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Alternative to domain wall fermions
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We define a sparse Hermitian lattice Dirac matfixxoupling 2n+ 1 Dirac fermions. When 2 fermions are
integrated out the induced action for the last fermion is a rational approximation to the Hermitian overlap Dirac
operator. We provide rigorous bounds on the condition numbeé# ahd compare them to bounds for the
higher dimensional Dirac operator of domain wall fermions. Our main conclusion is that overlap fermions
should be taken seriously as a practical alternative to domain wall fermions in the context of numerical QCD.
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[. INTRODUCTION better handle the cases where the Hermitian Wilson Dirac
operatorH,, has eigenvalues very close to zero. Numerical
A major embarrassment of lattice field theory in the con-investigation has shown that there is a finite density of ei-
text of QCD has disappeared: we now have a way to pregenvalues very close to zero at typical lattice couplings used
serve chiral symmetry on the latti¢¢—3], and the all im- in lattice simulationg10]. While this is a problem for both
portant theoretical understanding of “soft” physics domain walls[7] and overlap, in the overlap case one can
consequences of chiral symmetry at the Lagrangian level cagxploit the simple local structure ¢,, and project out the
be taken over from the continuum to the lattice. Naturally,troublesome statelsl1]. This is expensive, but needs to be
one is eager to exploit this development in numerical QCDdone only once per gauge field configuration and will help in
and at the moment there are two ways that have been exne calculation of all propagators at this gauge field. Thus,
plored: One is the so-called domain wall fermion approachhe extra expense is amortized in the quenched case. A simi-
[1,3,4, and the other is based on implementibga rational |5 projection method in the case of domain wall fermions
approximation to the sign function of the overlap Dirac op-night make both methods equal. Until very recently there
erator|6]. Th? relation between the two IS eIumdatec[?j. existed no practical implementation of a projection technique
One conclusion froni7] could be that with computers im- in the domain wall context, but this is changing as we write
mensely more powerful than the ones we have at present "&2] '
would not matter which approach one uses for numerical™
QCD. In practice, the two methods are quite different, and i . . . )
is important to assess their relative strengths and weaknessl%fm'ons were superior because the act_|on was qw_te stgndard
To compare methods one needs to separate the quench'é'dform and one needed only one conjugate gradient inver-
case from the dynamical case: In a dynamical hybrid Monte©": rather than the two nested ones required by the rational
Carlo simulation one needs to invert the Dirac operator of2Verap[s,11. Here again, this is more an impression than a
ten, at each step of the so called “trajectory.” The inversiong'@'d fact because one ought to take into account condition
do not generate propagators used in computing physical offiUmbers, matrix sizes and the possibility to use projectors.
servables, except when the trajectory is completed and thgut: Superficially at least, it is hard to ignore the advantage
change in gauge fields accepted. In a quenched simulati dqmam wall fermions W!th a straightforward action and a
one extracts physics results from each set of fermion propd€latively well tested algorithm. _ _
gators. Thus, the comparison of overall fractional costs for | N€ latter distinction between the implementation of do-
inversions works out differently in the quenched and in theM&in wall fermions and rational overlap fermions could be
dynamical case. el|m|_nated howev_e[13] by undomg what th_e overlap does
It seems that the overlap approach has some advantage {fativeé to domain wall fermions. One reintroduces extra
the quenched case: it has been possible to do simulations &!dS which interact quadratically by a sparse Hermitian ma-
very low quark massefg], lower than what was achieved U* H. The main requirement dff is the following: There
with domain wall fermiong9]. To be sure, a systematic and €XiSts one massless field, such that integrating out all the
complete comparison has not been carried out, so this j&ther fields produces fog a specific effective actiorBe -
more an impression than a hard fact. The reason for th8=—#Hoy and the approximate Hermitian overlap Dirac
difference is that with the overlap it has been possible teoperator is given byHg=1/2(ys+ €,(Hy)) where the func-
tion e,(x) is a numerically accurate rational approximation
to the sign function sign() for x in the spectrum oHyy.
*Email address: rajamani@bnl.gov One can easily add an explicit Dirac mass term for the field
TEmail address: neuberg@physics.rutgers.edu .

At the dynamical level it always was felt that domain wall
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H has to fulfill additional requirements: It has to have a Il. CONSTRUCTION OF H
condition number that is not significantly worse than that of

the five dimensional Dirac operator used for domain waIIWork with will be Hermitian matrices in most cases. ljebe

fgrmions,D. In par'ticular, the condition numbgr should not the light Dirac field representing a light quark. We wish to
diverge as a function of the number of extra fields, Zhe 44 up with an action

cost of acting withH should grow no more than linearly with
n, so long as the truncation of the sign function converges as 1+ pu 1—pu
Seii( )=~

The kernels of the quadratic fermionic actions we shall

e °". FurthermoreH should depend structurally only i, 2 Y5+ Tgn(Hw) . @
as one entity. A dependence &h, as one object ensures
that if a better version dfl,y is eventually found, it would be The bare quark mass [7] is restricted by u|<1 for physi-
trivial to changeH, replacing the olH, with the new one. cal reasons.
Also, the implementation of the projection technique simply  The matrixH,y has the standard Wilson form, but can be
involves a replacement ¢,y as a whole. In particular, tak- easily replaced by a more elaborate construction. The func-
ing derivatives with respect to the gauge fields would betion £,(x) is an approximation to sgr
simple, making the computation of the “force” in hybrid
Monte Carlo relatively easy. Although the action for domain e (Hy) = 1 2 @)
wall fermions also has a simple dependence on the gauge W T h& 52
fields, the dependence on the length of the extra direction is CsHw+ H
controlled by the complicated transfer matfiy, [7]. The W
dependence onis simpler in the overlap case, as it comes inwith
only throughe,(Hy,), andHyy is a sparse matrix, unliké, .

