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We consider supersymmetric Yang-Mills theoryRix Stx St. In particular, we choose one of the compact
directions to be light like and another to be space like. Since the SDLCQ regularization explicitly preserves
supersymmetry, this theory is totally finite, and thus we can solve for bound state wave functions and masses
numerically without renormalizing. We present the masses as functions of the longitudinal and transverse
resolutions and show that the masses converge rapidly in both resolutions. We also study the behavior of the
spectrum as a function of the coupling and find that at strong coupling there is a stable, well-defined spectrum
which we present. We also find several unphysical states that decouple at large transverse resolution. There are
two sets of massless states; one set is massless only at zero coupling and the other is massless at all couplings.
Together these sets of massless states are in one-to-one correspondence with the full spectrum of the dimen-
sionally reduced theory.

PACS numbefs): 12.60.Jv, 11.15.Pg, 11.25.Mj, 11.25.Sq

[. INTRODUCTION drop the zero modes in the longitudinal momentum as is the
custom in DLCQ[5-8,10,12—-1§ A review of dynamical
Recently, there has been considerable progress in undexd constrained zero modes can be founf4in

standing the properties of strongly coupled gauge theories We are able to solve for bound state wave functions and
with supersymmetry1—3]. In particular, there are a number masses numerically by diagonalizing the discretized light-
of supersymmetric gauge theories that are believed to be irsone supercharge. We have shown that the SDLCQ proce-
terconnected through a web of strong-weak coupling dualidure extends naturally to21 dimensions, resulting in an
ties. Although existing evidence for these dualities is encourexactly supersymmetric spectrum.
aging, there is still an urgent need to address these issues atThe contents of this paper are organized as follows. In

a more fundamental level. Ideally, we would like to solve for Sec. I, we formulate SW. N=1 super-Yang-Mills
the bound states of these theories directly, and at any codheory defined on the compactified space-tiRug Stx St
pling. Explicit expressions are given for the light-cone super-

Of course, solving a field theory from first principles is charges, which are then discretized via the SDLCQ proce-
typically an intractable task. Nevertheless, it has been knowrdure. Quantization of the theory is carried out by imposing
for some time that (% 1)-dimensional field theoriesanbe  canonical (anti)commutation relations for boson and fer-
solved from first principles via a straightforward application mion fields. We also discuss the two discrete symmetries of
of discrete light cone quantizatiofDLCQ) (see[4] for a  the theory in this section. In Sec. Ill, we present our numeri-
review). In more recent times, a large class of supersymmeteal results. We present plots of the spectrum as a function of
ric gauge theories in two dimensions was studied using #he longitudinal and transverse resolution and show that it
supersymmetric form of DLCQor “SDLCQ” ), which is  converges very rapidly in both. We plot the spectrum also as
known to preserve supersymmefé~-11]. a function of the coupling and find a very stable strong-

We have recently been able to extend the SDLCQ algoeoupling spectrum. We identify several states that appear to
rithms to solve higher-dimensional theor{d®]. One impor-  be unphysical and disappear at high transverse resolutions.
tant difference between two-dimensional and higher-Finally we discuss the infrared spectrum of the theory and
dimensional theories is the phase diagram induced bypresent evidence that it is entirely determined by the dimen-
variations in the gauge coupling. The spectrum of asionally reduced theory. We conclude our analysis with a
(1+1)-dimensional gauge theory scales trivially with re- discussion of our results and a list of important related future
spect to the gauge coupling, while a theory in higher dimengprojects in Sec. IV.
sions has the potential of exhibiting a complex phase struc-
ture, which may include a str'ong-\{veak coupling duali?y. Il. LIGHT-CONE QUANTIZATION AND SDLCQ
Reference/12] seemed to provide hints of the latter. It is
therefore interesting to study the phase diagram of gauge Discrete light cone quantization has proved to be a very
theories inD=3 dimensions. powerful method of studying the mass spectra of various

