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Static QCD potential in coordinate space with quark masses through two loops
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The potential between infinitely heavy quarks in a color singlet state is of fundamental importance in QCD.
While the confining long distance part is inherently non-perturbative, the short-dis@ocmb-like regime
is accessible through perturbative means. In this paper we present new results of the short distance potential in
coordinate space with quark masses through two loops. The results are given in explicit form based on
reconstructed solutions in momentum space in the Euclidean regime. Thus, a comparison with lattice results in
the overlap region between the perturbative and non-perturbative regime is now possible with massive quarks.
We also discuss the definition of the strong coupling based on the force between the static sources.

PACS numbd(s): 12.39.Pn, 12.38.Bx

[. INTRODUCTION the remaining four Monte Carlo integrations. It might also be
. S easier to perform the mass shift calculations in position space
The potent_lal between two(mflmtely) heavy colpr .as only a‘r)1 integration over the relative distamopmould bep
char_ges_ in a singlet state has been subject to theoretical ”?équired. In momentum space, one has an additional integral
vestigations for more than 20 yeafd—5|. In the non- 5" each wave function depends on a different three-
perturbative regime it is expected to play a key role in themomentump.
under_standing of _qu_ark confinemer_mt_and it is a major ingre- | this paper we derive the static QCD potential in posi-
dient in the description of non-relativistically bound systemstjgn space with quark masses through two loops. We use the
such as heaVy quarkonia. In addition it is the basis for thQ(nown results in momentum Spa@] and derive the coor-
definition of the lattice coupling as the potential is given bydinate results through a Fourier transformation of recon-
the vacuum expectation value of the Wilson loop. structed approximate analytical momentum space expres-
In the perturbative regime it can be utilized to define asions. The latter step is necessary due to the complexity of
physically motivated strong coupling which automatically the results of Ref[9].
possesses welcome properties such as gauge invariance andVe begin, however, by recalling the definition of the po-
decoupling of heavy flavorgs]. The potential can also be tential through the manifestly gauge invariant vacuum expec-
employed for a definition of the coupling from the force tation value of the Wilson loop. Figure 1 displays the Wilson
between the static sourcgg]. The latter definition has the loop W= (0|Tr P explgérdx,A5T#)|0) of spatial extension
advantage that the8 function is unique in that no sign I and large temporal extensidnwith gluon exchanges indi-
change of the coupling occurs when entering the confinecated. The path ordering is necessary due to the non-
ment regime[7]. Moreover, the heavy quark system is ide- commutativity of the S(B) generators 7. In the perturba-
ally suited to study the overlap region between the noniive analysis through two loops considered here, all spatial
perturbative and perturbative treatments of QCD. This latteFomponents of the gauge fields;(r,=T/2) can at most
point is difficult to implement with massless dynamical fer- depend on a power of I6f and are thus negligible here.

T—oo

mions and can only be achieved in the coordinate represefeyrthermoreW; — exp(—iTE,), where the ground state en-

tation. . , o ergy E, is identified with the potentiaV. Thus we arrive at
A possibly very interesting application of the two 100p tne definition

mass corrections to the heavy quark potential is the effect of

a massive charm loop in the modified minimal subtraction 1 _ a
scheme KS) bottom mass determinatiof8]. Using the V(r,m)=—TI|rrl T Iog(O|TrPex;{|g fﬁFdXMAgT )|0>-
physical Y meson for this purpose, the effect of the mass - (1)
shift Sm, depends on ¢1|Ve(r,m)|¢1s), where ¢, de-

notes the % ground state wave function of thé meson and r:

Ve the massive fermionic corrections to the potential. The
effect could be significant if the renormalization scale de-
pends parametrically om;, as indicated by a Brodsky- q r
Lepage-Mackenzie(BLM) analysis [8]. For a practical
evaluation of these mass shifts one needs to have manage-
able expressions up to the required order in perturbation T
theory. The exact results of RdB] are not suitable due to FIG. 1. The Wilson loopI" with large temporal extentT(
—o) from which the position space potential is defined. Through
two loops in four dimensions, gluons connecting the spatial source
*Email address: Michael.Melles@psi.ch lines can be neglected.
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FIG. 2. The momentum space Feynman rules used in the calcu-
lation of Ref.[9]. Theie prescription is analogous to the conven- with
tional quark propagator. For anti-souraes> —v must be used.
1
Writing the source term of the heavy charges, separated Fa(Quu)=7
the distance=|r—r’|, as

31 20 u?

