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We formulate the hadronic tens@f,, of deep inelastic scattering in the path-integral formalism. It is shown
that there are 3 gauge invariant and topologically distinct contributions. In addition to the valence contribution,
there are two sources for the sea—one in the connected insertion and the other in the disconnected insertion.
The operator product expansion is carried out in this formalism. The operator rescaling and mixing reveal that
the connected sea partons evolve the same way as the valence; i.e., their evolution is decoupled from the
disconnected sea and the gluon distribution functions. We explore the phenomenological consequences of this
classification in terms of the smadlbehavior, Gottfried sum rule violation, and flavor dependence. In particu-
lar, we point out that in the nuclea?andapartons have both connected and disconnected sea contributions,
whereas thes_parton has only the disconnected sea contribution. This difference beMrand;, as far as
we know, has not been taken into account in the fitting of parton distribution functions to experiments.

PACS numbd(s): 11.15.Ha, 13.60.Hb

I. INTRODUCTION that the small x behavior of the connected sea is different
from that of the disconnected sea and the violation of the

In the past decade, the surprising results of a small quariottfried sum rule, i.e.u#d, comes only from the con-
spin content(flavor-singletg) [1] and the discovery that ~ nected sea at the flav&U(2) limit. Finally, we emphasize
;&Em the nuc|eon[2] from deep inelastic Scattering have thatu+d in the nucleon has both the connected sea and the

focused people’s attention on the interplay between the padisconnected sea contributions, whersasas only the dis-
ton model at high energies and the hadronic structure at lowonnected sea contribution. This difference has not been pa-
energies. The connection is often made through the operatéametrized in extracting the parton distribution functions
product expansion which relates the sum rules of parton dirom the experiments. The conclusion is given in Sec. V.
tribution functions to the forward matrix elements. The latter
can be obtained from low energy experiments. Il. PATH-INTEGRAL FORMALISM
In the parton model, the dynamical quark degrees of free- . . . .
. The deep inelastic scattering of a muon on a nucleon in-
dom are taken to be the valence and the sea, whereas in the . : . , .
. . volves the hadronic tensor which, being an inclusive reac-
hadronic models the degrees of freedom involve the valencte : . X
e ._1on, involves all intermediate states
and the meson cloud. The classification of these dynamlca|
degrees of freedom in deep inelastic scattering has been 1
made in the path integral formalisf8,4]. It is revealed that W, ,(9?,v)= 5—— 2, (27)35%(py,—p—a)(N[J,(0)|n)
there are two sources for the sea quark. One is in the con- 2My “n
nected insertion and the other in the disconnected insertion. x(n|3,(0)|N)ep, 1)
Their relations to the meson cloud in the hadronic models for Y spin e

hadrons near the rest frame and chiral symmetry have beegince geep inelastic scattering measures the absorptive part
clarified and extensively explored in the context of hadronicy¢ o Compton scattering, it is the imaginary part of the

models l'” terms of lthe form factors, hadrohr] ;nassebs, ar} rward amplitude and can be expressed as the current-
matrix elements, I.e. low-energy quantities which can be calg,,rent correlation function in the nucleon: i.e.,

culated in the two- and three-point functions. In addition, it

is shown that when both the connected ¢ederred to as 1

cloud in Ref.[4]) and the disconnected sea quarks are elimi-W,, (9% v)=—ImT,,(q¢? v)
nated in a valence QCD theory, the valence quark picture m

with SU(6) symmetry emerges. In this paper, we shall derive 1 d*x

the operator product expansion in the path-integral formal- = N J—e‘q'XJM(x)JV(O) N

ism and explore the phenomenological consequences of this spin ae.
classification of the parton degrees of freedom. Section Il is 2)
on the path-integral formalism of the hadronic tensor and the

classification of the parton degrees of freedom. Section Ill It has been shown[3,4] that the hadronic tensor

shows how to carry out the operator product expansion in tthw(qz,v) can be obtained from the Euclidean path-integral
path-integral formalism and to derive parton evolution equaformalism where the various parton dynamical degrees
tions through operator rescaling and mixing. Section 1V ex-of freedom are readily and explicitly revealed. In this
plores the phenomenological consequences. We shall shosase, one considers the ratio of the four-point function
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(2E,Vi2M N)<ON(t)f(d3X/27T)e*iq‘XJM()Z,tZ)\]V(O,tl)ON(O» energy gap between the nucleon enefgyand the n_ext ex-

and the two-point functiogOy[t— (t,—t;)]ON(0)), where  Citation (i.e., the threshold of a nucleon and a pion in the
On(t) is an interpolation field for the nucleon with momen- p-wave, the intermediate state contributions will be domi-
tum p at Euclidean time. nated by the nucleon with the Euclidean propagator

