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Alternative to domain wall fermions
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We define a sparse Hermitian lattice Dirac matrixH coupling 2n11 Dirac fermions. When 2n fermions are
integrated out the induced action for the last fermion is a rational approximation to the Hermitian overlap Dirac
operator. We provide rigorous bounds on the condition number ofH and compare them to bounds for the
higher dimensional Dirac operator of domain wall fermions. Our main conclusion is that overlap fermions
should be taken seriously as a practical alternative to domain wall fermions in the context of numerical QCD.

PACS number~s!: 11.15.Ha, 11.30.Rd, 12.38.Gc
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I. INTRODUCTION

A major embarrassment of lattice field theory in the co
text of QCD has disappeared: we now have a way to p
serve chiral symmetry on the lattice@1–3#, and the all im-
portant theoretical understanding of ‘‘soft’’ physic
consequences of chiral symmetry at the Lagrangian level
be taken over from the continuum to the lattice. Natura
one is eager to exploit this development in numerical QC
and at the moment there are two ways that have been
plored: One is the so-called domain wall fermion approa
@1,3,4#, and the other is based on implementing@5# a rational
approximation to the sign function of the overlap Dirac o
erator@6#. The relation between the two is elucidated in@7#.
One conclusion from@7# could be that with computers im
mensely more powerful than the ones we have at prese
would not matter which approach one uses for numer
QCD. In practice, the two methods are quite different, an
is important to assess their relative strengths and weakne

To compare methods one needs to separate the quen
case from the dynamical case: In a dynamical hybrid Mo
Carlo simulation one needs to invert the Dirac operator
ten, at each step of the so called ‘‘trajectory.’’ The inversio
do not generate propagators used in computing physical
servables, except when the trajectory is completed and
change in gauge fields accepted. In a quenched simula
one extracts physics results from each set of fermion pro
gators. Thus, the comparison of overall fractional costs
inversions works out differently in the quenched and in
dynamical case.

It seems that the overlap approach has some advanta
the quenched case: it has been possible to do simulatio
very low quark masses@8#, lower than what was achieve
with domain wall fermions@9#. To be sure, a systematic an
complete comparison has not been carried out, so thi
more an impression than a hard fact. The reason for
difference is that with the overlap it has been possible
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better handle the cases where the Hermitian Wilson D
operatorHW has eigenvalues very close to zero. Numeri
investigation has shown that there is a finite density of
genvalues very close to zero at typical lattice couplings u
in lattice simulations@10#. While this is a problem for both
domain walls@7# and overlap, in the overlap case one c
exploit the simple local structure ofHW and project out the
troublesome states@11#. This is expensive, but needs to b
done only once per gauge field configuration and will help
the calculation of all propagators at this gauge field. Th
the extra expense is amortized in the quenched case. A s
lar projection method in the case of domain wall fermio
might make both methods equal. Until very recently the
existed no practical implementation of a projection techniq
in the domain wall context, but this is changing as we wr
@12#.

At the dynamical level it always was felt that domain wa
fermions were superior because the action was quite stan
in form and one needed only one conjugate gradient inv
sion, rather than the two nested ones required by the rati
overlap@5,11#. Here again, this is more an impression than
hard fact because one ought to take into account condi
numbers, matrix sizes and the possibility to use project
But, superficially at least, it is hard to ignore the advanta
of domain wall fermions with a straightforward action and
relatively well tested algorithm.

The latter distinction between the implementation of d
main wall fermions and rational overlap fermions could
eliminated however@13# by undoing what the overlap doe
relative to domain wall fermions. One reintroduces ex
fields which interact quadratically by a sparse Hermitian m
trix H. The main requirement ofH is the following: There
exists one massless field,c, such that integrating out all the
other fields produces forc a specific effective actionSeff .
Seff52c̄Ho

nc and the approximate Hermitian overlap Dira
operator is given byHo

n51/2(g51en(HW)) where the func-
tion en(x) is a numerically accurate rational approximatio
to the sign function sign(x) for x in the spectrum ofHW .
One can easily add an explicit Dirac mass term for the fi
c.
©2000 The American Physical Society04-1
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H has to fulfill additional requirements: It has to have
condition number that is not significantly worse than that
the five dimensional Dirac operator used for domain w
fermions,D. In particular, the condition number should n
diverge as a function of the number of extra fields, 2n. The
cost of acting withH should grow no more than linearly wit
n, so long as the truncation of the sign function converges
e2cn. Furthermore,H should depend structurally only onHW

as one entity. A dependence onHW as one object ensure
that if a better version ofHW is eventually found, it would be
trivial to changeH, replacing the oldHW with the new one.
Also, the implementation of the projection technique simp
involves a replacement ofHW as a whole. In particular, tak
ing derivatives with respect to the gauge fields would
simple, making the computation of the ‘‘force’’ in hybri
Monte Carlo relatively easy. Although the action for doma
wall fermions also has a simple dependence on the ga
fields, the dependence on the length of the extra directio
controlled by the complicated transfer matrixTW @7#. The
dependence onn is simpler in the overlap case, as it comes
only throughen(HW), andHW is a sparse matrix, unlikeTW .

Previous proposals forH had some numerical entries th
were large and grew withn. This implied that the norm ofH,
iHi, grew and made the condition numberk(H)
5iHiiH21i grow too. Our choice for matrix norms is quit
standard:iXi5Almax(X

† X), with lmax(X
† X) being the larg-

est eigenvalue ofX† X. The main objective of this paper is t
present a new version ofH which satisfies the above require
ments and also has a reasonable condition number.

In the next section we shall constructH. We proceed with
the derivation of rigorous upper bounds oniHi and on
iH21i . Rigorous bounds are nice, but there always is a qu
tion whether they are saturated. This will be discussed.
shall also ask the opposite question: what is the best one
hope for, regardingk(H)? To answer that we shall derive
lower bound for iH21i . This is all we need because,
practice, we expect the upper bound oniHi to be typically
almost saturated. We proceed to address the question
our results compare to what is known about the domain w
fermion operatorD. Since not much seems to be known, w
derive some exact results forD too, but also leave more wor
for the future. We then briefly discuss projection techniqu
for both overlap and domain wall fermions.

