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Static QCD potential in coordinate space with quark masses through two loops

Michael Melles*
Paul Scherrer Institute, CH-5232 Villigen, PSI, Switzerland
~Received 31 January 2000; published 12 September 2000!

The potential between infinitely heavy quarks in a color singlet state is of fundamental importance in QCD.
While the confining long distance part is inherently non-perturbative, the short-distance~Coulomb-like! regime
is accessible through perturbative means. In this paper we present new results of the short distance potential in
coordinate space with quark masses through two loops. The results are given in explicit form based on
reconstructed solutions in momentum space in the Euclidean regime. Thus, a comparison with lattice results in
the overlap region between the perturbative and non-perturbative regime is now possible with massive quarks.
We also discuss the definition of the strong coupling based on the force between the static sources.

PACS number~s!: 12.39.Pn, 12.38.Bx
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I. INTRODUCTION

The potential between two~infinitely! heavy color
charges in a singlet state has been subject to theoretica
vestigations for more than 20 years@1–5#. In the non-
perturbative regime it is expected to play a key role in
understanding of quark confinement and it is a major ing
dient in the description of non-relativistically bound syste
such as heavy quarkonia. In addition it is the basis for
definition of the lattice coupling as the potential is given
the vacuum expectation value of the Wilson loop.

In the perturbative regime it can be utilized to define
physically motivated strong coupling which automatica
possesses welcome properties such as gauge invarianc
decoupling of heavy flavors@6#. The potential can also b
employed for a definition of the coupling from the forc
between the static sources@7#. The latter definition has the
advantage that theb function is unique in that no sign
change of the coupling occurs when entering the confi
ment regime@7#. Moreover, the heavy quark system is id
ally suited to study the overlap region between the n
perturbative and perturbative treatments of QCD. This la
point is difficult to implement with massless dynamical fe
mions and can only be achieved in the coordinate repre
tation.

A possibly very interesting application of the two loo
mass corrections to the heavy quark potential is the effec
a massive charm loop in the modified minimal subtract
scheme (MS) bottom mass determination@8#. Using the
physical Y meson for this purpose, the effect of the ma
shift dmb depends on̂ f1suVF(r ,m)uf1s&, where f1s de-
notes the 1s ground state wave function of theY meson and
VF the massive fermionic corrections to the potential. T
effect could be significant if the renormalization scale d
pends parametrically onmc , as indicated by a Brodsky
Lepage-Mackenzie~BLM ! analysis @8#. For a practical
evaluation of these mass shifts one needs to have man
able expressions up to the required order in perturba
theory. The exact results of Ref.@9# are not suitable due to
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the remaining four Monte Carlo integrations. It might also
easier to perform the mass shift calculations in position sp
as only an integration over the relative distancer would be
required. In momentum space, one has an additional inte
as each wave function depends on a different thr
momentump.

In this paper we derive the static QCD potential in po
tion space with quark masses through two loops. We use
known results in momentum space@9# and derive the coor-
dinate results through a Fourier transformation of rec
structed approximate analytical momentum space exp
sions. The latter step is necessary due to the complexit
the results of Ref.@9#.

We begin, however, by recalling the definition of the p
tential through the manifestly gauge invariant vacuum exp
tation value of the Wilson loop. Figure 1 displays the Wils
loop WG5^0uTr P exp(igrGdxmAa

mTa)u0& of spatial extension
r and large temporal extensionT with gluon exchanges indi-
cated. The path ordering is necessary due to the n
commutativity of the SU~3! generators Ta. In the perturba-
tive analysis through two loops considered here, all spa
components of the gauge fieldsAa

m(r ,6T/2) can at most
depend on a power of logT and are thus negligible here

Furthermore,WG →
T→`

exp(2iTE0), where the ground state en
ergy E0 is identified with the potentialV. Thus we arrive at
the definition

V~r ,m!52 lim
T→`

1

iT
log^0uTr P expS ig R

G
dxmAa

mTaD u0&.

~1!

