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Mass spectrum of supersymmetric Yang-Mills theory in three dimensions
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We consider supersymmetric Yang-Mills theory onR3S13S1. In particular, we choose one of the compact
directions to be light like and another to be space like. Since the SDLCQ regularization explicitly preserves
supersymmetry, this theory is totally finite, and thus we can solve for bound state wave functions and masses
numerically without renormalizing. We present the masses as functions of the longitudinal and transverse
resolutions and show that the masses converge rapidly in both resolutions. We also study the behavior of the
spectrum as a function of the coupling and find that at strong coupling there is a stable, well-defined spectrum
which we present. We also find several unphysical states that decouple at large transverse resolution. There are
two sets of massless states; one set is massless only at zero coupling and the other is massless at all couplings.
Together these sets of massless states are in one-to-one correspondence with the full spectrum of the dimen-
sionally reduced theory.

PACS number~s!: 12.60.Jv, 11.15.Pg, 11.25.Mj, 11.25.Sq
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I. INTRODUCTION

Recently, there has been considerable progress in un
standing the properties of strongly coupled gauge theo
with supersymmetry@1–3#. In particular, there are a numbe
of supersymmetric gauge theories that are believed to be
terconnected through a web of strong-weak coupling du
ties. Although existing evidence for these dualities is enco
aging, there is still an urgent need to address these issu
a more fundamental level. Ideally, we would like to solve f
the bound states of these theories directly, and at any
pling.

Of course, solving a field theory from first principles
typically an intractable task. Nevertheless, it has been kno
for some time that (111)-dimensional field theoriescan be
solved from first principles via a straightforward applicati
of discrete light cone quantization~DLCQ! ~see @4# for a
review!. In more recent times, a large class of supersymm
ric gauge theories in two dimensions was studied usin
supersymmetric form of DLCQ~or ‘‘SDLCQ’’ !, which is
known to preserve supersymmetry@5–11#.

We have recently been able to extend the SDLCQ al
rithms to solve higher-dimensional theories@12#. One impor-
tant difference between two-dimensional and high
dimensional theories is the phase diagram induced
variations in the gauge coupling. The spectrum of
(111)-dimensional gauge theory scales trivially with r
spect to the gauge coupling, while a theory in higher dim
sions has the potential of exhibiting a complex phase st
ture, which may include a strong-weak coupling duali
Reference@12# seemed to provide hints of the latter. It
therefore interesting to study the phase diagram of ga
theories inD>3 dimensions.

Towards this end, we consider three dimensional SU(Nc)
N51 super-Yang-Mills~SYM! compactified on the space
time R3S13S1. The calculations are all done in the larg
Nc limit. In particular, we compactify the light-cone coord
natex2 on a light-like circle via DLCQ, and wrap the re
maining transverse coordinatex' on a spatial circle. We
0556-2821/2000/62~7!/075002~9!/$15.00 62 0750
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drop the zero modes in the longitudinal momentum as is
custom in DLCQ@5–8,10,12–16#. A review of dynamical
and constrained zero modes can be found in@4#.

We are able to solve for bound state wave functions a
masses numerically by diagonalizing the discretized lig
cone supercharge. We have shown that the SDLCQ pro
dure extends naturally to 211 dimensions, resulting in an
exactly supersymmetric spectrum.

The contents of this paper are organized as follows.
Sec. II, we formulate SU(Nc) N51 super-Yang-Mills
theory defined on the compactified space-timeR3S13S1.
Explicit expressions are given for the light-cone sup
charges, which are then discretized via the SDLCQ pro
dure. Quantization of the theory is carried out by imposi
canonical ~anti-!commutation relations for boson and fe
mion fields. We also discuss the two discrete symmetries
the theory in this section. In Sec. III, we present our nume
cal results. We present plots of the spectrum as a functio
the longitudinal and transverse resolution and show tha
converges very rapidly in both. We plot the spectrum also
a function of the coupling and find a very stable stron
coupling spectrum. We identify several states that appea
be unphysical and disappear at high transverse resoluti
Finally we discuss the infrared spectrum of the theory a
present evidence that it is entirely determined by the dim
sionally reduced theory. We conclude our analysis with
discussion of our results and a list of important related fut
projects in Sec. IV.