We conclude the paper with a discussion of other adv
tages we envisage our proposal to have over domain
fermions, beyond better chirality properties. We compare
number ofHW operations needed to perform the inversion
the fermionic operator. We find this number numerically f
three cases: domain wall fermions, a method using the
eratorH proposed in this paper, and a method using a dir
computation of the sign function represented by the sa
rational approximation as implemented byH. The compari-
son is carried out for the two dimensional Schwinger mod
We hope to convince the reader that the overlap alternat
merit serious numerical testing in the context of QCD, som
thing we are not fully geared up to do efficiently by ou
selves.
07450
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II. CONSTRUCTION OF H

The kernels of the quadratic fermionic actions we sh
work with will be Hermitian matrices in most cases. Letc be
the light Dirac field representing a light quark. We wish
end up with an action

Seff~c!52c̄F11m

2
g51

12m

2
«n~HW!Gc. ~1!

The bare quark massm @7# is restricted byumu,1 for physi-
cal reasons.

The matrixHW has the standard Wilson form, but can b
easily replaced by a more elaborate construction. The fu
tion «n(x) is an approximation to sgn(x):

«n~HW!5
1

n (
s51

n
1

cs
2HW1

ss
2

HW

, ~2!

with

cs5cosus , ss5sinus , us5
p

2n S s2
1

2D , s51,2,...,n.

~3!

This rational approximation can be replaced by others: O
can replace thecs

2 andss quantities with other real number
of either sign; to change the overall sign of a contribution
somes one simply switches the sign ofHW at thats.

For eachs we introduce a new fieldxs . Thexs fields are
decoupled from each other and enter quadratically in the
tion

x̄sFcs
2HW1

ss
2

HW
Gxs . ~4!

In addition, they couple to thec field by

A12m

2n (
s

~ c̄xs1x̄sc!. ~5!

To get the right effective action forc, there also is a qua
dratic term inc :

2
11m

2
c̄g5c. ~6!

To make the action local we should eliminate the inve
of HW from the x action. To this end we introducen more
Dirac fields, fs , also Grassmann, and change thex self-
interaction to

x̄s~cs
2HW!xs1ss~ x̄sfs1f̄sxs!2f̄s~HW!fs .

Introduce the combined fieldC̄5(c̄,x̄1 ,f̄1 ,...,x̄n ,f̄n).
The action is

S5C̄HC, ~7!
4-2
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with

H5

¨

2
11m

2
g5 A12m

2n
0 A12m

2n
0 ... A12m

2n
0

A12m

2n
c1

2HW s1 0 0 ... 0 0

0 s1 2HW 0 0 ... 0 0

A12m

2n
0 0 c2

2HW s2 ... 0 0

0 0 0 s2 2HW ... 0 0

] ] ] ] ] 0 0

A12m

2n
0 0 0 0 ... cn

2HW sn

0 0 0 0 0 ... sn 2HW

©
. ~8!

Our new extended overlap model is based on the following identity:

E dC̄dCeC̄HC5F )
s51

n

det~cs
2HW

2 1ss
2!G E dc̄dc expX2c̄S 11m

2
g51

12m

2n (
s51

n
1

cs
2HW1

ss
2

HW

D cC. ~9!
on

o
a
-

t be
es

-
n-
ba-

es.
The prefactor can be canceled by adding pseudofermi
which will be decoupled in thes index.

At n5` we can take a continuum limit, with

du5
p

2n
ds, 0,u,

p

2
, xs5

1

An
x~u!, fs5

1

An
f~u!.

~10!

The effective action then becomes

S52
11m

2
c̄g5c1

2

p
A12m

2 F c̄E dux~u!

1E dux̄~u!c G1 2

p E du@cos2 ux̄~u!HWx~u!

2f̄~u!HWf~u!1sinux̄~u!f~u!1sinuf̄~u!x~u!#.

~11!

The following identity ~which holds as long asiHW
21i is

finite! expresses the essence of our construction:

2

p E
0

p/2 du

HW cos2 u1
sin2 u

HW

5
2

p E
0

` dt

t

1

HW

t
1

t

HW

5sgn~HW!. ~12!

In terms ofu the action in the extra dimension involves n
derivatives. In a rough sense theu variable corresponds to
‘‘fifth’’ momentum ~for a four dimensional physics applica
07450
s,tion!. The physical degrees of freedom,c, couple only to an
average field. These two features indicate that one migh
able to use some sort of multigrid or hierarchical techniqu
to reduce theO(n) computational cost per inversion ofH to
a logarithmic dependence onn. Other integral representa
tions of the sign function, or other approximation to the i
tegrals above, will produce more variations on the same
sic idea, but with possibly different computational properti

The strategy for finding bounds on the spectrum ofH is
based on an exact formula for the determinant ofH2z. This
determinant is obtained by adding2zC̄C to the action and
doing the Gaussian integral

det~H2z!5H )
s51

n

det@~cs
2HW2z!~HW1z!1ss

2#J
3detF11m

2
g51z1

12m

2
f n~HW ,z!G .

~13!

Here,

f n~HW ,z!5
1

n (
s51

n
1

cs
2HW1

ss
2

HW1z
2z

. ~14!

Eigenvalues ofH are roots of the equation det(H2z)50. All
the roots come from roots of the last factor.~Roots of the
4-3
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factors in the product overs are canceled by poles in the la
factor. So, the spectrum ofH is determined by the last fac
tor.!

Introducing

Sn~a,b!5
1

n (
s51

n
1

acs
21bss

2 , ~15!

we see that

f n~HW ,z!5SnS HW2z,
1

HW1z
2zD . ~16!

Sn(a,b) is a ratio of polynomials ina, b:

Sn~a,b!5
Pn~a,b!

Qn~a,b!
,

Pn~a,b!5(
s51

n S 2n
2s21Dbn2sas21,

Qn~a,b!5(
s50

n S 2n
2sDbn2sas. ~17!

Extracting (HW1z)2n from numerator and denominator, w
see thatS(a,b) is also a ratio of polynomials inHW . For real
a and b we can write simple closed formulas: Ifab.0 we
have

Sn~a,b!5
sgn~b!

Aab
tanh~nv!,

v5 log~ u11Aa/bu/u12Aa/bu!. ~18!

if ab,0,

Sn~a,b!5
sgn~b!

A2ab
tan~nv!, 0<v<

p

2
,

eiv5~11 iA2a/b!/~12 iA2a/b!. ~19!

These formulas make then dependence explicit.
The productab clearly plays a central role:

ab511zg~HW ,z!, g~HW ,z!5z2HW2
2

HW1z
.

~20!

Our bounds are based on the observation that forab.0
we have ann-independent bound:

u f n~HW ,z!u5uSn~a,b!u<
1

Aab
. ~21!

If we allowedab,0, we would have had little control ove
Sn(a,b) because of the tangent function.
07450
III. UPPER BOUND ON iHi

For very large uzu ab is large and positive, makingz
1@(12m)/2# f n(HW ,z) large in absolute value. It is clea
that det(H2z) cannot vanish then. To find an upper bou
for iHi we look for the smallestuzu values for which the
above is still true, as we decreaseuzu from infinity.

