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Green'’s function Monte Carlo study of SU(3) lattice gauge theory in(3+1)D
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A “forward walking” Green’s function Monte Carlo algorithm is used to obtain expectation values for
SU(3) lattice Yang-Mills theory in 3- 1 dimensions. The ground state energy and Wilson loops are calculated,
and the finite-size scaling behavior is explored. Crude estimates of the string tension are derived, which agree
with previous results at intermediate couplings, but more accurate results for larger loops will be required to
establish scaling behavior at weak coupling.

PACS numbds): 11.15.Ha

[. INTRODUCTION derivatives of the gauge fields for each configuration or to
enforce Gauss's law explicitly, and the ensemble always re-
Classical Monte Carlo simulations provide a very power-laxes back to the ground state sector. Hence one cannot com-
ful and accurate method for the study of Euclidean latticepute the string tensions and mass gaps directly as Hamil-
gauge theories. In the Hamiltonian formulatiph], on the tonian eigenvalues corresponding to ground states in
other hand, the corresponding quantum Monte Carlo methdifferent sectors, as one does in the strong-coupling repre-
ods have been somewhat neglected. Here we present a stusntation. Instead, one is forced back to the more laborious
of SU(3) Yang-Mills theory in 3+1 dimensions, using the approach used in Euclidean calculations: namely, to measure
Green’s function Monte Carlo approag®], adapted to lat- an appropriate correlation function, and estimate the mass
tice gauge theory by Chiat al. [3]. gap as the inverse of the correlation length. We have intro-
Quantum Monte Carlo methods in Hamiltonian lattice duced the “forward-walking” technique, well known in
gauge theoryLGT) have a somewhat checkered history. Themany-body theory{2,14-16, to measure the expectation
first calculations used a strong-coupling basis involving disvalues and correlation functions. The technique has been
crete “electric field” link variables and a “projector Monte demonstrated for the cases of the transverse Ising model in
Carlo” approach4,5], which used the Hamiltonian itself to (1+1)D[17] and the W1) LGT in (2+1)D [18].
project out the ground state. A later version of this was the Here we apply the technique for the first time to a non-
“stochastic truncation” approach of Alltoet al. [6]. Using  Abelian model, namely S@3) Yang-Mills theory in (3
this approach one can successfully compute string tensions 1)D. The ground state energy and Wilson loop values are
and mass gaps for Abelian moddlg]. For non-Abelian calculated, and approximate values are extracted for the
models, however, some technical problems arfdde The  string tension in the weak-coupling regime. Comparisons are
use of a Robson-Webber recoupling schd8jeat the lattice made with earlier calculations, where they are availgb®s.
vertices requires the use of Clebsch-Gordan coefficients or Our conclusions are that the method is a viable one, but
6j symbols, which are not known to high order for @Y  requires the use of an improved “guiding wave function” to
and furthermore, the “minus sign” problem rears its head, inachieve better accuracy. There are certain drawbacks intrin-
that destructive interference occurs between different pathsic to the method2,20], such as the necessity to use a
to the same final state. It may well be that a better choice obranching algorithm and a guiding wave function, which
the strong-coupling basis, such as the “loop representation,end to introduce substantial errors into the results, both sta-
might avoid these problems, but this has not yet been dentistical and systematic. For these reasons, it may be prefer-
onstrated. able to employ a path integral Monte Carlo approach to these
In the meantime, Heys and Sturf@| and Chinet al.[3]  models, which avoids the problems above.
pioneered the use of “Green’s function Monte Carlo”  Our methods are presented in Sec. Il, the results are out-
(GFMC) or “diffusion Monte Carlo” techniques in Hamil- lined in Sec. Ill, and our conclusions are discussed in Sec.
tonian LGT, in conjunction with a weak-coupling represen-1V.
tation involving continuous gauge field link variables. This
was successfully adapted to non-Abelian Yang-Mills theo-
ries [10-13, with no minus sign problem arising. In this Il. METHOD
representation, however, one is simulating the wave function
in gauge field configuration space by a discrete ensemble or
density of random walkers: it is not possible to determine the The Green’s function Monte Carlo formalism has been
adapted to S(2) Yang-Mills theory by Chin, van Roos-
malen, Umland and Koonifl1] and sketched for the SB)
*Email address: cjn@newt.phys.unsw.edu.au case by Chin, Long and Robsdt3]. Here we provide a
TAddresses: Department of Physics, UMIST, P.O. Box 88,slightly fuller discussion of the S@3) case, following the
Manchester, M60 1QD, UK and School of Physics, University of earlier treatment of Chiet al. [11].
New South Wales, Sydney 2052, Australia. The SUQJ) lattice Hamiltonian is given by13]

