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Green’s function Monte Carlo study of SU„3… lattice gauge theory in„3¿1…D

C. J. Hamer,* M. Samaras, and R. J. Bursill†

School of Physics, University of New South Wales, Sydney, 2052, Australia
~Received 8 May 2000; published 8 September 2000!

A ‘‘forward walking’’ Green’s function Monte Carlo algorithm is used to obtain expectation values for
SU~3! lattice Yang-Mills theory in 311 dimensions. The ground state energy and Wilson loops are calculated,
and the finite-size scaling behavior is explored. Crude estimates of the string tension are derived, which agree
with previous results at intermediate couplings, but more accurate results for larger loops will be required to
establish scaling behavior at weak coupling.
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I. INTRODUCTION

Classical Monte Carlo simulations provide a very pow
ful and accurate method for the study of Euclidean latt
gauge theories. In the Hamiltonian formulation@1#, on the
other hand, the corresponding quantum Monte Carlo m
ods have been somewhat neglected. Here we present a
of SU~3! Yang-Mills theory in 311 dimensions, using the
Green’s function Monte Carlo approach@2#, adapted to lat-
tice gauge theory by Chinet al. @3#.

Quantum Monte Carlo methods in Hamiltonian latti
gauge theory~LGT! have a somewhat checkered history. T
first calculations used a strong-coupling basis involving d
crete ‘‘electric field’’ link variables and a ‘‘projector Monte
Carlo’’ approach@4,5#, which used the Hamiltonian itself to
project out the ground state. A later version of this was
‘‘stochastic truncation’’ approach of Alltonet al. @6#. Using
this approach one can successfully compute string tens
and mass gaps for Abelian models@7#. For non-Abelian
models, however, some technical problems arose@7#. The
use of a Robson-Webber recoupling scheme@8# at the lattice
vertices requires the use of Clebsch-Gordan coefficient
6 j symbols, which are not known to high order for SU~3!;
and furthermore, the ‘‘minus sign’’ problem rears its head,
that destructive interference occurs between different p
to the same final state. It may well be that a better choice
the strong-coupling basis, such as the ‘‘loop representatio
might avoid these problems, but this has not yet been d
onstrated.

In the meantime, Heys and Stump@9# and Chinet al. @3#
pioneered the use of ‘‘Green’s function Monte Carlo
~GFMC! or ‘‘diffusion Monte Carlo’’ techniques in Hamil-
tonian LGT, in conjunction with a weak-coupling represe
tation involving continuous gauge field link variables. Th
was successfully adapted to non-Abelian Yang-Mills the
ries @10–13#, with no minus sign problem arising. In thi
representation, however, one is simulating the wave func
in gauge field configuration space by a discrete ensembl
density of random walkers: it is not possible to determine
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derivatives of the gauge fields for each configuration or
enforce Gauss’s law explicitly, and the ensemble always
laxes back to the ground state sector. Hence one cannot c
pute the string tensions and mass gaps directly as Ha
tonian eigenvalues corresponding to ground states
different sectors, as one does in the strong-coupling re
sentation. Instead, one is forced back to the more labor
approach used in Euclidean calculations: namely, to mea
an appropriate correlation function, and estimate the m
gap as the inverse of the correlation length. We have in
duced the ‘‘forward-walking’’ technique, well known in
many-body theory@2,14–16#, to measure the expectatio
values and correlation functions. The technique has b
demonstrated for the cases of the transverse Ising mod
(111)D @17# and the U~1! LGT in (211)D @18#.

Here we apply the technique for the first time to a no
Abelian model, namely SU~3! Yang-Mills theory in (3
11)D. The ground state energy and Wilson loop values
calculated, and approximate values are extracted for
string tension in the weak-coupling regime. Comparisons
made with earlier calculations, where they are available@19#.