II. LIGHT-CONE QUANTIZATION AND SDLCQ

Discrete light cone quantization has proved to be a v
powerful method of studying the mass spectra of vario
theories@4#. It is well known that in 111 dimensions one
can define a new version of DLCQ which preserves sup
symmetry @5,11#. In higher dimensions a supersymmetr
prescription is also possible@12#. We begin by introducing
light-cone coordinatesx65(x06x1)/A2, and compactifying
thex2 coordinate on a light-like circle. In this way, the con
©2000 The American Physical Society02-1
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jugate light-cone momentumk1 is discretized. To discretize
the remaining~transverse! momentumk'5k2, we may com-
pactify x'5x2 on a spatial circle. Of course, there is a s
nificant difference between the discretized light-cone m
menta k1 and the discretized transverse momentak' ;
namely, the light-cone momentumk1 is always positive,
while k' may take on positive or negative values. The po
tivity of k1 is a key property that is exploited in DLCQ
calculations; for any given light-cone compactification, the
are only a finite number of choices fork1—the total number
depending on how finely we discretize the momenta. T
‘‘resolution’’ of the discretization is usually characterized b
a positive integerK, which is called the ‘‘harmonic resolu
tion’’ @17,18#; for a given choice ofK, the light-cone mo-
menta k1 are restricted to positive integer multiples
P1/K, where P1 is the total light-cone momentum of
state. In the context of two-dimensional theories, this imp
a finite number of Fock states@17#.

In the case of interest here, we include an additional tra
verse dimension, and the number of Fock states is no lon
finite, since there is an arbitrarily large number of transve
momentum modes defined on the transverse spatial ci
Thus, an additional truncation of the transverse momen
modes is required to render the total number of Fock st
finite and the problem numerically tractable. This truncat
procedure, which is characterized by a transverse resolu
T, is analogous to the truncation ofk1 imposed by the ‘‘har-
monic resolution’’ K. Thus the transverse momentumk'

range from zero to62pT/L , whereL is the size of the
transverse circle.

Let us now review these ideas in the context of a spec
super-Yang-Mills theory. We start with (211)-dimensional
N51 super-Yang-Mills theory defined on a space-time w
one transverse dimension compactified on a circle:

S5E d2xE
0

L

dx'trS 2
1

4
FmnFmn1 iC̄gmDmC D . ~1!

After introducing the light-cone coordinatesx65(1/A2)(x0

6x1), decomposing the spinorC in terms of chiral projec-
tions

c5
11g5

21/4
C, x5

12g5

21/4
C, ~2!

and choosing the light-cone gaugeA150, we obtain

S5E dx1dx2E
0

L

dx'trF1

2
~]2A2!21~D1f1]'A2!]2f

1 icD1c1 ix]2x1
i

A2
cD'x1

i

A2
xD'cG . ~3!

A simplification of the light-cone gauge is that the no
dynamical fieldsA2 and x may be explicitly solved from
their Euler-Lagrange equations of motion:
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A25
1

]2
2

J5
1

]2
2 ~ ig@f,]2f#12gcc2]']f!,

x52
1

A2]2

D'c. ~4!

These expressions may be used to express any operat
terms of the physical degrees of freedom only. In particu
the light-cone energy,P2, and momentum operators,P1,
P', corresponding to translation invariance in each of
coordinatesx6 andx' , may be calculated explicitly:

P15E dx2E
0

L

dx'tr@~]2f!21 ic]2c#, ~5!

P25E dx2E
0

L

dx'trF2
1

2
J

1

]2
2

J2
i

2
D'c

1

]2
D'cG ,

~6!

P'5E dx2E
0

L

dx'tr@]2f]'f1 ic]'c#. ~7!

The light-cone supercharge in this theory is a two compon
Majorana spinor, and may be conveniently decomposed
terms of its chiral projections:

Q1521/4E dx2E
0

L

dx'tr@f]2c2c]2f#, ~8!