Towards this end, we consider three dimensionall$)( theories[4]. It is well known that in X1 dimensions one
N=1 super-Yang-Mills(SYM) compactified on the space- can define a new version of DLCQ which preserves super-
time RXS'x S, The calculations are all done in the large symmetry[5,11]. In higher dimensions a supersymmetric
N, limit. In particular, we compactify the light-cone coordi- prescription is also possible2]. We begin by introducing
natex~ on a light-like circle via DLCQ, and wrap the re- light-cone coordinates™ = (x°+x*)//2, and compactifying
maining transverse coordinate- on a spatial circle. We thex™ coordinate on a light-like circle. In this way, the con-
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jugate light-cone momentuik® is discretized. To discretize 1 1

the remainingtransversemomenturrk* = k2, we may com- A" =—J=(igl¢,d-¢]+29¢4—d, i),

pactify x- =x? on a spatial circle. Of course, there is a sig- 9= 9~

nificant difference between the discretized light-cone mo-

menta k™ and the discretized transverse mometta;

namely, the light-cone momentuki® is always positive, X:_\/E—&DL‘”' 4

while k! may take on positive or negative values. The posi- N

tivity of k™ is a key property that is exploited in DLCQ These expressions may be used to express any operator in

calculations; for any given light-cone compactification, thereterms of the physical degrees of freedom only. In particular,

are only a finite number of choices fk¥ —the total number the light-cone energyP~, and momentum operator®,”,

depending on how finely we discretize the momenta. Thé?*, corresponding to translation invariance in each of the

“resolution” of the discretization is usually characterized by coordinatesx™ andx, , may be calculated explicitly:

a positive integeK, which is called the “harmonic resolu- L

tion” [17,18; for a given choice ofK, the light-cone mo- p+:f dX—J dx, tr (d_ )2 +igd_ ], (5)

menta k* are restricted to positive integer multiples of 0

P*/K, where P* is the total light-cone momentum of a

state. In the context of two-dimensional theories, this implies szf dx*dexltr
0

1 1 i 1
e ~2J—J-:D,y—D, ¢y,
a finite number of Fock statd47]. 2‘J ra J 2 i"ba_ ¥

In the case of interest here, we include an additional trans- (6)
verse dimension, and the number of Fock states is no longer )
finite, since there is an arbitrarily large number of transverse f _f ;
’ . o P,=| dx dx, tr[d_¢d, dp+ipa, ¥]. 7
momentum modes defined on the transverse spatial circle.  * 0o [9-$dLd+ipd, ] ™

Thus, an additional truncation of the transverse momentum . o )
modes is required to render the total number of Fock state5N€ light-cone supercharge in this theory is a two component

finite and the problem numerically tractable. This truncationMaorana spinor, and may be conveniently decomposed in
procedure, which is characterized by a transverse resolutio§™™S Of its chiral projections:
T, is analogous to the truncation kf imposed by the “har- L
monic resolution” K. Thus the transverse momentuki Q+:21/4J dXiJ dx trfd_—ypd_¢], (8)
range from zero tat 27 T/L , wherel is the size of the 0
transverse circle. L

Let us now review these ideas in the context of a specific Q*=23’4J dx*f dx, tr
super-Yang-Mills theory. We start with (21)-dimensional 0
N=1 super-Yang-Mills theory defined on a space-time with 1
one transverse dimension compactified on a circle: +2¢¢//)&—1,//} 9

d1¢p+9(i[¢,0- ]

The action (3) gives the following canonical(anti-)
commutation relations for propagating fields for lafgg at
equalx™:

After introducing the light-cone coordinatex§=(1/\/§)(x° [ij(X.X1),0-bi(Y .Y ) 1=1ij (X7 X)), ha(y .y}
+x1), decomposing the spinoF in terms of chiral projec-

L 1 _
Szfdzxfodxﬁr(—ZF“”FWﬂ\lfy”DM\P .