A. Lattice Hamiltonian
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H=2a

N
> E?Eﬁ—§ > Tr(Up+Ul) (1)
I p
where E{! is a component of the electric field at lilk A
=6/g*, the indexa runs over the 8 generators of &), and

U, denotes the product of four link operators around an el-

ementary plaquette.
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Up=[1—i(Xg/3=x3)}/N;=U /Ny,

The commutation relations between electric field and link

operators are

1
[E|a7U|':|:§)\aU|5uu (2

choosing theE}] as left generators of S8), where the
{\%a=1,8 are the Gell-Mann matrices for $8). We will
work with the dimensionless operator

1
H==

5 ®

A
Z EFEF- ¢ % Tr(U,p+U)).

The link variables are elements of the group(3Un the
fundamental representation

1
— _ i yapa
U exp{ |2)\A>.

(4)

There is no simple equivalent of the quaternion representa-

tion for SU(2). Following Beg and RuegfR1], we can rep-
resent

Zy I Z3
U=| ur Uz us 5
Wip Wy Wg

wherez,u,w are three-dimensional complex vectors; then if
U is to be unitary, we requirg u,w to be orthonormal, and if
U is to have determinant unity, we require

EiijinWk: 1 (6)
which is satisfied if

(@)

— * 0k
Wi_eijkzi Uk f

One possible representation which satisfies these condi-

tions is
21=[1-i(xs+Xa/V3) 1INy,
Z,=(—Xp—iX1)/Ny, ®)
Z3=(—X5—iX4)/Ny

where

Ny=[1+(X3+Xg/\3)2+ X3+ X3+ x2+x2]2  (9)

and

Uz=(—X7—iXg)/Na=U3/N,, (10

11
Ui=U1/Np,  Up=—[UpZs +Uszi 12}
(12)
where
Np=[[Uy]?+[Up]?+][ug]*]H2 13
and
Wi = € Z} U - (14
This involves 8 unrestricted parameté¢xg,a=1, ...,8, as
expected. For smak,
U~I—i\3%3, (15)
ie.
X3~ A2, (16)

whereA? is the gauge field on that link. The product of two
link variables can be found by simple matrix multiplication.

B. Green’s function Monte Carlo method

The Green’s function Monte Carlo method employs the
operator exp—(H—E)], i.e. the time evolution operator in
imaginary time, as @rojector onto the ground statg/):

| o)== lim {e™ "1~ B]d)} =

T—®

lim
A7—0ONAT—©

e~ NATH=B)| )

17

where|®) is any suitable trial state. To procure some varia-
tional guidance, one performs a “similarity transformation”
with the trial wave functiond®, and evolves theproduct

®| ) in imaginary time. The heart of the procedure is the
calculation of the matrix element corresponding to a single
small time stepA 7. Chin et al.[11] show that

<Xl|(De7AT(H7E)(Dfl|X>
! 1 apa
=1'|[ (U/[IN{ exp| — 5 ATEFE]

X exg A7ER(E} In CID)]] [Up)

X exp{A T E—® H®(x)]}+O(A72)

=p(x’',x)W(X) + O(A7?) (18
wherex={U,} denotes an entire lattice configuration of link
fields.

