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Parton degrees of freedom from the path-integral formalism
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We formulate the hadronic tensorWmn of deep inelastic scattering in the path-integral formalism. It is shown
that there are 3 gauge invariant and topologically distinct contributions. In addition to the valence contribution,
there are two sources for the sea—one in the connected insertion and the other in the disconnected insertion.
The operator product expansion is carried out in this formalism. The operator rescaling and mixing reveal that
the connected sea partons evolve the same way as the valence; i.e., their evolution is decoupled from the
disconnected sea and the gluon distribution functions. We explore the phenomenological consequences of this
classification in terms of the smallx behavior, Gottfried sum rule violation, and flavor dependence. In particu-

lar, we point out that in the nucleonū andd̄ partons have both connected and disconnected sea contributions,

whereas thes̄ parton has only the disconnected sea contribution. This difference betweenū1d̄ ands̄, as far as
we know, has not been taken into account in the fitting of parton distribution functions to experiments.

PACS number~s!: 11.15.Ha, 13.60.Hb
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I. INTRODUCTION

In the past decade, the surprising results of a small qu

spin content~flavor-singletgA
0) @1# and the discovery thatū

Þd̄ in the nucleon@2# from deep inelastic scattering hav
focused people’s attention on the interplay between the
ton model at high energies and the hadronic structure at
energies. The connection is often made through the oper
product expansion which relates the sum rules of parton
tribution functions to the forward matrix elements. The lat
can be obtained from low energy experiments.

In the parton model, the dynamical quark degrees of fr
dom are taken to be the valence and the sea, whereas i
hadronic models the degrees of freedom involve the vale
and the meson cloud. The classification of these dynam
degrees of freedom in deep inelastic scattering has b
made in the path integral formalism@3,4#. It is revealed that
there are two sources for the sea quark. One is in the c
nected insertion and the other in the disconnected inser
Their relations to the meson cloud in the hadronic models
hadrons near the rest frame and chiral symmetry have b
clarified and extensively explored in the context of hadro
models in terms of the form factors, hadron masses,
matrix elements, i.e. low-energy quantities which can be c
culated in the two- and three-point functions. In addition
is shown that when both the connected sea~referred to as
cloud in Ref.@4#! and the disconnected sea quarks are eli
nated in a valence QCD theory, the valence quark pict
with SU~6! symmetry emerges. In this paper, we shall der
the operator product expansion in the path-integral form
ism and explore the phenomenological consequences of
classification of the parton degrees of freedom. Section I
on the path-integral formalism of the hadronic tensor and
classification of the parton degrees of freedom. Section
shows how to carry out the operator product expansion in
path-integral formalism and to derive parton evolution eq
tions through operator rescaling and mixing. Section IV e
plores the phenomenological consequences. We shall s
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that the small x behavior of the connected sea is differ
from that of the disconnected sea and the violation of
Gottfried sum rule, i.e.,ūÞd̄, comes only from the con-
nected sea at the flavorSU(2) limit. Finally, we emphasize
that ū1d̄ in the nucleon has both the connected sea and
disconnected sea contributions, whereass̄ has only the dis-
connected sea contribution. This difference has not been
rametrized in extracting the parton distribution functio
from the experiments. The conclusion is given in Sec. V.

II. PATH-INTEGRAL FORMALISM

The deep inelastic scattering of a muon on a nucleon
volves the hadronic tensor which, being an inclusive re
tion, involves all intermediate states

Wmn~q2,n!5
1

2MN
(

n
~2p!3d 4~pn2p2q!^NuJm~0!un&

3^nuJn~0!uN&spin ave. . ~1!

Since deep inelastic scattering measures the absorptive
of the Compton scattering, it is the imaginary part of t
forward amplitude and can be expressed as the curr
current correlation function in the nucleon: i.e.,

Wmn~q2,n!5
1

p
Im Tmn~q2,n!

5
1

2MN
K NU E d4x

2p
eiq•xJm~x!Jn~0!UNL

spin ave.

.

~2!

It has been shown@3,4# that the hadronic tenso
Wmn(q2,n) can be obtained from the Euclidean path-integ
formalism where the various parton dynamical degre
of freedom are readily and explicitly revealed. In th
case, one considers the ratio of the four-point funct
©2000 The American Physical Society01-1
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(2EpV/2MN)^ON(t)*(d3x/2p)e2 iqW •xWJm(xW ,t2)Jn(0,t1)ON(0)&
and the two-point function̂ON@ t2(t22t1)#ON(0)&, where
ON(t) is an interpolation field for the nucleon with mome
tum p at Euclidean timet.