Q2523/4E dx2E
0

L

dx'trF]'fc1g~ i@f,]2f#

12cc!
1

]2
cG . ~9!

The action ~3! gives the following canonical~anti-!
commutation relations for propagating fields for largeNc at
equalx1:

@f i j ~x2,x'!,]2fkl~y2,y'!#5$c i j ~x2,x'!,ckl~y2,y'!%

5
1

2
d~x22y2!d~x'2y'!

3d i l d jk . ~10!

Using these relations one can check the supersymmetry
gebra

$Q1,Q1%52A2P1, $Q2,Q2%52A2P2,

$Q1,Q2%524P' . ~11!

We will consider only states which have vanishing tran
verse momentum, which is possible since the total transv
momentum operator is kinematical.1 On such states, the

1Strictly speaking, on a transverse cylinder, there are separate
tors with total transverse momenta 2pn/L; we consider only one of
them,n50.
2-2
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light-cone superchargesQ1 andQ2 anticommute with each
other, and the supersymmetry algebra is equivalent to
N5(1,1) supersymmetry of the dimensionally reduced~i.e.,
two-dimensional! theory@5#. Moreover, in theP'50 sector,
the mass squared operatorM2 is given byM252P1P2.

As we mentioned earlier, in order to render the bou
state equations numerically tractable, the transverse mom
tum of partons must be truncated. First, we introduce
Fourier expansion for the fieldsf and c, where the trans-
verse space-time coordinatex' is periodically identified:

f i j ~0, x2,x'!5
1

A2pL
(

n'52`

`

3E
0

` dk1

A2k1
@ai j ~k1,n'!e2 ik1x21 i(2pn'/L)x'

1aji
† ~k1,n'!eik1x22 i(2pn'/L)x'#

c i j ~0, x2,x'!5
1

2ApL
(

n'52`

`

3E
0

`

dk1@bi j ~k1,n'!e2 ik1x21 i(2pn'/L)x'

1bji
† ~k1,n'!eik1x22 i(2pn'/L)x'#.

Substituting these into the~anti-!commutators~10!, one finds
07500
e

d
n-
e

@ai j ~p1,n'!,alk
† ~q1,m'!#5$bi j ~p1,n'!,blk

† ~q1,m'!%

5d~p12q1!dn' ,m'
d i l d jk . ~12!

As we mentioned previously we dropped the longitudin
zero momentum mode. A review of zero modes can be fo
in @4#. It is regrettable that to date it has not been possible
include numerically the dynamical zero modes of the gau
field A1 even in~111!-dimensional theories. An analytica
discussion of the importance of this degree of freedom i
~111!-dimensional theory can be found in@19#. It is seen
there that these dynamical zero modes come in non-linea
making a numerical treatment very difficult. It is possib
however that a careful treatment of this dynamical zero m
could give rise to dynamical breaking of supersymmetry
the type suggested in@20#. If the breaking were to occur a
was suggested by Witten, the main effect would be to a
the degeneracy of the ground state and therefore alter
Witten index. In scalar theories it has been known for so
time that constrained zero modes can give rise to dynam
symmetry breaking@4# and work continues on the role o
zero modes and near zero modes in these theories@21#. Fi-
nally we should note that in theories where the exact solu
is known, DLCQ calculations that drop the zero mode ha
been able to reproduce the massive spectrum@4#, and we
expect that to be true here as well.

The supercharges now take the following forms:
Q15 i21/4 (
n'PZ

E
0

`

dkAk@bi j
† ~k,n'!ai j ~k,n'!2ai j

† ~k,n'!bi j ~k,n'!#, ~13!

Q25
27/4p i

L (
n'PZ

E
0

`

dk
n'

Ak
@ai j

† ~k,n'!bi j ~k,n'!2bi j
† ~k,n'!ai j ~k,n'!#

1
i221/4g

ALp
(

ni
'PZ

E
0

`

dk1dk2dk3d~k11k22k3!dn
1
'1n

2
' ,n

3
'

3H 1

2Ak1k2

k22k1

k3
@aik

† ~k1 ,n1
'!ak j

† ~k2 ,n2
'!bi j ~k3 ,n3

'!