Our conclusions are that the method is a viable one,
requires the use of an improved ‘‘guiding wave function’’
achieve better accuracy. There are certain drawbacks in
sic to the method@2,20#, such as the necessity to use
branching algorithm and a guiding wave function, whi
tend to introduce substantial errors into the results, both
tistical and systematic. For these reasons, it may be pre
able to employ a path integral Monte Carlo approach to th
models, which avoids the problems above.

Our methods are presented in Sec. II, the results are
lined in Sec. III, and our conclusions are discussed in S
IV.

II. METHOD

A. Lattice Hamiltonian

The Green’s function Monte Carlo formalism has be
adapted to SU~2! Yang-Mills theory by Chin, van Roos
malen, Umland and Koonin@11# and sketched for the SU~3!
case by Chin, Long and Robson@13#. Here we provide a
slightly fuller discussion of the SU~3! case, following the
earlier treatment of Chinet al. @11#.

The SU~3! lattice Hamiltonian is given by@13#

,
f
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H5
g2

2a H(
l

El
aEl

a2
l

3 (
p

Tr~Up1Up
†!J ~1!

whereEl
a is a component of the electric field at linkl , l

56/g4, the indexa runs over the 8 generators of SU~3!, and
Up denotes the product of four link operators around an
ementary plaquette.

The commutation relations between electric field and l
operators are

@El
a ,Ul 8#5

1

2
laUld l l 8 , ~2!

choosing theEl
a as left generators of SU~3!, where the

$la,a51,8% are the Gell-Mann matrices for SU~3!. We will
work with the dimensionless operator

H5
1

2 (
l

El
aEl

a2
l

6 (
p

Tr~Up1Up
†!. ~3!

The link variables are elements of the group SU~3! in the
fundamental representation

U5expS 2 i
1

2
laAaD . ~4!

There is no simple equivalent of the quaternion represe
tion for SU~2!. Following Beg and Ruegg@21#, we can rep-
resent

U5S z1 z2 z3

u1 u2 u3

w1 w2 w3

D ~5!

wherez,u,w are three-dimensional complex vectors; then
U is to be unitary, we requirez,u,w to be orthonormal, and if
U is to have determinant unity, we require

e i jkziujwk51 ~6!

which is satisfied if

wi5e i jkzi* uk* . ~7!

One possible representation which satisfies these co
tions is

z15@12 i ~x31x8 /A3!#/N1 ,

z25~2x22 ix1!/N1 , ~8!

z35~2x52 ix4!/N1

where

N15@11~x31x8 /A3!21x1
21x2

21x4
21x5

2#1/2 ~9!

and

u35~2x72 ix6!/N2[ũ3 /N2 , ~10!
07450
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u25@12 i ~x8 /A32x3!#/N1[ũ2 /N2 ,
~11!

u15ũ1 /n2 , ũ152@ ũ2z2* 1ũ3z3* #/z1*
~12!

where

N25@ uũ1u21uũ2u21uũ3u2#1/2 ~13!

and

wi5e i jkzj* uk* . ~14!

This involves 8 unrestricted parameters$xa ,a51, . . . ,8%, as
expected. For smallx,

U'I 2 ilaxa, ~15!

i.e.

xa'Aa/2, ~16!

whereAa is the gauge field on that link. The product of tw
link variables can be found by simple matrix multiplicatio

B. Green’s function Monte Carlo method

The Green’s function Monte Carlo method employs t
operator exp@2t(H2E)#, i.e. the time evolution operator in
imaginary time, as aprojector onto the ground stateuc0&:

uc0&} lim
t→`

$e2t(H2E)uF&%5 lim
Dt→0,NDt→`

e2NDt(H2E)uF&

~17!

whereuF& is any suitable trial state. To procure some var
tional guidance, one performs a ‘‘similarity transformation
with the trial wave functionF, and evolves theproduct
Fuc0& in imaginary time. The heart of the procedure is t
calculation of the matrix element corresponding to a sin
small time stepDt. Chin et al. @11# show that

^x8uFe2Dt(H2E)F21ux&

5)
l

^Ul8uNH expS 2
1

2
DtEl

aEl
aD

3exp@DtEl
a~El

a ln F!#J uUl&

3exp$Dt@E2F21HF~x!#%1O~Dt2!