As both t2t2@1/DEp and t1@1/DEp , whereDEp is the
t
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energy gap between the nucleon energyEp and the next ex-
citation ~i.e., the threshold of a nucleon and a pion in t
p-wave!, the intermediate state contributions will be dom
nated by the nucleon with the Euclidean propaga
e2Ep[ t2(t22t1)] . Hence,
W̃mn~qW 2,t!5

2EpV

2MN
K ON~ t !E d3x

2p
e2 iqW •xWJm~xW ,t2!Jn~0,t1!ON~0!L

^ON~ t2t!ON~0!&
U

t2t2@1/DEp

t1@1/DEp

5

f 22EpV

2MN
e2Ep(t2t2)K NU E d3x

2p
e2 iqW •xWJm~xW ,t2!Jn~0,t1!UNL e2Ept1

f 2e2Ep(t2t)

5
2Ep

2MN
K NU E d3x

2p
e2 iqW •xWJm~xW ,t2!Jn~0,t1!UNL , ~3!
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where t5t22t1 and f is the transition matrix elemen
^0uONuN&, and V is the 3-volume. Inserting intermedia
states,W̃mn(qW 2,t) becomes

W̃mn~qW 2,t!5
1

2MN
(

n
~2p!2d3~pn2p1q!^NuJm~0!un&

3^nuJn~0!uN&spin ave.e
2(En2Ep)t. ~4!

To go back to the delta functiond(En2Ep1n) in Eq. ~1!,
one needs to carry out the inverse Laplace transform@5,3#

Wmn~q2,n!5
1

i Ec2 i`

c1 i`

dtentW̃mn~qW 2,t!, ~5!

with c.0. This is basically doing the anti-Wick rotatio
back to the Minkowski space.

In the Euclidean path-integral formulation ofW̃mn(qW 2,t)
in Eq. ~4!, contributions to the four-point function can b
classified according to different topologies of the quark pa
between the source and the sink of the proton. They re
sent different ways the fields in the currentsJm andJn con-
tract with those in the nucleon interpolation operatorON .
Figures 1~a! and 1~b! represent connected insertions~CI! of
the currents. Here the quark fields from the interpolatorsON
contract with the currents such that the quark lines flow c
tinuously fromt50 to t5t. Figure 1~c!, on the other hand
represents a disconnected insertion~DI! where the quark
fields from Jm and Jn self-contract and are hence disco
nected from the quark paths between the proton source
sink. Here, ‘‘disconnected’’ refers only to the quark lines.
course, quarks dive in the background of the gauge field
all quark paths are ultimately connected through the glu
field.

Figure 1 represents the contributions of the class
‘‘handbag’’ diagrams where the two currents are hooked
s
e-

-

nd
f
d
n

f
n

the same quark line. These contain leading twist contri
tions in deep inelastic scattering. Other contractions with
two currents hooking on different quark lines involve on
higher twist operators and thus will be suppressed in
Bjorken limit @4#. They are shown in Fig. 2. We will neglec
these ‘‘cat’s ears’’ diagrams from now on. We should stre
that these diagrams in Figs. 1 and 2 arenot Feynman dia-
grams to repesent the forward Compton scattering amplit
Tmn(q2,n) and should not be read as such. Rather, they
path-integral diagrams needed to formulateWmn(q2,n)
which is the imaginary part ofTmn(q2,n) @see Eq.~2!# or its
s-channel discontinuity.

In the deep inelastic limit, the Bjorken scaling implies th
the current product~or commutator! is dominated by the
light-cone singularity of a free-field theory, i.e., 1/x2 where
x2'O(1/Q2). Among the time-fixed diagrams in Fig. 1, Fig
1~a!/1~b! involves only a quark/antiquark propagator b
tween the currents; whereas, Fig. 1~c! has both quark and
antiquark propagators. Hence, there are two distinct cla
of diagrams where the sea quarks contribute. One co
from the DI; the other comes from the CI. It is usually a
sumed that connected insertions involve only ‘‘valenc
quarks which are responsible for the baryon number. Thi
obviously not true, there are also quark-antiquark pairs in

FIG. 1. Quark skeleton diagrams in the Euclidean path integ
formalism for evaluatingWmn from the four-point function defined
in Eq. ~3!. These include the lowest twist contributions toWmn . ~a!
and~b! are connected insertions and~c! is a disconnected insertion
1-2
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CI. To define the quark distribution functions more precise
we shall call the quark/antiquark distribution from the D
~which are connected to the ‘‘valence’’ quark propagat
and other quark loops through gluons! the ‘‘disconnected
sea’’ quark/antiquark. We shall refer to the antiquark in t
backward time going quark propagator betweent1 and t2 in
Fig. 1~b! as the ‘‘connected sea’’ antiquark. On the oth
hand, the quark in the time forward propagator betweent2
and t1 in Fig. 1~a! includes both the valence and the ‘‘co
nected sea’’ quarks. This is because a quark propagator
t50 to t5t(t.0) involves both the time forward and bac
ward zigzag motions so that one cannot tell if the qu
propagator betweent2 and t1 is due to the valence or th
connected sea. All one knows is that it is a quark propaga
In other words, one needs to consider connected sea qu
in addition to the valence in order to account for the prod
tion of quark-antiquark pairs in a connected fashion@Fig.
1~a!#; whereas, the pair production in a disconnected fash
is in Fig. 1~c!.