As botht—t,>1/AE, andt;>1/AE,, whereAE, is the e Fol'~ (27" Hence,

BV tfdgx ~14X] (X,t5)3,(0,t1)On(0
W (*2 : WN n(t) Ee 1(X,12)3,(0t1)On(0)
(05, 7) = — t—t,> 1/AE,
(On(t—7)OnN(0)) L= 1AE,
f22E,V d* -
—E(t— —ig- —-E
g t2)<Nf 5 1170, (X,1)3,(04) N & Eot
- 2~ Ep(t—7)
“ZE fdgx % (X,12)3,(01)| N 3
=My 5 w(X12)3,(0t) [N ), ()

where 7=t,—t; and f is the transition matrix element the same quark line. These contain leading twist contribu-

(0|OnIN), and V is the 3-volume. Inserting intermediate tions in deep inelastic scattering. Other contractions with the

statesWMV(ﬁz,r) becomes two currents hooking on different quark lines involve only

higher twist operators and thus will be suppressed in the
. 1 ) Bjorken limit [4]. They are shown in Fig. 2. We will neglect
W@ =55 ; (2m)26%(py—p+a)(N|J,,(0)[n) these “cat’s ears” diagrams from now on. We should stress
that these diagrams in Figs. 1 and 2 aa Feynman dia-
X(Nn|J,(0)|N)spin el En Ep7, (4) grams to repesent the forward Compton scattering amplitude
_ _ Tﬂv(qz,v) and should not be read as such. Rather, they are

To go back to the delta functiof(E,—Ep+v) in Eq. (1), path-integral diagrams needed to formulaé,,(q? »)

one needs to carry out the inverse Laplace transfé3i which is the imaginary part OTW(q{ v) [see Eq(2)] or its
s-channel discontinuity.

(5) In the deep inelastic limit, the Bjorken scaling implies that
the current producfor commutator is dominated by the
light-cone singularity of a free-field theory, i.e.x¥/where

with ¢>0. This is basically doing the anti-Wick rotation x2~(Q(1/Q?). Among the time-fixed diagrams in Fig. 1, Fig.

back to the Minkowski space. 1(a)/1(b) involves only a quark/antiquark propagator be-
In the Euclidean path-integral formulation WM(GZ,T) tween the currents; whereas, Figc)lhas both quark and

in Eg. (4), contributions to the four-point function can be antiquark propagators. Hence, there are two distinct classes

classified according to different topologies of the quark path®f diagrams where the sea quarks contribute. One comes

between the source and the sink of the proton. They reprdrom the DI; the other comes from the CI. It is usually as-
sent different ways the fields in the curredisandJ, con- sumed that connected insertions involve only “valence”
tract with those in the nucleon interpolation opera@y;.  quarks which are responsible for the baryon number. This is

Figures 1a) and 1b) represent connected insertiof@l) of obviously not true, there are also quark-antiquark pairs in the

the currents. Here the quark fields from the interpola€ygs

contract with the currents such that the quark lines flow con-

tinuously fromt=0 to t=t. Figure 1c), on the other hand,

g, 5 I,
I A
represents a disconnected inserti@l) where the quark 0 . . O , . “Q’Z ,
fields from J, and J, self-contract and are hence discon- @. = i @
nected from the quark paths between the proton source anc —
.t .t
() (©

sink. Here, “disconnected” refers only to the quark lines. Of
course, quarks dive in the background of the gauge field and
all quark paths are ultimately connected through the gluon F|G. 1. Quark skeleton diagrams in the Euclidean path integral
field. formalism for evaluatingV,,, from the four-point function defined
Figure 1 represents the contributions of the class ofn Eq.(3). These include the lowest twist contributions\,,, . (a)
“handbag” diagrams where the two currents are hooked orand(b) are connected insertions afuj is a disconnected insertion.

c+iow

2 1 VTR 2
W,.(q ,v)=i— . dre”"W,,(q%,7),

c—1

2

()

c
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T =Q%2mv. Given the specific time-ordering in Fig. 1, Fig.
1(a)/1(b) involves only a quark/antiquark propagator be-

7 J, @ tween the currents; whereas, Figc)lhas both quark and
Ot n 0 ! fe o as antiquark propagators. Consequently, the parton densities for
v the u and d antiquarks in the nucleon come from two

© —
(b)

sources, i.e. for the case of
U(X,Q%) = Ues(X,Q%) + ugs(x,Q?), 6)

FIG. 2. Quark skeleton diagrams similar to those in Fig. 1, ex- — o " , .
cept that the two current insertions are on different quark Iines.\/\/hereUCS(X'Q ) is the “connected sea(CS) u anti-parton

They give higher twist contributions t/,,, . distribution from the Cl in Fig. (b) and Uds(?(:Qz) denotes
the “disconnected sea(DS) u antiparton distribution from

Cl. To define the quark distribution functions more precisely,the DI in Fig. Xc). Similarly, d has two components. The

we shall call the quark/antiquark distribution from the DI strange and charm partons, on the other hand, only appear in