[p~x8,x!w~x!1O~Dt2! ~18!

wherex5$Ul% denotes an entire lattice configuration of lin
fields.

The productFuc& is simulated by the density of an en
semble of random walkers, as in the SU~2! case. At thekth
step, the ‘‘weight’’ of each walker atxk is multiplied by
w(xk) and the next ensemble$xk11% is evolved from$xk%
according to the matrix elementp(xk11 ,xk). The effect of
6-2
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p(xk11 ,xk) is to alter each link variableUl in $xk% to Ul8 by
a Gaussian random walk plus a ‘‘drift step’’ guided by t
trial wave function:

U85DUUdU ~19!

whereUd5exp@i 1
2l

a(iDtEa ln F)# is the drift step, andDU is
an SU~3! group element randomly chosen from a Gauss
distribution around the identity, with variance^Ds2&58Dt
~i.e. Dt for each indexa), where

^Ds2&'(
a

AaAa58Dt ~small Aa! ~20!

or

^xaxa&5
1

4
^AaAa&'

Dt

4
, each a. ~21!

The simulation is carried out for a large number of ite
tionsDt, until an equilibrium distributionFuc0& is reached.
The energyE in Eq. ~18! is adjusted after each iteration so
to maintain the total ensemble weight constant. The aver
value of E can then be taken as an estimate ofE0, the
ground-state energy.

As time evolves, the weights of some walkers gro
larger, while others grow smaller, which would produce
increased statistical error. To avoid this, a ‘‘branching’’ pr
cess is employed, whereby a walker with weight larger th
some threshold is split into two independent walkers, wh
others with weights lower than another threshold are am
gamated. We use Runge’s technique@22# for this purpose.

C. Trial wave function

The trial wave function is chosen to be the one-param
form @13#

F5expFa(
p

Tr~Up1Up
†!G . ~22!

Then the drift step is@11#

Ud5expF i
la

2
~ iDtEa ln F!G[expF2 i

la

2
Al

aG ~23!

for each link, where

Al
a52 iDt

a

2 (
pP l

Tr@laUl •••U4
†2H.c.# ~24!

i.e.

xl
a'

Al
a

2
52 i

aDt

4 (
pP l

Tr@laUl•••U4
†2H.c.# ~25!

~note that the effect ofEl
a on a plaquette operator is to ‘‘in

sert’’ a la/2 in front of the appropriate link operatorUl , to
be followed by the remaining link operators in the plaque
taken in the direction of the link l!.
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Finally, the trial energy factor is

F21HF5(
l

H a2

8 S (
pP l

Tr@laUl•••U4
†2H.c.# D 2

1S 2a

3
2

l

24D (pP l
Tr~Up1Up

†!J . ~26!

Therefore the weight factor is

w~x!5exp$Dt~E2F21HF!%

5expH DtFEtrial 2S 2a

3
2

l

24D(l
(
pP l

2 Re$Tr Up%

1
a2

8 (
l

S (
pP l

2 Im$Tr@laUl•••U4
†#% D 2G J . ~27!

D. Forward walking estimates

The ‘‘forward walking’’ technique is used to estimate e
pectation values@2#. Its application to the U~1! lattice gauge
theory in (211)D was discussed by Hameret al. @18#. It is
based on the following equation: for an operatorQ,

^Q&05
^c0uQuc0&

^c0uc0&

;
J→`

^F uKJQuc0&

^FuKJuc0&

5
( K̃~xJ ,xJ21!•••K̃~x2 ,x1!Q~x1!c̃0~x1!

( K̃~xJ ,xJ21!•••K̃~x2 ,x1!c̃0~x1!

~28!

whereK(xJ ,xJ21) is the evolution operator for timeDt, and
K̃(xJ ,xJ21) is the same operator in the similarity tran
formed basis. Again we have assumed that the operatorQ is
diagonal in the basis of plaquette variablesx.