§CA_ gTF”fﬂLﬂo'Og& (6)

_l](a, mt 22 o2
3(x)=igo, T 8(x—1)— 8(x—1")] 2 vAQm=Tg) | ez TAT T T3 6 CA
1798 56 55
and neglecting contributions connecting the spatial compo- ~| g1 T3¢3)CaTeni—| 5 — 1603 | CeTeny
nents, the perturbative potential is given by
20 2 2'“2
+ ETan + Bglog &

iT

o)

) +

1
V(r,m)=— lim —Iog<0 TrTex;{ f d*x A% (X) J4(X)

T—oo

31 20
B1+2B, ch_ ETan

u?
Iog&] (7)

In the above equation, =5, due to the purely timelike where Bo=%Ca—3TenNs, B1=%5Ca—ZLCaTen;
nature of the sources. For the same reason the path orderirgdC-Ten; and Co=3, Ce=3 and Tg=3 in QCD. The
is replaced by the time-ordering operathrExpanding Eq. number of massless flavors is denotediby The 8 function
(3) perturbatively we find the position space Feynman ruless here defined as

for the source-gluon vertex and the source propagator respec-

tively: igT? , and —i 6(xo—x¢) S(X—X'). ) 1 dafp? < ag(p?)\"tt
The potential in momentum space is the Fourier transform Blag(p®))= ad(1?) dlogu? &P Ay
of V(r). It can be calculated directly in momentum space sLi K @)

from the on-shell heavy quark—anti-quark scattering ampli-

tude (divided by i) at the physical momentum transfar  For the case of massless quarks, the first two coefficiggts
projected onto the color singlet sector. The momentum spacgndg, are renormalization scheme invariant and hfainc-
Feynman rule for the source propagator is identical to thgjon is gauge invariant to all orders in minimally subtracted

one in heavy quark effective theofHQET) [10]: 1/(v-k  schemeg13]. In coordinate space we have, in the massless
+ie). For anti-sourcesy — —v is prescribedor the time-  case[14,15,
ordering reversed Figure 2 summarizes the momentum

space Feynman rules. In analogy to HQET, double lines de- s 1) az—(,u)
note the heavy source terms. ay(r) = ams(w)| 1+oy(rpm) —=22 4y (1, 0) MSZ
The potential can be used to define the effective charge ™
ay (the so-calledv schemg through (9)
with
,m r,m
V(Q,m)z—4ncF&2), V(r,m)E—CF# C1[31_ 20 ,
va(r,m)= 2 ECA_ ETan‘FZ,Bo'Og(Mr ) (10)
(4)
_1((4343 At 2 )
whereQ?=q?= —q? and both expressions above are related 2T #) = 16l 162 T4 4 T3 %/CA

through a Fourier transform. The results for QCD corrections
including massless quarks have been calculated in[R&F. 1798 56 55

and in Ref[12] an independent approach found a disagree- ~\ g1 T3 98 CaTrni| 5~ 1605 | CrTeny
ment in the pure glue part of the original results. As both
authors agree now on the correctness[tf], we use, in
momentum space,

2

o
+ 4Iogz(,ur’)+?

20 2
9 TeMt| + 50
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according to the standard definition would lead to an infrared
|09(,ur’)] divergent potential19]. These ultra-soft terms are expected
to be canceled, however, by additional diagrams at that or-
(1)) der. In particular, new diagrams connecting also the spatial
components of the Wilson loop in Fig. 1 will contribute at
three loops. In Ref[20] it is indicated how the problem
already shows up at the two loop level in three dimensions
and in Ref[19] an infrared save definition at higher orders is
suggested. In four dimensions, however, and to the order we
are working here no such problems occur and the definition
in Eq. (3) is infrared safe.
(12) The paper is organized as follows. In Sec. Il we review
the results of the mass corrections to the heavy quark poten-
which follows from Lorentz invariancésincev-q=0) and tial in momentum space at the two loop order. From the
dimensional argumen{d.6]. In this connection it is interest- physical Gell-Mann—Low equation we reconstruct a simple
ing to note that there is a close connection between the panalytical approximate expression for the one- and two-loop
tential and the pole mass. Both are affected by the sameoefficients. These results are then used to obtain the posi-

+2

31 20
B1+2B0 §CA— gTan

wherer’=r exp(yg).
From the renormalon point of view, possible power cor-
rections in momentum space can at most be of the form

V(Q)=—4mCe

ays A2
vs(Q) 1+--~+COHS[><—QCD+~--
QZ 2

renormalon ambiguity and writinglL6] tion space potential in Sec. Ill. In Sec. IV we then discuss the
effect of massive quarks on the force between two static
1 d*Q sources and close with concluding remarks in Sec. V. Ex-

Mps(pr)=m+ EJQ<M (Zw)sV(Q), (13 plicit results for the coupling definition through the force in

coordinate space are given in the Appendix, where we also

the so-called potential subtracted massy(x;), which de-  discuss briefly the effect of mixed massless and massive
pends linearly on the cutoff;;, can be used as a less IR- guark loops at the two loop level.
sensitive mass parameter for threshold expansions than the
pole massn [17]. Il. MOMENTUM SPACE RESULTS
In position space, however,
The Monte Carlo results of R€f9] can be used to obtain
ags(r) the two loop scale dependence of the static QCD potential in
(14 +cons Aqcpr momentum spacfs]. The difference to the conventiongl
function in the Callan-Symanzilk1,22 approach is that the
+const X Adcpr 2+ +) (14)  physical quark—anti-quark system is governed by the ex-
changed momentum and independent of the renormalization
and it is thus to be expected that the long-distance contribuscale to each given order. Thus we follow the Gell-Mann—

tions to the coordinate space potential are parametrically 5\ approach and using a runningS massm(x) we have
larger than for the momentum space potential. Thus, the po-

sition space potential is likely to be more slowly convergent.