2bi j
† ~k3 ,n3

'!aik~k1 ,n1
'!ak j~k2 ,n2

'!#1
1

2Ak1k3

k11k3

k2
@aik

† ~k3 ,n3
'!ak j~k1 ,n1

'!bi j ~k2 ,n2
'!

2aik
† ~k1 ,n1

'!bk j
† ~k2 ,n2

'!ai j ~k3 ,n3
'!#1

1

2Ak2k3

k21k3

k1
@bik

† ~k1 ,n1
'!ak j

† ~k2 ,n2
'!ai j ~k3 ,n3

'!

2ai j
† ~k3 ,n3

'!bik~k1!ak j~k2 ,n2
'!#1S 1

k1
1

1

k2
2

1

k3
D @bik

† ~k1 ,n1
'!bk j

† ~k2 ,n2
'!bi j ~k3 ,n3

'!

1bi j
† ~k3 ,n3

'!bik~k1 ,n1
'!bk j~k2 ,n2

'!#J . ~14!
2-3
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We now perform the truncation procedure; namely, in
sums over the transverse momentani

' appearing in the above
expressions for the supercharges, we restrict the summa
to the following allowed momentum modes:ni

'50,
61, . . . ,6T. Note that this prescription is symmetric, in th
sense that there are as many positive modes as there
negative ones. In this way we retain parity symmetry in
transverse direction.

How does such a truncation affect the supersymme
properties of the theory? Note first that an operator rela
@A,B#5C in the full theory is not expected to hold in th
truncated formulation. However, ifA is quadratic in terms of
fields ~or in terms of creation and annihilation operator!,
one can show that the relation@A,B#5C implies

@Atr ,Btr #5Ctr

for the truncated operatorsAtr , Btr , andCtr . In our case,
Q1 is quadratic, and so the relations$Qtr

1 ,Qtr
1%52A2Ptr

1

and $Qtr
1 ,Qtr

2%50 are true in theP'50 sector of the trun-
cated theory. The anticommutator$Qtr

2 ,Qtr
2%, however, is

not equal to 2A2Ptr
2 . So the diagonalization of$Qtr

2 ,Qtr
2%

will yield a different bound-state spectrum than the one
tained after diagonalizing 2A2Ptr

2 . Of course, the two spec
tra should agree in the limitT→`. At any finite truncation,
however, we have the liberty to diagonalize either of the
operators. The choice of$Qtr

2 ,Qtr
2% specifies our regulariza

tion scheme.
Choosing to diagonalize the light-cone superchargeQtr

2

has an important advantage:the spectrum is exactly supe
symmetric for any truncation. In contrast, the spectrum of th
HamiltonianPtr

2 becomes supersymmetric only in the infini
resolution limit.

Let us discuss the discrete symmetries ofQ2. There are
three commutingZ2 symmetries; one of them is the parity
the transverse direction:

P:ai j ~k,n'!→2ai j ~k,2n'!, bi j ~k,n'!→bi j ~k,2n'!.
~15!

Note thatP does not commute withQ1 or with P' :

PQ152Q1P, PP'52P'P. ~16!

The second symmetry is given by a generalization of thT
symmetry defined in@16# ~we will call it S to avoid the
confusion with transverse truncation parameter!:

S:ai j ~k,n'!→2aji ~k,n'!, bi j ~k,n'!→2bji ~k,2n'!.
~17!

It commutes with all the Noether charges~5!–~9!. SinceP
and S commute with each other, one needs only one ad
tional symmetryR5PS to close the group.

Since Q2, P and S commute with each other, we ca
diagonalize them simultaneously. This allows a diagonali
tion of the supercharge separately in the sectors with fixeP
andS parities and thus will reduce the size of matrices. D
ing this one finds that the roles ofP and S are different.
While all the eigenvalues are usually broken into no
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overlappingS-odd andS-even sectors@22#, the P symmetry
leads to a double degeneracy of massive states~in addition to
the usual boson-fermion degeneracy due to supersymme!.
To demonstrate this, let us start from the massive boso
stateuM1&:

~Q2!2uM1&5M2uM1&, PuM1&51uM1&. ~18!