FIG. 1. The Wilson loopG with large temporal extent (T
→`) from which the position space potential is defined. Throu
two loops in four dimensions, gluons connecting the spatial sou
lines can be neglected.
©2000 The American Physical Society19-1
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MICHAEL MELLES PHYSICAL REVIEW D 62 074019
Writing the source term of the heavy charges, separate
the distancer[ur2r 8u, as

Jm
a ~x!5 igvmTa@d~x2r !2d~x2r 8!# ~2!

and neglecting contributions connecting the spatial com
nents, the perturbative potential is given by

V~r ,m!52 lim
T→`

1

iT
logK 0UTr T expS E d4xAm

a ~x!Ja
m~x! DU0L .

~3!

In the above equationvm5dm,0 due to the purely timelike
nature of the sources. For the same reason the path ord
is replaced by the time-ordering operatorT. Expanding Eq.
~3! perturbatively we find the position space Feynman ru
for the source-gluon vertex and the source propagator res
tively: igTavm and2 iu(x02x08)d(x2x8).

The potential in momentum space is the Fourier transfo
of V(r ). It can be calculated directly in momentum spa
from the on-shell heavy quark–anti-quark scattering am
tude ~divided by i ) at the physical momentum transferq,
projected onto the color singlet sector. The momentum sp
Feynman rule for the source propagator is identical to
one in heavy quark effective theory~HQET! @10#: 1/(v•k
1 i«). For anti-sources,v→2v is prescribed~or the time-
ordering reversed!. Figure 2 summarizes the momentu
space Feynman rules. In analogy to HQET, double lines
note the heavy source terms.

The potential can be used to define the effective cha
aV ~the so-calledV scheme! through

V~Q,m![24pCF

aV~Q,m!

Q2
, V~r ,m![2CF

aV~r ,m!

r
~4!

whereQ2[q252q2 and both expressions above are rela
through a Fourier transform. The results for QCD correctio
including massless quarks have been calculated in Ref.@11#,
and in Ref.@12# an independent approach found a disagr
ment in the pure glue part of the original results. As bo
authors agree now on the correctness of@12#, we use, in
momentum space,

FIG. 2. The momentum space Feynman rules used in the ca
lation of Ref. @9#. The i« prescription is analogous to the conve
tional quark propagator. For anti-sourcesv→2v must be used.
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aV~Q!5aMS~m!S 11v1~Q,m!
aMS~m!

p

1v2~Q,m!
a

MS

2
~m!

p2 D ~5!

with

v1~Q,m!5
1

4 F31

9
CA2

20

9
TFnf1b0log

m2

Q2G ~6!

v2~Q,m!5
1

16H S 4343

162
14p22

p4

4
1

22

3
z3DCA

2

2S 1798

81
1

56

3
z3DCATFnf2S 55

3
216z3DCFTFnf

1S 20

9
TFnf D 2

1b0
2log2

m2

Q2

1Fb112b0S 31

9
CA2

20

9
TFnf D G log

m2

Q2J ~7!

where b05 11
3 CA2 4

3 TFnf , b15 34
3 CA

22 20
3 CATFnf

24CFTFnf and CA53, CF5 4
3 and TF5 1

2 in QCD. The
number of massless flavors is denoted bynf . Theb function
is here defined as

b„as~m2!…5
1

as~m2!

]as~m2!

] logm2
[2 (

n50

`

bnS as~m2!

4p D n11

.

~8!

For the case of massless quarks, the first two coefficientsb0
andb1 are renormalization scheme invariant and theb func-
tion is gauge invariant to all orders in minimally subtract
schemes@13#. In coordinate space we have, in the massl
case@14,15#,

aV~r !5aMS~m!S 11v1~r ,m!
aMS~m!

p
1v2~r ,m!

a
MS

2
~m!

p2 D
~9!

with

v1~r ,m!5
1

4 F31

9
CA2

20

9
TFnf12b0log~mr 8!G ~10!

v2~r ,m!5
1

16H S 4343

162
14p22

p4

4
1

22

3
z3DCA

2

2S 1798

81
1

56

3
z3DCATFnf2S 55

3
216z3DCFTFnf

1S 20

9
TFnf D 2

1b0
2S 4 log2~mr 8!1

p2

3 D

u-
9-2
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12Fb112b0S 31

9
CA2

20

9
TFnf D G log~mr 8!J

~11!

wherer 8[r exp(gE).
From the renormalon point of view, possible power co

rections in momentum space can at most be of the form1

V~Q!524pCF

aMS~Q!