Theorem I. For any Hermitian boundedHW we have

iHi<AiHWi212. ~22!

Proof of Theorem I. Pick a real numberz,

uzu>AiHWi212. ~23!

We shall prove, by contradiction, that this implies detH
2z)Þ0. All we need to show is that the Hermitian operat
@(11m)/2#g51z1@(12m)/2# f n(HW ,z) has no zero eigen
vectors. We assume that there exists such a normalized
genvectorc0 . c0 obeys

11m

2
g5c052Fz1

12m

2
f n~HW ,z!Gc0 . ~24!

Taking norms we get

11m

2
5Ac0

†Fz1
12m

2
f n~HW ,z!G2

c0. ~25!

Let h be an arbitrary eigenvalue ofHW ; we know that

uzu>Ah212. ~26!

Simple analysis of the functionzg(h,z) implies

zg~h,z!>0. ~27!

As a consequence,

u f n~h,z!u<1. ~28!

Hence, every eigenvaluel of z1@(12m)/2# f n(HW ,z)
obeys

ulu>uzu2
12m

2
. ~29!

~Recall thatumu<1.! By the variational principle, the righ
hand side of Eq.~25! obeys the same inequality. Hence

11m

2
>uzu2

12m

2
, ~30!

which impliesuzu<1 in contradiction to our initial assump
tion aboutz. j

This establishes the upper bound of Theorem I. Note t
it is m andn independent.

Corollary. Let HW be the Hermitian Wilson Dirac opera
tor in evend dimensions, andH defined as above, with the
standard replacement of the four dimensionalg5 . Let the
mass parameterm in HW be restricted bym.22. Then
4-4
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ALTERNATIVE TO DOMAIN WALL FERMIONS PHYSICAL REVIEW D 62 074504
iHi<A21~2d1m!2. ~31!

This is a direct consequence of the known upper bound
iHWi . j

We expect this bound to be quite close to optimal.
This proves that the main difficulty faced by previo

proposals to implement the overlap Dirac operator by add
extra fields has been completely eliminated. The prob
with the previous proposals was that one could not con
iHi. Moreover, our bound is quite stringent numerical
even smaller than a typical bound on a Wilson Dirac ope
tor in 2d11 dimensions@14#. This is a plausible compari
son, because one could think abouts as indexing an extra
dimension. At any rate, ford54 andm521.8 one would
have

iHi<6.4, ~32!

which is very reasonable.
We ran some tests in two dimensions withm521 and

found the bound of 3.3 to be typically almost saturated
U(1) gauge configurations generated with a Wilson action
b52. Moreover, with a trivial gauge background one c
explicitly check that one can get quite close numerically
the upper bound and so it is impossible to find a gauge ba
ground independent bound which is significantly better.

IV. UPPER BOUND ON iHÀ1i

The immediate question we need to address now is w
happens to the low eigenvalues ofH. Having established tha
H behaves more or less as a usual fermionic lattice oper
at high eigenvalues, numerical problems can only come fr
a largeiH21i .

The basic strategy to get the bound is similar to the o
used above. First takez50 andn5`. Assume thatHW has
no zero eigenvalue. Then,ab51 andi f `(HW,0)i51. As a
result, @(11m)/2#g51@(12m)/2# f `(HW,0) cannot have
zero eigenvalues ifmÞ0. We therefore look now for a
neighborhood ofz50 where, ifm.0 andHW has no zero
mode, we have

11m

2
. I z1

12m

2
f n~HW ,z!I . ~33!

If this is true, @(11m)/2#g51z1@(12m)/2# f n(HW ,z)
cannot have a zero mode. Indeed, if there were such a
mode,c0 , we would have a contradiction, since then

S 11m

2 D 2

c0
†c05c0

†Fz1
12m

2
f n~HW ,z!G2

c0 , ~34!

in violation of the variational principle for the maximal e
genvalue of†z1@(12m)/2# f n(HW ,z)‡2.

The range 0,m,1 covers all possible positive quar
masses. The case21,m,0 describes quarks with a neg
tive mass. This certainly is not without interest, but t
analysis becomes more complicated and unnecessary fo
purposes here. So, we simply restrict ourselves to the ra
0,m,1.
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Let h be an eigenvalue ofHW :

1

iHW
21i

<uhu<iHWi . ~35!

We definezn(h,m) as the smallest positive solution to th
following equation:

11m

2
5Uzn~h,m!1

12m

2
f n„h,zn~h,m!…U. ~36!

Since f n(2h,2z)52 f n(h,z), we have

zn~h,m!52zn~2h,m!. ~37!

h is restricted to ranges that are symmetric about zero. Th
fore, the inequality

11m

2
.Uz1

12m

2
f n~h,z!U ~38!

can be guaranteed by restrictingz to a range symmetric abou
zero:

uzu,un~HW ,m!. ~39!

Here, the numerical boundun(HW ,m) is given by

un~HW ,m!5 min
1/iHW

21i<uhu<iHWi

zn~h,m!. ~40!

We have therefore proven the following bound:
Theorem II. For 0<m,1 and arbitrary nonsingular Her

mitian HW , we have

1

iH21i >un~HW ,m!. ~41!

un(HW ,m) is determined by Eqs.~36! and ~40!. j

zn(h,m) can be found numerically for the ranges ofh and
m of interest in practice. To find a bound analytically is cum
bersome becauseun(HW ,m) will be controlled by either anh
corresponding to a maximal~in absolute magnitude! eigen-
value ofHW or to a minimal one. Some analysis shows th
there is a constant of order unity~dependent on the dimen
siond and them parameter inHW!, C, and that if we restrict
HW by

iHW
21i>C, ~42!

the minimum overh we need in order to getun(HW ,m) is
attained at

h5hmin5
1

iH21i . ~43!

