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Resummation of nonalternating divergent perturbative expansions
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~Received 12 January 2000; published 17 August 2000!

A method for the resummation of a nonalternating divergent perturbation series is described. The procedure
constitutes a generalization of the Borel-Pade´ method. Of crucial importance is a special integration contour in
the complex plane. Nonperturbative imaginary contributions can be inferred from the purely real perturbative
coefficients. A connection is drawn from the quantum field theoretic problem of resummation to divergent
perturbative expansions in other areas of physics.

PACS number~s!: 11.15.Bt, 11.10.Jj, 11.25.Sq, 12.20.Ds
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In view of the probable divergence of quantum fie
theory in higher order@1,2#, the resummation of the pertur
bation series is necessary for obtaining finite answers
physical problems. While the divergent expansions proba
constitute an asymptotic series@3#, it is unclear whether
unique answers can be inferred from perturbation the
@4,5#. Significant problems in the resummation are caused
infrared ~IR! renormalons. These are contributions cor
sponding to a nonalternating divergent perturbation ser
The IR renormalons are responsible for the Borel nonsu
mability of a number of field theories including quantu
chromodynamics ~QCD! and quantum electrodynamic
~QED! @4,6#.

Here I advocate a modification of the resummati
method proposed in@5,7# for a nonalternating divergent pe
turbation series. The method starts with a given input ser

f ~g!; (
n50

`

cngn, cn.0, g.0, ~1!

whereg is the coupling parameter and the perturbative co
ficientscn are expected to diverge as follows@8#:

cn;K
n!ng

Sn
, n→`, ~2!

with K, g and S being constant. The Borel transformf B of
the perturbation series~1!,

f B~g!5 (
n50

`
cn

n!
gn, ~3!

has a finite radius of convergence about the origin. For
evaluation of the Borel integral,f B(g) has to be continued
analytically beyond the radius of convergence. Stric
speaking, this analytic continuation has to be done on
branch cut in view of the nonalternating character of
series~1!. This requirement can be relaxed slightly by pe
forming the analytic continuation into regions whereg ac-
quires at least an infinitesimal imaginary partg→g6 i e. In
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this case, the analytic continuation can be achieved by ev
ating Pade´ approximants@9#. The first n11 terms of the
Borel transformed series~3! can be used to construct a dia
onal or off-diagonal Pade´ approximant~for the notation see
@10,11#!:

Pn~z!5@vn/2b/v~n11!/2b# f B
~z!, ~4!

where@@x## denotes the integral part ofx. The resummation
is accomplished by constructing the sequence of transfo
$Tf n(g)%n50

` where

Tf n~g!5E
Cj

dt exp~2t !Pn~g t!, ~5!

and the integration contourCj ~where j 521,0,11) is as
shown in Fig. 1~for j 521 andj 511). The result obtained
alongC21 is the complex conjugate of the result alongC11.
The arithmetic mean of the results of the integrations alo
C21 and C11 is associated withC0. Therefore, the resul
along C0 is real rather than complex. The limit of the s
quence$Tf n(g)%n50

` ~provided it exists!,

lim
n→`

Tf n~g!5 f ~g!, ~6!

is a plausible complete nonperturbative result inferred fr
the perturbative expansion~1!. Which of the contoursCj

FIG. 1. Integration contours for the evaluation of the gener
ized Borel integral in Eq.~5!.
©2000 The American Physical Society01-1
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~where j 521,0,11) is chosen has to be decided on t
basis of additional considerations which do not follow fro
perturbation theory alone.

The zeros of the denominator polynomial of the Pade´ ap-
proximant@see Eq.~4!# correspond to the poles of the inte
grand in Eq.~5!. Denote byt the integration variable for the
evaluation of the generalized Borel integral in Eq.~5!, then
the poles lie att5zi ~where the indexi numbers the poles!
along the positive real axis (Imzi50) and in the complex
plane (ImziÞ0). The poles lying on the positive real ax
are treated as half-poles encircled in the mathematically p
tive sense forC21 and as half-poles encircled in the mat
ematically negative sense forC11. The contourC21 en-
circles all poles att5zi in the lower right quadrant of the
complex plane (Rezi.0,Imzi,0) in the positive sense~see
Fig. 1!. The contribution of these poles should be added
the final result. The contourC11 is understood to encircle a
poles in the upper right quadrant of the complex plane in
mathematically negative sense. In general, the integrat
alongC21 andC11 lead to a nonvanishing imaginary part
the final result forf (g) @see Eq.~6!#, although all the pertur-
bative coefficientscn are by assumption real and positiv
@see Eq.~1!#. It might be interesting to note that, as with an
complex integration, it is permissible to deform the integ
tion contours shown in Fig. 1 in accord with the Cauc
theorem as long as all pole contributions are properly ta
into account.