Q2 S 11•••1const3
LQCD

2

Q2
1••• D

~12!

which follows from Lorentz invariance~sincev•q50) and
dimensional arguments@16#. In this connection it is interest
ing to note that there is a close connection between the
tential and the pole mass. Both are affected by the sa
renormalon ambiguity and writing@16#

mPS~m f ![m1
1

2EQ,m f

d3Q

~2p!3
V~Q!, ~13!

the so-called potential subtracted massmPS(m f), which de-
pends linearly on the cutoffm f , can be used as a less IR
sensitive mass parameter for threshold expansions than
pole massm @17#.

In position space, however,

V~r !52CF

aMS~r !

r
~11•••1const3LQCDr

1const83LQCD
2 r 21••• ! ~14!

and it is thus to be expected that the long-distance contr
tions to the coordinate space potential are parametric
larger than for the momentum space potential. Thus, the
sition space potential is likely to be more slowly converge
This feature could be interesting when comparing the
lattice results with the perturbative solution at intermedi
distances@18#. The form of the linear term in Eq.~14! also
motivates consideration of the derivative ofV(r ), i.e. the
definition of the strong coupling from the force between t
two heavy quarks@7#.

Before considering the effects of massive quarks in
quantum corrections to the potential, a few general rema
are in order concerning the higher order perturbative beh
ior. The effective theory used for the calculation amounts
a non-local approach withQ;Mv, where M denotes the
heavy quark mass, i.e. where the gluons are always kep
shell. Through power counting arguments one can see
through two loops only those gluons need to be conside
At the three loop level, however, on-shell gluon contrib
tions of orderQ;Mv2 cannot be omitted and a treatme

1We still assume thatQ.LQCD and are concerned only with th
form of the leading power corrections from a renormalon analy
One cannot learn anything about non-perturbative~i.e. confining!
effects through this approach.
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according to the standard definition would lead to an infra
divergent potential@19#. These ultra-soft terms are expecte
to be canceled, however, by additional diagrams at that
der. In particular, new diagrams connecting also the spa
components of the Wilson loop in Fig. 1 will contribute
three loops. In Ref.@20# it is indicated how the problem
already shows up at the two loop level in three dimensio
and in Ref.@19# an infrared save definition at higher orders
suggested. In four dimensions, however, and to the order
are working here no such problems occur and the defini
in Eq. ~3! is infrared safe.

The paper is organized as follows. In Sec. II we revie
the results of the mass corrections to the heavy quark po
tial in momentum space at the two loop order. From t
physical Gell-Mann–Low equation we reconstruct a sim
analytical approximate expression for the one- and two-lo
coefficients. These results are then used to obtain the p
tion space potential in Sec. III. In Sec. IV we then discuss
effect of massive quarks on the force between two st
sources and close with concluding remarks in Sec. V.
plicit results for the coupling definition through the force
coordinate space are given in the Appendix, where we a
discuss briefly the effect of mixed massless and mas
quark loops at the two loop level.

II. MOMENTUM SPACE RESULTS

The Monte Carlo results of Ref.@9# can be used to obtain
the two loop scale dependence of the static QCD potentia
momentum space@6#. The difference to the conventionalb
function in the Callan-Symanzik@21,22# approach is that the
physical quark–anti-quark system is governed by the
changed momentum and independent of the renormaliza
scale to each given order. Thus we follow the Gell-Man
Low approach and using a runningMS massm(m) we have

aV„Q,m~m!…5aMS~m!S 11v1„Q,m~m!,m…

aMS~m!

p

1v2„Q,m~m!,m…

a
MS

2
~m!

p2 D ~15!

where the massless limit of the coefficientsv1 and v2 is
given in Eqs.~6! and~7!. The physical chargeaV„Q,m(m)…
cannot depend explicitly on the renormalization scalem and
the explicitm dependence on the right-hand side of Eq.~15!
cancels to the order we are working. Figure 3 gives the Fe
man diagrams for the fermionic contributions to the two-lo
coefficient v2„Q,m(m),m…. The mass counterterm chose
for the Feynman diagram labeledgse5 determines the mas
parameter which has to be used in the one-loop coeffic
v1„Q,m(m),m…. In Ref. @6# we considered the flavor
threshold dependence of heavy quarks and related the
ning mass to the pole mass which is renormalization-sc
independent and gives explicit decoupling. This also p
vides a physical picture as well as a straightforward Abel
limit.