(which are connected to the “valence” quark propagatorsthe DI in Fig. Xc). Thus,

and other quark loops through glugnthe “disconnected . .

sea” quark/antiquark. We shall refer to the antiquark in the S(x,Q%)=s44x,Q?). (7)

backward time going quark propagator betwéemandt, in

Fig. 1b) as the “connected sea” antiquark. On the otherOne can prove Edy) this way. First, it is imperative to note

hand, the quark in the time forward propagator betwgen that the hardronic tenscww(qz,r) in Eq. (3) does not de-

andt, in Fig. 1(a) includes both the valence and the “con- pend on the specific form of the interpolation field, except its

nected sea” quarks. This is because a quark propagator froguantum numbers. In fact, the interpolation-field dependent

t=0 tot=t(t>0) involves both the time forward and back- transition matrix element=(0|Oy|N) drops out in the ratio

ward zigzag motions so that one cannot tell if the quarkof the four-point to two-point functions in Eq3). As such,

propagator betweety, andt; is due to the valence or the one can use the simplest interpretation field of the nucleon

connected sea. All one knows is that it is a quark propagatomwhich involves only the valence quark field. For example,

In other words, one needs to consider connected sea quarks(t) can be taken to be the twoand oned quark fields

in addition to the valence in order to account for the producwith nucleon quantum numbers,

tion of quark-antiquark pairs in a connected fash|éiig.

ils(?LZI;F\/ivghelr(i?s, the pair production in a disconnected fashionON:f d3xei5‘;sab“P(”’a(x)([‘P(”)b(x)]TCys‘lf(d)c(x)),

We should stress that this separation into three topologi- 8
cally distinct classes of path-integral diagrams is gauge in-

variant. Notice that all the quark propagators are sewed tg©" the proton. Since the interpolation fie@y does not in-

gether in a trace over color. In a perturbative illustration ofVOIVe strange quarks, the strange parton contribution can
the distinction between Fig () and Fig. 1c), one may con- only come from the vacuum polarization due to the external
sider the time-ordered perturbation where Figc) Irepre- CU"‘TI”tSJM andJ,, '”l other wor_dsf, th‘; Dlin F'.?'(t)' Asa h
sents the vacuum polarization contribution as a disconnectetPr0!'ary, one can aiso prove it for the case If one uses the
insertion in a direct diagram. The corresponding exchang®nss as the interpolation field, for example. In this case,
diagram where the quark in the loop in Fig(clis ex- there are two classes of path-integral diagrams. One class
changed with one in the “valence” will lead to a connected involves the Cl where the strange quark fields in the currents
insertion which falls in the class of Fig(4d) [3,6]. However,  sy,s andsy,s contract with those strange quark fields in the
the separation depends on the momentum frame of thgterpolation fieldOyss for the nucleon source and sink.
nucleon, aItho;Jgh the sum which corresponds to the fullrhis class of diagrams does not project to the nucleon as its
physicalW,, (g% v) does not. For example, when the quark/ |owest mass state, since the physical states it projects to will

antiquark propagator between the currents is either from thﬁwolve 5 valence quarks, i.auudss Instead, it will project

nucleon interpolation field or pair-produced before the cur- h h | q .
rentd, att,, i.e., it is preexisting in the wave function, then [0 States such as the nucleon and a scagameson. Since

it is not suppressed in the large momentum frame. Wherea ey all h_ave masses higher than the nucleon, they W'”_be
if it is pair-produced by the currert,, then it is suppressed exponentially suppressed relative to the nucleon as the time

> > . ratiort—t, an in Eq. re large. The other cl
by |p|? where|p| is the momentum of the nucleon. This has separatiort —t, andt, g. (3) are large. The other class

b K ! t alaeb | wdied involves a DI where the strange quark fields in the nucleon
een known since current algebra sum rules were studied @f) 0o and sink self contract, so are the strange quark fields

large |p| [7]. o _ _in the currents. This will project to the nucleon state with
Since the parton model acquires its natural interpolation,ud as the valence quarks. Since the transition matrix ele-
in the large momentum frame of the nucleon, ilel=[dl,  mentf=(0|Oyss|N) is divided out in the ratio in Eq3), it

the parton distribution is then defined viaW,(Q%v) yields the same result as that obtained vty as the inter-
—>F2(X,Q2)=x2iei2[qi(x,Q2)+qi(x,Q2)] in the large mo-  polation field. Thus, in either case, the strange parton contri-
mentum frame. Here is the Bjorken scaling variable  bution comes only from the DI in Fig.(®).
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Similarly, theu andd partons have 2 sources, i.e., We also carry out the Taylor expansion of the propagator