This paper represents a continuation of previous work
the subject@5,7,9#. The resummation method defined in Eq
~1!–~6! differs from @5# in the combination of Borel and
Padétechniques and, if compared to the remarkable inve
gations in @7,9# on the resummation of QCD perturbatio
series, in the integration contour used for the evaluation
the generalized Borel integral. It is argued here that, w
the Borel transform~3! is analytically continued with Pad´
approximants~4!, the contribution of poles lying off the
positive real axis has to be taken into account in order
obtain consistent results in the resummation~see Fig. 1!. In
@7,9# it is argued that the Borel integral should be evalua
by principal value. It could appear that theC0 contour cor-
responds to the principal-value prescription. However, thi
not necessarily the case, if there are poles present whic
off the positive real axis~i.e., at t5zi with Rezi.0,
Im ziÞ0). The contribution of these poles modifies not on
the imaginary, but also the real part of the final nonpertur
tive result. Of course, when there are no poles lying off
positive real axis, as is the case for the problems discusse
@7,9#, then the principal-value prescription used in@7,9# is
equivalent to theC0 contour. Because the result obtain
along C0 is real, this contour should be used whenever
existence of an imaginary part is discouraged by phys
reasons.

It is important to mention that the method presented h
is not the only prescription currently available for the resu
mation of divergent perturbative expansions in quantum fi
theory. For example, thed transformation@see Eq.~4! in
@11## is a very useful method for the resummation of dive
gent perturbation series. Thed transformation has a numbe
of appealing mathematical properties, including rapid a
07600
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numerically stable convergence, and it has been show
yield consistent results in many cases, including applicati
from quantum field theory@11# and from other areas of phys
ics @12#. Because thed transformation fulfills an accuracy
through-order relation@see Eq.~9! in @11##, it can be used to
predict perturbative coefficients. Thed transformation is pri-
marily useful for alternating series. It fails, in general, in t
resummation of the nonalternating series discussed here.The
d transformation and the resummation method introduc
here complement each other.

Three applications of the resummation method defined
Eqs. ~1!–~6! are considered below:~i! the QED effective
action in the presence of a constant background electric fi
~ii ! a mathematical model series which simulates the
pected large-order behavior of perturbative coefficients
quantum field theory,~iii ! the perturbation series for the en
ergy shift of an atomic level in a constant background el
tric field ~including the auto-ionization width!. The nonper-
turbative imaginary contributions obtained alongC21 and
C11 find a natural physical interpretation in all cases cons
ered.

The QED effective action, or vacuum-to-vacuum amp
tude, in the presence of a constant background electric fi
has been treated nonperturbatively in@13,14#, and the result
is proportional to the integral

S~gE!52E
02 i e

`2 ieds

s2 H cots2
1

s
1

s

3J expF2
1

AgE

sG , ~7!

wheregE is a coupling parameter proportional to the squa
of the electric field strength,gE5e2E2/me

4 . Here,me is the
electron mass, ande is the elementary charge. The natur
unit system (\5c51) is used. The imaginary part ofS(gE)
is proportional to the electron-positron pair-production a
plitude per space-time interval@there is, of course, also
muon-antimuon pair-production amplitude, obtained by
imaginary part of Eq.~7! under the replacementme→mm ,
which is not discussed here#. S(gE) has the following
asymptotic expansion in the coupling parameter,

S~gE!;16F (
n50

`
4nuB2n14u

~2n14!~2n13!~2n12!
gE

n11G , ~8!

whereB2n14 is a Bernoulli number. In view of the asymp
totics

4nuB2n14u

n3
;

G~2n12!

p2n14 F11OS 1

4nD G , n→`, ~9!