.

9-3
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MICHAEL MELLES PHYSICAL REVIEW D 62 074019
The relation between theMS massm(m) and the pole
massm is given by@29#

m~m!5mF12CF

aMS~m!

p S 11
3

2
log

m

mD G . ~16!

Inserting Eq.~16! into Eq. ~15! gives

FIG. 3. The two-loop massive fermionic corrections to t
heavy quark potential in the Feynman gauge~from @9#!. Double
lines denote the heavy quarks, single lines the ‘‘light’’ quarks w
massm. The first two rows contain diagrams with a typical no
Abelian topology. The middle line includes the infrared diverge
‘‘Abelian’’ Feynman diagrams. They contribute to the potent
only in the non-Abelian theory due to color factors}CFCA . In
addition, although each diagram is infrared divergent, their sum
infrared finite. The infrared finite Feynman diagrams with an Ab
lian topology plus the diagrams consisting of one-loop inserti
with non-Abelian terms are shown in the last two rows.
07401
aV~Q,m!5aMS~m!F11v1~Q,m,m!
aMS~m!

p

1@v2~Q,m,m!1Dm~Q,m,m!#
aMS

2
~m!

p2 G
~17!

whereDm(Q,m,m) denotes the contribution arising fromv1
when changing from the running mass to the pole ma
v1„Q,m(m),m…5v1(Q,m,m)1Dm(Q,m,m)aMS(m)/p.

The Gell-Mann–Low function@23# for the V scheme is
defined as the total logarithmic derivative of the effecti
charge with respect to the physical momentum transfer s
Q:

CVS Q

mD[
daV~Q,m!

d logQ
[(

i 50

`

2cV
( i )

aV
i 12~Q,m!

p i 11
, ~18!

where in the massless case the coefficientscV
(0) andcV

(1) are
given by

cV
(0)~m50!5

11

6
CA2

2

3
TFNF5

11

2
2

1

3
NF , ~19!

cV
(1)~m50!5

17

12
CA

22
5

6
CATFNF2

1

2
CFTFNF

5
51

4
2

19

12
NF . ~20!

For the massive case all the mass effects are absorbed i
mass-dependent functionNF . In other words we write

cV
(0)S Q

mD5
11

2
2

1

3
NF,V

(0) S Q

mD ~21!

cV
(1)S Q

mD5
51

4
2

19

12
NF,V

(1) S Q

mD , ~22!

where the subscriptV indicates the scheme dependence
NF,V

(0) andNF,V
(1) .

Taking the derivative of Eq.~17! with respect to logQ
and re-expanding the result inaV(Q,m) gives the following
equations for the first two coefficients ofCV :

cV
(0)S Q

mD52
dv1~Q,m,m!

d logQ
~23!

cV
(1)S Q

mD52
d@v2~Q,m,m!1Dm~Q,m,m!#

d logQ

12v1~Q,m,m!
dv1~Q,m,m!

d logQ
. ~24!

t
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-
s
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STATIC QCD POTENTIAL IN COORDINATE SPACE . . . PHYSICAL REVIEW D 62 074019
The argument Q/m indicates that there is no
renormalization-scale dependence in Eqs.~23! and ~24!.
Rather,cV

(0) andcV
(1) are functions of the ratio of the phys

cal momentum transferQ5A2q2 and the pole massm only.
The expression forcV

(0) agrees with our result in Ref.@24#. In
Eq. ~24! the derivative of theDm(Q,m,m) term comes from
using the pole mass instead of the MS mass whereas
remaining mass dependence in Eq.~24! is arbitrary in the
sense that a different mass scheme is formally of higher
der. In addition we note that the contribution 2v1dv1 /dlogQ
cancels the reducible contribution~labeled2vp in Fig. 3! to
v2; it is thus sufficient to consider one quark flavor at a tim
for the two loop Gell-Mann–Low function. In the Appendi
we describe how to treat the effect of massless quark lo
(u, d ands) in mixed Feynman diagrams on the amplitu
level as well as the case for two different mass flavor loo