M ~(t,— 7,0) for small~ andx
U(X, Q%) =U, 4 c(X,Q%) + Ugs(X,Q?), 9 o
M~ L(t,— 7,0)=e*P*P:M1(t,,0), (12)
where u, . .{(x,Q?) denotes the valence and GSpartons
and ug«(x,Q?) denotes the DS parton and they are from whereD is the covariant derivative. With these substitutions,
Fig. 1(a) and Fig. 1c), respectively. Again these two com- the corresponding hadronic ten%v(qz,v) from Fig. 1(a)
ponents applies to theé partons; whereas, theparton has after the Fourier transform in space and Laplace transform in
only the DS component. 7 [Eq. (5)] is given as

—im(g+ibD)

lIl. OPERATOR PRODUCT EXPANSION (OPE) W, (92, )=Tr - MYt )iy, ————

+iD
In the Minkowski space, the operator product expansion @ |
(OPB is carried out in the unphysical region ©f,,, which is .. .
defined with the time-ordered product of the currents. How X 8(v+D,~[q+iD|)iy,M ™ (t2,0)- - - |.

does one carry this out in the Euclidean path-integral formu-

lation? It turns out that becauguw(ciz,r) is defined in the (13)
Euclidean path-integrdEq. (4)], it requires several steps to . 2 , . . .

get toT,, in the Minkowski space. On the other hand, it is Since W_;w(q V) IS the2 imaginary part ofT,,, ie,
relatively easy to do so because it entails a simple TaylolVx(4"»)=(1/m)ImT,,(q%»), one can use the dispersion
expansion of functions as opposed to dealing with operator€lation to obtainl,, from W, ,

in the usual OPE, as we shall see.

Considering Fig. (a) first, the three-point function in Eq. ) 1 (= v'W,, (g% v =D,)
i ; . T,(9%v)=— dv
(3) involves the following expression: m ) Qv+ D, »'2—(v+D,)2
~ . —i(g+iD)
W, (9%, fdAdetM Ae~S «Tr - MYt t)iy,————i7,
w67, 7) | d[A]detM(A)eS L ik
X "’M_l(t’tZ)j dxe iy, XMY(t,,0)- - (14)

XMty t,— 7)i Mlt—,0~--}, : i 3
(2.t~ iy, (tz=7.0) where we have used=it and D;=iD, so thatD=(D,

(10) —iD,) is the covariant derivative in Minkowski space. Ex-
panding T, in the unphysical region where- 2p-q/Q?

whereS; is the action for the gluon field, M~ 1is the quark <1, the expression between thés in Eq. (14) gives

propagator with arguments labeled by the Euclidean time.

. . . . % . n
The spatial indices are implicit and have been integrated over  —1(4+iD) _ —i(4+iD) D ( —2iq-D+D?
to give the nucleon a definite momentdp} and a momen-  Q?+2iq-D—D? Q? n=0 Q2 '
tum transferﬁ. x and 7 are the spatial and time separations _ _ (15 _
of the two currents, andJ, . The trace is over the colorand ~ From this we obtain the valence and CS parton leading
spin indices. The expression in EG.0) exhibits the part of twist contributions toT ,, from Fig. 1(a)
the result from the quark line on which the currents are at-
tached. The other two quark propagators and the nucleon ) (—2q-p)"? n
interpolation field operators are indicated by the dots. Tuv(qwcs)zz €f| 8PPy 2, WAf(CI)

Similar to the usual OPE derivatid8], we shall consider

the most singular part of the quark propagator between the (—2q-p)"
currents in Fig. 1. In the deep inelastic scatteriBgS) limit —25W2 — fcH |+,
where both the momentum transfey] and energy transfer =2 (Q%)
v— o, the leading singularity comes from the short-distance (16

part in W,,(q% 7) where|x| and 7—0. Therefore, we re- o . .
place the quark propagator between the currents with the fre@heref indicates flavor. For the nucleon, it only involvas

massless propagator and d in the CI. A{(Cl) is defined through the following
consideration. We first note that the short-distance expansion
p in Eq. (15 leadsT ,,(q, +¢s) to a series of terms represented
M~ Y(t, = 7)— —— = ) (11) by the three-point functions in Fig(@ which correspond to
47 X2+ 72 matrix elements calculated through the CI expression
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formalism considered in the evaluation of matrix elements for th
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(Pl WO [p)p=AN(DI)2p, Py, - - -Pu. (22

n
In this case, the leading twist expansion of the DS contribu-
tionto T, in Fig. 1(c) now leads to two series of forward
matrix elements of DI. One is foTW(qu) with even plus
odd n terms; the other i$,,(qys) with even minus odd n
rms as given in Eq21). Both are represented in the three-
oint functions in Fig. &). It is worth pointing out that

T AUy+ce) i Eq. (16) and T,,(qq9 in Eqg. (21) are the

sum of local operators from the operator product expansion of *

J,(x)J,(0). (@, (b) and (c) correspond to the operator product
expansion from Figs. (&), 1(b) and Xc), respectively.

f d[A]detM(A)e™SeTr[ - - - M~ Y(t,t,) OfM ~X(t,,0) - - - ],
(17

where the operatod} is
(18)

The ratio of these three-point functions in FigaBto the

appropriate two-point functions then define the forward ma-

trix element which in turn defines the coefficiehf(Cl) in
Eq. (16),

(Pl WOW|p)c=AN(CN2p, P, - -P.. (19

n

same as those derived from the contraction of the inner pair
of the quark fields in the conventional operator product ex-
pansion of the time-ordered current-current product

q(x) qu(x)q(O)&q(O) [8]. On the other handr ,,(qcs) in
Eqg.(20) andT ,,(qqs) in Eqg.(21) are the same as those from
the contraction of the outer pair of the quark fields in the
current-current product. The only difference is that the path-
integral formalism allows the separation into the Cl and the
DI.