The product®|y) is simulated by the density of an en-
semble of random walkers, as in the @Ucase. At thekth
step, the “weight” of each walker ax, is multiplied by
w(x,) and the next ensembl 1} is evolved from{x}
according to the matrix elememt(x, . 1,%,). The effect of
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pP(X+1,X,) is to alter each link variabl®, in {x,} to U by
a Gaussian random walk plus a “drift step” guided by the

trial wave function:

=AUUU

c1>-1H<1>=2|
(19
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Finally, the trial energy factor is

a2 2
[@(% TI[A2U, - - UZ—H.C.])

<2a
+ 3 (26)

Therefore the weight factor is

A
whereU y=exfi\3(AE2In )] is the drift step, and U is 24) 2 Tr(Up+ Up)}

an SU3) group element randomly chosen from a Gaussian
distribution around the identity, with varian¢és®y=8Ar
(i.e. A7 for each indexa), where

=expAT(E— D HD)}
2\ apa_ T a o
(AS?) ; AA2=8A7 (small A% (20) =exp[A7- Emal_(zs )\)Z E. 2RATIU,)
pe
or a2 2
) Al +§2 (2 2Im{Tr[)\aU|---UZ]}) H (27)
(x) = 7(A*A%)~—-, eacha. (21) e

. L . . D. Forward walking estimates
The simulation is carried out for a large number of itera- 9

tions A7, until an equilibrium distributionb| ) is reached. The “forward walking” technique is used to estimate ex-
The energyE in Eq. (18) is adjusted after each iteration so as pectation value$2]. Its application to the (1) lattice gauge
to maintain the total ensemble weight constant. The averagéeory in (2+1)D was discussed by Hamet al. [18]. It is
value of E can then be taken as an estimate &, the based on the following equation: for an opera@r
ground-state energy.

As time evolves, the weights of some walkers grow (40l Ql o)
larger, while others grow smaller, which would produce an (o |<ﬂo>

(Q)o=

increased statistical error. To avoid this, a “branching” pro-

cess is employed, whereby a walker with weight larger than
some threshold is split into two independent walkers, while
others with weights lower than another threshold are amal-

gamated. We use Runge’s technid@g] for this purpose.

_ (@ |KIQ| o)
3 (@K o)

. . 2 R(XJ Xy—1) - 'R(Xerl)Q(Xl)?bO(Xl)
C. Trial wave function _ 28)
The trial wave function is chosen to be the one-parameter E KXy %5 1) - - - KXo, %1) Po(X2)
form [13]
+ whereK(x;,X;_4) is the evolution operator for tim& r, and
P=ex 0‘% Tr(Up+Up) 1. (22 K(x5,%;_1) is the same operator in the similarity trans-
formed basis. Again we have assumed that the ope€ier
Then the drift step i$11] diagonal in the basis of plaquette variables
A2 A2
for each link, where E e | A
u ° a3 ™
A?=—iA7r= >, TH\3U,. UJ—H.c] (24) B
2 peol 4336 S
ie. 43.38[ -
a AP . 43.4 N
X ~7= —i T E T{\2U,---Ul—H.c] (25 N
4342 .
(note that the effect oE? on a plaquette operator is to “in- 0 0.02 004 Ax 0.06 0.08 01

sert” aA?/2 in front of the appropriate link operatat,, to

be followed by the remaining link operators in the plaquette,

taken in the direction of the link)l
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FIG. 1. Estimated ground-state energy for lattice $ize4 and
coupling\=3.0, ¢=0.20, as a function of time stefpr.
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TABLE I. Variational parametec, ground state energy per skgand Wilson loop&V(n,m) as functions
of the lattice sizel and coupling\.