Because of the complexity of the integrals encountere
the evaluation@9# of the massive two-loop corrections to th
heavy quark potential, the results were obtained numeric
using the adaptive Monte Carlo integration programVEGAS

@25#. Thus the derivative of the two-loop termv2 was calcu-
lated numerically, whereas the other terms in Eqs.~23! and
~24! were obtained analytically. The results are given
terms of the contribution to the effective number of flavo
NF,V

(0) (Q/m) and NF,V
(1) (Q/m) in the V scheme from a given

quark with massm defined according to Eqs.~21! and ~22!
respectively. The Appelquist-Carazzone@26# theorem re-
quires the decoupling of heavy masses at small momen
transfer for physical observables. ThusNF,V

(1) (Q/m) goes to

zero for Q/m→0. The massless resultNF,V
(1) →1 is also

recovered for large scales.
The calculation presented in Ref.@9# required the evalua

tion of four-dimensional scalar integrals. The results in R
@6# are based on 50 iterations of the integration grid e
comprising 107 evaluations of the function which wher
needed to achieve adequate convergence. Even so, the M
Carlo results still are not completely stable for small valu
of Q/m, especially in the light of the numerical differentia
tion required in Eq.~24!. Nevertheless, accurate results c
be obtained by fitting the numerical calculation to a suita
analytic function.

The one-loop contribution to the effective number of fl
vorsNF follows from the standard formula for QED vacuu
polarization. In Ref.@24# we used the simple representatio
in terms of a rational polynomial@30#:

NF,V
(0) S Q

mD'
1

115.2
m2

Q2

[
1

11a0

m2

Q2

~25!

which displays decoupling for small scales and the corr
massless limit at large scales. Similarly, the numerical res
for the two-loop contribution can be fit to the form
07401
he

r-

ps

s.
in
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m

f.
h

nte
s

e

ct
ts

NF,V
(1) S Q

mD'

a1

Q2

m2
1a2

Q4

m4

11a3

Q2

m2
1a2

Q4

m4

. ~26!

The parameter valuesai and the errors obtained from the fi
to the numerical calculation in theV scheme for QCD and
QED are given in Ref.@6#. Similar decoupling forms have
been used for interpolating the flavor dependence of the
fective coupling in the momentum subtraction schem
~MOM! @31,32#.

In the case of QCD we obtain the following approxima
form for the effective number of flavors for a given qua
with pole massm:

NF,V
(1) S Q

mD'

S 20.57110.221
Q2

m2D Q2

m2

111.326
Q2

m2
10.221

Q4

m4

~27!

and, for QED,

NF,V
(1) S Q

mD'

S 1.06910.0133
Q2

m2D Q2

m2

110.402
Q2

m2
10.0133

Q4

m4

. ~28!

The results of our numerical calculation ofNF,V
(1) in the V

scheme for QCD and QED are shown in Fig. 4. The dec

FIG. 4. The numerical results for the gauge-invariantNF,V
(1) in

QED ~open circles! and QCD~triangles! with the bestx2 fits of
Eqs.~28! and ~27! superimposed respectively~from Ref. @6#!. The
dashed line shows the one-loopNF,V

(0) function of Eq.~25!. For com-
parison we also show the gauge dependent two-loop result obta
in MOM schemes~dash-dot line! @31,32#. At largeQ/m the theory
becomes effectively massless, and both schemes agree as exp
The figure also illustrates the decoupling of heavy quarks at sm
Q/m.
9-5
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MICHAEL MELLES PHYSICAL REVIEW D 62 074019
pling of heavy quarks becomes manifest at smallQ/m, and
the massless limit is attained for largeQ/m. The QCD form
actually becomes negative at moderate values ofQ/m, a
novel feature of the anti-screening non-Abelian contrib
tions. This property is also present in the~gauge dependent!
MOM results. In contrast, in Abelian QED the two-loop co
tribution to the effective number of flavors becomes larg
than 1 at intermediate values ofQ/m. We also display the
one-loop contributionNF,V

(0) (Q/m) which monotonically in-
terpolates between the decoupling and massless limits.
solid curves displayed in Fig. 4 show that the parametri
tions of Eq. ~27! which we used for fitting the numerica
results are quite accurate.