This feature could be interesting when comparing the full

lattice results with the perturbative solution at intermediate  @v(Q.M(x))= ams(x)
distanceqd18]. The form of the linear term in Eq14) also

V(r):_CF

ays(m)
n

1+v.(Q,m(u),p)

motivates consideration of the derivative ¥{r), i.e. the a2_(lu)
definition of the strong coupling from the force between the +0,(Q,m(u), 1) MS (15)
two heavy quarks$7]. m?

Before considering the effects of massive quarks in the

quantum corrections to the potential, a few general remark§nere the massless limit of the coefficients and v, is

are in order concerning the higher order perturbative behavgiven in Eqs.(6) and (7). The physical charge,(Q,m(x))

ior. The effective theory used for the calculation amounts ta:annot depend explicitly on the renormalization sqaland

a non-local approach witlQ~Mv, where M denotes the  the explicitu dependence on the right-hand side of Exf)

heavy quark mass, i.e. where the gluons are always kept offancels to the order we are working. Figure 3 gives the Feyn-

shell. Through power counting arguments one can see thaan diagrams for the fermionic contributions to the two-loop

through two loops only those gluons need to be considereggefficient v,(Q,m(x), ). The mass counterterm chosen

At the three loop level, however, on'—shell gluon contribu-for the Feynman diagram labelegse; determines the mass

tions of orderQ~Mu? cannot be omitted and a treatment parameter which has to be used in the one-loop coefficient
v1(Q,m(u),n). In Ref. [6] we considered the flavor-
threshold dependence of heavy quarks and related the run-

e still assume tha®> A ocp and are concerned only with the ning mass to the pole mass which is renormalization-scale

form of the leading power corrections from a renormalon analysisindependent and gives explicit decoupling. This also pro-

One cannot learn anything about non-perturbative. confining  vides a physical picture as well as a straightforward Abelian

effects through this approach. limit.
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Q) = ags()| 1+ 01(Qum,) T
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5866650}
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A N © O 2
I I+ %, am(ﬂ)
) ‘%g»»»’ Qaggasss® +[02(Qum, )+ Ar(Q.m, u) ] ——
£a g ™
S \ R
17)
% ‘é‘%\ S WhereAm(Q,_m,,u) denotes the _contribution arising from
when changing from the running mass to the pole mass:
v1(QMm(u), w)=v1(Q,M, 1) +An(Q,m, u) ams(u)/ .
The Gell-Mann-Low functior{ 23] for the V scheme is
] defined as the total logarithmic derivative of the effective
E E charge with respect to the physical momentum transfer scale
Q:
cl: ves: olve:
) Q|_dav(Qm & v AQm)
I Pl A ALV Y () R A
% \PV( m) dlogQ i;o W mrl (19
§§ %@;\ where in the massless case the coefficigffd and y{" are
& 2 g given by
gse,: gses: 2vp:
g = ) 11 2 11 1
(=4 \Vi (m:O):gcA_gTFNF:E_gNF, (19)
1) 17 , S 1
: E U2y (m:O):TZCA_6CATFNF_§CFTFNF
vpgl: vpgh: — 51 19 20
For the massive case all the mass effects are absorbed into a
e, mass-dependent functid¥e . In other words we write
{ )
E Q) 11 1 Q
O =|="__NO =
by (m > ~3NEV (21)
FIG. 3. The two-loop massive fermionic corrections to the
heavy quark potential in the Feynman gau@®m [9]). Double
lines denote the heavy quarks, single lines the “light” quarks with ) Q 51 19 ) Q
massm. The first two rows contain diagrams with a typical non- Vim/ ™ 4 12 FVim/’ (22)

Abelian topology. The middle line includes the infrared divergent
“Abelian” Feynman diagrams. They contribute to the potential where the subscrip¥ indicates the scheme dependence of
only in the non-Abelian theory due to color factorCCy,. In NGO andN®
" . S . : NEV FV-
addition, although each diagram is infrared divergent, their sum is Taking the derivative of Eq(17) with respect to log

|_nfrared finite. The mfrargd finite Feyn_m:?\n diagrams W|th_ an A_be'and re-expanding the result in,(Q,m) gives the following
lian topology plus the diagrams consisting of one-loop insertions

with non-Abelian terms are shown in the last two rows. equations for the first two coefficients 8fy :

The relation between thMS massm(ux) and the pole l/,S/O)(Q) __ dui(Qim,p) 23)
massm is given by[29] m dlogQ

— Q dlv2(Q,m,u) +AnR(Q,m,u)]
m(,u)=m{1—CF aMS(m(lJr;ogg1 } (16 tﬂ(v”(m)= ——iog0
dUl(Q,m,/-L)
Inserting Eq.(16) into Eq. (15) gives 20a(Qm.p) logQ 29
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The argument Q/m indicates that there is no

renormalization-scale dependence in E¢&3) and (24).