N 15 3.0 4.0 5.0 6.0 9.0
c 0.10 0.20 0.27 0.33 0.40 0.58
Ground state energy per sitg,
L=2 —0.15449(2) —0.68081(1) —1.3212(5) —2.359(1) —3.666(2) —8.389(6)
3 —0.15438(4) —0/6764(2) —1.2846(3) —2.187(1) —3.431(2) —8.042(4)
4 —0.15436(1) —0.6764(1) —1.2836(8) —2.160(3) —3.322(4) —7.94(1)
6 —0.15436(2) —0.6765(1) —1.2809(7) —2.133(2) —3.234(3) —7.613(9)
8 - —0.6759(2) —1.2705(4) —2.094(2) —3.154(2) —7.402(6)
Wilson loops,W(1,1)
L=2 0.07212) 0.16713) 0.2732) 0.3966) 0.46Q7) 0.5764)
3 0.07182) 0.16414) 0.2452) 0.3464) 0.4375) 0.5622)
4 0.07182) 0.16477) 0.24Q02) 0.3304) 0.4015) 0.5564)
6 0.07181) 0.16484) 0.24Q3) 0.31Q1) 0.3832) 0.5503)
8 - 0.16338) 0.2281) 0.2961) 0.3652) 0.5452)
W(2,1)
3 0.00591) 0.03183) 0.07Q1) 0.1464) 0.2346) 0.3763)
4 0.00611) 0.03224) 0.0672) 0.1304) 0.1824) 0.3556)
6 0.00611) 0.03223) 0.0692) 0.1091) 0.1652) 0.3293)
8 - 0.03095) 0.05711) 0.0971) 0.1442) 0.3132)
W(2,2)
4 - 0.001@7) 0.0062) 0.0225) 0.0445) 0.1837)
6 - 0.00223) 0.0092) 0.0181) 0.03712) 0.1374)
8 - 0.00116) 0.0051) 0.0131) 0.0232) 0.11%3)
W(3,2)
6 - - - 0.0041) 0.0062) 0.0593)
8 - - - 0.0011) 0.0041) 0.0392)
W(3,3)
6 - - - - 0.02@3)
8 - - - - 0.0092)

This equation is implemented Hy14—1§ the following
procedure:

(i) Record the valu®(x;) for each “ancestor” walker at
the beginning of a measurement.

(i) Propagate the ensemble as normal Joiterations,

equilibration. The data were block averaged over blocks of
up to 256 iterations, to minimize the effect of correlations on
the error estimates.

The results taken ah7=0.01 andA7r=0.05 were ex-
trapolated linearly ta\ 7=0. Figure 1 demonstrates that the

keeping a record of the “ancestor” of each walker in the dependence of the ground-state energy/onis approxi-

current population.
(iii) Take the weighted average of tlx;) with respect
to the weights of the descendantsxpfafter theJ iterations,

mately linear.
The variational parameterwas given values as shown in
Table I. These are essentially the values used by €hal.

using sufficient iterationd that the estimate reaches a “pla- [13], obtained from a variational Monte Carlo calculation.

teau.”

Ill. RESULTS

Simulations were carried out fdrX L XL lattices up to

We checked that these were approximately the optimum val-
ues for small lattices.

Forward-walking measurements were taken oVéera-
tions, whereJ ranged from 20 to 100, depending on the
coupling\. Ten separate measurements were taken over this

L=8 sites, using runs of typically 4000 iterations and antime interval, in order to check whether the value measured

ensemble size of 250—-1000 dependimyersely on lattice

by forward walking had reached equilibrium. A new mea-

size. These statistics are approximately 100 times less thafyrement was started soon after the previous one had fin-

those used in the (1) calculationd 18], but about 100 times

greater than those used in the previoug3ldalculations of
Chinet al.[13]. Time stepsA 7 of 0.01 and 0.05 “sec” were

used, with each iteration consisting of 5 sweeps and 1 sweep

ished.

A. Ground-state energy

through the lattice, respectively, followed by a branching The dependence of the ground-state energy on the varia-
process. The first 400 iterations were discarded to allow fotional parametec is illustrated in Fig. 2. It can be seen that
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452 + nentially fast inL, whereas in the “weak-coupling” regime,
A=5.0, the convergence is more likeLf/at these lattice
el ] sizes. This behavior merits some further explanation.
A similar phenomenon occurs in the case of thel)U
g e theory in (2+1)D [23,7,18. In the strong-coupling regime,
° 0 where the mass gap is large, the usual exponential conver-
458 5 gence occurs. In the weak-coupling regime, however, where
ol the mass gaM is very small, the finite-size scaling behavior
-601 for small lattice sizes is that of a massless theory, and it is
5 ¢ e only at much larger lattice sizds~1/M that a crossover to
621 exponential convergence occurs. In thel)tase, it has been
shown([7,18] that the finite-size scaling behavior at smiall
028 0.28 08 032 034 0.36 0.38 is well described by an “effective Lagrangian” approach,

c

using the Lagrangian for free, massless photons that the
model was originally constructed to simulate. In the same