In Ref. @6# it was shown that the Abelian limit displaye
in Fig. 4 agrees with the well known literature results@33–
35# and that the full QCD result is independent of the ren
malization scale. The very good agreement of the exact
loop calculation with the relatively simple fitting function fo
NF,V

(1) of Eq. ~27! makes it possible to reconstruct an analy
cal approximate function for the full mass dependent t
loop coefficient in the next section.

Reconstructing the momentum space potential

Starting from the general expression for the Gell-Man
Low function in Eq.~18! we can obtainaV(Q,m) through
07401
-

r

he
-

-
o

o

integration over logQ. Our goal is to reconstruct an analyt
cal function foraV(Q,m) in terms ofaMS(m) based on the
fitting parametersa0 and a1 ,a2 ,a3 from the approximate
one- and two-loop solutions respectively. It should be cl
that by analytical we mean an expression of known functio
depending on$Q2,m2,m2,a0 ,a1 ,a2 ,a3% in the spacelike
~Euclidean! region. It is understood that for a continuatio
into the timelike regime only the full function calculated
Ref. @9# can be used, not the approximate form we der
below. With this in mind we can write

aV~Q,m!2aMS~m!52
a

MS

2
~m!

p
S E cV

(0)d logQ1C(0)D
2

a
MS

3
~m!

p2 S E @cV
(1)22v1cV

~0)#

3d logQ1C(1)D . ~29!

The integration constantsC( i ) can be functions ofm andm
and are fixed by requiring that the correct massless limi
obtained. We find for the corrections2 with one massive
quark with pole massm:
v1~Q,m,m!5
31

36
CA2

11

12
CAlog

Q2

m2
1

TF

9 S 2513 log
Q21a0m2

m2 D

v2~Q,m,m!5
CA

2

16 S 4343

162
14p22

p4

4
1

22

3
z31

121

9
log2

Q2

m2
2

988

27
log

Q2

m2D 1TFF 2
CA

16
S 1798

81
1

56

3
z3D

2
CF

16
S 55

3
216z3D 1

25

81
TF1

19

6
S 1

4
log

m41a3m2Q21a2Q4

a2m4
1

a3

4
2

a1

2

Aa3
224a2

3 log
2a2Q21~Aa3

224a21a3!m2

2a2Q22~Aa3
224a22a3!m2

D 1
55

54
CAlog

Q2

m2
1

31

54
CAlog

Q21a0m2

m2
2

10

27
TFlog

Q21a0m2

m2

2
11

36
CAlog2

Q2

m2
2

11

18
CAlog

Q2

m2
log

Q21a0m2

Qm
1

1

9
TFlog2

Q21a0m2

m2
G . ~30!

2In order to render decoupling of heavy flavors explicit in Eq.~30! one needs to relate the massless coupling ofnf flavors to the one ofnf 21

light and one heavy~massive! flavor.
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In terms of the running mass in theMS scheme the solution
reads

v2„Q,m~m!,m…5v2~Q,m,m!1
1

6
CFTF

413log
m2

m2

11
Q2

a0m2

.

~31!

The results are written in such a form that the limitm→0 is
obvious and can be seen to agree with Eq.~5!. Equation~31!
can be directly compared to the exact calculation in Ref.@9#.
The latter was obtained in the MS scheme, so we must

mMS5AegE

4p
mMS. ~32!