; 1
tions =507 =y )X, —y1)
1+9° 1-9° X 5,5 10
=Y xS @ 1k 10
Using these relations one can check the supersymmetry al-
. . _ gebra
and choosing the light-cone gaugé =0, we obtain
{Q".Q"}=2V2P*, {Q",Q }=2\2P",
L 1 s
S=de+dx‘J dx, tr E(a,A‘)2+(D+¢+aLA‘)(L¢> {Q7.Q}=~4P,. (1)
0 We will consider only states which have vanishing trans-

i i verse momentum, which is possible since the total transverse
+igD, g+ixd_x+ _2¢DLX+ TXDMP _ (3y ~ Momentum operator is kinematicalOn such states, the

5

A simplification of the light-cone gauge is that the non- IStrictly speaking, on a transverse cylinder, there are separate sec-
dynamical fieldsA™ and y may be explicitly solved from  tors with total transverse momentar@/L; we consider only one of
their Euler-Lagrange equations of motion: them,n=0.
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light-cone supercharge®” andQ™~ anticommute with each [a;(p*,n,),aj(q",m,)]1={b;(p*.n,).bl(q*,m,)}
other, and the supersymmetry algebra is equivalent to the

N=(1,1) supersymmetry of the dimensionally reduceel., =8P =), m G- (12
two-dimensiongltheory[5]. Moreover, in theP, =0 sector,

the mass squared operatd? is given byM?=2P*P~.

As we mentioned earlier, in order to render the boundAs we mentioned previously we dropped the longitudinal
state equations numerically tractable, the transverse momeA€ro momentum mode. A review of zero modes can be found
tum of partons must be truncated. First, we introduce thén [4]. It is regrettable that to date it has not been possible to
Fourier expansion for the field$ and , where the trans- include numerically the dynamical zero modes of the gauge

verse space-time coordinaté is periodically identified: field A" even in(1+1)-dimensional theories. An analytical
- discussion of the importance of this degree of freedom in a
b (0, XX, )= 1 2 (1+1)-dimensional theory can be found Jd9]. It is seen
A2 L V27l there that these dynamical zero modes come in non-linearly,

making a numerical treatment very difficult. It is possible

= dk* bl ke i) however that a careful treatment of this dynamical zero mode

X JO W[aij(k n-)e TR could give rise to dynamical breaking of supersymmetry of
the type suggested ir20]. If the breaking were to occur as

+al(k* nL)eiwx:i(zwni/L)Xq was suggested by Witten, the main effect would be to alter

e the degeneracy of the ground state and therefore alter the

1 * Witten index. In scalar theories it has been known for some

$ij(0, X7, X, )= E time that constrained zero modes can give rise to dynamical
2 7l =l

symmetry breakind4] and work continues on the role of
. - zero modes and near zero modes in these thef2ids Fi-
X f dk*[bij(k*,ni)e*wx +i2mnt/Lx, nally we should note that in theories where the exact solution
0 is known, DLCQ calculations that drop the zero mode have
been able to reproduce the massive spectfdinand we

Tt nlyalk x™—i(2ant/L)x
+hj(kT.n)e ‘1. expect that to be true here as well.

Substituting these into th@nti-)commutatorg10), one finds The supercharges now take the following forms:
QF=i2¥ 3 | diKibfj(k,n)ay (ki) —aj(k,n)by (knt)], (13
neZ
27/47Ti . ni
= dk—/[al (k,n")b;; (k,n*)—b! (k,n")a;: (k,n*
Q=" 2 JO gL ton )by (ko) = b thon)ay (k)]
i271/4g .
+ T nng dkydkodkad(ky+Ky—Kg) St 1 nt nt

1 k,—k
><| 2 —[ak(ky,ni)a) (ky,nb)byj (kg n)

2\kk, K3

1 ky+k
T 1773, 1
_bij(k3,né)aik(kl,ni)akj(kz,né)]"‘mk—z[aik(ksyné)akj(klynf)bij(kz,nﬁ)

1  ky,+k
+ R n 2 3.t T L L
_aik(kl,nl)bkj(kz,nz)aij(kaané)]+T\/Z—ksk—l[bik(klv”i)akj(kzvnz)aij(kS:ns)