Previous proposals fdid had some numerical entries that _ . o (

. L Cs=CO0Slg, Sg=sInbg, Os=5—

were large and grew with. This implied that the norm dfi,
[H|, grew and made the condition numbek(H) (3
=||HJ|||H Y| grow too. Our choice for matrix norms is quite
standard{|X|| = VA madXT X), With X o (X" X) being the larg-
est eigenvalue oX' X. The main objective of this paper is to
present a new version éf which satisfies the above require- g5 one simply switches the sign ®f,, at thats.

ments and also has a reasonable condition number. For eachs we introduce a new fielg. . The y. fields are

In the next section we shall construgt We proceed with  gecoupled from each other and enter quadratically in the ac-
the derivation of rigorous upper bounds dH| and on iion

[H™1|. Rigorous bounds are nice, but there always is a ques-
tion whether they are saturated. This will be discussed. We o
shall also ask the opposite question: what is the best one can Xs
hope for, regarding«(H)? To answer that we shall derive a
lower bound for|[H™Y|. This is all we need because, in In addition, they couple to the field by
practice, we expect the upper bound |tbfj| to be typically
almost saturated. We proceed to address the question how 1-p -
our results compare to what is known about the domain wall 72 (hxstxs¥)- )
fermion operatoD. Since not much seems to be known, we
derive some exact results fBrtoo, but also leave more work To get the right effective action fog, there also is a qua-
for the future. We then briefly discuss projection techniquesratic term iny:
for both overlap and domain wall fermions.

We conclude the paper with a discussion of other advan- _ 1"'_:“— 6)
tages we envisage our proposal to have over domain wall 2 sy
fermions, beyond better chirality properties. We compare the
number ofHW Operations needed to perform the inversion of TO make the action local we should eliminate the inverse
the fermionic operator. We find this number numerically for of Hy from the y action. To this end we introduae more
three cases: domain wall fermions, a method using the opPirac fields, ¢, also Grassmann, and change theself-
eratorH proposed in this paper, and a method using a directteraction to
computation of the sign function represented by the same _ _
rational approximation as implemented by The compari- Xs(CEHW) x5+ So(Xsbst bsxs) — ds(Hu) bs.
son is carried out for the two dimensional Schwinger model. _ o
We hope to convince the reader that the overlap alternatives Introduce the combined fiel = (¢, x1,b1,---Xn»Pn)-
merit serious numerical testing in the context of QCD, someThe action is
thing we are not fully geared up to do efficiently by our-
selves. S=VHVY, (7

This rational approximation can be replaced by others: One
can replace the§ ands; quantities with other real numbers
of either sign; to change the overall sign of a contribution at

2
Ss

Hw

CiHw+ | Xs- (4)
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with
1+u 1—n 0
2 75 2n
1-u 2
ciH S
\/ on 1Fw 1
0 S1 —Hw
1-p
= 0 0
H 2n
0 0 0
1_
K 0 0
2n
0 0 0
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Our new extended overlap model is based on the following identity:

o n
f dedwe?"V=|[] detc2H3+s?)
s=1

fd@dlpex —

1—u 0 1—u 0
2n 2n
0 0 0 0
0 0 0 0
cHw s, 0 0 ®)
S, —Hw 0 0
: 0 0
0 0 c2H s
n''w n
0 0 Sn _HW
1+pu 1—p 1
ys+ > | v 9
2 2n s=1 2 s
CHy+ —

Hw

The prefactor can be canceled by adding pseudofermiongipn). The physical degrees of freedoify, couple only to an

which will be decoupled in the index.
At n=o we can take a continuum limit, with

ar ar
—ds, 0<o<—,

do= 2, 2

1 1
Xs—ﬁ)(( 0), ¢s_ﬁ d(0).
(10)

The effective action then becomes

1—pu|—
\/T”[wfdex(m

2
+ ;f do[cos Ox(0)Hwx(0)

1+pu— 2

S=— 5 dysYt —

+fday(0)¢

— (B)Hwe(6)+sinGx(6) d(6) +sin H(0) x(6)].
(11)

The following identity (which holds as long a$H'| is
finite) expresses the essence of our construction:

sz/z do 2 jwdt 1

; 0 sinza_; oTHW t

HW0052 0+ HW T m\/
=sgn(Hw). (12)

average field. These two features indicate that one might be
able to use some sort of multigrid or hierarchical techniques
to reduce the(n) computational cost per inversion biff to
a logarithmic dependence am Other integral representa-
tions of the sign function, or other approximation to the in-
tegrals above, will produce more variations on the same ba-
sic idea, but with possibly different computational properties.
The strategy for finding bounds on the spectrunHois
based on an exact formula for the determinantefz. This

determinant is obtained by addingz\l_f\lf to the action and
doing the Gaussian integral

n
de(H—z)=|H de[(chW—z)(HW+z)+s§]J
s=1
1+ 1-
Xde{ “y5+z+T“fn(HW,z).
(13
Here,
12 1
fa(Hw.2)= =2, 2 (14
T Hy
CsHw Hy+z

In terms of # the action in the extra dimension involves no
derivatives. In a rough sense thevariable corresponds to a Eigenvalues o are roots of the equation det{-z)=0. All
“fifth” momentum (for a four dimensional physics applica- the roots come from roots of the last fact@Roots of the
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factors in the product ovexare canceled by poles in the last
factor. So, the spectrum & is determined by the last fac-

tor.)
Introducing
b)= ! é ! 15
S@b)=g2, acZ+bs’ A9
we see that
¢ 3 1
(w2 =S| Hw-z g——-2|. (19
S,(a,b) is a ratio of polynomials ira, b:
Pn(a!b)
a,b)=———,
S@P)=5 @b
n
— n— -1
Pr(a,b)= 2 25_1)b s,
% (2n
Qu(ab)=2 | ¢ |b"%a". (17
s=0 S

Extracting H+2) ~" from numerator and denominator, we

see thaB(a,b) is also a ratio of polynomials iHl,y . For real
a andb we can write simple closed formulas: ab>0 we
have

sgr(b)
Jab

w=log(|1+ Va/b|/|1— Va/b|). (18

Sn(a,b)=

tanhhw),

if ab<<0,

sgnb)
;b =
Sh(a,b) s

e’=(1+iy—al/b)/(1—iy—alb).

These formulas make thedependence explicit.
The productab clearly plays a central role:

T
tannw), O=sw= o

(19

Hwt+z
(20

Our bounds are based on the observation thatfor 0
we have am-independent bound:

1
|fn(HWIZ)|:|Sn(a!b)|$\/§ (21)

If we allowedab<0, we would have had little control over

S,(a,b) because of the tangent function.

PHYSICAL REVIEW D62 074504

Ill. UPPER BOUND ON |H]|

For very large|z ab is large and positive, making
+[(1—w)/2]f,(Hyw,2) large in absolute value. It is clear
that detH—2) cannot vanish then. To find an upper bound
for |H|| we look for the smallestz values for which the
above is still true, as we decredgefrom infinity.