Figure 5 shows the good agreement of approximate s
tion in Eq.~31! with the full result for different input param
eters. The figure also displays the fact that the fitting para
eters a0 , . . . ,a3 of Ref. @6# are optimized for the flavor
threshold regionQ;O(m). In Fig. 6 the two loopQ depen-
dence of the physicalaV(Q,m) charge is compared with th
massless calculation. In the massive result the bottom q
massmb54.5 GeV is used and it can be seen that the t

FIG. 5. The comparison between the exact results from Ref.@9#
~open symbols! and the reconstructed solution in Eq.~31! ~solid
lines! for the bottom~triangles! and charm~circles! quarks. The
absolute value of the fermionic contributions~proportional toTF)
times 1/16p4 is shown. The scalem was chosen to coincide with
the quark masses in the MS scheme of Ref.@9#. It can clearly be
seen that Eq.~31! is in good agreement with the full analytica
result over all perturbative values of the momentum transfeQ
within the statistical Monte Carlo and fitting errors of a few perce
in each case.
07401
e

u-

-

rk
o

massive results~pole and running mass! differ by several
percent from the massless (nf51) calculation in the region
Q;mb . It should also be stressed that we display the fulQ
behavior ofaV(Q,m) including constants, not just the run
ning according to the Gell-Mann–Low function.

III. COORDINATE SPACE RESULTS

In this section we will present results for the coordina
space potential based on the Fourier transform of Eq.~31!. It
should be emphasized that the Fourier transform
aV(Q,m) in the strictly perturbative sense does not ex
~Landau pole! and that only the expanded coefficients can
used. This will be shown below. In general, we have t
following relations:

V~r ,m!52CF

aV~r ,m!

r

5E d3Q

~2p!3
V~Q,m!exp~ iQr !

524pCFE d3Q

~2p!3

aV~Q,m!

Q2
exp~ iQr !

52
2

p

CF

r E
0

`dQ

Q
sin~Qr !aV~Q,m! . ~33!

At fixed orders, there is no Landau pole in Eq.~33! which
can best be seen by inserting the expansion in Eq.~15! into
Eq. ~33!:

t

FIG. 6. The momentum dependence ofaV(Q,m). We usem
5MZ , aMS(MZ)50.12 andnf55 throughout. The solid line is the
massless result, while the two dashed lines on top of each othe
massive results for theb quark with the pole andMS mass.Q is in
GeV.
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V~r ,m!52
2

p

CFaMS~m!

r E
0

`dQ

Q
sin~Qr !F11v1~Q,m,m!

3
aMS~m!

p
1v2~Q,m,m!S aMS~m!

p D 2G . ~34!

It can easily be recognized that the first term in the serie
just the Coulomb potentialVC52CFaMS(m)/r . The loop
:

-
ge

07401
is

corrections are then given by writing

aV~r ,m!5aMS~m!F11v1~r ,m,m!
aMS~m!

p

1v2~r ,m,m!S aMS~m!

p D 2G ~35!

with
v1~r ,m,m!5
CA

4 S 31

9
1

22

3
@ log~mr !1gE# D2

5

9
TF1

TF

3 S log
a0m2

m2
12Ei~1,Aa0mr!D ~36!

v2~r ,m,m!5
CA

2

16
S 4343

162
14p22

p4

4
1

22

3
z31

121

9
F4@ log~mr !1gE#21

p2

3
G1

1976

27
@ log~mr !1gE# D

1TFF 2
CA

16
S 1798

81
1

56

3
z3D 2

CF

16
S 55

3
216z3D 1

25

81
TF1

19

6
H 1

4
log

~a31Aa3
224a2!m2

2a2m2

1
1

2
EiS 1,Aa31Aa3

224a2

2a2

mrD 1
1

4
log

~a32Aa3
224a2!m2

2a2m2
1

1

2
EiS 1,Aa32Aa3

224a2

2a2

mrD
1

a3

4
2

a1

2

Aa3
224a2

F log
a31Aa3

224a2

a32Aa3
224a2

12Ei~1,Aa31Aa3
224a2mr!22Ei~1,Aa32Aa3

224a2mr!G J
2

55

27
CA@ log~mr !1gE#1S 31

54
CA2

10

27
TFD S log

a0m2

m2
12Ei~1,Aa0mr!D

2
11

36
CAS p2

3
14@ log~mr !1gE#2D 2

11

18
CA

2

p
I1~r ,m,m!1

TF

9

2

p
I2~r ,m,m!G ~37!
are

ed
where the integral representations are defined as follows

Ei~1,x![E
x

`

exp~2t !
dt

t
~38!