the perturbative coefficients, which are nonalternating
sign, diverge factorially in absolute magnitude. T
asymptotic series~8! for S(gE) is taken as the input series fo
the resummation process@Eq. ~1!#, and a sequence of trans
forms TSn(gE) is evaluated using the prescription~5!. The
results have to be compared to the exact nonperturbative
pression~7!. This is done in Table I forgE50.05. The partial
sums of the asymptotic series~8! are listed in the second
column.
1-2
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RESUMMATION OF NONALTERNATING DIVERGENT . . . PHYSICAL REVIEW D 62 076001
Numerical results from perturbation theory are norma
obtained by~optimal! truncation of the perturbation serie
For the example considered,~i! the partial sums do not ac
count for the imaginary part and~ii ! due to the divergence o
the perturbative expansion, no improvement in the final
sult could be obtained by adding more than the first se
perturbative terms. It requires a valid resummation proced
to go beyond the accuracy obtainable by optimal trunca
of the perturbation series. The transformsTSn(gE) displayed
in the third column of Table I apparently converge to the f
nonperturbative result given in Eq.~7!, and the nonperturba
tive imaginary part, which corresponds to the pa
production amplitude, is reproduced although the input se
~8! has purely real perturbative coefficients.

Two specific mathematical model series are conside
next. The series

N~g!; (
n50

`

n!gn

has been used as a paradigmatic example for nonaltern
divergent series in the literature@3,15,16#. This series can be
resummed by the method~5!. Moreover, this resummation i
even exact for all transformation ordersn>2. This can be
seen as follows. The Borel transform

TABLE I. Resummation of the asymptotic series for the QE
effective action ~8! in a constant background electric field fo
gE50.05. Results in the third column are obtained by the met
indicated in Eq.~5! along the integration contourC21. The partial
sums in the second column are obtained from the asymp
series~8!.

n Partial sum T Sn(gE)

2 0.001 146 032 0.001 144 8482 i 7.70310217

3 0.001 146 705 0.001 146 6392 i 8.22310211

4 0.001 146 951 0.001 147 1132 i 3.5431028

5 0.001 147 087 0.001 147 2642 i 1.9331028

6 0.001 147 195 0.001 147 1732 i 3.1531027

7 0.001 147 310 0.001 147 1132 i 2.5831027

8 0.001 147 469 0.001 147 1622 i 2.3031027

9 0.001 147 743 0.001 147 1652 i 2.6331027

10 0.001 148 327 0.001 147 1442 i 2.5331027

11 0.001 149 825 0.001 147 1572 i 2.4631027

12 0.001 154 375 0.001 147 1552 i 2.5631027

13 0.001 170 560 0.001 147 1512 i 2.5131027

14 0.001 237 137 0.001 147 1562 i 2.5131027

15 0.001 550 809 0.001 147 1532 i 2.5331027

16 0.003 228 880 0.001 147 1542 i 2.5131027

17 0.013 345 316 0.001 147 1542 i 2.5231027

18 0.081 610 937 0.001 147 1532 i 2.5231027

19 0.594 142 371 0.001 147 1542 i 2.5231027

20 4.852 426 276 0.001 147 1542 i 2.5231027

exact 0.001 147 154 0.001 147 1542 i 2.5231027
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NB~g!5 (
n50

`

gn51/~12g!

is a geometric series. The summation of geometric se
inside and outside of the circle of convergence by Pade´ ap-
proximants is exact in all transformation ordersn>2. So, for
all n>2 the transformsTNn(g) fulfill the equality TNn(g)
52(1/g)exp(21/g)G(0,21/g)5N(g), whereG(0,x) is the
incomplete gamma function~see@17#!, and the choice of the
contour (C21 or C11) determines on which side of th
branch cut the incomplete gamma function is evaluated.

The asymptotic series,

M~g!; (
n50

`
G~n1g!

G~n!
n!gn, ~10!

constitutes a more interesting application of the resumma
method thanN(g). On account of the asymptotics,

G~n1g!

G~n!
;ngS 11OS 1

nD D , n→`, ~11!

the seriesM(g) serves as a model for the expected larg
order behavior of perturbative coefficients in quantum fie
theory @see Eq.~2!#. The analytic summation of Eq.~10!
leads to

M~g!5G~g!S g
]

]gD 2F0~1,g;g!, ~12!

where the hypergeometric2F0 function has a branch cu
along the positive real axis~see@17#!. The imaginary part of
Eq. ~12! for g.0 as a function ofg and g is ImM(g)
5p(12gg)g2g21 exp(21/g), where the integration is as
sumed to have been performed along the contourC11. For
C21, the sign of the imaginary part is reversed. The nume
cal example considered here isg52.3,g50.1. In Table II,

d

ic

TABLE II. Resummation of the model series~10! for
g52.3,g50.1 by the method indicated in Eq.~5! along the integra-
tion contour C11. The partial sums are obtained from th
asymptotic series~10!.