When the parts in Eqg16), (20), and (21) are summed
up, only the evem terms of the OPE are left

T,ul/: T/U/(qv+cs) + Tﬂv(a:s) + T,uv(qu—’_ais)

=2 >

n=2even

.- [ANCH+ATDI)]. (23

This is the same as derived from the ordinary OPE. How-
ever, what is achieved with the path-integral formulation is
the separation of Cl from DI in addition to the separation of

Sim"a”y, we can perform the short-distance expansiorpartons from antipartons. This has not been pOSSible with

for the CS antiparton in Fig. () and obtain the same ex-
pression as in Eq16) except with the substitutiog— —q.
As a result, this leads to the even n terms minus the odd
terms instead of the sum as in Ed6), i.e.,

~AlCH— Y, ---ANCD. (20
odd=3

Tw@s):evz

In other words, the short-distance expansionTgf, from
Fig. 1(b) yields three-point functions with a series of inser-
tion of the same operatorfo?\lf except with a minus sign
for the oddn terms. This is illustrated in Fig.(B) whereTl'},
denotes the n-th term insertion with the operadjrand the
associated kinematic factors in E@.6). Comparingl’;, in
Fig. 3(b) and the corresponding,, in Fig. 3@, the minus
sign for the oddn terms in Eq.(20) implies that T}
=(=)"Th.

other formulations, e.g. the light-cone definition of the dis-
tribution function. This separation facilitates the derivation
gf the different smalk behavior between the CS and the DS,
the identification of the CS parton as the source of the
Gottfried sum rule violation, and a different evolution of
0es(X,Q?) from that ofgye(x,Q?) andgys(x,Q?) as we shall
see.

Now consider the contour integral @% in the Cl and DI
parts ofT ,,, aroundv=0 in the complex’ plane while keep-
ing Q? fixed. $(dw/27i)[ T,(v,Q?)/v" 1] picks up they"~?
term in the series expansion®j in Eqgs.(16), (20), and(21)
(N.B. —29-p=2M_v in these equations.

i

for both the Cl and the DI. The contour of the integral can be
distorted to turn the above integral into an integral over the

1

n
f

n—

dv2M, To(»,Q%)
27 1

Ef 8e$( % (24)

By the same token, the short-distance expansion for thgiscontinuities ofT,. Through the dispersion relation, this

DS parton/antiparton contribution i, from Fig. 1(c)
gives

.- AN(DI).

T/J,V(st/ads)zeveEn:Z o A?(DI)—'_ / - 3
(21

odd=

They have the same expressionTas(q, -+ cs) andTW(acs)
exceptA{(DI) are from the DI part of the matrix element

gives

=dv2M, 2i Im To(v,Q?)

ZJ‘QZ 2i

anl

n—1

1

fdx
0

L, 2MpWo(r,Q?)

X 4

(25
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Equating these two integrals and relatig to the parton Operator rescaling and mixing, and parton evolution
distribution function, one obtains the moment sum rules.
Since T,(Q?,v) is symmetric with respect to— — v, we
obtain only the sum rules for evan Thus,

The dimensionless coefficienfs; are not constants, but
depend logarithmically 0iQ?, the renormalization point of
the operator product expansion. The operator rescaling and
mixing analysis[11,17] for the twist-two flavor nonsinglet
and singlet operators gives the renormalization group equa-
1 _ tions for the corresponding moments of the structure func-
Ef dx X"y 4 oo, Q%)+ Ges(X,Q%)], tions. In the context of the present path-integral formulation
0 of OPE, the nonsinglet coefficien&; and the nonsinglet
moments only have contributions from the [Hig. 3(a) or
Fig. 3(b)], since their DI contributions cancel among differ-
1 _ ent flavors. On the other hand, the singlet coefficiéijtsind
Efo dx X" [ ggs(X,Q?) +dgs(X, Q) ]. the singlet moments have both the ClI and [Big. 3(c)]
contributions. Therefore, it is possible to go to the single
(26)  flavor basis and classify the equations in terms of Cl and DI.

o . For the CI which involves only the valence flavdesg.,u
Similarly we obtain the moment sum rules for the atilom  andd for the nucleo, the renormalization equation is
the W5 form factor through the interference of the vector and

AN=®eN(Cl)=M"(CI)