We should stress that this separation into three topol
cally distinct classes of path-integral diagrams is gauge
variant. Notice that all the quark propagators are sewed
gether in a trace over color. In a perturbative illustration
the distinction between Fig. 1~b! and Fig. 1~c!, one may con-
sider the time-ordered perturbation where Fig. 1~c! repre-
sents the vacuum polarization contribution as a disconne
insertion in a direct diagram. The corresponding excha
diagram where the quark in the loop in Fig. 1~c! is ex-
changed with one in the ‘‘valence’’ will lead to a connect
insertion which falls in the class of Fig. 1~b! @3,6#. However,
the separation depends on the momentum frame of
nucleon, although the sum which corresponds to the
physicalWmn(q2,n) does not. For example, when the qua
antiquark propagator between the currents is either from
nucleon interpolation field or pair-produced before the c
rent Jn at t1, i.e., it is preexisting in the wave function, the
it is not suppressed in the large momentum frame. Wher
if it is pair-produced by the currentJn , then it is suppressed
by upW u2 whereupW u is the momentum of the nucleon. This h
been known since current algebra sum rules were studie
large upW u @7#.

Since the parton model acquires its natural interpolat
in the large momentum frame of the nucleon, i.e.,upW u>uqW u,
the parton distribution is then defined vianW2(Q2,n)
→F2(x,Q2)5x( iei

2@qi(x,Q2)1q̄i(x,Q2)# in the large mo-
mentum frame. Herex is the Bjorken scaling variablex

FIG. 2. Quark skeleton diagrams similar to those in Fig. 1,
cept that the two current insertions are on different quark lin
They give higher twist contributions toWmn .
07450
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5Q2/2mn. Given the specific time-ordering in Fig. 1, Fig
1~a!/1~b! involves only a quark/antiquark propagator b
tween the currents; whereas, Fig. 1~c! has both quark and
antiquark propagators. Consequently, the parton densitie
the u and d antiquarks in the nucleon come from tw
sources, i.e. for the case ofu,

ū~x,Q2!5ūcs~x,Q2!1ūds~x,Q2!, ~6!

whereūcs(x,Q2) is the ‘‘connected sea’’~CS! u anti-parton
distribution from the CI in Fig. 1~b! and ūds(x,Q2) denotes
the ‘‘disconnected sea’’~DS! u antiparton distribution from
the DI in Fig. 1~c!. Similarly, d̄ has two components. Th
strange and charm partons, on the other hand, only appe
the DI in Fig. 1~c!. Thus,

s̄~x,Q2![ s̄ds~x,Q2!. ~7!

One can prove Eq.~7! this way. First, it is imperative to note
that the hardronic tensorW̃mn(qW 2,t) in Eq. ~3! does not de-
pend on the specific form of the interpolation field, except
quantum numbers. In fact, the interpolation-field depend
transition matrix elementf 5^0uONuN& drops out in the ratio
of the four-point to two-point functions in Eq.~3!. As such,
one can use the simplest interpretation field of the nucl
which involves only the valence quark field. For examp
ON(t) can be taken to be the twou and oned quark fields
with nucleon quantum numbers,

ON5E d3xeipW •xW«abcC (u)a~x!„@C (u)b~x!#TCg5C (d)c~x!…,

~8!

for the proton. Since the interpolation fieldON does not in-
volve strange quarks, the strange parton contribution
only come from the vacuum polarization due to the exter
currentsJm andJn , in other words, the DI in Fig. 1~c!. As a
corollary, one can also prove it for the case if one uses
ONss̄ as the interpolation field, for example. In this cas
there are two classes of path-integral diagrams. One c
involves the CI where the strange quark fields in the curre
s̄gms ands̄gns contract with those strange quark fields in t
interpolation fieldONss̄ for the nucleon source and sink
This class of diagrams does not project to the nucleon a
lowest mass state, since the physical states it projects to
involve 5 valence quarks, i.e.,uudss̄. Instead, it will project
to states such as the nucleon and a scalarss̄ meson. Since
they all have masses higher than the nucleon, they will
exponentially suppressed relative to the nucleon as the
separationt2t2 and t1 in Eq. ~3! are large. The other clas
involves a DI where the strange quark fields in the nucle
source and sink self contract, so are the strange quark fi
in the currents. This will project to the nucleon state w
uud as the valence quarks. Since the transition matrix e
ment f 5^0uONs̄suN& is divided out in the ratio in Eq.~3!, it
yields the same result as that obtained withON as the inter-
polation field. Thus, in either case, the strange parton con
bution comes only from the DI in Fig. 1~c!.

-
.
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Similarly, theu andd partons have 2 sources, i.e.,

u~x,Q2!5uv1cs~x,Q2!1uds~x,Q2!, ~9!

where uv1cs(x,Q2) denotes the valence and CSu partons
and uds(x,Q2) denotes the DSu parton and they are from
Fig. 1~a! and Fig. 1~c!, respectively. Again these two com
ponents applies to thed partons; whereas, thes parton has
only the DS component.

III. OPERATOR PRODUCT EXPANSION „OPE…

In the Minkowski space, the operator product expans
~OPE! is carried out in the unphysical region ofTmn which is
defined with the time-ordered product of the currents. H
does one carry this out in the Euclidean path-integral form
lation? It turns out that becauseW̃mn(qW 2,t) is defined in the
Euclidean path-integral@Eq. ~4!#, it requires several steps t
get toTmn in the Minkowski space. On the other hand, it
relatively easy to do so because it entails a simple Ta
expansion of functions as opposed to dealing with opera
in the usual OPE, as we shall see.