n Partial sum TMn(g)

2 0.445 451 0.393 5541 i 0.373 912
3 0.559 685 0.840 5611 i 0.446 830
4 0.640 410 0.764 9421 i 0.274 640
5 0.703 981 0.765 3391 i 0.218 156
6 0.759 669 0.763 0121 i 0.219 638
7 0.813 594 0.762 1861 i 0.219 197
8 0.870 909 0.762 1961 i 0.219 126
9 0.937 322 0.762 2241 i 0.219 123

10 1.020 707 0.762 2251 i 0.219 127
11 1.133 528 0.762 2231 i 0.219 127
12 1.297 220 0.762 2231 i 0.219 127

exact 0.762 223 0.762 2231 i 0.219 127
1-3
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ULRICH D. JENTSCHURA PHYSICAL REVIEW D62 076001
numerical results are displayed for thenth partial sums of the
asymptotic series~10! and the transformsTMn(g) calcu-
lated according to Eq.~5! in the rangen52, . . .,12. While
the partial sums eventually diverge, the transformsTMn(g)
exhibit apparent convergence to about six significant figu
in (n512)th transformation order, and the transforms rep
duce the imaginary part although the coefficients of the
ries ~10! are all real rather than complex. The integration
performed along the contourC11. The exact result in the las
row of Table II is obtained from Eq.~12!. For the evaluation
of the transformsTMn(g) it is crucial to use the contou
C11 rather than a contour infinitesimally above the real ax
For example, in order to obtain consistent numerical resu
it is necessary to take into account the poles att59.99
6 i0.578 in (n511)th transformation order, encountered
the evaluation of the transformTM11(g) according to Eq.
~5!, and the pole att59.996 i0.495 in (n512)th order for
the evaluation ofTM12(g). These poles approximately co
respond to the triple pole att51/(0.1)510 which would be
expected in the caseg52.

When an atom is brought into an electric field, the lev
become unstable against auto-ionization, i.e., the energy
elsE acquire a widthG ~that is to say,E→ReE2 iG/2 where
G is the width!. Perturbation theory cannot account for t
width. The coefficients are real, not complex@18#. An estab-
lished method for the determination of the width is by n
merical diagonalization of the Hamiltonian matrix@19–21#.
It is argued here that the full complex energy eigenval
including the width, can also be inferred from the diverge
perturbation series by the resummation method defined
Eqs. ~1!–~6!, where the appropriate integration contour
C11. Perturbative coefficients for the energy shift in arb
trarily high order can be inferred from the Eqs.~9!, ~13!–
~15!, ~28!–~33!, ~59!–~67!, ~73! in @18#.

The symmetry of the problem suggests the introduction
the parabolic quantum numbersn1 ,n2, andm @22# ~the prin-
cipal quantum number isn5n11n21m11). Here, calcula-
tions are performed for the ground state with parabolic qu
tum numbersn150, n250, m50 and two L shell states,
both of which are coherent superpositions of the 2S and 2P
states. One of theL shell states investigated here has t
parabolic quantum numbersn151, n250, m50, and the
other L shell state has the quantum numbersn150, n251,
m50. The Stark effect is interesting because, depending
the atomic state, the perturbation series are either comple
nonalternating in sign~e.g., for the ground state!, or they
constitute nonalternating divergent series with a sublead
divergent alternating component~e.g., for n150, n251, m
50), or the series are alternating with a subleading diverg
nonalternating component~e.g., for n151, n250, m50).
The perturbation series for the Stark effect do not stric
fulfill the assumptions of Eq.~1!, and the successful resum
mation of these series might indicate that the method in
duced here is in fact more generally applicable. The large-
order asymptotics of the perturbative coefficients for
Stark effect are given in Eqs.~4,5! in @23#. In quantum field
theory, the alternating and nonalternating components co
spond to ultraviolet~UV! and IR renormalons. Using the firs
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20 coefficients of the perturbation series for the energy
evaluating the first 20 transforms according to Eq.~5!, esti-
mates for the real part of the energy~Stark energy shift! and
the imaginary part of the energy~decay width of the state!
may be obtained. The apparent convergence of the firs
transforms for the real part of the energy extends to 6
significant figures, whereas the convergence of the imagin
part is much slower~2–3 significant figures!. In all cases
considered, both the real and the imaginary part of the
ergy obtained by resummation compare favorably with v
ues for the decay width obtained by numerical diagonali
tion of the Hamiltonian matrix@19–21#. Here we concentrate
on the decay width, the full calculation will be described
detail elsewhere. The atomic unit system is used in the
quel, as is customary for this type of calculation@18–21#. In
the atomic unit system, the unit of energy isa2mec