If MÞ0, then the bosonic stateQ1Q2uM1& has nonzero
norm and it is also an eigenstate of (Q2)2 with eigenvalue
M2. This state however has a negative parity:

PQ1Q2uM1&52Q1PQ2uM1&

52Q1Q2PuM1&

52Q1Q2uM1&. ~19!

Thus we found one more nice feature of SDLCQ: in additi
to preserving supersymmetry in the truncated theory it a
preserves the degeneracy of the spectrum related to pa
We believe that this degeneracy will be lost in the us
DLCQ approximation but currently have no proof of that.

To summarize, we have introduced a truncation proced
that facilitates a numerical study of the bound state proble
and preserves supersymmetry. The interesting property
the light-cone superchargeQ2, Eq. ~14!, is the presence of a
gauge coupling constant as an independent variable, w
does not appear in the study of two-dimensional theories
the next section, we will study how variations in this co
pling affects the bound states in the theory.

III. NUMERICAL RESULTS

In order to implement the DLCQ formulation of th
bound-state problem—which is tantamount to imposing
riodic boundary conditionsx25x212pR @18#—we simply
restrict the light-cone momentum variableski appearing in
the expressions forQ1 andQ2 to the following discretized
set of momenta:

H 1

K
P1,

2

K
P1,

3

K
P1, . . . ,J .

Here,P1 denotes the total light-cone momentum of a sta
and may be thought of as a fixed constant, since it is eas
form a Fock basis that is already diagonal with respect to
operatorP1 @17#. The reciprocal of the harmonic resolutio
K measures the coarseness of our discretization. The
tinuum limit is then recovered by taking the limitK→`.
Physically, 1/K represents the smallest positive unit of lo
gitudinal momentum fraction allowed for each parton in
Fock state.

Of course, as soon as we implement the SDLCQ pro
dure, which is specified unambiguously by the harmo
resolutionK, and cut off transverse momentum modes v
the constraintuni

'u<T, the integrals appearing in the defin
tions forQ1 andQ2 are replaced by finite sums, and so t
eigen-equation 2P1P2uC&5M2uC& is reduced to a finite
matrix diagonalization problem. In this last step we use
fact thatP2 is proportional to the square of the light-con
2-4
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supercharge2 Q2. Previously @12# we studied this theory
with K up to 5, but with only one unit of transverse mome
tum corresponding toT51. In Fig. 1 we show the spectrum
we obtained in that study as a function of a dimensionl
couplingg85gANL/4p3. This figure shows several strikin
features that we want to analyze in more detail. First,
want to know whether the well-defined strong-coupling sp
trum, observed in Fig. 1, persists at higher values of tra
verse resolutionT and study its convergence inT. The other
striking feature of theK55, T51 spectrum is the state tha
is falling rapidly at large coupling. We will analyze the b
havior of analogous states at different values of longitudi
and transverse resolutions and in particular we will be in
ested in the fate of the asymptotic~asg→`) massless state
in the continuum limit. In addition to this state there a
many states that stay exactly massless at all values of
pling. As we have shown in@12#, the number of such state
does not depend on the value of the transverse resolu
The new numerical data support this result. The mass
state atg50 is just the discrete approximation the a co
tinuum of free particles and is extactly calculable analy
cally.

Our previous SDLCQ calculations were done using
code written in Mathematica and performed on a PC. T
code has now been rewritten inC11 and some of the
present work was done on supercomputers. We were ab
perform numerical diagonalizations forK52 –7 and for val-
ues ofT up to T59 at K54 andT51 at K57.

A. Strong coupling: Massive spectrum

There are very few theories, other than in 111 dimen-
sions, where we have good information about the stro
coupling spectrum. In 111 dimensions the concept of stron

2Strictly speaking,P25(1/A2)(Q2)2 is an identity in the con-
tinuum theory and adefinition in the compactified theory, corre
sponding to the SDLCQ prescription@5,11#.