Theorem I For any Hermitian boundeH,, we have

IHlI=VIHWI*+2. (22)
Proof of Theorem.IPick a real numbeg,
|2|=V[Hwl*+2. (23

We shall prove, by contradiction, that this implies ét(
—2)#0. All we need to show is that the Hermitian operator
[(1+w)/2]ys+2z+[(1—w)/2]f(Hw,2) has no zero eigen-
vectors. We assume that there exists such a normalized ei-
genvectoryy,. i, obeys

1+u 1—p

5 Ystho=—|ZF Tfn(Hw,Z) bo. (24)
Taking norms we get

1+u + ) 2

5 - ho| Z+ Tfn(HWyZ) bo. (29

Let h be an arbitrary eigenvalue &f,,; we know that

|z|=hZ+2. (26)
Simple analysis of the functiong(h,z) implies

zg(h,z)=0. (27
As a consequence,

[fa(h,2)|<1. (28

Hence, every eigenvalue. of z+[(1—w)/2]f,(Hw,2)
obeys
M

1
IN=[z=——

5 (29

(Recall that|u|=<1.) By the variational principle, the right
hand side of Eq(25) obeys the same inequality. Hence

1+,u> 1—u
7 —ld-——

(30

which implies|z|<1 in contradiction to our initial assump-
tion aboutz. |

This establishes the upper bound of Theorem I. Note that
it is  andn independent.

Corollary. Let Hyy be the Hermitian Wilson Dirac opera-
tor in evend dimensions, andH defined as above, with the
standard replacement of the four dimensiongl Let the
mass parameten in Hyy be restricted byn>—2. Then
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[H||< 2+ (2d+m)2. (30 Let h be an eigenvalue dfl\y:
This is a direct consequence of the known upper bound on 1
Hol | P r=tr < Ihl=<[Hul. (39
wll- Hw

We expect this bound to be quite close to optimal.

This proves that the main difficulty faced by previous We definez,(h,u) as the smallest positive solution to the
proposals to implement the overlap Dirac operator by addindollowing equation:
extra fields has been completely eliminated. The problem
with the previous proposals.was fthat one could not pontrol H_“: z.(h, )+ P—an(h,zn(h,,u)) _ (36)
[H|. Moreover, our bound is quite stringent numerically, 2 2
even smaller than a typical bound on a Wilson Dirac opera-_
tor in 2d+1 dimensiong14]. This is a plausible compari- Sincefn(—h,—2)=—1f,(h,2), we have

son, because one could think absués indexing an extra o
dimension. At any rate, fod=4 andm=—1.8 one would Za(hp)==2n(=h,p0). 37
have h is restricted to ranges that are symmetric about zero. There-
IH|<6.4, 32 fore, the inequality
which is very reasonable. 1+_'“> 7+ ]-__an(h,z) (39)
We ran some tests in two dimensions with= —1 and 2 2

found the bound of 3.3 to be typically almost saturated for
U(1) gauge configurations generated with a Wilson action at )
B=2. Moreover, with a trivial gauge background one canZ®'%
explicitly check that one can get quite close numerically to 2| <un(Hy, ). (39)
the upper bound and so it is impossible to find a gauge back- " ’

ground independent bound which is significantly better. Here, the numerical bounal,(Hyy,x) is given by

an be guaranteed by restrictimgp a range symmetric about

IV. UPPER BOUND ON |[H™Y| Un(Hw,p) = min Z,(h, ). (40)

. . . . UHy I=<Ihl<Hw
The immediate question we need to address now is what

happens to the low eigenvaluestéf Having established that \we have therefore proven the following bound:
H behaves more or less as a usual fermionic lattice operator Theorem Il For O0<u<1 and arbitrary nonsingular Her-
at high eigenvalues, numerical problems can only come fromitian H,,, we have

a large||[H 1.
The basic strategy to get the bound is similar to the one 1
used above. First take=0 andn=o. Assume that,, has TH T =Un(Hw,p). (41)
no zero eigenvalue. Theap=1 and|/f..(Hy,0)|=1. As a
result, [(1+ u)/2]ys+[(1—u)/2]f.(Hw,0) cannot have u,(Hy,u) is determined by Eqg36) and (40). |

zero eigenvalues ifu#0. We therefore look now for a z,(h, ) can be found numerically for the rangestoénd
neighborhood oz=0 where, ifu>0 andH,, has no zero u of interest in practice. To find a bound analytically is cum-
mode, we have bersome becausg (Hy,«) will be controlled by either ah
corresponding to a maximain absolute magnitudeeigen-
(33) value ofH,y or to a minimal one. Some analysis shows that
' there is a constant of order unitdependent on the dimen-

siond and them parameter irH,y), C, and that if we restrict
If this is true, [(1+ u)/2]ys+z+[(1—w)/2]f,(Hw,2) Hy by
cannot have a zero mode. Indeed, if there were such a zero

1+ 1
® z+ 2'LLfn(HW,z)

>
2

mode, ¢y, we would have a contradiction, since then [HW=C, (42
+u\? ) 2 the minimum oveth we need in order to gat,(Hy,,u) is
——| Wo=vi|zt ——fuHw.2)| 0. B9 pained at Y
in violation of the variational principle for the maximal ei- h=h. — 1 43)
genvalue of z+[(1— u)/2]f(Hw,2) > min = =1 -

The range & u<1 covers all possible positive quark
masses. The casel<u<0 describes quarks with a nega- Thus, the entire dependencegf(Hy, ) onH,y, comes in
tive mass. This certainly is not without interest, but thethrough the value of the lowest eigenvalue tf,. Gauge
analysis becomes more complicated and unnecessary for ogonfigurations for WhicH|H\j\,1||<C are easily handled by
purposes here. So, we simply restrict ourselves to the rangany numerical method and the condition number in that case
0<u<l. is not a source of concern. So, nothing is lost by assuming
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TABLE I. The entries are numerically obtained exact values for the coefficig(lts.) appearing in our
rigorous boundsh? always is the smallest eigenvalue lof,.