FIG. 2. Estimated ground-state energy as a function of the variaway, an “effective Lagrangian” corresponding to free,

tional parametec, for L=6\X=5.0.

massless gluongon-interacting QCIDshould describe the
finite-size behavior in the present case, in line with the idea

the energy reaches a broad minimum at about the expected asymptotic freedom. By analogy with the {2)D case,

value (€=0.33 at this coupling

we expect a 1/* dependence for the corrections to the

Our estimates of the ground-state energy are listed iground-state energy per site. We hope to pursue this analysis

Table | as a function of the couplingand lattice sizé.. The

further at a later date.

dependence on lattice size is illustrated in Fig. 3, at two fixed An anomalous feature in Fig(9 is that theL =8 point

couplings A=3.0 and A=5.0. In the “strong-coupling”

lies well out of line with the others. This occurs at other

case \=3.0, it can be seen that the results converge expoeouplings also. We suspect that the resultslfer8 are not

-0.676T

¢

-0.677[

-0.678 T

-0.679T

-0.68T

-0.681T

A=3.0

0 0.01 0.02 0.03 0.04 0.05
n

0.06

0.07

A=5.0

reliable, and that the trial wave function will have to be
further improved to give reliable results for such large lat-
tices. Supporting evidence for this will be presented below.
We have made estimates of the bulk limit, extrapolating
mainly from the smalleiL values where possible, and the
results are listed in Table Il. Our present estimates generally
lie a little below those of Chiret al. [13], and we believe
them to be more accurate in view of our greater statistics.
The estimates for the bulk ground-state energy per site are
graphed as a function of coupling in Fig. 4, where they are
compared with previous estimatgEd] obtained by an “ex-
act linked cluster expansion(ELCE) procedure and with
the asymptotic weak-coupling serigz4]

€0~ —3N+7.7982 -, (29
The Monte Carlo results agree very well with the ELCE
estimates, and appear to match nicely the expected weak-

coupling behavior foh=6.

B. Wilson loops

The forward-walking method was used to estimate values
for the mXxn Wilson loops,W(m,n). Figure 5 shows an
example, namely the estimate of the mean plagu#ité,1)
as a function of] for the casd. =6, A=1.5. It can be seen
that the estimate relaxes exponentially towards a plateau
value as the number of iterations,increases: an exponential
fit is performed to estimate the asymptotic value. It can also
be seen that the statistical error in each point is much larger
than the point-to-point variation: the estimates are highly
correlated, and all the points tend to move up and down

together as one goes from one sample to the next.
A problem that arises in these measurements is the loss of
statistical accuracy at large couplings. At large couplings the

FIG. 3. Ground-state energy per site graphed agairist, 1/
wherel is the lattice sizga) at couplingh =3.0, (b) at coupling
A=5.0. The lines are merely to guide the eye.
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TABLE II. Estimates of the bulk ground-state energy per site and Wilson loops as functians of

N 15 3.0 4.0 5.0 6.0 9.0
Ground state energy per site,

This work —0.15436(2) —0.6764(1) —1.284(2) —2.16(2) —-3.25(2) —7.9(1)
Chinet al. [13] —0.675(0) —1.275(3) -—2.088(6) —3.183(6) —7.50(3)
Wilson loopsW(1,1)

This work 0.07182) 0.1651) 0.24Q1) 0.321) 0.391) 0.5543)
Chinet al.[13] 0.160%5) 0.2985) 0.3713) 0.5393)
W(2,1)

This work 0.00612) 0.03225) 0.0682) 0.121) 0.1655) 0.341)
W(2,2)

This work 0.00201) 0.0084) 0.0184) 0.0357) 0.131)
W(3,2)

This work 0.0042) 0.0062) 0.051)
W(3,3)