Rather,y{”) and 4" are functions of the ratio of the physi-

cal momentum transfép= \/— g? and the pole mags only.

The expression fo¢§,°) agrees with our result in R€f24]. In

Eq. (24) the derivative of the\ ,,(Q,m,«) term comes from

using the pole mass instead of the MS mass whereas the

remaining mass dependence in EB4) is arbitrary in the

sense that a different mass scheme is formally of higher or-

der. In addition we note that the contribution2lv, /dlog Q

cancels the reducible contributidtabeled2vp in Fig. 3) to

v,; it is thus sufficient to consider one quark flavor at a time I

for the two loop Gell-Mann—Low function. In the Appendix e

we describe how to treat the effect of massless quark loops Um

(u, d ands) in mixed Feynman diagrams on the amplitude |G, 4. The numerical results for the gauge-invaritit), in

level as well as the case for two different mass flavor I00psQED (open circles and QCD (triangles with the besty? fits of
Because of the complexity of the integrals encountered irEgs.(28) and (27) superimposed respective{from Ref.[6]). The

the evaluatiorf9] of the massive two-loop corrections to the dashed line shows the one-lob§”, function of Eq.(25). For com-

heavy quark potential, the results were obtained numericallparison we also show the gauge dependent two-loop result obtained

using the adaptive Monte Carlo integration prograesas  in MOM schemegdash-dot ling[31,32. At large Q/m the theory

[25]. Thus the derivative of the two-loop term was calcu- becomes effectiyely massless, and bth schemes agree as expected.

lated numerically, whereas the other terms in E&8) and The figure also illustrates the decoupling of heavy quarks at small

(24) were obtained analytically. The results are given inQ/m'

terms of the contribution to the effective number of flavors

NE,(Q/m) and N&J(Q/m) in the V scheme from a given a Q—2+a Q*

quark with massn defined according to Eq$21) and (22) NEe tm2 e

respectively. The Appelquist-Carazzofi26] theorem re- N(F,z/(m)* > 7 (26)
quires the decoupling of heavy masses at small momentum 1+a3Q—2+a2Q—4

transfer for physical observables. Thh§?,(Q/m) goes to m
1 .

zero for Q/m—0. The massless resuN(F’{,—>1 Is also The parameter values and the errors obtained from the fit

recovered for large scales. _ to the numerical calculation in the scheme for QCD and
The calculation presented in R¢] required the evalua- QED are given in Ref[6]. Similar decoupling forms have

tion of four-dimensional scalar integrals. The results in Refpeen ysed for interpolating the flavor dependence of the ef-

[6] are based on 50 iterations of the integration grid eachective coupling in the momentum subtraction schemes

comprising 16 evaluations of the function which where (MOM) [31,32.

needed to achieve adequate convergence. Even so, the Monte|n the case of QCD we obtain the following approximate

Carlo results still are not completely stable for small valuestorm for the effective number of flavors for a given quark

of Q/m, especially in the light of the numerical differentia- with pole masam:

tion required in Eq(24). Nevertheless, accurate results can

be obtained by fitting the numerical calculation to a suitable 2\ 2
analytic function. ( — 0571+ 0.221Q_)Q_
The one-loop contribution to the effective number of fla- (1) m? | m?
vors Ng follows from the standard formula for QED vacuum Nev m= Q? Q* @7
polarization. In Ref[24] we used the simple representation 1+ 1.326—2+0.221—4
in terms of a rational polynomidB0]: m m
and, for QED,
Q 1 1 2\ A2
N(O)(— ~ = 25
vl 2 2 (25 1.069+0.0133% | %
1+5.2—- l1+ay— m=/m
Q2 OQZ Ng:z, E ~ Q2 Q4- (28)

1+0.402— +0.0133—
m? m*

which displays decoupling for small scales and the correct
massless limit at large scales. Similarly, the numerical result¥he results of our numerical calculation N(Flz, in the V
for the two-loop contribution can be fit to the form scheme for QCD and QED are shown in Fig. 4. The decou-
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pling of heavy quarks becomes manifest at sr@lin, and  integration over lo@. Our goal is to reconstruct an analyti-
the massless limit is attained for lar@m. The QCD form  cal function fora,(Q,m) in terms ofas(x) based on the
actually becomes negative at moderate valueQfm, a fitting parametersa, and a,,a,,a; from the approximate
novel feature of the anti-screening non-Abelian contribu-one- and two-loop solutions respectively. It should be clear
tions. This property is also present in tfgauge dependent that by analytical we mean an expression of known functions
MOM results. In contrast, in Abelian QED the two-loop con- depending on{Q? m? u? a,,a,,a,,a3} in the spacelike
tribution to the effective number of flavors becomes larger(Euclidean region. It is understood that for a continuation
than 1 at intermediate values Qf/m. We also display the into the timelike regime only the full function calculated in
one-loop contribution\l(F‘?{,(Q/m) which monotonically in-  Ref. [9] can be used, not the approximate form we derive
terpolates between the decoupling and massless limits. Theelow. With this in mind we can write
solid curves displayed in Fig. 4 show that the parametriza-
tions of Eq.(27) which we used for fitting the numerical
results are quite accurate.