h " n=10 n=20 n=50 n=100 n=oo

0.01 0.01 158.9903 68.2685 15.1871 2.7847 0.9804
0.01 0.02 80.9208 34.9814 8.1349 1.8857 0.9803
0.01 0.04 41.8905 18.3404 4.6106 1.4366 0.9796
0.01 0.08 22.3825 10.0234 2.8506 1.2111 0.9759
0.01 0.16 12.6341 5.8657 1.9686 1.0892 0.9600
0.02 0.01 65.9303 22.8212 2.7302 0.9939 0.9616
0.02 0.02 33.7907 11.9821 1.8492 0.9779 0.9617
0.02 0.04 17.7244 6.5649 1.4094 0.9696 0.9614
0.02 0.08 9.6970 3.8598 1.1892 0.9630 0.9587
0.02 0.16 5.6891 2.5087 1.0718 0.9478 0.9451
0.04 0.01 21.7717 4.7348 0.9567 0.9258 0.9258
0.04 0.02 11.4341 2.8394 0.9417 0.9262 0.9262
0.04 0.04 6.2683 1.8934 0.9344 0.9266 0.9266
0.04 0.08 3.6903 1.4224 0.9297 0.9255 0.9255
0.04 0.16 2.4066 1.1852 0.9187 0.9162 0.9162
0.08 0.01 4.3730 1.0017 0.8606 0.8606 0.8606
0.08 0.02 2.6252 0.9322 0.8614 0.8614 0.8614
0.08 0.04 1.7535 0.8985 0.8628 0.8628 0.8628
0.08 0.08 1.3211 0.8826 0.8641 0.8641 0.8641
0.08 0.16 1.1076 0.8719 0.8612 0.8612 0.8612
0.16 0.01 0.8695 0.7517 0.7515 0.7515 0.7515
0.16 0.02 0.8118 0.7528 0.7527 0.7527 0.7527
0.16 0.04 0.7846 0.7549 0.7549 0.7549 0.7549
0.16 0.08 0.7738 0.7586 0.7586 0.7586 0.7586
0.16 0.16 0.7714 0.7629 0.7629 0.7629 0.7629

that the smallest eigenvalue Idi\z,v is smaller tharC~?; this  In the above series of approximations we assuimgg<1.
is anyhow the case for most gauge configurations one enA/e end up with an approximate range from which eigenval-
counters in practical QCD simulations. ues ofH are excluded:
In order to get some feeling for orders of magnitude we
work out a simple analytical approximation for the bound on |z| <2uhpmin - (46)
|zl and represent the exact result for the bound as the product
of this approximation times a correction factor. Some typical Finally, we rewrite our exact result in the following form:
values for the correction factor are presented in Table I. All
the entries in Table | are for the case when the smallest 1 21
eigenvalue oH, is smaller tharC 2. AT =Un(Hw, ) =Cn(Hw, ) T (47)
We now takeab>0 because this certainly is true at W

=0._ _As explz;inedl al_)ove, we <I:_an Ire_strict our attr?ntion t0F0r||H\7V1||>C the c,, prefactor depends oy, just through
ositive z, without losing generality. It is true now that
P 99 y hmin- In Table | we collected several values@f(hin ,«) to

1—u 1—pu 1 give a sense of the dependencenoh,i,, andu. ¢,(Hw,u)
z+ ——f,(hpin,2) || <z+ . is calculated using Eq$36), (40), and(47).
2 2 Vl+Zg(hminyZ)
(44) V. CONDITION NUMBER OF H: WORST AND BEST
So, our bound will hold if we enforce the first inequality CASE
below:
Combining our exact results we obtain an exact bound for
1+u 1—u 1 condition numbers.
2 T2 1+2z9(hmin,2) Theorem lil
M Nmin 1 2
~z+——|1+272| —+ — e T
S h” k(Hw) V7 THW?
k(H)< 5 c(H ) (48
~7 ~ .
2 2 hpin 2 2Nmin |
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From Table | we see that decreasimgmproves the con- w\2 T
dition number. This is expected because fimiteffects in- )\min(H2)$min[ (( 1—Sinzm) hiin+ SirP on
duce chirality violation even gt =0, so act somewhat as an
effective additional mass. We also see from Table | that at 1—u ) m
high enoughn the entire correction needed to make the ap- + on *(hmin+ S'rTzﬁ ] (52

proximate bound rigorous is of order unity. The dependence
of the correction factor ol and u shows that the approxi- In the physical relevant cases,will be small enough and

mation is somewhat pessimistic. will be large enough to give
In summary, roughly, the main message is that the condi-
tion number ofH cannot be worse than the product of the 1 1 T
condition numbers foH,y, and for the effective action gov- H T = EREE +S'”2ﬁ- (53

erning the light fermions,
To get a good approximation for the sign function we need
1+p 1-p 1 . n>max{|Hy/, LUHy/}, so

K| =5 yst 5 e(Hw |~ (49)
L e L (54)
IHW? 2n Hy 'l

From this we learn that, roughly, the condition number of

It is natural to ask now: How pessimistic is the bound
when viewed as an estimate fe(H)? We shall answer this

ques}i?n m. two ways: First, we shall find an upper bound 10 cannot be better than the condition numbeHg§. If we
1/H|__| I Slr_lce the upper_bound we found fi] is a good .use a low value of, for which the approximation to the sign
estimate, this would provide us with a best possible condiynction s bad, and hence when there are significant viola-
tion number. Next, we shall show that one cannot rule out g, of chirality beyond the explicit mass term the con-
background gauge field configuration for which the |°Werdition number ofH might be better than that df,. This

_l .
bound on IfH"| is saturated. These two results piH) iy ;ation however probably defeats the purpose of using the
into a range. The remaining practical question is where in the . tarmions instead of the older, more economical ap-

range will x(H) typically be. The answer to this question 40 of fine-tuning the mass termkin, to small effective
will depend on details of the pure gauge action, and or}, 4k mass.

whether we are dealing with a quenched simulation or with a’ ~ physical grounds it is obvious that there also must
dynamical one. . . exist an upper bound on the lowest eigenvalukl6in terms
Upper bounds for the smallest eigenvaludsfare easily of the “bare” quark massu. To see this we recall that the

obtained from the variational principle. Look at all the block }, i identity of the entire approach we are focusing on in
diagonal elements dfi?:

this paper is
3+u? 1-p 1 1
2 _ 2 _ ~Ag2 2 =
H,//w—T, HXSXS_CSHw+SS+ on (H )lp(p 1+ 1—p (55
Y5+ —5—&en(Hw)
2 2
2 g2 2
H¢S¢S_Hw+55' (50) The variational principle then gives us Theorem V.

Theorem V

Imagine computing the expectation value lf in a state 1+ 1— 2

with an eigenstate dfl,, with eigenvalueh in one block, and Mnin(H) <A | e ys+ —— e (Hy) | . (56)
zero for all other blocks. The variational principle implies 2 2

then Theorem IV.