FIG. 1. Plot of the bound state mass squaredM2 in units of
4p2/L2 as a function of the dimensionless coupling 0<g8<10,
defined by (g8)25g2NL/4p3, at N51000, T51 andK55. Note
that there are massless states.
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coupling has very little meaning since the coupling on
comes in as an overall multiplicative constant in the Ham
tonian. There are a few lattice results but most of what
know comes from theories that have dualities with wea
coupled theories. For the (211)-dimensionalN51 SYM
theory we are considering, there is no known duality b
tween strong and weak coupling. Using SDLCQ, howev
we can directly uncover the behavior of the theory at stro
coupling.

In Fig. 2, we plot the bound state mass squaredM2, in
units of 4p2/L2, as a function of the transverse resolutionT
for K54 andK55 in the strong-coupling regime. We se
that these curves are amazingly flat, showing that this the
converges very rapidly with the transverse cutoff. We s
previously in (111)-dimensional models@7# that SDLCQ
converges much faster than DLCQ, and this appears to
sist for the transverse momentum in 211 dimensions. From
these figures it appears that we get sensible results byT.2
and good results already forT.3.

Given this rapid convergence, a sensible procedure i
remove the transverse cutoff by extrapolating the masse
the low lying bounds states to large transverse resolutio
each value of the longitudinal resolution~thus constructing
the SDLCQ spectrum of the complete three dimensio
theory! and then extrapolating to large longitudinal reso
tion K for each of the states to find the spectrum as a func
of the coupling. ForK56 and 7 we simply take the masse
at the largest transverse resolution since there are not en
transverse moment points to make a meaningful extrap
tion.

Let us look at the bound state mass as a function of
coupling. Figure 3~a! shows an example of states complete
settled down in transverse resolution, namelyK54,T59. In
contrast, Fig. 3~b! has onlyT51 at K56. Notice that nev-
ertheless both plots show extremely stable states as a f
tion of the couplingg, irrespective of their status of conve
gence inT. As we found in our preliminary study@12# of this
theory, all the masses in the strong-coupling region are in
pendent of the coupling. We see that by a coupling ofg8
520 a stable strong-coupling spectrum has appeared.
have looked as high as couplings of 1000 and we see
same behavior for all longitudinal and transverse resolutio

In Fig. 4 we plot the bound state mass as a function
1/K. These results are the first calculation of the stron
coupling bound states ofN51 SYM theory in 211 dimen-
sions. As we increase the resolution we are able to see s
that have as their primary component more and more p
tons, and as we have seen in other supersymmetric~SUSY!
theories, many of these states appear at low energies.
accumulation of high-multiplicity low-mass states appears
be a unique property of SUSY theories. In non-SUSY the
ries the new states appear at increasing energies. In th
mensionally reduced version of this theory we saw that
accumulation point of these low-mass states appeared t
at zero mass@12,13#. Here again we see clear evidence of
accumulation of low mass states; however, we do not h
sufficient information to say whether an accumulation po
exists.
2-5
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FIG. 2. Plot of the bound state
mass squaredM2 in units of
4p2/L2 as a function of the trans
verse resolutionT for a coupling
g8510 and for longitudinal reso-
lutions K54 ~a! and K55 ~b!.
Boson and fermion masses a
identical.
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At this point we have not attempted to follow a speci
bound state as a function ofK. The appearance of new low
mass as we increaseK makes this difficult; however, a care
ful study of the wave function should make it possible. Al
the accuracy of the extrapolation to infiniteK would be
greatly impoved by addition of one or two additional tran
verse resolution at the largest values ofK.

B. Strong coupling: Unphysical states

In our preliminary study of this model we found one sta
that was particularly striking. It was very heavy at sm
coupling and approached zero mass at strong coupling
Fig. 1. We have now been able to look at this state at hig
values of both transverse and longitudinal resolutions.
now believe that this state is most likely not a physical o

We are now able to identify two states with irregular co
pling dependence which are shown in Fig. 5 at various tra
verse resolutions forK55. We see that as we increase t
transverse cutoff these states move up rapidly in mass, l
ing us to conclude that asT→`, they decouple. One of thes
irregular states falls down toM50 and then moves up, while
another one has the same type of behavior, but with fi
minimal mass. The fact that the first state touches zero i
some interest: a similar behavior was noted in a supers
07500
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l
cf.
er
e
.