A?=®en Dy =M"(DI)

axial vector currents, d ay(Q?
——M{(C)= séQ )ang?(CI), (30)
A?=Odd(C|):Mn(CI) dan ™
1 _ — whereal, is the anomalous dimension coefficient. For the
- fo X0, 40, Q%) ~ Ges(x.Q%)], DI the eqtguation is
n=odd —_pmn o 2
AP=°d9ply=M"(DI) MI(DI)= (Q )(ang?(Dl)
1 - dInQ? 87
Ef dx X" qas(X, Q%) — dgs(X,Q%) 1. _n
0 1+(=)"
+———a4cMq |, (31)
(27) 2
One can define the valence parton distribution whereay is the anomalous dimension coefficient for opera-
o tor mixing with the gluon operators ard g is the moment
4, (%, Q%) =0, + c(X,Q%) — gco(X,Q?). (28)  for the gluon distribution function. We note that this mixing
with gluon operators only contributes to=even. As we
In this case Al =°%¢ gives the sum rules for the valence dis- can see, Eq31) involves the DS parton only.
tribution. In particular, valence number sum rules We should stress that in the literatliie3,16,17 the non-

singlet case has frequently been identified with valence. This
PP oy is clearly incorrect. As we see from Eq26) that
Mu(Ch= fo dx u,(x,Q%)=2, A?~®®"(Cl) includes the CS partons in addition to the va-
lence partons. Detailed study of this subject on the lattice has
1 been carried out for the matrix elements and form factors of
Mé(CI)Ef dx d,(x,Q%) =1, the nucleon from the three-point functions as well as hadron
0 masses from the two-point functiofd]. It is shown when
) the CS quarks are removed by prohibiting pair-production
1 _ 2y _ o 27— through the Z graphs in the CI, the hadron structure and
Mf(DI)_jo dX[Gs(x,Q) ~ Assx,Q7)]=0. (29 masses are greatly affected. It is learned that the CS quarks
are responsible for the meson dominance in the form factors,
for the u andd quarks in the proton reflect the charge con-the deviation ofF /D, andFg/Dg from the nonrelativistic
servation of the vector currefiti y, v and the fact that the SU(6) limit, the hyperfine splittings, and the constituent
DS carries no net charge. quark masset]. In the context of the parton model, they are
We note that the matrix elements associated withvesponsible for the difference betweefx) andd(x) in the
Af~®¢(CI) include not just the valence but also the CSproton.
contribution. This is why the matrix eIemeAﬁ'd(Cl), which Following Altarelli and Paris[13], the rescaling and mix-
corresponds to the momentum fractid?(Cl)=(x)¢,, ing equations in Eqs(30) and (31) can be translated into
when calculated on the lattid®,10], is larger than that ob- integral-differential equations which are the evolution equa-
tained from the experiments for the valence partons onlytions for the parton densities. Therefore, for the CI the evo-
e, (X)c>(x), atu~2 GeV. lution equation for the unpolarized valence and CS partons is

074501-6



PARTON DEGREES OF FREEDOM FROM THE PATH. . PHYSICAL REVIEW D 62 074501

qu+CS(X,Q2) a/S(Qz) 1dy X qS(X,QZ)chs(X,QZ)+qu(X,Q2),
din Q2 - J' qq( )qU+cs(y Q?), - B B
(32) qS(XvQZ)EqCS(XlQ2)+qu(XvQ2)1 (39)
where the sum of twice of Eq(34) and Eq.(35) becomes
al d(gst a9 (x,Q%) as(Qz) 1oly[ (
8qq =
f dzZ"'Pgg(2)= -~ (33 dInQ? f Pagl =] (Gs+ a6 (¥,Q%)

For the CS antiparton density, the equation is similar

+ PqG@)G(y,QZ)] 40)

des(x.Q%) _a (Qz) Wy, (%]

= 5 : f Paq qu(y Q9. (39  This is exactly the evolution of sea partons in the DGLAP
dinQ equation. Similarly, the difference between E82) and Eq.

(34) leads to the evolution of the valence partons in the

For the DS partons in the QFig. 1(c)], the evolution equa- DGLAP equation.

tions from Eq.(31) are

d(ggstGes)(X,Q%) _ ag(Q?) 1dy o [ _
dInQ? T 27 Iy qq)_/(%ﬁ‘%s) dInQ?

dag, (x,Q? «(Q? rud
q,(x,Q%) a(Q)f Yo (éqv(y,Qz). @)