Considering Fig. 1~a! first, the three-point function in Eq
~3! involves the following expression:

W̃mn~qW 2,t!}E d@A#detM ~A!e2Sg

3TrF•••M 21~ t,t2!E d3xe2 iqW •xW igm

3M 21~ t2 ,t22t!ignM 21~ t22t,0!••• G ,
~10!

whereSg is the action for the gluon fieldA, M 21 is the quark
propagator with arguments labeled by the Euclidean tim
The spatial indices are implicit and have been integrated o
to give the nucleon a definite momentumupW u and a momen-
tum transferqW . xW andt are the spatial and time separatio
of the two currentsJm andJn . The trace is over the color an
spin indices. The expression in Eq.~10! exhibits the part of
the result from the quark line on which the currents are
tached. The other two quark propagators and the nuc
interpolation field operators are indicated by the dots.

Similar to the usual OPE derivation@8#, we shall consider
the most singular part of the quark propagator between
currents in Fig. 1. In the deep inelastic scattering~DIS! limit
where both the momentum transferuqW u and energy transfe
n→`, the leading singularity comes from the short-distan
part in W̃mn(qW 2,t) where uxW u and t→0. Therefore, we re-
place the quark propagator between the currents with the
massless propagator

M 21~ t2 ,t22t!→ 1

4p2

]”

xW21t2
. ~11!
07450
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We also carry out the Taylor expansion of the propaga
M 21(t22t,0) for smallt andxW

M 21~ t22t,0!5exW•DW 1tDtM 21~ t2 ,0!, ~12!

whereD is the covariant derivative. With these substitution
the corresponding hadronic tensorWmn(q2,n) from Fig. 1~a!
after the Fourier transform in space and Laplace transform
t @Eq. ~5!# is given as

Wmn~q2,n!}TrF •••M 21~ t,t2!igm

2 ip~q”1 iD” !

uqW 1 iDW u

3d~n1Dt2uqW 1 iDW u!ignM 21~ t2 ,0!•••G .

~13!

Since Wmn(q2,n) is the imaginary part ofTmn , i.e.,
Wmn(q2,n)5(1/p)Im Tmn(q2,n), one can use the dispersio
relation to obtainTmn from Wmn ,

Tmn~q2,n!5
1

pEQ2/2MN1Dt

`

dn8
n8Wmn~q2,n82Dt!

n822~n1Dt!
2

,

}TrF •••M 21~ t,t2!igm

2 i ~q”1 iD” !

Q212iq•D2D2
ign

3M 21~ t2 ,0!•••G , ~14!

where we have usedt5 i t and Dt5 iD t so that D5(DW ,
2 iD t) is the covariant derivative in Minkowski space. E
panding Tmn in the unphysical region where22p•q/Q2

,1, the expression between theg ’s in Eq. ~14! gives

2 i ~q”1 iD” !

Q212iq•D2D2
5

2 i ~q”1 iD” !

Q2 (
n50

` S 22iq•D1D2

Q2 D n

.

~15!
From this we obtain the valence and CS parton lead

twist contributions toTmn from Fig. 1~a!

Tmn~qv1cs!5(
f

ef
2F8pmpn (

n52

~22q•p!n22

~Q2!n21
Af

n~CI!

22dmn (
n52

~22q•p!n

~Q2!n
Af

n~CI!G1•••,

~16!

wheref indicates flavor. For the nucleon, it only involvesu
and d in the CI. Af

n(CI) is defined through the following
consideration. We first note that the short-distance expan
in Eq. ~15! leadsTmn(qv1cs) to a series of terms represente
by the three-point functions in Fig. 3~a! which correspond to
matrix elements calculated through the CI expression
1-4
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E d@A#detM ~A!e2SgTr@•••M 21~ t,t2!Of
nM 21~ t2 ,0!•••#,

~17!

where the operatorOf
n is

Of
n5 igm1S 2 i

2 D n21

DJ m2DJ m3 . . . DJ mn . ~18!

The ratio of these three-point functions in Fig. 3~a! to the
appropriate two-point functions then define the forward m
trix element which in turn defines the coefficientAf

n(CI) in
Eq. ~16!,

^puC̄Of
nCup&CI5Af

n~CI!2pm1
pm2

. . . pmn
. ~19!

Similarly, we can perform the short-distance expans
for the CS antiparton in Fig. 1~b! and obtain the same ex
pression as in Eq.~16! except with the substitutionq→2q.
As a result, this leads to the even n terms minus the od
terms instead of the sum as in Eq.~16!, i.e.,

Tmn~ q̄cs!5 (
even52

•••Af
n~CI!2 (

odd53
•••Af

n~CI!. ~20!

In other words, the short-distance expansion ofTmn from
Fig. 1~b! yields three-point functions with a series of inse
tion of the same operatorsC̄Of

nC except with a minus sign
for the oddn terms. This is illustrated in Fig. 3~b! whereGn8
denotes the n-th term insertion with the operatorOf

n and the
associated kinematic factors in Eq.~16!. ComparingGn8 in
Fig. 3~b! and the correspondingGn in Fig. 3~a!, the minus
sign for the oddn terms in Eq. ~20! implies that Gn8
5(2)nGn .

By the same token, the short-distance expansion for
DS parton/antiparton contribution inTmn from Fig. 1~c!
gives

Tmn~qds /q̄ds!5 (
even52

•••Af
n~DI!1Y 2 (

odd53
•••Af

n~DI!.