This work 0.01(1)

weights of the random walkers vary rapidly with time, and it coupling valuex =5.0 can be approximately fitted by a1/
can easily happen that during a measurement the descendadependence. Thie=8 value and even the=6 value again
of all the “ancestor” walkers but one die out from the en- lie off the trend of the smaller lattices, and are probably not
semble, at which point the result “freezes,” and the numbervery reliable.
of members of the ensemble has effectively been reduced to Estimates of the bulk limit are listed in Table Il. The
1. This inevitably means a severe loss of statistical accuracyestimates for the mean plaquette are graphed as a function of
A graph of the “mean plaquette’W(1,1) versus the coupling\ in Fig. 8, and compared with series estimates at
variational parameter is shown in Fig. 6. Another problem strong and weak couplinfl9,24]. The agreement is quite
is immediately apparent. The estimate Wf%1,1) is not in-  good.
dependent ot—in fact it depends linearly or over this
range—and the size of the variation is such that the probable C. String tension
systematic error due to the choicemis an order of magni-
tude larger than the random statistical error in the results
Thus it would be advatageous in future studies to put mor
effort into improving the trial wave function, rather than
merely improving the statistics.
Figure 7 shows examples of the dependence of the results Ka’=R,=—In W(n,mWW(n=1n-1) (30)
on lattice sizel.. Once again, the results at strong coupling W(n,n—1)>2
A= 1.5 converge exponentially fast, while those at the weak

Having obtained estimates for the Wilson loop values on
the bulk lattice, one can extract estimates for the ‘“space-
ike” string tension using the Creutz ratios

or the cruder 2-point estimates

0 GFMC o
€, -1} ELCE — 0.0752
weak coupling ——-
2f A W(1,1)
af 1 0.075[
at
5T | 0.0748
6T \\\
\\ 4

- B \,
7 N 0.0746 [
8 O\\ ]
9T \\'

) 0.0744

0 2 4 6 8 10
A 0 2 4 6 8 10

J
FIG. 4. The bulk ground-state energy per site graphed against

coupling\. The points are our Monte Carlo estimates, the solid line  FIG. 5. Measured value for the Wilson lo&j(1,1) as a func-
represents earlier ELCE estima{d®], and the dashed line repre- tion of the number of forward-walking iteration, for the case.
sents the asymptotic weak-coupling behavior. =6, A=1.5. The solid line is an exponential fit to the data.
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w1 ) ' ) ' w(,1)
0.33f ] o
032t o 1 o8t 3
,,,,,,,, (9]
031 osf T
04f
03[
03[
029 L
02 GFMC  ©
| ] strong coupling
028 oAt weak coupling ——— |
. . , , 0 . .
0.26 0.28 0.3 0.32 0.34 0.36 0 2 4 6 8 10
¢ A
FIG. 6. Estimated value for the mean plaquett¢1,1) as a FIG. 8. The mean plaquetw/(1,1) for the bulk system graphed
function of the variational parametey for L=6, A=5.0. against coupling.. The solid line represents the strong-coupling

series expansiofil9] and the dashed line the asymptotic weak-

, W(n,n) coupling behavior.
Rn=—qln W(n,n—1)

n n . (31

converted to a dimensionless, “spacelike” tension by divid-

The results are shown in Fig. 9. Also shown in Fig. 9 aremg by the “speed of light"c,