X Thus, we see DGLAP equations can be derived from the

X(y,Q%) + PqG<)—/)G(y,Q2)}, (35 path-integral formalism. However, the present form with the

separation of CS from the DS offers a separate evolution of

— ) 5 the CS in Eq(34) which are decoupled from the valence, the

d(gas— g (X, Q%) _ as(Q) [dy (f) DS, and the gluon. This decoupling is retained when higher
aly orders are considereld8]. This affords the possibility of

o maintaining the separation of the CS and DS parton distribu-

X (dgs— das) (¥,Q%), (36)  tions when they are fitted to experiments at certaﬁwand

evolved up or down Q2. This is consistent with the clas-

dInQ2 2w Jx Y

where sification into valence, CS, and DS in Fig. 1 and Esand
. n (9) at all Q? from the path-integral formalism in the first
dzF P :E 3 place. Although, at leading twists, it makes no difference
z q6(2) , (37) . .
0 4 whether one considers the separate evolutions of CS and DS

in Egs.(34) and(35) or the combined evolution in E440),
andG(y,Q?) is the unpolarized gluon distribution function. it may be necessary to consider the separate evolutions of CS

Finally, the gluon evolution equation is and DS when higher twists are taken into accdus.
2 2
dG(x,.Q*) _ ay(Q )fld_y (f) IV. PHENOMENOLOGICAL CONSEQUENCES
dInQ? ey

After the dynamical parton degrees of freedom are classi-
. — ) fied as valence, connected s@g2S), and disconnected sea
B 2 (Qest O (Y,Q9) (DS) via the path-integral diagrams in Fig. 1, one may ques-
f=val-fla. tion if there is an advantage to separating the CS from the
— DS. After all, both the CS and DS are pair-produced sea,
+f_D§S:“ (qgst st)(y,Qz)} only with different topology in the path-integral diagrams. In
—oehe the previous section, we have shown that the CS parton
X evolves the same way as the valence, i.e. it is decoupled from
+PGG(_>G(va2)]- (38)  the DS and the gluons in the evolution equation. This is
y consistent with the classification of ﬂﬁle parton degrees of
freedom into valence, CS, and DS at@A. In the following,
It appears that, except for the gluon distribution, the evo-
lution pgquatlons denvgd abovegl are different from theV® shall show that it is useful to distinguish CS from DS
Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDGLAP) evolu- because they have different small x behaviors. This is espe-
tion equat|0ns in the manner of Doksh”i&ﬂ_] Gribov and CIaIIy |mp0rtant in view of the fact that in the nUCleQnand
Lipatov[15], and Altarelli and Parigi13] due to an extra CS d have both the CS and DS parts, §sd1as only the DS part.
degree of freedom in E434) which evolves like the valence We further note that the Gottfried sum rule violation is at-
in Eq. (32). However, since the evolution equations are lin-tributable to the CS partons primarily. We finally assess the
ear in the parton distribution functions, once one defines thenagnitude of the momentum fraction due to the CS and DS
total sea to be the sum of CS and DS, i.e., partons.

X
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A. Small x behavior 1 FB(X)—Fh(x) 1
Since the CS parton is in the connected insertion which is Se= JO dx X 3 (47)
flavor nonsinglet like the valence, its small x behavior re-

flects the leading Reggeon exchangespob,a, ... and s yiolated due to fact that#d in the proton. This is verified
thus should be like™ 7= [20-23. On the other hand, the DS jn the Drell-Yan experiment E866/NuS¢a7]. It has been
iS flavqr singlet {indiclan have Pomeron exchanges, its smallghown[3] that the DS partons in Fig.(d) cannot give rise to
behavior goes like™  [20-22. Therefore, we have a differentu andd whenm,=my. It is noted that in Fig.

1(c) the flavor indices in the quark loop are separately traced
from those in the propagators associated with the nucleon
interpolation field, only the latter reflects the valence nature
_ b — b — 71 of the proton. Hence, Fig.(@) does not distinguish a loop
Ugs(X,Qp) ~ dgs(X,Qp) ~s(x,Qp) ~ X (43 with an u quark from that wit a d quark at the flavor sym-

Ugs/deo(X,Q3) ~ x ™2, (42)

x—0

0 metric limit, i.e., my=mg. In other Words,UdS(x,Qz)
at certainQ,. As a result, =dgs(x,Q?). On the other hand, the origin ai(x,Q?)
#d(x,Q?) can come from the CS antipartons in Figb)l
U(x,Q3) —d(x,Q2) ~ x~ 12 (44) Thus, the violation of the Gottfried sum rule originates en-
10 AREVEPS tirely from the CS partons in the charge symmetric limit: i.e.,
p 2y _En 2
and this has been incorporated in the fitting of experimental fldXFZ(X’Q )~ Fa(x.Q)
results at some input sca&% [24—24. On the other hand, it 0 X

has been taken for granted thatx,Q2) +d(x,Q3) has the 1 2 B B
same behavior as(x,Q2) in the fitting of the experiments. = §+§J dX[ Ucs(X,Q%) —dcs(x,Q)]. (49
In other words, it is assumed that