1 1 1
—a] (k3,n3)bi(ky)ag(kp,nz) 1+ k—l+k—z—k—g)[b&(kl,nbblj(kz,n§>bij<kg,né>

+biJrj(k3’né)bik(kl’ni_)bkj(kz’né)]]- (14
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We now perform the truncation procedure; namely, in alloverlappingS-odd andS-even sector$22], the P symmetry
sums over the transverse momentaappearing in the above leads to a double degeneracy of massive st@esddition to
expressions for the supercharges, we restrict the summatidhe usual boson-fermion degeneracy due to supersymjnetry
to the following allowed momentum modesnil=0, To demonstrate this, let us start from the massive bosonic
+1,...,=T. Note that this prescription is symmetric, in the State|M +):

sense that there are as many positive modes as there are

negative ones. In this way weyrert)ain parity symmetry in the (Q)M+)=MM+), PIM+)=+[M+). (18

transverse direction. If M#0, then the bosonic sta®"Q~|[M+) has nonzero

How_ does such a truncatioq affect the supersymmgt%orm and it is also an eigenstate @7)2 with eigenvalue
properties of the theory? Note first that an operator relatlorM2 This state however has a negative parity:
[A,B]=C in the full theory is not expected to hold in the ’

truncated formulation. However, K is quadratic in terms of PQ'Q IM+)=—Q"PQ |[M+)
fields (or in terms of creation and annihilation operajors L
one can show that the relatii,B]=C implies =—-Q"Q P|M+)
—_—0O+tO—
[Atr vBtr]:Ctr =-QQ |M +>' (19

Thus we found one more nice feature of SDLCQ: in addition
to preserving supersymmetry in the truncated theory it also
b o . reserves the degeneracy of the spectrum related to parity.

and{Qy ,Qy}=0 are true in the?, =0 sector of the trun- \F;Ve believe that St;’his deg):aneracy veill be lost in the uzualy
cated theory. The anticommutatQ, ,Q, }, however, is  p| cq approximation but currently have no proof of that.
not equal to 2/2P; . So the diagonalization ofQ; ,Q;} To summarize, we have introduced a truncation procedure
will yield a different bound-state spectrum than the one ob+that facilitates a numerical study of the bound state problem,
tained after diagonalizing ¥2P,; . Of course, the two spec- and preserves supersymmetry. The interesting property of
tra should agree in the limif—o. At any finite truncation, the light-cone supercharg@ ", Eq.(14), is the presence of a
however, we have the liberty to diagonalize either of thesejauge coupling constant as an independent variable, which
operators. The choice ¢R, ,Q, } specifies our regulariza- does not appear in the study of two-dimensional theories. In
tion scheme. the next section, we will study how variations in this cou-

Choosing to diagonalize the light-cone supercha@ge  pling affects the bound states in the theory.
has an important advantagite spectrum is exactly super-
symmetric for any truncatiorin contrast, the spectrum of the ll. NUMERICAL RESULTS
HamiltonianP,, becomes supersymmetric only in the infinite
resolution limit.

Let us discuss the discrete symmetriesQf. There are
three commuting, symmetries; one of them is the parity in
the transverse direction:

for the truncated operatows,,, B,,, andC,, . In our case,
Q" is quadratic, and so the relatiof®, ,Q, }=22P;

In order to implement the DLCQ formulation of the
bound-state problem—uwhich is tantamount to imposing pe-
riodic boundary conditiong ™ =x"+27R [18]—we simply
restrict the light-cone momentum variablkesappearing in
the expressions fo@ " andQ~ to the following discretized

P:ay;(k,n*)——ay(k,—n*), by(k,nt)—by(k,—n*). ~ setof momenta:
(15
1 2 3
- . _ — Pt —P*, =P, ...,I.
Note thatP does not commute wit®@™ or with P : K 'K 'K !
PQ"=-Q'P, PP, =—P,P. (1)  Here,P* denotes the total light-cone momentum of a state,

and may be thought of as a fixed constant, since it is easy to
form a Fock basis that is already diagonal with respect to the
operatorP* [17]. The reciprocal of the harmonic resolution
K measures the coarseness of our discretization. The con-
S:aij(k,nL)H_aji(KnL), bij(k,nj_)_)_bji(k,_nj_). tinuum limit is then recovered by taking t_h_e Iin1i¢_—>oo.
(17) P_hys_|cally, 1K represents .the smallest positive unit of I_on—
gitudinal momentum fraction allowed for each parton in a
It commutes with all the Noether chargé®—(9). SinceP ~ Fock state.
and S commute with each other, one needs only one addi- Of course, as soon as we implement the SDLCQ proce-
tional symmetryR=PSto close the group. dure, which is specified unambiguously by the harmonic
SinceQ~, P and S commute with each other, we can resolutionK, and cut off transverse momentum modes via
diagonalize them simultaneously. This allows a diagonalizathe constraintni"|<T, the integrals appearing in the defini-
tion of the supercharge separately in the sectors with fixed tions forQ*™ andQ™ are replaced by finite sums, and so the
and S parities and thus will reduce the size of matrices. Do-eigen-equation R*P~|¥)=M?|¥) is reduced to a finite
ing this one finds that the roles & and S are different.  matrix diagonalization problem. In this last step we use the
While all the eigenvalues are usually broken into non-fact thatP~ is proportional to the square of the light-cone