some previous estimates derived from the “axial” string ten- , aT
sion, obtained19] using an ELCE method. The axial string Ka®=-—, (32
tensionaT is calculated as an energy per link, and must be
where[26]
w(1,1) . . : . . . .
0.0723[ 1 2 , o \/E
r=15 ~_[1- =/ |1— e
ooro2t | c gz[1 0.16717] 3 1-0.1671 x| A—o,
00721 . (33
00721 1 We have also used the weak-coupling relationship between
oot the scales of Euclidean and Hamiltonian lattice Yang-Mills
’ J theory calculated by Hasenfratz and Hasenffa& to plot
0078y T ] the results against the Euclidean coupljBg 6/g§, where
0.0717 —
B=+/6\—0.01308. (34)
0.0716
. . . . . It can be seen that the present GFMC results are in rough
0 001 002 °~°13/ ¢ 0.04 005 006 007 agreement with the axial string tension results in the region
. , i i . . . 3.5 T T T d T
w(1,1) ELCE o
L A=50 4] 3r ]
0.4 ///,§ Ka2 Rz v
038} /,,/” 4 25
036 /,/"/ 1 2f
0.34T //’iy 1 15[
%
0.32 1 i v%
° Y
03[ o 1 05[
(I) 0.I01 0.;)2 0,63 0.;)4 0.;)5 0.;)6 0.07 01 2 3 4 5 6
17 B
FIG. 7. The mean plaquett&(1,1) graphed againstl1, where FIG. 9. The string tensioKa? graphed against coupling. The
L is the lattice size(a) at couplinghA=1.5, (b) at coupling A circles are obtained from ELCE estimates of the axial string tension
=5.0. The lines are merely to guide the eye. [19]; the triangles are Monte Carlo estimatesRyf

074506-7



C. J. HAMER, M. SAMARAS, AND R. J. BURSILL PHYSICAL REVIEW D62 074506

4= B<5, which is also the region where the “roughening” pendence on the trial wave function parameteifhe sys-
transition occurs in the string tensi¢h9]. For 8>5, how-  tematic error due to this dependence is an order of magnitude
ever, the Creutz rati®, runs above the ELCE estimate, and larger than the statistical error, so it would pay to put more
shows no sign of the expected crossover to an exponentiallgffort in future studies into improving the trial wave func-
decreasing scaling behavior@#=6. We presume that this is tion, rather than simply increasing the statisfizsthis con-

a finite-size effect, and that the Creutz ratRsfor largern  nection, we note that Beccarid7] has recently proposed a
will show a substantial decrease in the “weak-coupling” re- “stochastic reconfiguration” method for dynamically opti-
gime B8=6. That is certainly the pattern seen in the Euclid-mizing the trial wave function in Hamiltonian LGT, and has
ean calculation§25] or in the U(1).,; model[18]. Unfor-  applied it to the W1) theory in(2+1)D and the S(2) theory
tunately, however, our present results for the larger Wilsorin (3+1)D]. Furthermore, the effective ensemble size de-
loops are not of sufficient accuracy to allow worthwhile es-creases during each measurement as the descendants of each
timates ofR, for n=2. “ancestor” state die out, and this produces a substantial loss
in statistical accuracy at weak coupling, as well.

It would be preferable if one were able to do away en-
tirely with all the paraphernalia of trial wave function,

We have presented the results of a new Green’s functioyeights, branching algorithms, etc., and just rely on some
Monte Carlo study of the S@) Yang-Mills theory in the  sort of Metropolis-style accept-reject algorithm to produce a
(3+1)D Hamiltonian formulation. A forward-walking correct distribution of walkers. Within a quantum Hamil-
method has been used to estimate values for the Wilsofbnian framework, a way is known to do this, namely the
loops as well as the ground-state energy, and hence sonpgith integral Monte Carl¢PIMC) approach{20]. We con-
rather crude estimates of the string tension have been exiude that the PIMC approach may be better suited than
tracted. Comparisons have been made with an earlier HamiGFMC approach to the study of large and complicated lattice
tonian calculation of the axial string tensi¢h9]. The two  Hamiltonian systems.
sets of results agree in the “roughening” region, but our
Monte Carlo results do not extend to the large Wilson loops
that would be required to demonstrate “scaling” behavior in
the weak-coupling regime. This work is supported by the Australian Research Coun-

Some significant problems with the GFMC method havecil. Calculations were performed on the SGI Power Chal-
emerged from this study. The “forward-walking” technique lenge Facility at the New South Wales Center for Parallel
was introduced specifically to avoid any variational biasComputing and the Fujitsu VPP300 vector machine at the
from the trial wave functioh2,14—14. As it turns out, how-  Australian National Universtiy Supercomputing Facility. We
ever, the results for the Wilson loops show a substantial deare grateful for the use of these facilities.

IV. SUMMARY AND CONCLUSIONS
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