Theorem IV Proof of Theorem VLet ® = (¢,0,0,...). On very general

grounds, we have

3+ u?
)\min(Hz)smin| " ,min(c‘s‘h2+s§

-2 -1 2_ -1
h 4 s Amln(H2)><q)|H |(D>><CD|H |(I)> _<(/f0(H )z/n,//(//0>'
(57)
I=p) o 2 . .

+T),m|n(h +Ss)]- (51  Choosing i, as the eigenstate of[ (1+ u)/2]ys+[(1
s —w)/2]e,(Hyy)) of lowest eigenvalue in absolute value es-

tablishes the inequality. [ |
| Note that this inequality is a direct consequence of the

We assume thal,;<1#/2. Then, the minimum is not existence of some light fermion in the theory describedHby
attained in theys) block. In the other blocks, the best is to Thus, this inequality is very general.
takeh=h,,. Among theyxsx blocks and theps¢ blocks One cannot exclude backgrounds for which(H,) and
the minimum occurs a=1. Thus we find vs have a common eigenvector with the eigenvalues of op-
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posite sign. Such eigenvectors should occur in instanton 0o 1
backgrounds, for example. For such a background the right

hand side of the above equation, which is always bounded 0 O 1 O ) .O

from below byu (assumeuw=0, as beforgpractically satu- M=| @ @ = o (59
rates the bound. In summary, we can say that there are gauge O 0 0 O 1

field backgrounds for which we know for sure that 4 0000

Amin(HA)=<u?. Note that while any eigenvector &f,, is also
an eigenvector of..(H,) the opposite is not true.

We see that one cannot hope that the condition number
H would be smaller than either the condition numbeHgf,
or than a number of order Af k(H)=maX«(Hy),1/u}. The 000 .. 0 1
upper bound onk(H), which we derived previouslyEq.

has a Hermitian version 4,s. Let the Hermitian matrixs
roduce a flip ins-space §?=1):

(48)], said that the condition number &f cannot be worse c 00 ..10

(larged than, roughly «(Hy)/ . s=: o ] (60)
The last question is whether we can imagine a gauge 010 .. 00

background for which the pessimistiappe)y bound [Eg. 1

(48)] on k(H) is saturated. The answer is that one can. If the
eigenstate oH,, with eigenvalue closest to zero also is an
eigenstate ofys the worst case will be realized. In practice
however this will happen rarely. The most common low

Then, withH,= ysDy, we define

eigenstates ofi2,, which are the main source of difficulties Howt=75SD=SHy—PLM_~PrMg, (61)
in simulations, are typically nondegenerate and far from chi—I ading to

ral (as can be checked by computing the expectation value 0?

vs, which would be*1 for a chiral statg Therefore, in DTD=H§M 62)

simulations with typical parameters employed today, one
does not expect to often realize the worst case. _The Hermitian mass operatordlq=S(M—1) and M,
It is of course important to see how these analytic consid- + —
. ) . . =S(1—-M") are related bysMg=—-M_S.
erations apply to practical simulations. As a toy model we

. . . ) X Following [7] we can derive a closed formula for
simulated two-dimensional QED with gauge couplifig: 4 detD'D—2), but the analysis gets complicated and we are
on an 8x 8 lattice. The main factor governing convergence

“ i 8 not sure that it can be completed. Therefore, we leave this
was the minimal eigenvalue in absolute value lf We  jsgue for the future, and restrict ourselves here to just deriv-
found that the upper bound of E(8), when viewed as an  ing an upper bound ta ,;(D'D). Since\ n,(D'D) would
estimate, is overly pessimistic by a factor of order 2. behave similarly toD{,Dy, in one dimension higher, we
know that||D|| will be of the order 10 for QC)14]. Thus, an
upper bound on 4D ~1||, will effectively provide a best case
VI. DOMAIN WALL FERMIONS for k(D'D). Our aim is to show that this best case is similar

For domain wall fermions we have, in total Dirac fer-  © what we have found for the model we analyzed in the

mions labeled by. The light fermion is not as sharply iden- previous sections.

tified as before. Its left handed and right handed components Let 4y l?e a normalized glgenstate bify, which has the
reside predominantly as=1 and ats=n. The action is smallest eigenvalue as an elgenstateiéf. Construct a trial

WDV, where, adopting notation frofi8], we have in four state in the larger space in whiéhoperates:
dimensions

Yo
yo L ‘fo — SV, (63)
D=Dy—P . (M—1)—Pg(M-1)T, nl o
Yo
1+ 1— We find
= 275, o= 275. (58)
—Prio
0
12,12 TH :
Dy is the Wilson Dirac operator with mass in the range Haw¥ = = A pin(Hw) W + I : . (69
(=2, 0), as beforeD,y is unity in ssspaceM—1 and M n 0
—1)" have nontrivial action only is-space, where they ap- P o
proximate first order derivatives plus a mass term coupled
predominantly to the lightest fermion: We now take the norm
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have such a state, calljty. This state is very special: since

IDW 2= pin( HG) + o r2— Mi(H&) ¥0¥sto-  ygHw=Dyy, it is a simultaneous eigenstatetefy andDy .
(65) We choose
This leads to Ysho=to, Hwiho=Dwiho=hiyp. (72)
(1+ w)2 1+ Obviously, only a very special gauge background could
[IDW[2<\min(HE) + N Sl AY2(H2). accommodate a state like this, where, in addition, we Want
n n to be very small. Actually, we also wahtto be negative. If
(66 we construct a state? out of Yo with coefficientscg as
our final bound is diven by Theorem VI: above, we easily see that the actionDbproduces a state of
Theorem Vi 9 y ' the same structure with only the coefficiemtschanged to
' c.. The action on the coefficients can be immediately read
1+ 12 1 off as
Kmin(DTD)g[erﬁ(H\ZN)JF T'u +(1+p)? o ?)- )
(67 % . c
C2 C2 | G-
| : =[1+h-M]| =M| (73
For domain wall fermions to really represent massless Ch1 Cn_1 Cy
quarks whenu=0 we need 7] c/ Cn Cy
n)\,lnﬁ(H\zN)>1. (68) Here,
If we also make the stronger assumpt[mnrongzzjer because M=(1+h—M)S
we lose nothing by treating only the casg;,(Hy)<1]
o 0 0 .. 0 -1 1+h
M\ min(HE) > 1, (69) 0O 0 .. -1 1+h 0
the right hand side of the bound in EG7) becomes just - : : A : : . (74
)\min(H\ZN) which is the same as in the previous analysis; see -1 1+h ... O 0
Egs.(53) and(54). The difference is in the finita effects: 1+h 0 .0 0 w

they are larger here. This could be something that works in

favor of domain wall fermions. Of course, there is no guar-The advantage of introducingfl is that it is Hermitian and
antee that the best case, analyzed here, is a good approximgseys

tion to the typical case. One can also analyze trial states with

some structure irs-space: [1+h—M][1+h—M]"=M2. (75)
Catho We need to find the lowest eigenvalue Mf for |h|<1 and
Catho to leading order inu. We are assuming, as usual, that we are
W=| Capo |. (700 close to the chiral limit wherg.=0:
Cribo nlh|=—nh>1. (76)