FIG. 1. Estimated ground-state energy for lattice sizeL54 and
couplingl53.0, c50.20, as a function of time stepDt.
6-3
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TABLE I. Variational parameterc, ground state energy per sitee0 and Wilson loopsW(n,m) as functions
of the lattice sizeL and couplingl.

l 1.5 3.0 4.0 5.0 6.0 9.0

c 0.10 0.20 0.27 0.33 0.40 0.58
Ground state energy per site,e0

L52 20.15449(2) 20.68081(1) 21.3212(5) 22.359(1) 23.666(2) 28.389(6)
3 20.15438(4) 20/6764(2) 21.2846(3) 22.187(1) 23.431(2) 28.042(4)
4 20.15436(1) 20.6764(1) 21.2836(8) 22.160(3) 23.322(4) 27.94(1)
6 20.15436(2) 20.6765(1) 21.2809(7) 22.133(2) 23.234(3) 27.613(9)
8 - 20.6759(2) 21.2705(4) 22.094(2) 23.154(2) 27.402(6)

Wilson loops,W(1,1)
L52 0.0721~2! 0.1671~3! 0.273~2! 0.396~6! 0.460~7! 0.576~4!

3 0.0718~2! 0.1641~4! 0.245~2! 0.346~4! 0.437~5! 0.562~2!

4 0.0718~2! 0.1647~7! 0.240~2! 0.330~4! 0.401~5! 0.556~4!

6 0.0718~1! 0.1648~4! 0.240~3! 0.310~1! 0.383~2! 0.550~3!

8 - 0.1633~8! 0.228~1! 0.296~1! 0.365~2! 0.545~2!

W(2,1)
3 0.0059~1! 0.0318~3! 0.070~1! 0.146~4! 0.234~6! 0.376~3!

4 0.0061~1! 0.0322~4! 0.067~2! 0.130~4! 0.182~4! 0.355~6!

6 0.0061~1! 0.0322~3! 0.069~2! 0.109~1! 0.165~2! 0.329~3!

8 - 0.0309~5! 0.057~1! 0.097~1! 0.144~2! 0.313~2!

W(2,2)
4 - 0.0010~7! 0.006~2! 0.022~5! 0.044~5! 0.183~7!

6 - 0.0022~3! 0.009~2! 0.018~1! 0.037~2! 0.137~4!

8 - 0.0011~6! 0.005~1! 0.013~1! 0.023~2! 0.111~3!

W(3,2)
6 - - - 0.004~1! 0.006~2! 0.059~3!

8 - - - 0.001~1! 0.004~1! 0.039~2!

W(3,3)
6 - - - - - 0.020~3!

8 - - - - - 0.009~2!
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This equation is implemented by@14–16# the following
procedure:

~i! Record the valueQ(xi) for each ‘‘ancestor’’ walker at
the beginning of a measurement.

~ii ! Propagate the ensemble as normal forJ iterations,
keeping a record of the ‘‘ancestor’’ of each walker in t
current population.

~iii ! Take the weighted average of theQ(xi) with respect
to the weights of the descendants ofxi after theJ iterations,
using sufficient iterationsJ that the estimate reaches a ‘‘pla
teau.’’

III. RESULTS

Simulations were carried out forL3L3L lattices up to
L58 sites, using runs of typically 4000 iterations and
ensemble size of 250–1000 depending~inversely! on lattice
size. These statistics are approximately 100 times less
those used in the U~1! calculations@18#, but about 100 times
greater than those used in the previous SU~3! calculations of
Chin et al. @13#. Time stepsDt of 0.01 and 0.05 ‘‘sec’’ were
used, with each iteration consisting of 5 sweeps and 1 sw
through the lattice, respectively, followed by a branchi
process. The first 400 iterations were discarded to allow
07450
an

ep

r

equilibration. The data were block averaged over blocks
up to 256 iterations, to minimize the effect of correlations
the error estimates.