~21!

They have the same expression asTmn(qv1cs) andTmn(q̄cs)
exceptAf

n(DI) are from the DI part of the matrix element

FIG. 3. Quark skeleton diagrams in the Euclidean path inte
formalism considered in the evaluation of matrix elements for
sum of local operators from the operator product expansion
Jm(x)Jn(0). ~a!, ~b! and ~c! correspond to the operator produ
expansion from Figs. 1~a!, 1~b! and 1~c!, respectively.
07450
-

n

n

e

^puC̄Of
nCup&DI5Af

n~DI!2pm1
pm2

. . . pmn
. ~22!

In this case, the leading twist expansion of the DS contri
tion to Tmn in Fig. 1~c! now leads to two series of forwar
matrix elements of DI. One is forTmn(qds) with even plus
odd n terms; the other isTmn(q̄ds) with even minus odd n
terms as given in Eq.~21!. Both are represented in the thre
point functions in Fig. 3~c!. It is worth pointing out that
Tmn(qv1cs) in Eq. ~16! and Tmn(qds) in Eq. ~21! are the
same as those derived from the contraction of the inner
of the quark fields in the conventional operator product
pansion of the time-ordered current-current prod
q̄(x)gmq(x)q̄(0)gnq(0) @8#. On the other hand,Tmn(q̄cs) in
Eq. ~20! andTmn(q̄ds) in Eq. ~21! are the same as those fro
the contraction of the outer pair of the quark fields in t
current-current product. The only difference is that the pa
integral formalism allows the separation into the CI and
DI.

When the parts in Eqs.~16!, ~20!, and ~21! are summed
up, only the evenn terms of the OPE are left

Tmn5Tmn~qv1cs!1Tmn~ q̄cs!1Tmn~qds1q̄ds!

52 (
n52,even

•••@Af
n~CI!1Af

n~DI!#. ~23!

This is the same as derived from the ordinary OPE. Ho
ever, what is achieved with the path-integral formulation
the separation of CI from DI in addition to the separation
partons from antipartons. This has not been possible w
other formulations, e.g. the light-cone definition of the d
tribution function. This separation facilitates the derivati
of the different smallx behavior between the CS and the D
the identification of the CS parton as the source of
Gottfried sum rule violation, and a different evolution o
q̄cs(x,Q2) from that ofqds(x,Q2) andq̄ds(x,Q2) as we shall
see.

Now consider the contour integral ofT2 in the CI and DI
parts ofTmn aroundn50 in the complexn plane while keep-
ing Q2 fixed.r(dn/2p i )@T2(n,Q2)/nn21# picks up thenn22

term in the series expansion ofT2 in Eqs.~16!, ~20!, and~21!
~N.B. 22q•p52M pn in these equations.!

R dn2M p

2p i

T2~n,Q2!

nn21
5(

f
8ef

2S 2M p

Q2 D n21

Af
n , ~24!

for both the CI and the DI. The contour of the integral can
distorted to turn the above integral into an integral over
discontinuities ofT2. Through the dispersion relation, th
gives

2E
Q2

` dn2M p

2p i

2i Im T2~n,Q2!

nn21

58S 2M p

Q2 D n21E
0

1

dxxn22
2M pnW2~n,Q2!

4
.

~25!

al
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f
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Equating these two integrals and relatingW2 to the parton
distribution function, one obtains the moment sum rul
Since T2(Q2,n) is symmetric with respect ton→2n, we
obtain only the sum rules for evenn. Thus,

Af
n5even~CI!5Mn~CI!

[E
0

1

dx xn21@qv1cs~x,Q2!1q̄cs~x,Q2!#,

Af
n5even~DI!5Mn~DI!

[E
0

1

dx xn21@qds~x,Q2!1q̄ds~x,Q2!#.

~26!

Similarly we obtain the moment sum rules for the oddn from
theW3 form factor through the interference of the vector a
axial vector currents,

Af
n5odd~CI!5Mn~CI!

[E
0

1

dx xn21@qv1cs~x,Q2!2q̄cs~x,Q2!#,

Af
n5odd~DI!5Mn~DI!

[E
0

1

dx xn21@qds~x,Q2!2q̄ds~x,Q2!#.

~27!

One can define the valence parton distribution

qv~x,Q2![qv1cs~x,Q2!2q̄cs~x,Q2!. ~28!

In this case,Af
n5odd gives the sum rules for the valence di

tribution. In particular, valence number sum rules

Mu
1~CI![E

0

1

dx uv~x,Q2!52,

Md
1~CI![E

0

1

dx dv~x,Q2!51,

M f
1~DI![E

0

1

dx@qds~x,Q2!2q̄ds~x,Q2!#50, ~29!

for the u andd quarks in the proton reflect the charge co
servation of the vector currentC igmC and the fact that the
DS carries no net charge.

We note that the matrix elements associated w
Af

n5even(CI) include not just the valence but also the C
contribution. This is why the matrix elementAu,d

2 (CI), which
corresponds to the momentum fractionM2(CI)5^x&CI ,
when calculated on the lattice@9,10#, is larger than that ob-
tained from the experiments for the valence partons o
i.e., ^x&CI.^x&v at m;2 GeV.
07450
.