Thus, the entire dependence ofun(HW ,m) on HW comes in
through the value of the lowest eigenvalue ofHW

2 . Gauge
configurations for whichiHW

21i,C are easily handled by
any numerical method and the condition number in that c
is not a source of concern. So, nothing is lost by assum
4-5
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TABLE I. The entries are numerically obtained exact values for the coefficientscn(h,m) appearing in our
rigorous bounds.h2 always is the smallest eigenvalue ofHW

2 .

h m n510 n520 n550 n5100 n5`

0.01 0.01 158.9903 68.2685 15.1871 2.7847 0.9804
0.01 0.02 80.9208 34.9814 8.1349 1.8857 0.9803
0.01 0.04 41.8905 18.3404 4.6106 1.4366 0.9796
0.01 0.08 22.3825 10.0234 2.8506 1.2111 0.9759
0.01 0.16 12.6341 5.8657 1.9686 1.0892 0.9600
0.02 0.01 65.9303 22.8212 2.7302 0.9939 0.9616
0.02 0.02 33.7907 11.9821 1.8492 0.9779 0.9617
0.02 0.04 17.7244 6.5649 1.4094 0.9696 0.9614
0.02 0.08 9.6970 3.8598 1.1892 0.9630 0.9587
0.02 0.16 5.6891 2.5087 1.0718 0.9478 0.9451
0.04 0.01 21.7717 4.7348 0.9567 0.9258 0.9258
0.04 0.02 11.4341 2.8394 0.9417 0.9262 0.9262
0.04 0.04 6.2683 1.8934 0.9344 0.9266 0.9266
0.04 0.08 3.6903 1.4224 0.9297 0.9255 0.9255
0.04 0.16 2.4066 1.1852 0.9187 0.9162 0.9162
0.08 0.01 4.3730 1.0017 0.8606 0.8606 0.8606
0.08 0.02 2.6252 0.9322 0.8614 0.8614 0.8614
0.08 0.04 1.7535 0.8985 0.8628 0.8628 0.8628
0.08 0.08 1.3211 0.8826 0.8641 0.8641 0.8641
0.08 0.16 1.1076 0.8719 0.8612 0.8612 0.8612
0.16 0.01 0.8695 0.7517 0.7515 0.7515 0.7515
0.16 0.02 0.8118 0.7528 0.7527 0.7527 0.7527
0.16 0.04 0.7846 0.7549 0.7549 0.7549 0.7549
0.16 0.08 0.7738 0.7586 0.7586 0.7586 0.7586
0.16 0.16 0.7714 0.7629 0.7629 0.7629 0.7629
e

we
on
du
ca
A
le

t

ty

al-

:

for
that the smallest eigenvalue ofHW
2 is smaller thanC22; this

is anyhow the case for most gauge configurations one
counters in practical QCD simulations.

In order to get some feeling for orders of magnitude
work out a simple analytical approximation for the bound
uzu and represent the exact result for the bound as the pro
of this approximation times a correction factor. Some typi
values for the correction factor are presented in Table I.
the entries in Table I are for the case when the smal
eigenvalue ofHW

2 is smaller thanC22.
We now takeab.0 because this certainly is true atz

50. As explained above, we can restrict our attention
positivez, without losing generality. It is true now that

I z1
12m

2
f n~hmin ,z!I<z1

12m

2

1

A11zg~hmin ,z!
.

~44!

So, our bound will hold if we enforce the first inequali
below:

11m

2
.z1

12m

2

1

A11zg~hmin ,z!

'z1
12m

2 F11zS hmin

2
1

1

hmin
D G

'z1
12m

2
1

12m

2

z

hmin
'

12m

2
1

z

2hmin
. ~45!
07450
n-

ct
l
ll
st

o

In the above series of approximations we assumedhmin!1.
We end up with an approximate range from which eigenv
ues ofH are excluded:

uzu,2mhmin . ~46!

Finally, we rewrite our exact result in the following form

1

iH21i >un~HW ,m![cn~HW ,m!
2m

iHW
21i

. ~47!

For iHW
21i>C the cn prefactor depends onHW just through

hmin . In Table I we collected several values ofcn(hmin ,m) to
give a sense of the dependence onn, hmin , andm. cn(HW ,m)
is calculated using Eqs.~36!, ~40!, and~47!.

V. CONDITION NUMBER OF H: WORST AND BEST
CASE

Combining our exact results we obtain an exact bound
condition numbers.

Theorem III:

k~H !<
k~HW!

2m

A11
2

iHWi2

cn~HW ,m!
. ~48!

j

4-6
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From Table I we see that decreasingn improves the con-
dition number. This is expected because finiten effects in-
duce chirality violation even atm50, so act somewhat as a
effective additional mass. We also see from Table I tha
high enoughn the entire correction needed to make the a
proximate bound rigorous is of order unity. The depende
of the correction factor onh andm shows that the approxi
mation is somewhat pessimistic.

In summary, roughly, the main message is that the co
tion number ofH cannot be worse than the product of t
condition numbers forHW and for the effective action gov
erning the light fermions,

kS 11m

2
g51

12m

2
«~HW! D;

1

m
. ~49!

It is natural to ask now: How pessimistic is the bou
when viewed as an estimate fork(H)? We shall answer this
question in two ways: First, we shall find an upper bound
1/iH21i . Since the upper bound we found foriHi is a good
estimate, this would provide us with a best possible con
tion number. Next, we shall show that one cannot rule ou
background gauge field configuration for which the low
bound on 1/iH21i is saturated. These two results putk(H)
into a range. The remaining practical question is where in
range will k(H) typically be. The answer to this questio
will depend on details of the pure gauge action, and
whether we are dealing with a quenched simulation or wit
dynamical one.

Upper bounds for the smallest eigenvalue ofH2 are easily
obtained from the variational principle. Look at all the blo
diagonal elements ofH2:

Hcc
2 5

31m2

4
, Hxsxs

2 5cs
4HW

2 1ss
21

12m

2n
,

Hfsfs

2 5HW
2 1ss

2. ~50!

Imagine computing the expectation value ofH2 in a state
with an eigenstate ofHW with eigenvalueh in one block, and
zero for all other blocks. The variational principle implie
then Theorem IV.

Theorem IV:

lmin~H2!<min
h

H 31m2

4
,min

s
S cs

4h21ss
2

1
12m

2n D ,min
s

~h21ss
2!J . ~51!

j

We assume thathmin<1/&. Then, the minimum is no
attained in thecc block. In the other blocks, the best is
takeh5hmin . Among thexsxs blocks and thefsfs blocks
the minimum occurs ats51. Thus we find
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lmin~H2!<minH XS 12sin2
p

4nD 2

hmin
2 1sin2

p

2n

1
12m

2n
C,S hmin

2 1sin2
p

2nD J . ~52!

In the physical relevant cases,m will be small enough andn
will be large enough to give

1

iH21i <A 1

iHW
21i2 1sin2

p

2n
. ~53!

To get a good approximation for the sign function we ne
n@max$iHWi,1/iHW

2i%, so

A 1

iHW
21i2 1sin2

p

2n
'

1

iHW
21i

. ~54!