The second symmetry is given by a generalization ofTthe
symmetry defined irf16] (we will call it Sto avoid the
confusion with transverse truncation paramgeter
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coupling has very little meaning since the coupling only
comes in as an overall multiplicative constant in the Hamil-
tonian. There are a few lattice results but most of what we
know comes from theories that have dualities with weakly
coupled theories. For the @21)-dimensionalV=1 SYM
theory we are considering, there is no known duality be-
tween strong and weak coupling. Using SDLCQ, however,
we can directly uncover the behavior of the theory at strong
coupling.
In Fig. 2, we plot the bound state mass squalkéd] in
units of 4%/L2, as a function of the transverse resolutibn
for K=4 andK=5 in the strong-coupling regime. We see
g’ that these curves are amazingly flat, showing that this theory
converges very rapidly with the transverse cutoff. We saw
FIG. 1. Plot of the bound state mass squakéd in units of  previously in (1+1)-dimensional model§7] that SDLCQ
47%/L? as a function of the dimensionless coupling<@'<10,  converges much faster than DLCQ, and this appears to per-
defined by §')?=g°NL/47°, atN=1000, T=1 andK=5. Note gt for the transverse momentum if-2 dimensions. From
that there are massless states. these figures it appears that we get sensible resulfs=bg
and good results already fdr=3.
supercharge Q. Previously[12] we studied this theory  Given this rapid convergence, a sensible procedure is to
with K up to 5, but with only one unit of transverse momen-remove the transverse cutoff by extrapolating the masses of
tum corresponding td=1. In Fig. 1 we show the spectrum ne |ow lying bounds states to large transverse resolution at
we obtained in that study as a function of a dimensionlesg,ch value of the longitudinal resolutigthus constructing
couplingg’ =g yNL/4a*. This figure shows several striking the SDLCQ spectrum of the complete three dimensional
features that we want to analyze in more detail. First, Weheory and then extrapolating to large longitudinal resolu-
want to know Wh'eth(.ar the WeII—Qef|ned _strong-couplmg SPECtion K for each of the states to find the spectrum as a function
trum, observed in Fig. 1, persists at higher values of trans-

lutio and study it 1 The oth of the coupling. FoK=6 and 7 we simply take the masses
Verse resoiutiort and study 1ts convergence in The other - o 0 largest transverse resolution since there are not enough
striking feature of the&K=5, T=1 spectrum is the state that

) . . ; . transverse moment points to make a meaningful extrapola-
is falling rapidly at large coupling. We will analyze the be- } P 9 P

havior of analogous states at different values of longitudina
and transverse resolutions and in particular we will be inter
ested in the fate of the asymptofigsg— ) massless state
in the continuum limit. In addition to this state there are
many states that stay exactly massless at all values of co
pling. As we have shown ifiLl2], the number of such states
does not depend on the value of the transverse resolutio
The new numerical data support this result. The massiv
state atg=0 is just the discrete approximation the a con
tinuum of free particles and is extactly calculable analyti
cally.

Our previous SDLCQ calculations were done using
code written in Mathematica and performed on a PC. This
code has now been rewritten io++ and some of the
present work was done on supercomputers. We were able
perform numerical diagonalizations f&r=2—7 and for val-
ues of TuptoT=9 atK=4 andT=1 atK=7.