In Ref.[6] it was shown that the Abelian limit displayed
in Fig. 4 agrees with the well known literature resytd8—
35] and that the full QCD result is independent of the renor- aia_s('“)
malization scale. The very good agreement of the exact two —
loop calculation with the relatively simple fitting function for
N(Fli, of Eq. (27) makes it possible to reconstruct an analyti-
cal approximate function for the full mass dependent two xXdlogQ+ C(l))_ (29)
loop coefficient in the next section.

2
as

ay(Q,m) — ays(p)=— U #VdlogQ+ c<°>)

| [ totp-20,0

The integration constan8() can be functions ofn and x

and are fixed by requiring that the correct massless limit is
Starting from the general expression for the Gell-Mann—obtained. We find for the correctichsvith one massive

Low function in Eg.(18) we can obtaina,(Q,m) through  quark with pole massn

Reconstructing the momentum space potential

Q2 Q2+a0m2
U]_(Q m, ,(L) 36CA 12CA|09_+ —| —5+3 IOQT
Ci [ 4343 , ™22 121 Q2 988 Q2 Ca[1798 56
mu)=—|—=+4 a3 + —log>— - —lo - =t =
QM= 6l 16 T T T 9 T 9 T el e T
a; a
cF(ss 25 19| 1 m*+a;m?Q%+a,Q* 4 2
——|——16(3| +—Te+ —| —log +
16\ 3 81 6\ 4 au’ Ja2-4a,

2a,Q%+ (\Ja5—4a,+az)m? 55 Q? 31 Q%+a,m* 10 Q%+aym?
CAlog—+ CAIog———Tplog—

2a,Q°~ (Vaj—4a,—agm?/ 54 p? 27 ?

Xlog

11 Q2 11 Q? Q%+aym? 1 Q2+ agm?
— —Cplog?—— —CAlog—Iog— + —Telog?———|. (30
36 p2 18 Qu 9 u?

2In order to render decoupling of heavy flavors explicit in Bf)) one needs to relate the massless coupling dfavors to the one ofi;_,
light and one heavymassivé flavor.
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FIG. 5. The comparison between the exact results from [Réf.
(open symbolsand the reconstructed solution in E@1) (solid
lines) for the bottom(triangles and charm(circles quarks. The
absolute value of the fermionic contributiofygroportional toTg)
times 1/167* is shown. The scalg was chosen to coincide with
the quark masses in the MS scheme of R®f. It can clearly be
seen that Eq(31) is in good agreement with the full analytical massive resultgpole and running magdiffer by several
result over all perturbative values of the momentum tran§ler percent from the masslesaq&1) calculation in the region
within the statistical Monte Carlo and fitting errors of a few percentqy—m, . |t should also be stressed that we display the Qull
in each case. behavior ofa,(Q,m) including constants, not just the run-

o ning according to the Gell-Mann—Low function.
In terms of the running mass in tidS scheme the solution

FIG. 6. The momentum dependence ®f(Q,m). We useu
=Mz, aps(Mz)=0.12 andn;=5 throughout. The solid line is the
massless result, while the two dashed lines on top of each other are
massive results for thie quark with the pole anS massQ is in
GeV.

reads Ill. COORDINATE SPACE RESULTS
2 In this section we will present results for the coordinate
4+3|og’u— space potential baseq on the Fourier trans_form of(Bh). It
m? should be emphasized that the Fourier transform of

v2(Qm(p),w)=v2(QM pu)+ e CelTe————. ay(Q,m) in the strictly perturbative sense does not exist

1+ (Landau pol¢ and that only the expanded coefficients can be
agm? used. This will be shown below. In general, we have the
(31)  following relations:
The results are written in such a form that the limit-0 is ay(r,m)
obvious and can be seen to agree with &§. Equation(31) V(r.m=-Ce r
can be directly compared to the exact calculation in Raf.
The latter was obtained in the MS scheme, so we must use d®Q .
zf 3V(Q,m)exp(lQr)
e (2m)
Mms= | 7MW - (32 0 ay(Q.m) |
Figure 5 shows the good agreement of approximate solu- =—4m Ff (2m)% Q2 expiQr)

tion in Eq.(31) with the full result for different input param-
eters. The figure also displays the fact that the fitting param- 2 Cr (=dQ .
etersay, . ..,a; of Ref. [6] are optimized for the flavor I S 5 Sin(Qr)ay(Q,m). (33

threshold regiorQ~ O(m). In Fig. 6 the two loopQ depen-

dence of the physicat,(Q,m) charge is compared with the At fixed orders, there is no Landau pole in E§3) which
massless calculation. In the massive result the bottom quarkan best be seen by inserting the expansion in(E§). into
massm,=4.5 GeV is used and it can be seen that the twcEg. (33):
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corrections are then given by writing