-

h

y,

Operator rescaling and mixing, and parton evolution

The dimensionless coefficientsAf
n are not constants, bu

depend logarithmically onQ2, the renormalization point of
the operator product expansion. The operator rescaling
mixing analysis@11,12# for the twist-two flavor nonsinglet
and singlet operators gives the renormalization group eq
tions for the corresponding moments of the structure fu
tions. In the context of the present path-integral formulat
of OPE, the nonsinglet coefficientsAf

n and the nonsinglet
moments only have contributions from the CI@Fig. 3~a! or
Fig. 3~b!#, since their DI contributions cancel among diffe
ent flavors. On the other hand, the singlet coefficientsAf

n and
the singlet moments have both the CI and DI@Fig. 3~c!#
contributions. Therefore, it is possible to go to the sing
flavor basis and classify the equations in terms of CI and
For the CI which involves only the valence flavors~e.g.,u
andd for the nucleon!, the renormalization equation is

d

d ln Q2
M f

n~CI!5
as~Q2!

8p
aqq

n M f
n~CI!, ~30!

whereaqq
n is the anomalous dimension coefficient. For t

DI the equation is

d

d ln Q2
M f

n~DI!5
as~Q2!

8p S aqq
n M f

n~DI!

1
11~2 !n

2
aqG

n MG
n D , ~31!

whereaqG
n is the anomalous dimension coefficient for ope

tor mixing with the gluon operators andMG
n is the moment

for the gluon distribution function. We note that this mixin
with gluon operators only contributes ton5even. As we
can see, Eq.~31! involves the DS parton only.

We should stress that in the literature@13,16,17# the non-
singlet case has frequently been identified with valence. T
is clearly incorrect. As we see from Eq.~26! that
Af

n5even(CI) includes the CS partons in addition to the v
lence partons. Detailed study of this subject on the lattice
been carried out for the matrix elements and form factors
the nucleon from the three-point functions as well as had
masses from the two-point functions@4#. It is shown when
the CS quarks are removed by prohibiting pair-product
through the Z graphs in the CI, the hadron structure a
masses are greatly affected. It is learned that the CS qu
are responsible for the meson dominance in the form fact
the deviation ofFA /DA andFS /DS from the nonrelativistic
SU(6) limit, the hyperfine splittings, and the constitue
quark masses@4#. In the context of the parton model, they a
responsible for the difference betweenū(x) and d̄(x) in the
proton.

Following Altarelli and Parisi@13#, the rescaling and mix-
ing equations in Eqs.~30! and ~31! can be translated into
integral-differential equations which are the evolution equ
tions for the parton densities. Therefore, for the CI the e
lution equation for the unpolarized valence and CS parton
1-6
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dqv1cs~x,Q2!

d ln Q2
5

as~Q2!

2p E
x

1dy

y
PqqS x

yDqv1cs~y,Q2!,

~32!

where

E
0

1

d zzn21Pqq~z!5
aqq

n

4
. ~33!

For the CS antiparton density, the equation is similar

d q̄cs~x,Q2!

d ln Q2
5

as~Q2!

2p E
x

1dy

y
PqqS x

yD q̄cs~y,Q2!. ~34!

For the DS partons in the DI@Fig. 1~c!#, the evolution equa-
tions from Eq.~31! are

d~qds1q̄ds!~x,Q2!

d ln Q2
5

as~Q2!

2p E
x

1dy

y FPqqS x

yD ~qds1q̄ds!

3~y,Q2!1PqGS x

yDG~y,Q2!G , ~35!

d~qds2q̄ds!~x,Q2!

d ln Q2
5

as~Q2!

2p E
x

1dy

y
PqqS x

yD
3~qds2q̄ds!~y,Q2!, ~36!

where

E
0

1

d zzn21PqG~z!5
aqG

n

4
, ~37!

andG(y,Q2) is the unpolarized gluon distribution function
Finally, the gluon evolution equation is

dG~x,Q2!

d ln Q2
5

as~Q2!

2p E
x

1dy

y H PGqS x

yD
3F (

f 5val. f la.
~qv1cs

f 1q̄cs
f !~y,Q2!

1 (
f 5DS f la.

~qds
f 1q̄ds

f !~y,Q2!G
1PGGS x

yDG~y,Q2!J . ~38!

It appears that, except for the gluon distribution, the e
lution equations derived above are different from t
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! evolu-
tion equations in the manner of Dokshitzer@14#, Gribov and
Lipatov @15#, and Altarelli and Parisi@13# due to an extra CS
degree of freedom in Eq.~34! which evolves like the valence
in Eq. ~32!. However, since the evolution equations are l
ear in the parton distribution functions, once one defines
total sea to be the sum of CS and DS, i.e.,
07450
-

-
e

qs~x,Q2![qcs~x,Q2!1qds~x,Q2!,

q̄s~x,Q2![q̄cs~x,Q2!1q̄ds~x,Q2!, ~39!

the sum of twice of Eq.~34! and Eq.~35! becomes

d~qs1q̄s!~x,Q2!

d ln Q2
5

as~Q2!

2p E
x

1dy

y FPqqS x

yD ~qs1q̄s!~y,Q2!

1PqGS x

yDG~y,Q2!G . ~40!