We shall see later that () andO(1/Q?), this turns out

1 — — to be a sum rule.
E[U(X*Q(Z))+d(X'QS)]~25(X'QS)' (49 Due to the fact that
1
in the fitting of parton distributions a@§=1.6 Ge\ for fldquq(x): %:o, (49)
CTEQ4[24] andQ3=1 Ge\? for Martin, Roberts, Stirling, 0 4

and Thorne(MRST)LZG]. This has made the assumption that

both theu,d, like s, have only the DS component. We
proved in Sec. I[Egs. (6) and (9)] that this is not true and

thatu andd have CS in addition to DS. Therefore, the cor- d

where aéq is the anomalous dimension coefficient in Eq.
(33), Egs.(41) and(34) lead to

1
rect parametrization fo}[ u(x,Q3) +d(x,Q3)] should be i QZJ’o dx g,(x,Q%) =0, (50
1 — — 1
E[U(XIQ(Z))+d(XIQS)]:As(XiQCZ))+E[UCS(X!Qg) d ZflanCS(X!QZ):O- (51)
dinQ<Jo

¥ 2
Fdes(x.Qo)1, (46) We see that the CS antiparton number, like the valence num-

) i ber, is conserved, i.e., independent@f. This is in contrast
whereA is a proportional constant. In t1®U(3) flavor sym- ity the DS partons whose number is not conserved due to
metric limit, A=1. The second term on the right hand side of e pajr-creation from the gluon. However, the conservation
Eq.(46)is the CS part and has the ““small x behavior. As ot the CS antiparton number is only good in the leading
far as we know, this kind of parametrization ffu(x,Q) logarithmic approximation, i.e., good tdO(as) and
+d(x,Q2)] has not been taken into account in extracting theO(1/Q%). Whereas, the conservation of the vector current
parton distribution functions. When this CS degree of freefrotects the charges, thus the valence quark number, against

R— — 2 .
dom is incorporated in the sum afandd in addition to the ~ &Ny Q° correction[11-13. o
difference, we will have a different result from the present We note that the sum in Ed48) is in terms of the CS
global analyses which will lead to different predictions on antipartons numbers. Thus to leading logarithmic approxima-

the parton distributions at hig®? relevant to LHC. tion, itis a sum rule

J‘l FOOX)—F5(x) 1 2
dX————=

B. Origin of Gottfried sum rule violation =3z t3lN,naJ (52

0
The NMC experiments of thE, structure functions of the o
proton and deuterof?] reveal that the Gottfried sum rule whereny_/ng__is theucs/dcs number.
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C. Magnitude of the connected sea partons at Q?=4 Ge\2A Any experiment which measures +d)/2

We do not know precisely how large the magnitude of theands at very small, e.g., 10 3—10* will be very useful in
CS partons and antipartons are in comparison with those aoferifying the form of the distribution function prescribed in
the valence and the DS unless one fits the DIS and Drell-Yagq. (46).
experiments with an explicit separation of the CS and the
DS. But there are hints which are helpful in this respect.

From the New Muon CollaboratiotNMC) experiments on

the F, structure function of the proton and deutef@, the

sum in Eq.(52) is measured to be 0.23%.026 atQ? In conclusion, we have formulated the hadronic tensor
=4 Ge\ significantly smaller than the Gottfried sum rule W, of the deep inelastic scattering starting from the Euclid-
prediction of 0.333. This implies that ean path-integral formalism. We found that it can be divided
into three gauge-invariant and topologically distinct parts
which we classify as the valence-connected sea partons, the
connected sea antipartons and the disconnected-sea partons
and antipartons. This admits a separation of the CI from the
DI and the partons from the antipartons. Since the CS is in
the CI and the DS in the DI, they have different small
behaviors. We show that the operator product expansion is
simply a short distance Taylor expansion of functions in the
path integral. From operator rescaling and mixing, we derive
the evolution equations which show that the CS partons
evolve like the valence and their numbers are conserved in
the leading log approximation. We stress that in the nucleon
u andd partons have both the connected and disconnected
) ) . —  sea contributions, whereas,partons have only the discon-
Indeed, in the CCFR dimuon data,is about 50% of §  npected sea contribution. A global analysis of the experimen-
+d)/2 atQ?=4 Ge\? in the range ofx between 0.01 and tal data is needed to take this difference into account to fit
0.20. Sinceu—d, which only has the CS contribution, also the parton distribution functions.

peaks in this x range, we think the observed difference be-

V. CONCLUSION

1 _ _
ny — nEcs: fo dX[UCS(X,QZ) - dcs(XrQZ)]

cs

—0.147£0.039, (53

at Q?=4 Ge\? which is not negligible compared with the
valence numbers af andd.

Sinceu (similarly d) has contributions from the CS and
DS, i.e.,u(X)=UcyX) +ugs(x) ands is from the DS only,
one expects that

()= (X uH (ug > (Xs- (54)

tween (1+d)/2 ands is mainly duw to the CS part ofu(

+E)/2. As a result, one expects that the momentum fraction

of the CS part of ¢+d)/2 is comparable to that of the DS
part, i.e.,

1 1
5 ((¥u T (X))~ 5 (gt X))~ (s, (59
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