2

527.211 eV, wherea is the fine structure constant, and th
unit for the electric field is the field strength felt by an ele
tron at a distance of one Bohr radiusaBohr to a nucleus of
elementary charge, which is 1/(4pe0)(e/aBohr

2 )55.142
31011V/m ~here,e0 is the permittivity of the vacuum!.

Evaluations have been performed for all atomic levels a
field strengths of Table III in@23#. Three examples are pre
sented here. For the ground state, at an electric field stre
of E50.1 in atomic units, the imaginary part of the first 2
transforms calculated according to Eq.~5! exhibits apparent
convergence toG51.46(5)31022, which has to be com-
pared toG51.4531022 obtained from numerical diagona
ization of the Hamiltonian matrix@19#. For theL shell state
with quantum numbersn150,n251,m50, at a field strength
of E50.004, the first 20 transforms exhibit apparent conv
gence to an imaginary part ofG54.46(5)31026 which
compares favorably toG54.4531026 from @21#. The most
interesting case is the staten151,n250,m50, for which the
nonalternating component of the perturbation series is s
leading. AtE50.006, resummation of the complete pertu
bation series~including the leading alternating part! leads to
a decay width ofG56.08(5)31025, which is again consis-
tent with the result ofG56.0931025 from @21#. The contour
C11 is crucial, due to poles lying off the real axis.

With the help of Carleman’s theorem@24# it is possible to
formulate a criterion which guarantees that there is a one
one correspondence between a function and its assoc
asymptotic series~see for example@25#, Theorems XII.17
and XII.18 and the definition on p. 43 in@26#, p. 410 in@27#,
or the comprehensive and elucidating review@4#!. Let f (z)
be a function which is analytic in the interior and continuo
on a sectorial regionS5$zuuarg(z)u<kp/21e,0,uzu,R%
of the complex plane for somee.0. Let the functionf have
an asymptotic expansionf (z);(n50

` cnzn ~for z→0). The
function f obeys a strong asymptotic condition~of orderk) if
there are suitable positive constantsC and s such that
u f (z)2(n50

m cnznu<Csm11@k(m11)#! uzum11 holds for all
m and for allzPS. The validity of such a condition implies
that the function f (z) is uniquely determined by its
asymptotic series~see Theorem XII.19 of@26#!. Typically,
series which entail nonperturbative~imaginary! contributions
do not fulfill the Carleman condition. The resulting ambig
1-4
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ity is reflected in the three integration contours in Fig. 1, o
one of which gives the physically correct result.

It has not escaped our attention that specialized vari
of the method introduced here can be constructed in th
cases where additional information about the perturbative
efficients ~large-order asymptotics, location of poles in t
Borel plane, etc.! is available.

Finite and consistent answers in quantum field theory
obtained after regularization, renormalization and resum
tion. Using a resummation method, as shown in Tables I
II, it is possible to go beyond the accuracy obtainable
optimal truncation of the perturbation series. The purpose
resummation is to eventually reconstruct the full nonpert
bative result from the divergent perturbation series~see also
@5#!. I have examined two physical examples, the QED
fective action in a constant background electric field@Eq.
~8!# and the Stark energy shift. The perturbation series
the Stark effect contains nonalternating and alternating di
gent contributions, which correspond in their mathemati
o

s
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structure to IR and UV renormalons in quantum field theo
respectively. It has been shown in each case that comp
nonperturbative results, including the pair-production amp
tude for electron-positron pairs and the atomic decay wid
can be inferred from the divergent nonalternating pertur
tion series by the resummation method defined in Eqs.~1!–
~6!. A mathematical model series~10!, which simulates the
expected large-order growth of perturbative coefficients
quantum field theory@see Eq.~2!#, can also be resummed b
the proposed method~see Table II!. In all cases considered
the full nonperturbative result involves an imaginary pa
whereas the perturbative coefficients are real. The advoc
method of resummation makes use of the Pade´ approxima-
tion applied to the Borel transform of the divergent pertu
bation series. Advantage is taken of the special integra
contoursCj ~with j 521,0,1) shown in Fig. 1.
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