Virmy=— = CFaMS(M)f

—-sin(Qr)| 1+v,(Q,m,u)

ays(u)

aV(rvm):aM_S(:u’) 1+vl(r1mUU/)

ays(m)

— 2
X +UZ(Q1mwu‘) anT(M)

} . (34

P 2
+v2<r,m,m( Mj’f“)) } (39)
It can easily be recognized that the first term in the series is

just the Coulomb potentiaV/c= — Crays(u)/r. The loop  with

Ca[31

22
va(r,mu)= 21973 — [log(ur)+ vel

5 T
Tt

Iog—+2E|(1 \/—mr)> (36

2

4[log( ur)+ ygl?+ 5

1976

+ ——[log(ur)+ vel

27

Ca [ 4343 = 22 121
vo(r,m,u)=

—| —+4m?——+ —g3+ —
16\ 162 4 9

25 19 1 (azt+ \/a3 4a,)m?
+_TF+ - _l
81 6 4 2a21u

Cn[1798 56 Ce (55
SN [R5 i
16 3% 16 o3

81 3
1 as+\as—4a, 1 (ag—vVaj—4aym* 1 a;— Vai—4a,
+ 1,\/ ————mr| + -log +-Eil 1, \| ————mr
4 ZaZMZ 2

2a2 2a2

4 2
Vai—4a,

55

_2_7CA[|09(MV)+ Yel+

as+ Vas—4a, _ \/72 . \/72
+2Ei(1,Vas+ Vas—4a,mr)—2Ei(1,Vaz— Vaz—4a,mr)
az— \aj—4a,

31 10 apm?
—Ca— T || log—+ 2Ei(1,\agmn)
M

+

log

54 27

11
——C,

36 — +4[log(ur)+ vel _1_8CA;Il(rvm1/~L)+g ;Iz(f,m,,u«) (37)

3

a? ) 1 2 Te 2

where the integral representations are defined as follows: maTHEMATICA .2 Again, if one uses thaVS running mass

m(w) instead of the above used pole magghe result must
be modified in the following way:

Ei(l,x)szexp(—t)$ (398

1 u?
= Q2tam? Q2 dQ va(r,m(u),u)=va(r,m u)+ =CeTe 4+3I0%)
Il(r,m,,u)_J |09Q—|Og—sm(Qr)6

39 X[1—exp(—Vaomn)]. (41)
) ) g The effect of the two loop mass effects in position space are
* +agm
Iz(r,m,,u)zf Iong 2o sin(Qr)EQ. (40) depicted in Fig. 7 for the bottom quark with,=4.5 GeV.
0 iz

Equations(38), (39) and (40) are readily calculable numeri-  3For Egs.(39) and(40) the integration method should be adapted
cally, for instance with the mathematical packageto the oscillatory behavior of the integrands.
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r

r

FIG. 8. The distance dependence @{(r,m) for different
choices of the renormalization scale The solid line corresponds
to u=M; as in Fig. 7, the dash-dotted line @=1/r and the

— . . . dashed line to the “natural choiceli=1/re”e. The source separa-
The pole- andMS-mass corrections are almost identical N 1 is in Gev-L.

the scalgdashed lingsand the effect grows with larger dis-
tances. Since in the renormalization grotfG) logarithms
always enter as log{)+ e, the “natural” choice is given
by u=1/reE. In Ref.[27] it was shown that this scale al-
most identically reproduces the BLM resulf8] in the
massless case, thus consistently reabsorbing the large R™ V(rm)g,,
effects. As in this case we also have to evaluate the two-loog
running of theMS-coupling using

FIG. 7. The distance dependenceaf(r,m) for the same pa-
rameters as in Fig. 6. Hereis in GeV ! and 0.2 fm=1 GeV 1.

2 2
Iog( Iog'u—
477 1 AéCD
aps(w)=———— | 1=
| M Bo | M -4
ﬁo()gAz OgAg
QCD QCD

(42

where we normalize the QCD-scale parameigjcp such

that ays(Mz)=0.12 which corresponds to\ocp=0.25

GeV and we keep;=5 fixed. Figure 8 displays the effect of

the various scale choices ar,(r,m). Although the physical
coupling ay(r,m) has no renormalization scale dependence
to the order we are working, the difference seen in Fig. 8 is
due to uncanceled higher order terms and, in general, in-10
creases at larger distances. Substantial deviations can be se
for ay(r,m)>0.2. The potential is shown in Fig. 9 and one

has to use the standard conversion factor T%0.2 GeV ., Lot b b i b

in order to convert the distance to fm. Again, the scale de- 005 01 015 02 025 03 035 04 045 05
pendence is due to higher order contributions. The mass de- r
pendence ofa(r,m) is displayed in Fig. 10. We keep FIG. 9. The distance dependence \fr,m) with the same

fixed at 0.1 fm and vary th#1S-mass parameter between O choices of the renormalization scaleas in Fig. 8. The potential is
and 5 GeV. While perturbation theory might not be appli- given in units of GeVy in Gev ..
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m

FIG. 10. The dependence af,(r,m) on theMS mass param-
eterm(u). The figure keeps=0.1 fm fixed. The diagram is dis-
played for the “natural choice” of the renormalization scale
=1freE,

0.7

0.5

0.4

03

0.2

-2.5

cable for distances larger than 0.1 fm, the effect is significant 5

and can amount to a few percent fdS masses up to 1 GeV
for the physical chargex,(r,m) compared to the massless

result. For the bottom quark mass the effect is of order 10% 8

atr=0.1 fm.