The results taken atDt50.01 andDt50.05 were ex-
trapolated linearly toDt50. Figure 1 demonstrates that th
dependence of the ground-state energy onDt is approxi-
mately linear.

The variational parameterc was given values as shown i
Table I. These are essentially the values used by Chinet al.
@13#, obtained from a variational Monte Carlo calculatio
We checked that these were approximately the optimum
ues for small lattices.

Forward-walking measurements were taken overJ itera-
tions, whereJ ranged from 20 to 100, depending on th
couplingl. Ten separate measurements were taken over
time interval, in order to check whether the value measu
by forward walking had reached equilibrium. A new me
surement was started soon after the previous one had
ished.

A. Ground-state energy

The dependence of the ground-state energy on the va
tional parameterc is illustrated in Fig. 2. It can be seen th
6-4
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the energy reaches a broad minimum at about the expe
value (c50.33 at this coupling!.

Our estimates of the ground-state energy are listed
Table I as a function of the couplingl and lattice sizeL. The
dependence on lattice size is illustrated in Fig. 3, at two fix
couplings l53.0 and l55.0. In the ‘‘strong-coupling’’
case,l53.0, it can be seen that the results converge ex

FIG. 2. Estimated ground-state energy as a function of the va
tional parameterc, for L56,l55.0.

FIG. 3. Ground-state energy per site graphed against 1L4,
whereL is the lattice size~a! at couplingl53.0, ~b! at coupling
l55.0. The lines are merely to guide the eye.
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nentially fast inL, whereas in the ‘‘weak-coupling’’ regime
l55.0, the convergence is more like 1/L4 at these lattice
sizes. This behavior merits some further explanation.

A similar phenomenon occurs in the case of the U~1!
theory in (211)D @23,7,18#. In the strong-coupling regime
where the mass gap is large, the usual exponential con
gence occurs. In the weak-coupling regime, however, wh
the mass gapM is very small, the finite-size scaling behavio
for small lattice sizes is that of a massless theory, and
only at much larger lattice sizesL'1/M that a crossover to
exponential convergence occurs. In the U~1! case, it has been
shown@7,18# that the finite-size scaling behavior at smallL
is well described by an ‘‘effective Lagrangian’’ approac
using the Lagrangian for free, massless photons that
model was originally constructed to simulate. In the sa
way, an ‘‘effective Lagrangian’’ corresponding to fre
massless gluons~non-interacting QCD! should describe the
finite-size behavior in the present case, in line with the id
of asymptotic freedom. By analogy with the (211)D case,
we expect a 1/L4 dependence for the corrections to th
ground-state energy per site. We hope to pursue this ana
further at a later date.

An anomalous feature in Fig. 3~b! is that theL58 point
lies well out of line with the others. This occurs at oth
couplings also. We suspect that the results forL58 are not
reliable, and that the trial wave function will have to b
further improved to give reliable results for such large l
tices. Supporting evidence for this will be presented belo

We have made estimates of the bulk limit, extrapolati
mainly from the smallerL values where possible, and th
results are listed in Table II. Our present estimates gener
lie a little below those of Chinet al. @13#, and we believe
them to be more accurate in view of our greater statist
The estimates for the bulk ground-state energy per site
graphed as a function of coupling in Fig. 4, where they
compared with previous estimates@19# obtained by an ‘‘ex-
act linked cluster expansion’’~ELCE! procedure and with
the asymptotic weak-coupling series@24#

e0;23l17.798l1/2, l→`. ~29!

The Monte Carlo results agree very well with the ELC
estimates, and appear to match nicely the expected w
coupling behavior forl>6.

B. Wilson loops

The forward-walking method was used to estimate val
for the m3n Wilson loops,W(m,n). Figure 5 shows an
example, namely the estimate of the mean plaquetteW(1,1)
as a function ofJ for the caseL56, l51.5. It can be seen
that the estimate relaxes exponentially towards a plat
value as the number of iterations,J, increases: an exponentia
fit is performed to estimate the asymptotic value. It can a
be seen that the statistical error in each point is much la
than the point-to-point variation: the estimates are hig
correlated, and all the points tend to move up and do
together as one goes from one sample to the next.