This is exactly the evolution of sea partons in the DGLA
equation. Similarly, the difference between Eq.~32! and Eq.
~34! leads to the evolution of the valence partons in t
DGLAP equation,

dqv~x,Q2!

d ln Q2
5

as~Q2!

2p E
x

1dy

y
PqqS x

yDqv~y,Q2!. ~41!

Thus, we see DGLAP equations can be derived from
path-integral formalism. However, the present form with t
separation of CS from the DS offers a separate evolution
the CS in Eq.~34! which are decoupled from the valence, th
DS, and the gluon. This decoupling is retained when hig
orders are considered@18#. This affords the possibility of
maintaining the separation of the CS and DS parton distri
tions when they are fitted to experiments at certainQ0

2 and
evolved up or down inQ2. This is consistent with the clas
sification into valence, CS, and DS in Fig. 1 and Eqs.~6! and
~9! at all Q2 from the path-integral formalism in the firs
place. Although, at leading twists, it makes no differen
whether one considers the separate evolutions of CS and
in Eqs.~34! and~35! or the combined evolution in Eq.~40!,
it may be necessary to consider the separate evolutions o
and DS when higher twists are taken into account@19#.

IV. PHENOMENOLOGICAL CONSEQUENCES

After the dynamical parton degrees of freedom are cla
fied as valence, connected sea~CS!, and disconnected se
~DS! via the path-integral diagrams in Fig. 1, one may qu
tion if there is an advantage to separating the CS from
DS. After all, both the CS and DS are pair-produced s
only with different topology in the path-integral diagrams.
the previous section, we have shown that the CS pa
evolves the same way as the valence, i.e. it is decoupled f
the DS and the gluons in the evolution equation. This
consistent with the classification of the parton degrees
freedom into valence, CS, and DS at allQ2. In the following,
we shall show that it is useful to distinguish CS from D
because they have different small x behaviors. This is es
cially important in view of the fact that, in the nucleon,ū and
d̄ have both the CS and DS parts, yets̄ has only the DS part.
We further note that the Gottfried sum rule violation is a
tributable to the CS partons primarily. We finally assess
magnitude of the momentum fraction due to the CS and
partons.
1-7
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A. Small x behavior

Since the CS parton is in the connected insertion whic
flavor nonsinglet like the valence, its small x behavior
flects the leading Reggeon exchanges ofr,v,a2 . . . and
thus should be likex21/2 @20–23#. On the other hand, the DS
is flavor singlet and can have Pomeron exchanges, its sm
behavior goes likex21 @20–22#. Therefore, we have

ūcs /d̄cs~x,Q0
2! ;

x→0
x21/2, ~42!

ūds~x,Q0
2!;d̄ds~x,Q0

2!; s̄~x,Q0
2! ;

x→0
x21 ~43!

at certainQ0. As a result,

ū~x,Q0
2!2d̄~x,Q0

2! ;
x→0

x21/2, ~44!

and this has been incorporated in the fitting of experime
results at some input scaleQ0

2 @24–26#. On the other hand, i

has been taken for granted thatū(x,Q0
2)1d̄(x,Q0

2) has the

same behavior ass̄(x,Q0
2) in the fitting of the experiments

In other words, it is assumed that

1

2
@ ū~x,Q0

2!1d̄~x,Q0
2!#;2s̄~x,Q0

2!, ~45!

in the fitting of parton distributions atQ0
251.6 GeV2 for

CTEQ4 @24# andQ0
251 GeV2 for Martin, Roberts, Stirling,

and Thorne~MRST! @26#. This has made the assumption th
both the ū,d̄, like s̄, have only the DS component. W
proved in Sec. II@Eqs. ~6! and ~9!# that this is not true and
that ū and d̄ have CS in addition to DS. Therefore, the co
rect parametrization for12 @ ū(x,Q0

2)1d̄(x,Q0
2)# should be

1

2
@ ū~x,Q0

2!1d̄~x,Q0
2!#5As̄~x,Q0

2!1
1

2
@ ūcs~x,Q0

2!

1d̄cs~x,Q0
2!#, ~46!

whereA is a proportional constant. In theSU(3) flavor sym-
metric limit, A51. The second term on the right hand side
Eq. ~46! is the CS part and has thex21/2 small x behavior. As
far as we know, this kind of parametrization for1

2 @ ū(x,Q0
2)

1d̄(x,Q0
2)# has not been taken into account in extracting

parton distribution functions. When this CS degree of fre
dom is incorporated in the sum ofū andd̄ in addition to the
difference, we will have a different result from the prese
global analyses which will lead to different predictions
the parton distributions at highQ2 relevant to LHC.

B. Origin of Gottfried sum rule violation

The NMC experiments of theF2 structure functions of the
proton and deuteron@2# reveal that the Gottfried sum rule
07450
is
-

l x

al

t

f

e
-

t

SG5E
0

1

dx
F2

p~x!2F2
n~x!

x
5

1

3
, ~47!

is violated due to fact thatūÞd̄ in the proton. This is verified
in the Drell-Yan experiment E866/NuSea@27#. It has been
shown@3# that the DS partons in Fig. 1~c! cannot give rise to
a different ū and d̄ when mu5md . It is noted that in Fig.
1~c! the flavor indices in the quark loop are separately tra
from those in the propagators associated with the nucl
interpolation field, only the latter reflects the valence nat
of the proton. Hence, Fig. 1~c! does not distinguish a loop
with an u quark from that with a d quark at the flavor sym
metric limit, i.e., mu5md . In other words, ūds(x,Q2)
5d̄ds(x,Q2). On the other hand, the origin ofū(x,Q2)
Þd̄(x,Q2) can come from the CS antipartons in Fig. 1~b!.
Thus, the violation of the Gottfried sum rule originates e
tirely from the CS partons in the charge symmetric limit: i.