IV. FORCE BETWEEN TWO STATIC SOURCES

In this section we discuss the concept of defining the
strong coupling from the force between two static color-
singlet source$7]. In coordinate space the force is simply
given by

-10

-12.5

-15

-17.5

2
o
=

3
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—
-

0.5

0.6

0.7

08

0.9

-20

<9V(r,m):_ ag(r,m)

ar F r2

o b b b P P by b by
(43) 01 0.2 03 0.4 0.5 0.6 0.7 08 09 1
r

F(r,m)=—

FIG. 11. The position dependence ®f(r,m) and the force~
different choices of the renormalization scale The scale
choice corresponding to the respective lines is the same as in Fig. 8.
The force in the lower plot is in GE/r in GeV 1.

aMs(r’)ﬂ
v

(45)

For large distances there is no required sign change fofr

. . . . . or
ag(r,m) and its accompanying function is unigue. For the
massless coupling we can simply write

—_ rl
(1) = as(t’) 1+f1aMS( ),

f2

ap(r)=ay(r)[1-28y(ay(r))] (44)

where By, denotes the masslegsfunction in theV scheme.
From Eq. 44 it follows directly that the massless relation
between thexg charge and th&1S coupling to two loops is 35 1

given by f1= = 3gCat g TeNi

wherer’=r exp(ye) and the constants are given by
(46)
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og(r,m) g
036 [ A@
03575 £
0355 £
03525
035 E
03475 £
0345 |
03425 £
0'34 E 11 | 1111 I 111 | 1111 I 1111 | 1111 | 1111 | 1111 | 1011 I 1111
o o5 1 15 2 25 3 35 4 45 5
094
R AS
092 [ %
09 . . .
c FIG. 13. The Feynman diagram which can contain both mass-
088 — less and massivhick line) quark loops or two flavors of different
086 E non-zero mass at the two loop level.
. F r=0.2 fm
i Bl by b b by bogna b bvan s biaag |tse|f|nun|tsof[GeV2]Themassdependence@;(r'm)
)

05 1 1.5 2 25 3 35 4 45 5

is given in Fig. 12 analogously to Fig. 10 by varying the
m MS-mass parameter between 0 and 5 GeV and for two fixed
values ofr. The dependence on the mass terms is not as large

FIG. 12. The dependence af(r,m) on theMS mass param- — . . . .
P F(rm) P for smallMS in comparison tax,(r,m); however, it can still

eterm. The figure on the top keeps=0.1 fm fixed while the one on
the bottom has =0.2 fm. Both diagrams are displayed to the be a few percent. It can also be seen that the effect for the

“natural choice” of the renormalization scaje=1/re’s. The ef- ~MS bottom quark mass is roughly 7% compared to the mass-
fect of mass terms is clearly visible. less result at =0.1 fm, while it is about 10% at=0.2 fm.

1 7513 229 , 1 , 22
We have calculated the coordinate space static QCD po-
(3410 88 56

C2 V. CONCLUSIONS
A

162 27" 4
) tential through two loops with quark masses. The result is
+ 81 277"~ §§3 CaTeni— 3_1653 obtained by reconstructing the exact momentum space
Monte Carlo results from Ref9] by analytically fitting the
Gell-Mann—Low function. The reconstructed results are in
: (47) good (few percent agreement with the fermionic results of
the exact calculation. Based on these solutions we have ob-
In general, the relation for the massive case is given by tained the Fourier transform in coordinate space and the
force between the heavy quarks. Tdag(r,m) coupling itself
, d(ay(r,m)/r) grows quicker thamrys(), which is mainly due to its larger
ar value atQ=M . The mass dependence is strongest for
apvis(4) small MS masses up to 1 GeV at large distant@d fm),
where the perturbative regime breaks down. At these dis-
tances the effect of keeping a massive charm or bottom quark
can be a significant effect, although perturbation theory
might not be trustworthy anymore at distances of order 0.1
at the two loop level. Explicit expressions foy(r,m, ) and  fm. An important indicator of this fact is the strong renor-
fo(r,m,u) are given in the Appendix. The distance depen-malization scale dependence from uncanceled higher order
dence of the perturbative coupling definition @f(r,m) is  terms which can lead to substantially different results.
presented in Fig. 11 for the natural scale chditashed ling For the corresponding definition of-(r,m) we find also
and fixedu=M; (solid line). The former leads to a lower a strong dependence on the mass terms. The effect is not as
value ofa(r,m) at larger distances. Overall, it can be seenlarge for smallMS masses; however, it can still be a few
that the coupling defined from the force is much smaller at gercent. At 0.2 fm the effect is of the order of 10% for the
given source separationthan ay,(r,m) [and even smaller bottom quark mass. The renormalization scale dependence
than ags(w=1/ree)]. Even atr=0.2 fm (=1 GeV 1) it  from uncanceled higher order terms is also large for
still seems to be acceptable from a perturbative point ofxg(r,m). The overall smallness of this coupling parameter,
view. This could make a comparison with lattice results veryhowever, indicates that it could serve as a suitable quantity to
interesting. Overall, the renormalization scale dependence isompare the perturbative and non-perturbative approaches
also strong forae(r,m). The lower graph displays the force even above scales @?(0.1 fm).