-
s-

d-

te
of

-

metric scalar matrix model in@6# and in that model the au
thors conjecture that this behavior might signal the existe
of a critical coupling. Here the point where the mass goes
zero would appear to move to infinity as we remove t
transverse cutoff, and it is not at all clear that those id
carry over here.

At K56 andK54 we do not see these states, at least
at the same masses but atk57 we again see such states.. W
believe that this is strong evidence that these are unphys
states. Clearly a real normalizable bound state must be
ible at both even and odd resolutions, which is not the c
here. Recently we have seen unphysical massless stat
this type in a two dimensional theory with (8,8) supersy
metry @13#. In that theory we had an independent theoreti
evidence for them to be unphysical.

C. Massless states

In Fig. 1 we see a number of states that become mass
as g8→0. We already explained this property in@12#.
Namely at zero coupling only the first term survives
the supercharge~14! and then all the partons withn'50
~anti-!commute withQ2. Thus any state constructed from
such partons only becomes massless. The inverse state
is also true: atg850 a massless state cannot contain a
FIG. 3. Plot of the bound state
mass squaredM2 in units of
4p2/L2 as a function of the cou-
pling g8. We show the plots for
K54, T59 ~a! and K56, T51
~b!.
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parton with n'Þ0. Thus the set of massless states atg8
50 coincides with a Hilbert space of the theory dimensio
ally reduced to 111. Moreover, the whole infrared spectru
of ~211!-dimensional SYM (SYM)211 theory at small cou-
pling is governed by the dimensionally reduced theory~see
@12# for details!.

Previously@12,8# we commented on the existence of e
actly massless states and in@12# on the one-to-one corre
spondence between them and massless states of
(111)-dimensional model. Actually this fact provides a
easy way to construct massless states for three-dimens
theories; the matrices to be diagonalized have a size m
smaller than the ones used in the straightforward appro
The counting of massless states in three dimensions is
reduced to the analogous problem in 111 dimensions. For
finite Nc , even the (111)-dimensional case is not easi
handled@8#; however, for largeNc the multi-trace states de
couple, and one needs to count only single-trace mass
states. At resolutionK there are 2(K21) of them. As a
numerical check of the correspondence between mas
sectors of (211)- and (111)-dimensional theories, we ca
count the massless states at different values of transv
resolution and as anticipated we found this number to
independent ofT. These massless states are Bogomol’n
Prasad-Sommerfield~BPS! states in the sense that they a
destroyed by one super-charge,Q2, and not the other,Q1,
and the BPS bound, which is zero here, is saturated.

In @12# it appeared that there were additional states t
became massless asg→` but now we believe that thes
states are unphysical. Therefore the only massless stat
nonzero coupling are the same 2(K21) BPS states we saw
in the dimensionally reduced model.

FIG. 4. Plot of the bound state mass squaredM2 in units of
4p2/L2 as a function of 1/K for couplingg8510. ForK53, 4 and
5 we plot the value of the mass obtained by extrapolating in
transverse resolutionT. For K56 and 7 we take the values at th
highest resolutionT.
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IV. DISCUSSION

In this work, we considered the bound states of three
mensional SU(N) N51 super-Yang-Mills theory defined o
the compactified space-timeR3S13S1. In particular, we
compactified the light-cone coordinatex2 on a light-like
circle via DLCQ, and wrapped the remaining transverse
ordinatex' on a spatial circle. We showed explicitly tha
SDLCQ, employed in recent studies of (111)-dimensional
supersymmetric gauge theories, extends naturally to 211
dimensions. TheN51 supersymmetry becomesN5(1,1)
because we can always choseP' to be zero in a light-cone
quantized field theory, and SDLCQ provides a regularizat
scheme that preserves this supersymmetry. The super
metric theory considered here is finite and requires no ren
malization.