From this we learn that, roughly, the condition number
H cannot be better than the condition number ofHW . If we
use a low value ofn, for which the approximation to the sig
function is bad, and hence when there are significant vio
tions of chirality beyond the explicit mass termm, the con-
dition number ofH might be better than that ofHW . This
situation however probably defeats the purpose of using
new fermions instead of the older, more economical
proach of fine-tuning the mass term inHW to small effective
quark mass.

On physical grounds it is obvious that there also m
exist an upper bound on the lowest eigenvalue ofH2 in terms
of the ‘‘bare’’ quark massm. To see this we recall that th
basic identity of the entire approach we are focusing on
this paper is

~H21!cc5
1

11m

2
g51

12m

2
«n~HW!

. ~55!

The variational principle then gives us Theorem V.
Theorem V:

lmin~H2!<lminF11m

2
g51

12m

2
«n~HW!G2

. ~56!

Proof of Theorem V. Let F5(c0,0,0,...). On very genera
grounds, we have

1

lmin~H2!
>^FuH22uF&>^FuH21uF&25^c0~H21!ccc0&.

~57!

Choosing c0 as the eigenstate of„@(11m)/2#g51@(1
2m)/2#«n(HW)… of lowest eigenvalue in absolute value e
tablishes the inequality. j

Note that this inequality is a direct consequence of
existence of some light fermion in the theory described byH.
Thus, this inequality is very general.

One cannot exclude backgrounds for which«`(HW) and
g5 have a common eigenvector with the eigenvalues of
4-7
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posite sign. Such eigenvectors should occur in instan
backgrounds, for example. For such a background the r
hand side of the above equation, which is always boun
from below bym ~assumem>0, as before! practically satu-
rates the bound. In summary, we can say that there are g
field backgrounds for which we know for sure th
lmin(H

2)<m2. Note that while any eigenvector ofHW is also
an eigenvector of«`(HW) the opposite is not true.

We see that one cannot hope that the condition numbe
H would be smaller than either the condition number ofHW ,
or than a number of order 1/m: k(H)>max$k(HW),1/m%. The
upper bound onk(H), which we derived previously@Eq.
~48!#, said that the condition number ofH cannot be worse
~larger! than, roughly,k(HW)/m.

The last question is whether we can imagine a ga
background for which the pessimistic~upper! bound @Eq.
~48!# on k(H) is saturated. The answer is that one can. If
eigenstate ofHW with eigenvalue closest to zero also is
eigenstate ofg5 the worst case will be realized. In practic
however this will happen rarely. The most common lo
eigenstates ofHW

2 , which are the main source of difficultie
in simulations, are typically nondegenerate and far from c
ral ~as can be checked by computing the expectation valu
g5 , which would be61 for a chiral state!. Therefore, in
simulations with typical parameters employed today, o
does not expect to often realize the worst case.

It is of course important to see how these analytic cons
erations apply to practical simulations. As a toy model
simulated two-dimensional QED with gauge couplingb54
on an 838 lattice. The main factor governing convergen
was the minimal eigenvalue in absolute value ofH. We
found that the upper bound of Eq.~48!, when viewed as an
estimate, is overly pessimistic by a factor of order 2.

VI. DOMAIN WALL FERMIONS

For domain wall fermions we have, in total,n Dirac fer-
mions labeled bys. The light fermion is not as sharply iden
tified as before. Its left handed and right handed compon
reside predominantly ats51 and ats5n. The action is
C̄DC, where, adopting notation from@3#, we have in four
dimensions

D5DW2PL~M21!2PR~M21!†,

PL5
11g5

2
, PR5

12g5

2
. ~58!

DW is the Wilson Dirac operator with massm in the range
~22, 0!, as before.DW is unity in s-space.M21 and (M
21)† have nontrivial action only ins-space, where they ap
proximate first order derivatives plus a mass term coup
predominantly to the lightest fermion:
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M5S 0 1 0 0 0 ... 0

0 0 1 0 0 ... 0

] ] ] ] ] ... ]

0 0 0 0 0 ... 1

2m 0 0 0 0 ... 0

D . ~59!

D has a Hermitian version,Hdwf . Let the Hermitian matrixS
produce a flip ins-space (S251):

S5S 0 0 0 ... 0 1

0 0 0 ... 1 0

] ] ] ... ] ]

0 1 0 ... 0 0

1 0 0 ... 0 0

D . ~60!

Then, withHW5g5DW , we define

Hdwf5g5SD5SHW2PLML2PRMR , ~61!

leading to

D†D5Hdwf
2 . ~62!

The Hermitian mass operatorsMR5S(M21) and ML
5S(12M†) are related bySMR52MLS.

Following @7# we can derive a closed formula fo
det(D†D2z2), but the analysis gets complicated and we a
not sure that it can be completed. Therefore, we leave
issue for the future, and restrict ourselves here to just de
ing an upper bound tolmin(D

†D). Sincelmax(D
†D) would

behave similarly toDW
† DW in one dimension higher, we

know thatiDi will be of the order 10 for QCD@14#. Thus, an
upper bound on 1/iD21i , will effectively provide a best case
for k(D†D). Our aim is to show that this best case is simi
to what we have found for the model we analyzed in t
previous sections.

Let c0 be a normalized eigenstate ofHW which has the
smallest eigenvalue as an eigenstate ofHW

2 . Construct a trial
state in the larger space in whichD operates:

C5
1

An S c0

c0

]

c0

D 5SC. ~63!

We find

HdwfC56lmin
1/2 ~HW

2 !C1
11m

An S 2PRc0

0
]

0
PLc0

D . ~64!

We now take the norm
4-8
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iDCi25lmin~HW
2 !1

~11m!2

n
62

11m

n
lmin

1/2 ~HW
2 !c0

†g5c0 .

~65!

This leads to

iDCi2<lmin~HW
2 !1

~11m!2

n
12

11m

n
lmin

1/2 ~HW
2 !.

~66!

Our final bound is given by Theorem VI:
Theorem VI:

lmin~D†D !<Flmin
1/2 ~HW

2 !1
11m

n G2

1~11m!2S 1

n
2

1

n2D .

~67!

j
For domain wall fermions to really represent massl

quarks whenm50 we need@7#

nlmin
1/2 ~HW

2 !@1. ~68!

If we also make the stronger assumption@stronger because
we lose nothing by treating only the caselmin(HW

2 ),1#

nlmin~HW
2 !@1, ~69!

the right hand side of the bound in Eq.~67! becomes just
lmin(HW

2 ) which is the same as in the previous analysis;
Eqs. ~53! and ~54!. The difference is in the finiten effects:
they are larger here. This could be something that work
favor of domain wall fermions. Of course, there is no gu
antee that the best case, analyzed here, is a good appro
tion to the typical case. One can also analyze trial states
some structure ins-space:

C5S c1c0

c2c0

c3c0

]

cnc0

D . ~70!