560 16
81 27

XCFTan_< WZ)(Tan)Z

ag(r,my=—r

= aM_S(ILL)|:1+ fl(rvmwu)
aM_S(/—L)>2
o

+fo(r,m,u) (48
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In terms of practical applications, the relatively simple form of E@f) and (35) makes it possible to investigate the
uncertainty of a massive charm contribution in the determination of the bottom quark 3&ss
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APPENDIX
Explicit two loop results with quark masses for ag(r,m)

In this appendix we give the explicit expressions for the two loop results for the strong coupling parameter defined from the
force between two static color singlet sources. The general definition is given i@&cand is given by

—§+ 3EXp(~ \/_mr)+ |09—+ZE'(1\/—mr))

35 11
fi(r,m,u)=Cu| — 36 6[|09(,U«r + el |+ Tk

cA 7513 229 at 22
fa(r,m,u)=

, 928 484 ,
162 —77—T+§§3—WUOQ(MHYEH?UOQ(MFHVE] : (A1)

as
2
+

Va3—4a,

_T _ —_
Fl 6 2

19! 1 as+ Vai—4a, a;— Vas—4a,
expf — \/ ————mr | +exp — mr

232 2a2

31 20
X[exp— Vaz— a3 4a2mr) exp— Vas+ a3 4a2mr)] ——CA (—CA——TF)

27 27

11Cp 2Te Ca[1798 56
Xexp(— \/—mr __CA[IOQ(/-Lr)+7E]___rIS+__ To— | =72l a7 T3¢
9 9 7 16 3

81
Ce (55
Tl s

a;— Vai—4a,)m?

2a,u°

25 19

(azt \/a3 4a2)m
+ =T+ —

1
—| log
81 6 4 ZaZM

as+ Vai—4a,

232

+2Ei( 1, mr) +log

a; a

a;— Vas—4a, 4 2 as+ Vas—4a,
+2Eil 1, \| ———mr | | + log +2Ei(1,Vag+ \a3—4a,mr)
2a, Vas—4a,\ az;—\a3—4a,

55 31 10 agm?
—2Ei(1,Vag+ Va2—4da,mn) | [ — S-Callog(un) + vel +| - Ca= —Te Iog—2+2Ei(l,\/a—omr)
M

54 27

11 a2

) 11C, 2 Te
— —Ca| 4[log(ur)+ +—
36 A [log(uer)+ vel 3

- — —T,+——T. A2
g ,hatg T (A2)

where
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= Q%+aym? Q2

ZS(r,m,,u)Ef IogQ—Iog—zcos(Qr)dQ (A3)
0 M y2
= Q%+agm’

I4(r,m,,u)zf0 log Tcos(Qr)dQ. (A4)

For the runningVI_S mass one needs to add the following contributions:

1
fa(r.m(u), w)="fa(r,mu) = cCeTe

2
4+3 Iog'u—2> {Jagmr exp( — Vaomr) —[1—exp(— Vagmn)]}. (A5)
m

Mixed massive and massless fermionic contributions at the two loop level

In this part of the appendix we briefly comment on the type of contribution depicted in Fig. 13. This diagram can contain
the same flavor in both loops as well as different ones. In the former case, the contribution is already contained in the
discussion above. In Sec. Il A we demonstrated that for the Gell-Mann—Low function only one flavor needs to be considered.
On the level of the potential, however, we have also the latter case represented in Fig. 13.

In a practical situation, we can often set the masses of the three lightest quatksids to zero. In this case the Feynman
graph 13 contributes with a multiplicity factor 2 and we find the resulting expression

2% (Fig. 130m= 27 [3e, 51 n 42 aog™ || 2eam 1ot Ecton - Eolog sl 1)
(Fig. 13om= o 136479 FNs 2[3009& 3eCA g IF 5 AOQE 3 F09Q2+a0m2 2
(A6)
In the case of two non-zero and different quark loops we find, analogously,
2% (Fig. 19 = -2 O (32e S Mo o L g 2

(Fig. 13 m = 7 36°AT 9 'F 12 AOQE 3 FOgQZJr—aOmZ

31 5 11 u? 1 w? as(p)
X| 52Ca— = Tg+75Calo — 5 Tglo A7
36 A 9 " 12A%92 3 5 ] (A7)

In the above expressions we used again the approximate one loop solution for the vacuum approximation. If desired, it can of
course be substituted with the exact function containing more complicated expresgihnd/e also already divided by a
factori to obtain the contribution to the potential.
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