A problem that arises in these measurements is the los
statistical accuracy at large couplings. At large couplings

a-
6-5
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TABLE II. Estimates of the bulk ground-state energy per site and Wilson loops as functions ofl.

l 1.5 3.0 4.0 5.0 6.0 9.0

Ground state energy per site,e0

This work 20.15436(2) 20.6764(1) 21.284(2) 22.16(2) 23.25(2) 27.9(1)
Chin et al. @13# 20.675(0) 21.275(3) 22.088(6) 23.183(6) 27.50(3)
Wilson loopsW(1,1)
This work 0.0718~2! 0.165~1! 0.240~1! 0.32~1! 0.39~1! 0.554~3!

Chin et al. @13# 0.1605~5! 0.298~5! 0.377~3! 0.539~3!

W(2,1)
This work 0.0061~2! 0.0322~5! 0.068~2! 0.12~1! 0.165~5! 0.34~1!

W(2,2)
This work 0.0021~1! 0.008~4! 0.018~4! 0.035~7! 0.13~1!

W(3,2)
This work 0.004~2! 0.006~2! 0.05~1!

W(3,3)
This work 0.01~1!
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weights of the random walkers vary rapidly with time, and
can easily happen that during a measurement the descen
of all the ‘‘ancestor’’ walkers but one die out from the e
semble, at which point the result ‘‘freezes,’’ and the numb
of members of the ensemble has effectively been reduce
1. This inevitably means a severe loss of statistical accur

A graph of the ‘‘mean plaquette’’W(1,1) versus the
variational parameterc is shown in Fig. 6. Another problem
is immediately apparent. The estimate forW(1,1) is not in-
dependent ofc—in fact it depends linearly onc over this
range—and the size of the variation is such that the prob
systematic error due to the choice ofc is an order of magni-
tude larger than the random statistical error in the resu
Thus it would be advatageous in future studies to put m
effort into improving the trial wave function, rather tha
merely improving the statistics.

Figure 7 shows examples of the dependence of the re
on lattice sizeL. Once again, the results at strong coupli
l51.5 converge exponentially fast, while those at the we

FIG. 4. The bulk ground-state energy per site graphed aga
couplingl. The points are our Monte Carlo estimates, the solid l
represents earlier ELCE estimates@19#, and the dashed line repre
sents the asymptotic weak-coupling behavior.
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coupling valuel55.0 can be approximately fitted by a 1/L4

dependence. TheL58 value and even theL56 value again
lie off the trend of the smaller lattices, and are probably n
very reliable.

Estimates of the bulk limit are listed in Table II. Th
estimates for the mean plaquette are graphed as a functio
couplingl in Fig. 8, and compared with series estimates
strong and weak coupling@19,24#. The agreement is quite
good.

C. String tension

Having obtained estimates for the Wilson loop values
the bulk lattice, one can extract estimates for the ‘‘spa
like’’ string tension using the Creutz ratios

Ka2.Rn52 lnFW~n,n!W~n21,n21!

W~n,n21!2 G ~30!

or the cruder 2-point estimates

st
e FIG. 5. Measured value for the Wilson loopW(1,1) as a func-
tion of the number of forward-walking iterations,J, for the caseL
56, l51.5. The solid line is an exponential fit to the data.
6-6
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Rn852
1

n
lnF W~n,n!

W~n,n21!G . ~31!

The results are shown in Fig. 9. Also shown in Fig. 9 a
some previous estimates derived from the ‘‘axial’’ string te
sion, obtained@19# using an ELCE method. The axial strin
tensionaT is calculated as an energy per link, and must

FIG. 6. Estimated value for the mean plaquetteW(1,1) as a
function of the variational parameterc, for L56, l55.0.