For =0 we know that the lowest eigenvalue is practically
zero[7] (it is responsible fotdetM|=|1+h|” being exponen-
tially small). The eigenstate associated with this eigenvalue
has the following structurec;=N(1+h)' ! [because (1
+h)ci=~c, ., for a very small eigenvaldd7]. The normal-
ization N is therefore, an=o [3],

The numerical coefficientsg are constrained by
> ci=1. (72)
S

One can optimize the coefficients to attain a better bound.
Let us now argue why one cannot use rigorous methods to

get a worst case condition number for domain wall fermions

that is better than the worst case condition number we ob-

tained for overlap fermions implemented by usiHg[Eq.

(49)]. Now, first order perturbation theory gives for the small@st
As we learned in the previous section, the key point is thagbsolute valueeigenvalue of\:

one cannot rule out, for arbitrary gauge field backgrounds,

the existence of an eigenstatettf, with eigenvalueh which Amin(M)==h(2+h)s, \mn(DTD)<|(2+h)h|pu.

also is chiral and for whichh| is very small. Suppose we (78

1
B \/2?‘7_0(1+h)2(i1>:\/m- (77)
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Thus, if a state of typ@, exists, and under the additional ~ What is left is to match the parametess This is more
assumption thath| <1, we obtain an approximate bound difficult to do in a gauge field independent way: Let us adopt
the criterion that we want the quark propagator masses to be
1 2u the same in both cases, for the same gauge background, and
V IO I R (79 infinite number of extra fields in both cases. The paranmater
has already been chosen to be the same. Denotingthg
This leads to essentially the same situation as in the overlaipurth root of the plaquette variabld 6], we find, ind di-

alternative: At the end of Sec. V we concluded that onemensions, the following “mean-field improved” estimates
could not hope to be able to prove a better general bound of®r the quark masses in each case:

the condition number there than that of E48). Combining For domain wall fermions, assuming<Qu<1, we get

Eq. (79 with the known upper boun{iD 'D||*/?< (10+ m)

[14] (in four dimensions, with—2<m=0), produces a dwf _ _ [m+d(1-wi[2+m+d(1-w] (83)
Mphys u M-

bound similar to Eq(48). One cannot expect to get a rigor-
ous upper bound on the condition number of the Dirac op-
erator employed for domain wall fermions that is superior to
that obtained for the overlap implemented Hy 2u |m+d(1-u)

overlap_
phys 1—u u

For the overlap fermions we ggt7]

(84)
VII. RELATING PARAMETERS

When comparing the overlap alternative to domain wall /€€ l€vel perturbation theory is obtained by setting 1.

fermions one needs some criteria to relate the parameters fiPOVe, we assume that2<m<0. Setting the two physical
both models. In a real QCD simulation the criteria should beN@sSes equal to each other we obtain for small

that the parameters be chosen so that similar physics is being

described. This i; not as unambiguous as it first soun'ds, but Moverlag= def[1+
clearly beyond this paper. Here we suggest the following set

of criteria: We need to prescribe relations between the num . . . -
ber of extra fields in each case, the parametars the In a QCD simulation one may take=.875,m 18, giv

i ) . ing, roughly, tovenag™-35ugws- This might indicate an ad-
Wilson Dirac operator in each case and the mass parametergqntagle to domain wall fermions, because the slow-down on

. v
u in each case. ) ? i
The easiest is to connect the integari the two cases. inversion ofH or D as a result of a smat might be roughly

. L . o : the same for equgk parameters. In our simulations of the
This we do by requiring the error in realizing the sign func- Schwinger model is closer to unity,.~0.95
tion in both cases to be the same in the realistic caseHfjat Y=o

has some small eigenvalu@s, of order 102 or less. The
error for domain wall fermions is of order

m-+d(1—u)

5 (85

VIIl. PROJECTION TECHNIQUE

In practice, most of the numerical problems have to do
with the presence of small eigenvaluesl-ﬂ(f,\, for typical
gauge backgrounds. In the older applications of the overlap
one used a projection method to deal with this difficulty. The

e2nlh| (81) projection method trivially extends to the overlap alternative
presented here. Suppose we have several low sigtes
But the number of Dirac fields in the domain wall case isHw#a=hai/a with so smallh,| values that the needets to
Nams While in the overlap alternative it iso,,=2n+1 So, for _handle these are too large. Define the orthogonal set of pro-
practical values we should take Jectors

e~ (L2ngmdhl (80)

The error in the alternative proposed in this paper is of orde

Nam™=2Novp- 682 Pa=tall, X Po=P. (86)
a

This ensures similar violations of chirality at=0 for the
gauge backgrounds where these violations are most signifRedefineH,y in the overlap alternative by
cant. This match of the number of extra fields works in favor
of the overlap alternative. P ;

To match Iche parametersin both cases we focus on the Hw—Hw=(1=P)Hw(a PH; signtha)P, . (87)
problematic gauge backgrounds for which one would need
very large numbers of extra fields to reproduce the sign funcThis does not change the effectiyeaction ath=o0; no new
tion correctly(or else, use projection technique®ve recall  questions about locality appear as a result of this replace-
that if the parametem is the same in the domain wall and ment. The replacement dramatically reducesrtimeeded to
overlap contexts the logarithm of the transfer matrix of do-get close to the.=0 chiral limit. The shifted states are now
main wall fermions and the Hermitian Wilson Dirac operator perfectly represented because for anwe haves (*1)=
of the overlap both acquire eigenvalues very close to zero i 1. Of course, calculating the,’'s and acting witHP comes
the samgbad gauge configurationsl5]. with a cost; it is expected that the cost is bearable because
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the number of states one needed to project out was of thir domain wall fermions we just made works, we may still
order of 20 in practical simulations carried out so far in thefeel that the domain wall approach and the overlap approach
guenched approximation using the rational approximatiorended up too close to a draw to make it worthwhile to inves-
[11]. tigate the overlap alternatives.