By retaining a finite number of transverse and longitu
nal modes, we were able to solve for bound-state wave fu
tions and masses numerically by diagonalizing the d
cretized light-cone supercharge. The theory clearly ha
stable spectrum at both small and large couplings. In Fig
we see that the theory converges very rapidly in the tra
verse resolution. We have seen in Ref.@8# that SDLCQ gives
very smooth behavior in the longitudinal resolution. In Fig
we see that the states with irregular coupling depende
move off rapidly to high mass with increasing transver
resolution. They also do not seem to appear at resolution
and 6. We therefore conclude that they are not phys
states. We see that there are no new massless states at
coupling, and the complete massless sector of SYM211
theory is determined by the two-dimensional model. T
number of exactly massless states at any coupling is 2K
21), with no dependence on the transverse resolution
addition, some states become massless asg goes to zero, but

e

FIG. 5. Plot of the bound state masses falling rapidly with
creasing coupling. The mass squaredM2 of these states in units o
4p2/L2 is plotted as a function ofg85gANL/2p3/2 for K55 at the
transverse resolutionsT51 ~short dashed lines!, T52 ~solid lines!
andT53 ~dashed line!.
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their behavior is also described by the theory in 111 dimen-
sions. Consequently, we conclude that the entire mass
spectrum of the (211)-dimensional model is determined b
the dimensionally reduced model.

In previous work@12# we saw that the average number
particles in the massless states increases withg and quickly
becomes equal to the maximum number allowed by the re
lution. We also see here that the number of low-mass st
increases with resolution. Together this implies that at str
coupling the light states of this theory, and other SUSY th
ries, have a huge number of degrees of freedom. No dou
is this fact that allows for the possibility that these SUS
theories can contain all of the physics of dual theories i
different number of space-time dimensions. It would be
teresting to relate this observation with the recent claim t
strongly coupled super-Yang-Mills theory corresponds
string theory in an anti–de Sitter background@3#. Of course,
the techniques we have employed here may be applied to
supersymmetric gauge theory defined on a suitably com
tified space-time. This should facilitate a more general st
of the strongly coupled dynamics of super-Yang-Mills the
ries, and in particular, allow us to scrutinize the string-li
properties of Yang-Mills theories.

We have neglected the zero modes totally in this calcu
tion as have all other DLCQ calculations of gauge theories
remains an important outstanding problem to include th
modes in a gauge theory. We already know a great d
about zero modes@19# which are, after all, really only a few
extra quantum mechanical degrees of freedom. The prob
is that these modes come in non-linearly in the definition
the non-zero modes and thus cannot be included in DLCQ
a straightforward manner. It has recently been conjecture
Witten @20# that including these zero modes leads to spon
neous supersymmetry breaking in this theory. A care
treatment of this question requires that one include
Chern-Simons term, and there one finds that the interpla
the zero modes ofA1 and A' gives rise to the holonomy
structure. This topic is well beyond the scope of this wo
and will be the subject of future research.
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Let us briefly comment on theL dependence of the spec
trum. For largeL the appropriate dimensionlessL indepen-
dent mass scale is

M2

g4N2 }
M2L2/4p2

~g8!4
.

At large g8 the spectrum is constant in terms ofM2L2/4p2;
therefore in terms of this dimensionless mass scale the e
spectrum would go to zero asg8→`. A possible interpreta-
tion of this result is that in the continuum limit this theor
approaches a conformal field theory. There are however v
massive states in our spectrum that we did not study
could remain massive in the continuum limit.

The code that we are currently using is a newly writt
C11 version of the Mathematica code that we used in mu
of our earlier work. Our large runs for matrix generation a
currently performed at the Ohio Supercomputer Center. M
trix diagonalization is done using standard Lapack routin
@23# on supercomputers at the Ohio Supercomputer Ce
and the Minnesota Supercomputing Institute. This is our fi
project with this new configuration, and we are curren
working on several analytical and numerical improveme
that we expect will allow us to increase by several factors
10 the size of the problems we will be able to address in
future. Among these areN54 SYM theory in (311) and
N51 SYM theory in 211 with a Chern-Simons term@20#.
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