The numerical coefficientscs are constrained by

(
s

cs
251. ~71!

One can optimize the coefficientscs to attain a better bound
Let us now argue why one cannot use rigorous method

get a worst case condition number for domain wall fermio
that is better than the worst case condition number we
tained for overlap fermions implemented by usingH @Eq.
~48!#.

As we learned in the previous section, the key point is t
one cannot rule out, for arbitrary gauge field backgroun
the existence of an eigenstate ofHW with eigenvalueh which
also is chiral and for whichuhu is very small. Suppose we
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have such a state, call itc0 . This state is very special: sinc
g5HW5DW , it is a simultaneous eigenstate ofHW andDW .
We choose

g5c05c0 , HWc05DWc05hc0 . ~72!

Obviously, only a very special gauge background co
accommodate a state like this, where, in addition, we wanuhu
to be very small. Actually, we also wanth to be negative. If
we construct a stateC out of c0 with coefficientscs as
above, we easily see that the action ofD produces a state o
the same structure with only the coefficientscs changed to
cs8 . The action on the coefficients can be immediately re
off as

S c18

c28

]

cn218

cn8

D 5@11h2M #S c1

c2

]

cn21

cn

D 5M̃S cn

cn21

]

c2

c1

D . ~73!

Here,

M̃5~11h2M !S

5S 0 0 ... 0 21 11h

0 0 ... 21 11h 0

] ] ... ] ] ]

21 11h ... 0 0 0

11h 0 ... 0 0 m

D . ~74!

The advantage of introducingM̃ is that it is Hermitian and
obeys

@11h2M #@11h2M #†5M̃2. ~75!

We need to find the lowest eigenvalue ofM̃ for uhu!1 and
to leading order inm. We are assuming, as usual, that we a
close to the chiral limit wherem50:

nuhu52nh@1. ~76!

For m50 we know that the lowest eigenvalue is practica
zero@7# ~it is responsible forudetM̃u5u11hun being exponen-
tially small!. The eigenstate associated with this eigenva
has the following structure:ci5N(11h) i 21 @because (1
1h)ci'ci 11 for a very small eigenvalue# @7#. The normal-
ization N is therefore, atn5` @3#,

N5A 1

( i 50
` ~11h!2~ i 21!5A2h~21h!. ~77!

Now, first order perturbation theory gives for the smallest~in
absolute value! eigenvalue ofM̃ :

lmin~M̃ !'2h~21h!m, Almin~D†D !<u~21h!hum.
~78!
4-9
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Thus, if a state of typec0 exists, and under the additiona
assumption thatuhu!1, we obtain an approximate bound

A 1

i~D†D !21i<
2m

iHW
21i

. ~79!

This leads to essentially the same situation as in the ove
alternative: At the end of Sec. V we concluded that o
could not hope to be able to prove a better general boun
the condition number there than that of Eq.~48!. Combining
Eq. ~79! with the known upper boundiD†Di1/2<(101m)
@14# ~in four dimensions, with22,m<0!, produces a
bound similar to Eq.~48!. One cannot expect to get a rigo
ous upper bound on the condition number of the Dirac
erator employed for domain wall fermions that is superior
that obtained for the overlap implemented byH.

VII. RELATING PARAMETERS

When comparing the overlap alternative to domain w
fermions one needs some criteria to relate the paramete
both models. In a real QCD simulation the criteria should
that the parameters be chosen so that similar physics is b
described. This is not as unambiguous as it first sounds,
clearly beyond this paper. Here we suggest the following
of criteria: We need to prescribe relations between the n
ber of extra fields in each case, the parametersm in the
Wilson Dirac operator in each case and the mass param
m in each case.

The easiest is to connect the integersn in the two cases.
This we do by requiring the error in realizing the sign fun
tion in both cases to be the same in the realistic case thatHW

2

has some small eigenvaluesuhu, of order 1022 or less. The
error for domain wall fermions is of order

e2~1/2!ndmfuhu. ~80!

The error in the alternative proposed in this paper is of or

e22nuhu. ~81!

But the number of Dirac fields in the domain wall case
ndmf while in the overlap alternative it isnovp52n11 So, for
practical values we should take

ndmf'2novp. ~82!

This ensures similar violations of chirality atm50 for the
gauge backgrounds where these violations are most sig
cant. This match of the number of extra fields works in fav
of the overlap alternative.

To match the parametersm in both cases we focus on th
problematic gauge backgrounds for which one would n
very large numbers of extra fields to reproduce the sign fu
tion correctly~or else, use projection techniques!. We recall
that if the parameterm is the same in the domain wall an
overlap contexts the logarithm of the transfer matrix of d
main wall fermions and the Hermitian Wilson Dirac opera
of the overlap both acquire eigenvalues very close to zer
the same~bad! gauge configurations@15#.
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What is left is to match the parametersm. This is more
difficult to do in a gauge field independent way: Let us ado
the criterion that we want the quark propagator masses to
the same in both cases, for the same gauge background
infinite number of extra fields in both cases. The parametem
has already been chosen to be the same. Denoting byu the
fourth root of the plaquette variable@16#, we find, in d di-
mensions, the following ‘‘mean-field improved’’ estimate
for the quark masses in each case:

For domain wall fermions, assuming 0,m!1, we get

mphys
dwf 52

@m1d~12u!#@21m1d~12u!#

u
m. ~83!

For the overlap fermions we get@17#

mphys
overlap5

2m

12m

um1d~12u!u
u

. ~84!

Tree level perturbation theory is obtained by settingu51.
Above, we assume that22,m,0. Setting the two physica
masses equal to each other we obtain for smallm

moverlap5mdwfF11
m1d~12u!

2 G . ~85!

In a QCD simulation one may takeu'.875,m'21.8, giv-
ing, roughly,moverlap'.35mdwf . This might indicate an ad-
vantage to domain wall fermions, because the slow-down
inversion ofH or D as a result of a smallm might be roughly
the same for equalm parameters. In our simulations of th
Schwinger modelu is closer to unity,m'0.95

VIII. PROJECTION TECHNIQUE

In practice, most of the numerical problems have to
with the presence of small eigenvalues toHW

2 for typical
gauge backgrounds. In the older applications of the ove
one used a projection method to deal with this difficulty. T
projection method trivially extends to the overlap alternat
presented here. Suppose we have several low statesca ,
HWca5haca with so smalluhau values that the neededn’s to
handle these are too large. Define the orthogonal set of
jectors

Pa5caca
† , (

a
Pa5P. ~86!