2 4 6 8 10

Let us look at the bound state mass as a function of the
coupling. Figure 8) shows an example of states completely
settled down in transverse resolution, nami€k4,T=9. In
contrast, Fig. &) has onlyT=1 atK=6. Notice that nev-
Brtheless both plots show extremely stable states as a func-
tion of the couplingg, irrespective of their status of conver-
ence inT. As we found in our preliminary studyl2] of this
eory, all the masses in the strong-coupling region are inde-
“pendent of the coupling. We see that by a couplinggbf
"=20 a stable strong-coupling spectrum has appeared. We
have looked as high as couplings of 1000 and we see this
ame behavior for all longitudinal and transverse resolutions.
In Fig. 4 we plot the bound state mass as a function of
f‘%)/K. These results are the first calculation of the strong-
coupling bound states df/=1 SYM theory in 2+1 dimen-
sions. As we increase the resolution we are able to see states
that have as their primary component more and more par-
tons, and as we have seen in other supersymmetiSY)
A. Strong coupling: Massive spectrum theories, many of these states appear at low energies. This
i ) ) accumulation of high-multiplicity low-mass states appears to
_ There are very few theories, other than i1 dimen-  pg 5 ynique property of SUSY theories. In non-SUSY theo-
sions, where we have good information about the Strongries the new states appear at increasing energies. In the di-
coupling spectrum. In 1 1 dimensions the concept of strong mensjonally reduced version of this theory we saw that the
accumulation point of these low-mass states appeared to be
at zero masf§l2,13. Here again we see clear evidence of an
2Strictly speaking,P~=(1/1/2)(Q7)? is an identity in the con- accumulation of low mass states; however, we do not have
tinuum theory and alefinition in the compactified theory, corre- sufficient information to say whether an accumulation point
sponding to the SDLCQ prescripti¢s,11]. exists.
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M2 K=4, g=10.0 M? K=5, g'=10.0
10_/' e 10_"%5&_
N ] ot ’/\_
C ] C P ] FIG. 2. Plot of the bound state
L ] L i mass squaredM? in units of
6 7 6 7 47%/L? as a function of the trans-
- 1 F . verse resolutiorT for a coupling
4L M—P—‘—’_\__ [ —— g’ =10 and for longitudinal reso-
S ———— ; - lutions K=4 (a) and K=5 (b).
L 1 H . Boson and fermion masses are
R 7 R 7 identical.
O _\ Il 1 | Il 1 Il ‘ 1 Il Il | 1 Il Il | Il Il 1 ‘_ o _\ 1 1 ‘ Il 1 1 ‘ Il Il 1 | Il Il 1 | Il Il 1 |
0 02 04 068 08 1 0 02 04 08 08 1
1/T 1/T

At this point we have not attempted to follow a specific metric scalar matrix model if6] and in that model the au-
bound state as a function & The appearance of new low thors conjecture that this behavior might signal the existence
mass as we increasemakes this difficult; however, a care- of a critical coupling. Here the point where the mass goes to
ful study of the wave function should make it possible. Alsozero would appear to move to infinity as we remove the
the accuracy of the extrapolation to infinite would be transverse cutoff, and it is not at all clear that those ideas
greatly impoved by addition of one or two additional trans-carry over here.
verse resolution at the largest valueskof At K=6 andK=4 we do not see these states, at least not

at the same masses butkat 7 we again see such states.. We
believe that this is strong evidence that these are unphysical
B. Strong coupling: Unphysical states states. Clearly a real normalizable bound state must be vis-
ible at both even and odd resolutions, which is not the case
here. Recently we have seen unphysical massless states of
mis type in a two dimensional theory with (8,8) supersym-
etry[13]. In that theory we had an independent theoretical
vidence for them to be unphysical.

In our preliminary study of this model we found one state
that was particularly striking. It was very heavy at small
coupling and approached zero mass at strong coupling; ¢
Fig. 1. We have now been able to look at this state at higheé
values of both transverse and longitudinal resolutions. We
now believe that this state is most likely not a physical one.