FIG. 7. The mean plaquetteW(1,1) graphed against 1/L4, where
L is the lattice size~a! at coupling l51.5, ~b! at coupling l
55.0. The lines are merely to guide the eye.
07450
e
-

e

converted to a dimensionless, ‘‘spacelike’’ tension by div
ing by the ‘‘speed of light’’c,

Ka25
aT

c
, ~32!

where@26#

c;
2

g2
@120.1671g2#5A2l

3 F120.1671A6

l G , l→`.

~33!

We have also used the weak-coupling relationship betw
the scales of Euclidean and Hamiltonian lattice Yang-M
theory calculated by Hasenfratz and Hasenfratz@26# to plot
the results against the Euclidean couplingb56/gE

2 , where

b5A6l20.01308. ~34!

It can be seen that the present GFMC results are in ro
agreement with the axial string tension results in the reg

FIG. 8. The mean plaquetteW(1,1) for the bulk system graphe
against couplingl. The solid line represents the strong-couplin
series expansion@19# and the dashed line the asymptotic wea
coupling behavior.

FIG. 9. The string tensionKa2 graphed against couplingb. The
circles are obtained from ELCE estimates of the axial string tens
@19#; the triangles are Monte Carlo estimates ofR2.
6-7
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4<b<5, which is also the region where the ‘‘roughening
transition occurs in the string tension@19#. For b.5, how-
ever, the Creutz ratioR2 runs above the ELCE estimate, an
shows no sign of the expected crossover to an exponent
decreasing scaling behavior atb.6. We presume that this i
a finite-size effect, and that the Creutz ratiosRn for largern
will show a substantial decrease in the ‘‘weak-coupling’’ r
gime b>6. That is certainly the pattern seen in the Eucl
ean calculations@25# or in the U(1)211 model @18#. Unfor-
tunately, however, our present results for the larger Wils
loops are not of sufficient accuracy to allow worthwhile e
timates ofRn for n>2.

IV. SUMMARY AND CONCLUSIONS

We have presented the results of a new Green’s func
Monte Carlo study of the SU~3! Yang-Mills theory in the
(311)D Hamiltonian formulation. A forward-walking
method has been used to estimate values for the Wi
loops as well as the ground-state energy, and hence s
rather crude estimates of the string tension have been
tracted. Comparisons have been made with an earlier Ha
tonian calculation of the axial string tension@19#. The two
sets of results agree in the ‘‘roughening’’ region, but o
Monte Carlo results do not extend to the large Wilson loo
that would be required to demonstrate ‘‘scaling’’ behavior
the weak-coupling regime.

Some significant problems with the GFMC method ha
emerged from this study. The ‘‘forward-walking’’ techniqu
was introduced specifically to avoid any variational b
from the trial wave function@2,14–16#. As it turns out, how-
ever, the results for the Wilson loops show a substantial
E

,
,

07450
lly

-

n
-

n

n
me
x-
il-

r
s

e

e-

pendence on the trial wave function parameterc. The sys-
tematic error due to this dependence is an order of magni
larger than the statistical error, so it would pay to put mo
effort in future studies into improving the trial wave func
tion, rather than simply increasing the statistics@in this con-
nection, we note that Beccaria@27# has recently proposed
‘‘stochastic reconfiguration’’ method for dynamically opt
mizing the trial wave function in Hamiltonian LGT, and ha
applied it to the U~1! theory in~211!D and the SU~2! theory
in ~311!D#. Furthermore, the effective ensemble size d
creases during each measurement as the descendants o
‘‘ancestor’’ state die out, and this produces a substantial l
in statistical accuracy at weak coupling, as well.

It would be preferable if one were able to do away e
tirely with all the paraphernalia of trial wave function
weights, branching algorithms, etc., and just rely on so
sort of Metropolis-style accept-reject algorithm to produce
correct distribution of walkers. Within a quantum Ham
tonian framework, a way is known to do this, namely t
path integral Monte Carlo~PIMC! approach@20#. We con-
clude that the PIMC approach may be better suited t
GFMC approach to the study of large and complicated lat
Hamiltonian systems.
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