The introduction of projectors complicates the calculation Let us now turn to what we feel are more clear advantages
of the force in hybrid Monte Carlo, but the complication is of the overlap alternatives. These advantages have to do with
manageabl@l18]. Under an infinitesimal change of the back- the simplified structure of the effectivgaction and with the

ground gauge fields we have fact that the light fermion is so well identified. Unlike for
. . domain wall fermions, where the “wave function” for the
OPa= Siathat+ hadih,. (88)  light quark penetrates a sizable amount into the extra dimen-

sion, here the light fermion is fixed ag There is no better
context to show how this would impact numerical QCD than
to discuss chiral symmetry at=0.

Let us introduce newy’ fields so that the action now
involves the non-Hermitian overlap Dirac operaig:

We make a phase choice so tig{d#,=0 (¢, is nor-
malized; the phase choice eliminates the componerd/qf
in the direction ofy, and we ignore possible degeneracies
for simplicity) and then obtain

sy L Pa
dla_ha_ HW

SHWP,. (89) V=, P =¢ys. (91)

Introduce yet another fermionic degree of freed§rbut this
time an auxiliary one: it has no kinetic energy. Integrating
6bit all the fermions buty and ¢ leaves the following effec-
_ 1-P, SHop 4 pan! 1-P, 00 tive action:

ha_HW wha é Wha_HW.

The variation of the projector now follows from that of the
state, and the phase choice we made no longer has any effe

5P,
—1+V,  —
Serl( 1, £)= = '~ I + E&. (92)

The variation of the projectors enters the force always when

acting on a vector. To obtain the resulting vector we need tq_

compute the action of an inverse on a vector. If the overlap

Dirac operator is implemented by the rational method of _

Refs.[5,11], the action of 1/¢+H,,) on the same vector for Va=7rsen(Hw) ©3

some constant has already been evaluated. Using the shiftang obeys

trick of Ref. [19] one can evaluate this new inversion at

practically no additional cost in operations. VIV =e2(Hy). (94)
Of course, if somebody comes up with a replacement of

Hy that has a larger gap around zero, it just plugs in simplyAt n=c, for an invertibleH,y, we see thaV/=V., is unitary

into the overlap alternative. and that they’, ' action is given by the overlap Dirac
Projection methods when generalized to domain wall fergperator,D,,

mions need to address the more complicated form the trans-

fer matrix Tyy. But, if we are willing to depart somewhat 1+V

from the clean structure we have seen above in the overlap Do=—— (95

case a natural suggestion is to repladg by H\i, in the

Hermitian domain wall operatoH,;. We expect this to |t is well known thathl—l is chiral[7].

he matrixV, is given by

help because this would shift the small energy moded pf Define the physical fermion fielgk,, by
elsewhere in the spectrum. This is not an exact procedure in
terms of the transfer matriX,y, but the unit eigenstates of bon=y¢+E. (96)

Tw (conjugated byys) are also zero eigenstates bify.

Viewing the replacement as a perturbation, we see that th&his definition was chosen so that we gethate, the re-
troublesome modes are the ones going to be most signifAuired subtraction of unitycontributed by the propagator
cantly affected. The main point in choosing an approximatdrom the ¢ propagator

projection is to avoid dealing with the nonlocal structure of

the transfer matrixT,,. Numerical experience from early (W Z >:D71_1:ﬂ (97)
overlap days teaches us that dealing Wit directly is pos- ph¥ph ° 1+V’

sible [15], but it is also rewarding to deal with the sparse _ . o
matrix Hy, instead. It would be interesting to check this sug- Therefore, the effective action for the physical field is
gestion out in practice.

— 1+V
Seff(‘ﬂph):_(ﬁphl_v ‘ﬂph- (98)
IX. ADVANTAGES OF THE OVERLAP ALTERNATIVES

From the point of view of the projection technique the This effective action is chirally symmetric: The transforma-
overlap alternative is certainly cleaner. But, if the proposation
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iays T aiars overlap alternative seems safer for the coarse lattices cur-
Yon— € pn. - Ppn Ypre ©9 rently IZmployed in numerical QCD.

Our specific overlap proposal is a very simple implemen-
tation of one rational approximation to the sign function.
Clearly, there are many variations possible and there is room
Veia75: ﬂ (100 for more improvement. In terms of flexibility, the overlap
1-V 1-V’ alternative of this paper is superior to the domain wall ap-