E
0

1

dx
F2

p~x,Q2!2F2
n~x,Q2!

x

5
1

3
1

2

3E dx@ ūcs~x,Q2!2d̄cs~x,Q2!#. ~48!

We shall see later that toO(as) andO(1/Q2), this turns out
to be a sum rule.

Due to the fact that

E
0

1

dxPqq~x!5
aqq

1

4
50, ~49!

where aqq
1 is the anomalous dimension coefficient in E

~33!, Eqs.~41! and ~34! lead to

d

d ln Q2E0

1

dx qv~x,Q2!50, ~50!

d

d ln Q2E0

1

dx q̄cs~x,Q2!50. ~51!

We see that the CS antiparton number, like the valence n
ber, is conserved, i.e., independent ofQ2. This is in contrast
with the DS partons whose number is not conserved du
the pair-creation from the gluon. However, the conservat
of the CS antiparton number is only good in the leadi
logarithmic approximation, i.e., good toO(as) and
O(1/Q2). Whereas, the conservation of the vector curr
protects the charges, thus the valence quark number, ag
any Q2 correction@11–13#.

We note that the sum in Eq.~48! is in terms of the CS
antipartons numbers. Thus to leading logarithmic approxim
tion, it is a sum rule

E
0

1

dx
F2

p~x!2F2
n~x!

x
5

1

3
1

2

3
@nūcs

2nd̄cs
#, ~52!

wherenūcs
/nd̄cs

is the ūcs /d̄cs number.
1-8



th
e
Ya
th
c

le

e

d

o
b

tio
S

in

sor
id-
ed
rts
, the
rtons
the
in

n is
the
ive
ns

d in
on

cted
-
en-

fit

o.
S.
-
J.

PARTON DEGREES OF FREEDOM FROM THE PATH- . . . PHYSICAL REVIEW D 62 074501
C. Magnitude of the connected sea partons

We do not know precisely how large the magnitude of
CS partons and antipartons are in comparison with thos
the valence and the DS unless one fits the DIS and Drell-
experiments with an explicit separation of the CS and
DS. But there are hints which are helpful in this respe
From the New Muon Collaboration~NMC! experiments on
the F2 structure function of the proton and deuteron@2#, the
sum in Eq. ~52! is measured to be 0.23560.026 at Q2

54 GeV2, significantly smaller than the Gottfried sum ru
prediction of 0.333. This implies that

nūcs
2nd̄cs

5E
0

1

dx@ ūcs~x,Q2!2d̄cs~x,Q2!#

520.14760.039, ~53!

at Q254 GeV2 which is not negligible compared with th
valence numbers ofu andd.

Since ū ~similarly d̄) has contributions from the CS an
DS, i.e., ū(x)5ūcs(x)1ūds(x) and s̄ is from the DS only,
one expects that

^x& ū5^x& ūcs
1^x& ūds

.^x& s̄ . ~54!

Indeed, in the CCFR dimuon data,s̄ is about 50% of (ū
1d̄)/2 at Q2.4 GeV2 in the range ofx between 0.01 and
0.20. Sinceū2d̄, which only has the CS contribution, als
peaks in this x range, we think the observed difference
tween (ū1d̄)/2 and s̄ is mainly duw to the CS part of (ū

1d̄)/2. As a result, one expects that the momentum frac
of the CS part of (ū1d̄)/2 is comparable to that of the D
part, i.e.,

1

2
~^x& ūcs

1^x& d̄cs
!;

1

2
~^x& ūds

1^x& d̄ds
!;^x& s̄ , ~55!
.

n

E.

07450
e
of
n
e
t.

e-

n

at Q254 GeV2. Any experiment which measures (ū1d̄)/2
ands̄ at very smallx, e.g., 102321024 will be very useful in
verifying the form of the distribution function prescribed
Eq. ~46!.

V. CONCLUSION

In conclusion, we have formulated the hadronic ten
Wmn of the deep inelastic scattering starting from the Eucl
ean path-integral formalism. We found that it can be divid
into three gauge-invariant and topologically distinct pa
which we classify as the valence-connected sea partons
connected sea antipartons and the disconnected-sea pa
and antipartons. This admits a separation of the CI from
DI and the partons from the antipartons. Since the CS is
the CI and the DS in the DI, they have different smallx
behaviors. We show that the operator product expansio
simply a short distance Taylor expansion of functions in
path integral. From operator rescaling and mixing, we der
the evolution equations which show that the CS parto
evolve like the valence and their numbers are conserve
the leading log approximation. We stress that in the nucle
ū and d̄ partons have both the connected and disconne
sea contributions, whereas,s̄ partons have only the discon
nected sea contribution. A global analysis of the experim
tal data is needed to take this difference into account to
the parton distribution functions.
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