We are now able to identify two states with irregular cou-
pling dependence which are shown in Fig. 5 at various trans-
verse resolutions foK=5. We see that as we increase the In Fig. 1 we see a number of states that become massless
transverse cutoff these states move up rapidly in mass, leads g’ —0. We already explained this property ii2].
ing us to conclude that a— o, they decouple. One of these Namely at zero coupling only the first term survives in
irregular states falls down tgl =0 and then moves up, while the superchargél4) and then all the partons with, =0
another one has the same type of behavior, but with finit¢anti-)commute withQ . Thus any state constructed from
minimal mass. The fact that the first state touches zero is afuch partons only becomes massless. The inverse statement
some interest: a similar behavior was noted in a supersymis also true: atg’=0 a massless state cannot contain any

C. Massless states

M2 K=4, T=9 M2 K=6, T=1
10 nél LI LA I B L B 10 LA L L L B BB
:F - 6 .
8 —
1{/ ] 2 -
] - FIG. 3. Plot of the bound state
6 N 6 ] mass squaredM? in units of
- . = . 47%/L? as a function of the cou-
4L . 4. ] pling g’. We show the plots for
4 g R 7 K=4,T=9 (@ andK=6, T=1
- ] N ]
L 4 A 3 (b).
2 - 2 H .
0 v v by b vy b Ly 0 v e b P P by gy
0 20 40 60 BO 100 120 0 20 40 60 BO 100 120
g g
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M? g'=10.0 M? K=5
10 - ! . - 10 -] '
B : i B
8 - . 8 ' — 8
i : X ] i
6 .. N 6 [
4 __ M : ¢ . __ 4 __
- . . L4 - .
2 __ ‘ __ 2 —
O_|||||||.|.|T||.||_ OIIIII““I’T“"III|III|III|III
0 0.1 0 0.3 0 20 40 60 80 100 120
1/K g
FIG. 4. Plot of the bound state mass squaké@l in units of FIG. 5. Plot of the bound state masses falling rapidly with in-

47%/L2 as a function of K for couplingg’ =10. ForkK=3,4 and  creasing coupling. The mass squaMd of these states in units of
5 we plot the value of the mass obtained by extrapolating in the4m?/L? is plotted as a function af’ = gNL/27>for K=5 at the
transverse resolutiol. For K=6 and 7 we take the values at the transverse resolutiornB=1 (short dashed lingsT=2 (solid lineg
highest resolutior. andT=3 (dashed ling

parton withn'#0. Thus the set of massless statesgat IV. DISCUSSION

=0 coincides with a Hilbert space of the theory dimension- | this work, we considered the bound states of three di-
ally reduced to ¥ 1. Moreover, the whole infrared spectrum mensional SUN) N=1 super-Yang-Mills theory defined on
of (2+1)-dimensional SYM (SYM).; theory at small cou- the compactified space-timexS'xSL. In particular, we
pling is governed by the dimensionally reduced the@®e compactified the light-cone coordinate on a light-like
[12] for details. circle via DLCQ, and wrapped the remaining transverse co-
Previously[12,8] we commented on the existence of ex- ordinatex' on a spatial circle. We showed explicitly that
actly massless states and [ih2] on the one-to-one corre- SDLCQ, employed in recent studies of {1)-dimensional
spondence between them and massless states of tBapersymmetric gauge theories, extends naturally tdl 2
(1+1)-dimensional model. Actually this fact provides an dimensions. TheN=1 supersymmetry become§=(1,1)
easy way to construct massless states for three-dimensiona¢cause we can always chd3e to be zero in a light-cone
theories; the matrices to be diagonalized have a size mudfuantized field theory, and SDLCQ provides a regularization
smaller than the ones used in the straightforward approaclscheme that preserves this supersymmetry. The supersym-
The counting of massless states in three dimensions is algpetric theory considered here is finite and requires no renor-
reduced to the analogous problem ir-1 dimensions. For ~Malization.

finite N., even the (% 1)-dimensional case is not easily ~ BY retaining a finite number of transverse and longitudi-
handled[8]; however, for largeN, the multi-trace states de- nal modes, we were able to solve for bound-state wave func-

couple, and one needs to count only single-trace masslefgnS and masses numerically by diagonalizing the dis-
states. At resolutiorK there are 2€—1) of them. As a cretized light-cone supercharge. The theory clearly has a

numerical check of the correspondence between massleggable spectrum at both small and large coqplln_gs. In Fig. 2
sectors of (2-1)- and (1+ 1)-dimensional theories. w q We see that the theory converges very rapidly in the trans-