proach; and more flexibility opens more possibilities to in-

A continuum fermion operator with desired chiral propertiescrease numerical efficiency. o
is now simply transcribed to the lattice by replacing the con- UP to this point our main conclusion is that the overlap
tinuum fermionic fields byy,,. Violations of chirality as a ~approach based on the mattikis superior to the one based
result of finiten can be traced quite explicitly. on domam.wall fermions. Qf course, we cannot rule out
Perturbative calculations are an integral part of any proSOme surprises, so a numerical check in the context of QCD
cedure that connects numerical QCD to physics. In the overS Necessary.
lap alternative one can restrict ones attention only tohe
fields; there is no need to deal with higher dimensional X. Hy OPERATION COUNTS
propagators. One has an explicit, relatively simple action,
and calculations, although still harder than in the Wilson Going back to our main motivation, the reason to intro-
case, are tractable. Indeed, there has been progress on péceH in the first place was to have a more efficient imple-
turbative calculations with overlap fermions recenfB0] mentation of the action of the rationally approximated over-
(superficially, the treatment of chiral symmetry there maylap Dirac operator. The original direct implementation used a
seem somewhat more involved then the one presented abo#/0 level nested conjugate gradie{@G) procedure and a
but it is essentially the same as HerAs far as we know Mmass-shift trick5,11,19 which makes operation counts al-
there are no finitex calculations yet, but we expect them to mostn-independent. In the inner CG the relevant condition
be relatively manageable. number is that oH,, and in the outer CG the relevant con-
The parallel calculations in the domain wall case are exdition number is roughly L. We see that our worst case
tremely cumbersome, see for examp®i]. In particular, bound for the condition number relevant to the single step
when one deals with questions related to chiral symmetrnycG for H is roughly the product of the previous two condi-
one seems to have to deal with the fermions in the five dilion numbers. Thus, it seems that the new procedure is an
mensional “bulk” [22]. This makes the finita effects in the ordern slower than the one it came to improve on. In addi-
domain wall context harder to estimate quantitatively. All in tion, if one is willing to increase the operation count by a
all, when Working with domain wall fermions, one pays quite factor of 2 in the old procedure, one can eliminate all the
a price for having the two chirality components of the light storage of the extra fields, providing a factorrosaving in
fermion widely separated, and the entire set of extra fermiongemory[23]; in a computation limited by memory band-
actively involved in the communication between them, be itwidth rather than processor performance this version might
because of finita effects or be it because of a topologically turn out to be the best.
nontrivial gauge background. It is important to mention that these considerations ignore
Another factor to recall which is in favor of the overlap the possibility of preconditioning the algorithm for inverting
has to do with the parametet In the overlap this parameter H; for example, the structure dfi readily admits standard
is theoretically restricted to the range2<m<0. When the ~ red-black preconditioning. Other preconditioning methods
effects of the noisy gauge background are taken into accouright exist, exploiting the rather smooth structuresispace
one gets effectiveiy a positive additive Contributionmc[in as evident from the continuumlimit with no s-derivatives.
the mean field approximation it id(1—u)] which forces Moreover, the bounds on the condition number are not really
one towards the-2 end of the range. Still, one does not needsaturated very often, and super-linear convergence effects in
to go beyond-2, so one is safe even for trivial gauge back-the CG procedure may change the dependence of the number
grounds. In the domain wall case one also is driven toward8f required iterations on the condition number away from the
—2, but now there is some theoretical worry: Farin the theoretical limit. Still, it seems that for very largethe older
range —2<m<—1 the expression for the transfer matrix @pproach will eventually win. However, both the older and
Tw, while still a Hermitian matrix, no longer stays positive Newer approach can be improved by projectors, and this will
definite for all gauge fieldg7]. There are gauge backgrounds limit the size ofn one really needs. Also, the mass-shift trick
for which the matrix has negative eigenvalues. This raisets incompatible with red-black preconditioning, so this might
some concerns about the true phase the lattice model is iM/0rk in favor of the new approach. _ _
Even only the proximity of a phase different from continuum T get some feeling for what one would see in practice
QCD is a source of potentially large, undesirable, numericalVeé again turn to two dimensional QED, with a simple
effects. Theoretically one would like to stay in the rangePlaquette Wilson action g&=4 on an 8<8 lattice. We per-
—1<m<0 for domain wall fermions, but this cannot be formed the calculations necessary to obtajnpnipn) using
achieved in QCD at present typical simulation parameters. Ireither method and counted the numbeiHyf operations re-
principle, one could get into this range, but the needed gaugguired to reduce the norm of the residual to $0We used
couplings would have to be impractically weak. Thus, then=20 but no preconditioning in thid algorithm. We did use

leavesS,y invariant on account of

eia75
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50000 S L B R cases. Plotted on the vertical axis is the number of operations

i 0 DtyuDawt 1 needed for a single inversion of the fermionic operator. For
L o B? g the overlap Dirac operator simulationsvas set to 20. The
plot also includes data for domain wall fermions, where
was taken as 40, in accordance with E8R). We used the
same parameter also for domain wall fermions because the
relation in Eq.(85) holds only for 0<u<1 and becomes
totally inadequate atv=1.

¢ direct overlap

20000

2 10000 |— o
o] . Y o &g
| -

= 5000 XI. CONCLUSIONS

¢, Let us summarize roughly the situation we were looking
L ° 1 at when we began this paper: Although an approach based on
o the overlap Dirac operator looked theoretically cleaner, do-
2000 - ¢ . main wall fermions were more attractive numerically. Our
° analysis has led us to the conclusion that there is no evidence
| | | | that domain wall fermions have even a numerical advantage.
1000 —/——+—+——++—— In all cases we looked at, one faces a problem related to
0.0 0.2 0.4 0.6 0.8 1.0 almost zero modes dfl,,. This requires large numbers of
M extra fields in order to preserve chirality. It also affects ad-
FIG. 1. A comparison of the number of operationdf, for the versely the condition. T‘”mbers- Whichever method we u;e,
the worst case condition numbers are a product of the in-

inversion of the fermionic operator in three cases: domain wall f . | ios: The first is th le of th
fermions, the direct implementation of the rational approximatedverses of two main scale ratios: e first Is the scale of the

sign function, and the higher dimensional implementation of theSMall eigenvalues ofi{y divided by an upper bound of the
overlap Dirac operator. order of 5-10 in lattice units. The second scale ratio is the
lattice physical quark mass squared divided by a number of
the mass-shift trick in the older algorithm. In neither methodorder unity. Each small scale ratio slows down inversion
did we include projectors. This comparison ended up in faindependently and the effect compounds in the worst case.
vor of the older method by a factor of roughly 2.5. This  Thus, as far as we can see, at the numerical level, there
factor could be beaten by red-black preconditioning, but wesre noa priori advantages to choosing domain wall fermions
have not tried this out. over overlap fermions in the context of QCD. In both formu-
The above direct comparison between the two overlapations one faces similar numerical obstacles, and the over-
methods is easy because they should produce exactly thgp, to say the least, does not fare any worse than domain
same results at the sameandHy,, gauge configuration by wall fermions. At the analytical level we are convinced that
gauge configuration. Essentially, these are just two differengn approach based on the overlap any other efficient re-
algorithms to do the same thing. A comparison to domairplacement of the overlap Dirac operator that might be found
wall fermions is more difficult, because the differences atin the futurg is superior at presently attainable gauge cou-
finite n are more substantial and there is uncertainty abouplings in numerical QCD. Perturbation theory is more trans-
how to match the parameters. As far as operation counts g@arent to interpret and technically less complex in the over-
one action ofD in the domain wall case counts roughly as |ap version. The chirality violating effects associated with
Nawr Hw actions. the number of extra fields are much more explicit and there-
A plot of the average number of operationstdfy, as a  fore their impact should be easier to trace through.
function of mass is shown for domain wall fermions, for the
direct rational implementation and for the higher dimen- ACKNOWLEDGMENTS
sional implementation of the overlap Dirac operator in Fig.
1. The data were obtained from a sample of 20 configura- This research was supported in part by the DOE under
tions. The Wilson mass parameter was set-th.5 in all ~ Grant No. DE-FG05-96ER40559.
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