RedefineHW in the overlap alternative by

HW→HW
P 5~12P!HW~a2P!1(

a
sign~ha!Pa . ~87!

This does not change the effectivec action atn5`; no new
questions about locality appear as a result of this repla
ment. The replacement dramatically reduces then needed to
get close to them50 chiral limit. The shifted states are now
perfectly represented because for anyn we have«n(61)5
61. Of course, calculating thePa’s and acting withP comes
with a cost; it is expected that the cost is bearable beca
4-10
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ALTERNATIVE TO DOMAIN WALL FERMIONS PHYSICAL REVIEW D 62 074504
the number of states one needed to project out was of
order of 20 in practical simulations carried out so far in t
quenched approximation using the rational approximat
@11#.

The introduction of projectors complicates the calculat
of the force in hybrid Monte Carlo, but the complication
manageable@18#. Under an infinitesimal change of the bac
ground gauge fields we have

dPa5dcaca
†1cadca

† . ~88!

We make a phase choice so thatPadca50 ~ca is nor-
malized; the phase choice eliminates the component ofdca
in the direction ofca and we ignore possible degenerac
for simplicity! and then obtain

dca5
12Pa

ha2HW
dHWPa . ~89!

The variation of the projector now follows from that of th
state, and the phase choice we made no longer has any e

dPa5
12Pa

ha2HW
dHWPa1PadHW

† 12Pa

ha2HW
. ~90!

The variation of the projectors enters the force always w
acting on a vector. To obtain the resulting vector we need
compute the action of an inverse on a vector. If the over
Dirac operator is implemented by the rational method
Refs.@5,11#, the action of 1/(c1HW) on the same vector fo
some constantc has already been evaluated. Using the s
trick of Ref. @19# one can evaluate this new inversion
practically no additional cost in operations.

Of course, if somebody comes up with a replacemen
HW that has a larger gap around zero, it just plugs in sim
into the overlap alternative.

Projection methods when generalized to domain wall f
mions need to address the more complicated form the tr
fer matrix TW . But, if we are willing to depart somewha
from the clean structure we have seen above in the ove
case a natural suggestion is to replaceHW by HW

P in the
Hermitian domain wall operatorHdwf . We expect this to
help because this would shift the small energy modes ofHW
elsewhere in the spectrum. This is not an exact procedur
terms of the transfer matrixTW , but the unit eigenstates o
TW ~conjugated byg5! are also zero eigenstates ofHW .
Viewing the replacement as a perturbation, we see that
troublesome modes are the ones going to be most sig
cantly affected. The main point in choosing an approxim
projection is to avoid dealing with the nonlocal structure
the transfer matrixTW . Numerical experience from earl
overlap days teaches us that dealing withTW directly is pos-
sible @15#, but it is also rewarding to deal with the spar
matrix HW instead. It would be interesting to check this su
gestion out in practice.

IX. ADVANTAGES OF THE OVERLAP ALTERNATIVES

From the point of view of the projection technique th
overlap alternative is certainly cleaner. But, if the propo
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for domain wall fermions we just made works, we may s
feel that the domain wall approach and the overlap appro
ended up too close to a draw to make it worthwhile to inv
tigate the overlap alternatives.

Let us now turn to what we feel are more clear advanta
of the overlap alternatives. These advantages have to do
the simplified structure of the effectivec action and with the
fact that the light fermion is so well identified. Unlike fo
domain wall fermions, where the ‘‘wave function’’ for th
light quark penetrates a sizable amount into the extra dim
sion, here the light fermion is fixed asc. There is no better
context to show how this would impact numerical QCD th
to discuss chiral symmetry atm50.

Let us introduce newc8 fields so that the action now
involves the non-Hermitian overlap Dirac operatorD0 :

c85c, c̄85c̄g5 . ~91!

Introduce yet another fermionic degree of freedomj, but this
time an auxiliary one: it has no kinetic energy. Integrati
out all the fermions butc andj leaves the following effec-
tive action:

Seff~c8,j!52c̄8
11Vn

2
c81 j̄j. ~92!

The matrixVn is given by

Vn5g5«n~HW! ~93!

and obeys

Vn
†Vn5«n

2~HW!. ~94!

At n5`, for an invertibleHW , we see thatV[V` is unitary
and that thec̄8, c8 action is given by the overlap Dira
operator,Do

Do5
11V

2
. ~95!

It is well known thatDo
2121 is chiral @7#.

Define the physical fermion fieldcph by

cph5c1j. ~96!

This definition was chosen so that we get, atn5`, the re-
quired subtraction of unity~contributed by thej propagator!
from thec propagator

^cphc̄ph&5Do
21215

12V

11V
. ~97!

Therefore, the effective action for the physical field is

Se f f~cph!52c̄ph

11V

12V
cph . ~98!

This effective action is chirally symmetric: The transform
tion
4-11
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cph→eiag5cph , c̄ph→c̄phe
iag5 ~99!

leavesSeff invariant on account of

eiag5
11V

12V
eiag55

11V

12V
. ~100!

A continuum fermion operator with desired chiral propert
is now simply transcribed to the lattice by replacing the co
tinuum fermionic fields bycph . Violations of chirality as a
result of finiten can be traced quite explicitly.

Perturbative calculations are an integral part of any p
cedure that connects numerical QCD to physics. In the o
lap alternative one can restrict ones attention only to thc
fields; there is no need to deal with higher dimensio
propagators. One has an explicit, relatively simple acti
and calculations, although still harder than in the Wils
case, are tractable. Indeed, there has been progress on
turbative calculations with overlap fermions recently@20#
~superficially, the treatment of chiral symmetry there m
seem somewhat more involved then the one presented ab
but it is essentially the same as here!. As far as we know
there are no finiten calculations yet, but we expect them
be relatively manageable.

The parallel calculations in the domain wall case are
tremely cumbersome, see for example@21#. In particular,
when one deals with questions related to chiral symme
one seems to have to deal with the fermions in the five
mensional ‘‘bulk’’ @22#. This makes the finiten effects in the
domain wall context harder to estimate quantitatively. All
all, when working with domain wall fermions, one pays qu
a price for having the two chirality components of the lig
fermion widely separated, and the entire set of extra fermi
actively involved in the communication between them, be
because of finiten effects or be it because of a topological
nontrivial gauge background.

