored by the of algebraic renormalizatiof19,18. The removal of the
introduction of appropriate non-invariant counterterms. Fol-preaking termsA{" by means of the counterternig® is
lowing the discussion of Sec. Il, the Nielsen identity corre-essential in order to recover the unitarity of the theory and
sponding to the extended BRST symmetry can be written, ahe physical interpretation of th&matrix amplitudes. For
_ordern— 1, in the foI_Io_Wing form(here we consider explic- \yhat concerns the other breaking terms, nam}eﬁl(?, they
ity different gauge-fixing parameters do not play the essentialloof the previous ones, but con-
tain the information on the gauge dependencﬂ@%.

The new functional given by +I'{Y) satisfies the STI
identity at ordern. On this basis we can study the gauge
parameter dependence of the Green functions according to
the Nielsen identities. Combining the second of E@4)
where with Eg. (B5) we obtain

(n—1)
SM)+2 x(9,T+A,-T)| =0,  (BI)

n-1 ‘9§i5rorg1%+5roA§(?):Sro[ﬁgir(c”%wLAg(?)]=0, (B6)
(AX_.r)m—l): 2 AM T (h-m-1)
' m=1

a where we have also use[d?§i,sro]=0.6 Finally, the last

n P equation can be solved using the cohomological methods
_ E(m)y 4 §i(m_7 outlined in Sec. I,
2, (ohmoge 3 gy

IO+ AM =X+, v, (B7)
: Xi
+2 70N, °
¢ As discussed in the text, the terms ¥{™ belong to the
g.m [ 4 1) (n—m—1) cohomology and represent the gauge parameter dependence
+9 dx SH(X) r : of the physicalparameters. On the other hand, the terms in
Sr,Y™ are cohomologically trivial and contribute only to

the unphysical parameters such as the renormalization of the
fields, of the gauge fixing parameters, etc. Therefore the in-
The matrices ,Bfi (m) yi (m) 5t§i ™ and pisj,(m) are sertion of the noninvariant counterterms at ordetoes not
straightforward extensions of the parameters introduced in

Eqg. (6). Following the general theorem of renormalization

theory known as quantum action princifl@AP) [43], the ®In the framework of Ref[14] the situation is more complicate as
terms breaking the Nielsen identity at ordreare local poly-  the operatorSy does not commute explicitly with the derivative
nomial of the fields and we have with respect to the gauge parameters.

(B2)
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affect g5 (™ 5% ’5t§i ‘™ "4t the same order and does not energies in the SM. We consider the most general case of
[

spoil the simple physical interpretation we have given theninixing and define the fermionic self-energy; as +i times
in the text. the standard Feynman amplitude for the transifieni and

In summary, we have explicitly seen how the structure ofextract a factog?. The expressions in the 't Hooft—Feynman
Eq. (6) is preserved at all orders. When the renormalizatiordauge € =1) can be found, for example, in R¢44]. At the
conditions are chosen according to the scheme presented @fe-loop level, instead of Eq32), we can use the decom-
Sec. Il and all the steps are properly performed, the result dposition
the whole renormalization program are Green functions
which at each orden are finite, satisfy the symmetry prop- <L, R, 2
erties of the model and providg@matrix elements which are 2iJ'(p)_EiJ(p )'bPLJFEij(p )BPr
bound to be gauge-parameter independent. +Eﬁ(p2)(miPL+ijR)-

APPENDIX C: GAUGE DEPENDENCE OF THE

FERMIONIC SELF-ENERGIES S .
The individual components of the self-energies are then

In this appendix we present the explicit gauge-parametegiven in an arbitrary gauge bigimilar formulas are also in
dependence of the one-loop fermionic unrenormalized selff45])

2 2

s s 2 2 ij My 5ij 2, M
35=30 =1t (€,- 1) 850Q; byi+(§w_1); )\kTCWk+(§z—1)Ez‘ liribzi+| liriézMz+ | czi|, (Cy
W
2,
EiLj:Eil_j|§:1+(gy_1)5ij7Qi2[p2(1_xi)ZCyi_(1_Xi)ay_(1+Xi)byi]
Y ,
* (6w 1) 2 7 [P2(1- 3% Cwic i~ éwM fCun— aw]
(¢ —1)i p2Cs; |?(1—x-)2—ﬁ(1+x-) - |.2(1—x-)+ﬁ a
z 20\2,\, Zi| i i 4 i i i 4 z
2 Xi 2
- |i(1+Xi)_Z (bzi+&zMZCzi) 1, (C2
2
Sw Lmim;
25:25|§=1+(gy_1)5ij7Qi2[p2(l_Xi)ZCyi_(1_Xi)ay_(1+Xi)byi]_(§w_1)§k: A 4|p2J
2, .2 2 Jij 2 2 2_ X
X [aw=bwit (mi+p _§WMW)CWk]+(§z_1)ﬁ peczi| ri(1—x) _Z(1+Xi)
2 Xi 2 Xi 2
- ri(l_XiH‘Z az— ri(1+Xi)_Z (bzi+&M3Cz) ¢, (C3
|
where we have used the following notation for theWe have also usedi=mi2/p2, WhiIeIi=Ii3—QiS\2N andr;
n-dimensional integralsi (j = y,Z% W, f): =—Q;s?, are the left and right-handed couplings of the fer-
d"k 1 mion flavori and Q; and I?: +1/2 its electric charge and
ai=i,u4*”f 2 [KR—m2l[ K= EmE]’ isospin. In the case of quarks, the mixing matrix faOtdﬂr
™) K= mike = &my] equalsV; Vi, whereV is the CKM matrix, ifij (k) are
d"k 1 up(down) quarks and\ = V;V,; if the opposite is true. For

leptons with massless neutrimhﬁ%:éijékvi or 5j i, i.e.
there is no mixing. The gluon exchange diagrams can be
d"k 1 obtained from the photonic ones setti@g=1 and multiply-
Cij=iu I Y ZTY S—" PR ing by the color factolCr . Notice thate,, andc,; are infra-
(2m)" k"= miJlk"= &yl (k+p) m;] red divergent and an infrared regulattke a photon mags
(c4y  should be introduced. Of course, the infrared divergences
cancel out in Eqs(C2)—(C3). It is straightforward to verify

P | e ALk p) 2= me]”
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[46] that in the diagonal case the mass countertermiameters. From the off-diagonal parts of Eq81)—(C3) it is

om /mi=33(m?) + 1235 (m?) + U2 R(m?) + T, , whereT;

easy to derive some of the results of Rdf5] on the gauge

is the tadpole contribution, is independent of the gauge padependence of the CKM counterterm.
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