(2 1)-and (1+ 1) ensional theories, We can o qq resolution. We have seen in Réif.that SDLCQ gives
count the massless states at different values of transver

wuti q - q ) Yery smooth behavior in the longitudinal resolution. In Fig. 5
resolution and as anticipated we found this number 10 bge’see that the states with irregular coupling dependence
independent ofl. These massless states are Bogomol'nyimoye off rapidly to high mass with increasing transverse

Prasad-Sommerfiel(BPS states in the sense that they aregsolution. They also do not seem to appear at resolutions 4
destroyed by one super-charg®, , and not the othe!Q™,  and 6. We therefore conclude that they are not physical
and the BPS bound, which is zero here, is saturated. states. We see that there are no new massless states at strong

In [12] it appeared that there were additional states that;oup”ng7 and the complete massless sector of SYM
became massless @s—c but now we believe that these theory is determined by the two-dimensional model. The
states are unphysical. Therefore the only massless statesraimber of exactly massless states at any coupling i§ 2(
nonzero coupling are the samek2{ 1) BPS states we saw —1), with no dependence on the transverse resolution. In
in the dimensionally reduced model. addition, some states become masslegsgees to zero, but
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their behavior is also described by the theory i 1L dimen- Let us briefly comment on thie dependence of the spec-
sions. Consequently, we conclude that the entire masslessim. For largelL the appropriate dimensionlessindepen-
spectrum of the (2 1)-dimensional model is determined by dent mass scale is
the dimensionally reduced model.

In previous work12] we saw that the average number of M2 M2L2/4m2
particles in the massless states increases gvhd quickly o m
becomes equal to the maximum number allowed by the reso- g*N? (9")*
lution. We also see here that the number of low-mass states
increases with resolution. Together this implies that at stron
coupling the light states of this theory, and other SUSY theo . o . :
ries, have a huge number of degrees of freedom. No doubt, gperefore in terms of this dimensionless mass s_cale the entire
is this fact that allows for the possibility that these Susy spectrum would go to zero & . A possm_)le_ Interpreta-
theories can contain all of the physics of dual theories in dion of this result is that in the continuum limit this theory
different number of space-time dimensions. It would be in_approaches a conformal field theory. There are however very

teresting to relate this observation with the recent claim thafnaslé've states in _our_spﬁctrum _that WEIE. d.'d not study that
strongly coupled super-Yang-Mills theory corresponds to°CUld remain massive in the continuum limit. .
The code that we are currently using is a newly written

string theory in an anti—de Sitter backgrour®. Of course, . ) .

the techniques we have employed here may be applied to a ++ version of the Mathematica code that.we used in much

supersymmetric gauge theory defined on a suitably compa f our earlier work. Our large runs for matrix generation are

tified space-time. This should facilitate a more general stud l_Jrre_ntIy per_forr_ned_at the Oh'(.) Supercomputer Center. _Ma-
rix diagonalization is done using standard Lapack routines

of the strongly coupled dynamics of super-Yang-Mills theo- i
ries, and in particular, allow us to scrutinize the string—like[zcg ?1” supercomputers at the tho Su.percorﬂpu.ter Cefljter
properties of Yang-Mills theories. an _t e I\/!mnes_ota Supercqmput!ng Institute. This is our first
We have neglected the zero modes totally in this calculaPTolect with this new con_f|gurat|on, and we are currently
orking on several analytical and numerical improvements

tion as have all other DLCQ calculations of gauge theories. ¥ . .
;ll‘wat we expect will allow us to increase by several factors of

%t large g’ the spectrum is constant in terms MPL%/472;

remains an important outstanding problem to include thes ) . .
modes in a gauge theory. We already know a great de 0 the size of the problems we will be able.to address in the
about zero model 9] which are, after all, really only a few [uture. Among these arti=4 SYM theory in (3+1) and
extra quantum mechanical degrees of freedom. The problef =21 SYM theory in 2+-1 with a Chern-Simons terii20].

is that these modes come in non-linearly in the definition of

the non-zero modes and thus cannot be included i_n DLCQ in ACKNOWLEDGMENTS
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