Another factor to recall which is in favor of the overla
has to do with the parameterm. In the overlap this paramete
is theoretically restricted to the range22,m,0. When the
effects of the noisy gauge background are taken into acc
one gets effectively a positive additive contribution tom @in
the mean field approximation it isd(12u)# which forces
one towards the22 end of the range. Still, one does not ne
to go beyond22, so one is safe even for trivial gauge bac
grounds. In the domain wall case one also is driven towa
22, but now there is some theoretical worry: Form in the
range22,m,21 the expression for the transfer matr
TW , while still a Hermitian matrix, no longer stays positiv
definite for all gauge fields@7#. There are gauge background
for which the matrix has negative eigenvalues. This rai
some concerns about the true phase the lattice model i
Even only the proximity of a phase different from continuu
QCD is a source of potentially large, undesirable, numer
effects. Theoretically one would like to stay in the ran
21,m,0 for domain wall fermions, but this cannot b
achieved in QCD at present typical simulation parameters
principle, one could get into this range, but the needed ga
couplings would have to be impractically weak. Thus, t
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overlap alternative seems safer for the coarse lattices
rently employed in numerical QCD.

Our specific overlap proposal is a very simple impleme
tation of one rational approximation to the sign functio
Clearly, there are many variations possible and there is ro
for more improvement. In terms of flexibility, the overla
alternative of this paper is superior to the domain wall a
proach; and more flexibility opens more possibilities to
crease numerical efficiency.

Up to this point our main conclusion is that the overl
approach based on the matrixH is superior to the one base
on domain wall fermions. Of course, we cannot rule o
some surprises, so a numerical check in the context of Q
is necessary.

X. H W OPERATION COUNTS

Going back to our main motivation, the reason to intr
duceH in the first place was to have a more efficient imp
mentation of the action of the rationally approximated ov
lap Dirac operator. The original direct implementation use
two level nested conjugate gradient~CG! procedure and a
mass-shift trick@5,11,19# which makes operation counts a
most n-independent. In the inner CG the relevant conditi
number is that ofHW and in the outer CG the relevant con
dition number is roughly 1/m. We see that our worst cas
bound for the condition number relevant to the single s
CG for H is roughly the product of the previous two cond
tion numbers. Thus, it seems that the new procedure is
ordern slower than the one it came to improve on. In ad
tion, if one is willing to increase the operation count by
factor of 2 in the old procedure, one can eliminate all t
storage of the extra fields, providing a factor ofn saving in
memory @23#; in a computation limited by memory band
width rather than processor performance this version m
turn out to be the best.

It is important to mention that these considerations ign
the possibility of preconditioning the algorithm for invertin
H; for example, the structure ofH readily admits standard
red-black preconditioning. Other preconditioning metho
might exist, exploiting the rather smooth structure ins-space
as evident from the continuums-limit with no s-derivatives.
Moreover, the bounds on the condition number are not re
saturated very often, and super-linear convergence effec
the CG procedure may change the dependence of the nu
of required iterations on the condition number away from
theoretical limit. Still, it seems that for very largen the older
approach will eventually win. However, both the older a
newer approach can be improved by projectors, and this
limit the size ofn one really needs. Also, the mass-shift tric
is incompatible with red-black preconditioning, so this mig
work in favor of the new approach.

To get some feeling for what one would see in pract
we again turn to two dimensional QED, with a simp
plaquette Wilson action atb54 on an 838 lattice. We per-
formed the calculations necessary to obtain^c̄phcph& using
either method and counted the number ofHW operations re-
quired to reduce the norm of the residual to 1028. We used
n520 but no preconditioning in theH algorithm. We did use
4-12
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ALTERNATIVE TO DOMAIN WALL FERMIONS PHYSICAL REVIEW D 62 074504
the mass-shift trick in the older algorithm. In neither meth
did we include projectors. This comparison ended up in
vor of the older method by a factor of roughly 2.5. Th
factor could be beaten by red-black preconditioning, but
have not tried this out.

The above direct comparison between the two over
methods is easy because they should produce exactly
same results at the samen andHW , gauge configuration by
gauge configuration. Essentially, these are just two differ
algorithms to do the same thing. A comparison to dom
wall fermions is more difficult, because the differences
finite n are more substantial and there is uncertainty ab
how to match the parameters. As far as operation counts
one action ofD in the domain wall case counts roughly
ndwf HW actions.

A plot of the average number of operations ofHW as a
function of mass is shown for domain wall fermions, for t
direct rational implementation and for the higher dime
sional implementation of the overlap Dirac operator in F
1. The data were obtained from a sample of 20 configu
tions. The Wilson mass parameter was set to21.5 in all

FIG. 1. A comparison of the number of operations ofHW for the
inversion of the fermionic operator in three cases: domain w
fermions, the direct implementation of the rational approxima
sign function, and the higher dimensional implementation of
overlap Dirac operator.
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cases. Plotted on the vertical axis is the number of operat
needed for a single inversion of the fermionic operator. F
the overlap Dirac operator simulationsn was set to 20. The
plot also includes data for domain wall fermions, wheren
was taken as 40, in accordance with Eq.~82!. We used the
same parameterm also for domain wall fermions because th
relation in Eq.~85! holds only for 0,m!1 and becomes
totally inadequate atm51.

XI. CONCLUSIONS

Let us summarize roughly the situation we were looki
at when we began this paper: Although an approach base
the overlap Dirac operator looked theoretically cleaner,
main wall fermions were more attractive numerically. O
analysis has led us to the conclusion that there is no evide
that domain wall fermions have even a numerical advanta

In all cases we looked at, one faces a problem relate
almost zero modes ofHW . This requires large numbers o
extra fields in order to preserve chirality. It also affects a
versely the condition numbers. Whichever method we u
the worst case condition numbers are a product of the
verses of two main scale ratios: The first is the scale of
small eigenvalues ofHW

2 divided by an upper bound of th
order of 5–10 in lattice units. The second scale ratio is
lattice physical quark mass squared divided by a numbe
order unity. Each small scale ratio slows down inversi
independently and the effect compounds in the worst ca

Thus, as far as we can see, at the numerical level, th
are noa priori advantages to choosing domain wall fermio
over overlap fermions in the context of QCD. In both form
lations one faces similar numerical obstacles, and the o
lap, to say the least, does not fare any worse than dom
wall fermions. At the analytical level we are convinced th
an approach based on the overlap~or any other efficient re-
placement of the overlap Dirac operator that might be fou
in the future! is superior at presently attainable gauge co
plings in numerical QCD. Perturbation theory is more tran
parent to interpret and technically less complex in the ov
lap version. The chirality violating effects associated w
the number of extra fields are much more explicit and the
fore their impact should be easier to trace through.
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