I1~r ,m,m![E
0

`

log
Q21a0m2

Qm
log

Q2

m2
sin~Qr !

dQ

Q
~39!

I2~r ,m,m![E
0

`

log2
Q21a0m2

m2
sin~Qr !

dQ

Q
. ~40!

Equations~38!, ~39! and ~40! are readily calculable numeri
cally, for instance with the mathematical packa
MATHEMATICA .3 Again, if one uses theMS running mass
m(m) instead of the above used pole massm, the result must
be modified in the following way:

v2„r ,m~m!,m…5v2~r ,m,m!1
1

6
CFTFS 413 log

m2

m2D
3@12exp~2Aa0mr!#. ~41!

The effect of the two loop mass effects in position space
depicted in Fig. 7 for the bottom quark withmb54.5 GeV.

3For Eqs.~39! and~40! the integration method should be adapt
to the oscillatory behavior of the integrands.
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The pole- andMS-mass corrections are almost identical
the scale~dashed lines! and the effect grows with larger dis
tances. Since in the renormalization group~RG! logarithms
always enter as log(mr)1gE , the ‘‘natural’’ choice is given
by m51/regE. In Ref. @27# it was shown that this scale a
most identically reproduces the BLM results@28# in the
massless case, thus consistently reabsorbing the large
effects. As in this case we also have to evaluate the two-l
running of theMS-coupling using

aMS~m!5
4p

b0log
m2

LQCD
2

S 12
b1

b0
2

logS log
m2

LQCD
2 D

log
m2

LQCD
2

D
~42!

where we normalize the QCD-scale parameterLQCD such
that aMS(MZ)50.12 which corresponds toLQCD50.25
GeV and we keepnf55 fixed. Figure 8 displays the effect o
the various scale choices onaV(r ,m). Although the physical
couplingaV(r ,m) has no renormalization scale dependen
to the order we are working, the difference seen in Fig. 8
due to uncanceled higher order terms and, in general,
creases at larger distances. Substantial deviations can be
for aV(r ,m).0.2. The potential is shown in Fig. 9 and on
has to use the standard conversion factor 1 fm21'0.2 GeV
in order to convert the distance to fm. Again, the scale
pendence is due to higher order contributions. The mass
pendence ofaV(r ,m) is displayed in Fig. 10. We keepr
fixed at 0.1 fm and vary theMS-mass parameter between
and 5 GeV. While perturbation theory might not be app

FIG. 7. The distance dependence ofaV(r ,m) for the same pa-
rameters as in Fig. 6. Herer is in GeV21 and 0.2 fm'1 GeV21.
07401
RG
p

e
s
n-
een

-
e-
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FIG. 8. The distance dependence ofaV(r ,m) for different
choices of the renormalization scalem. The solid line corresponds
to m5MZ as in Fig. 7, the dash-dotted line tom51/r and the
dashed line to the ‘‘natural choice’’m51/regE. The source separa
tion r is in GeV21.

FIG. 9. The distance dependence ofV(r ,m) with the same
choices of the renormalization scalem as in Fig. 8. The potential is
given in units of GeV,r in GeV21.
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cable for distances larger than 0.1 fm, the effect is signific
and can amount to a few percent forMS masses up to 1 GeV
for the physical chargeaV(r ,m) compared to the massles
result. For the bottom quark mass the effect is of order 1
at r 50.1 fm.

IV. FORCE BETWEEN TWO STATIC SOURCES

In this section we discuss the concept of defining
strong coupling from the force between two static col
singlet sources@7#. In coordinate space the force is simp
given by

F~r ,m!52
]V~r ,m!

]r
[2CF

aF~r ,m!

r 2
. ~43!

For large distances there is no required sign change
aF(r ,m) and its accompanyingb function is unique. For the
massless coupling we can simply write

aF~r !5aV~r !@122bV„aV~r !…# ~44!

wherebV denotes the masslessb function in theV scheme.
From Eq. 44 it follows directly that the massless relati
between theaF charge and theMS coupling to two loops is
given by

FIG. 10. The dependence ofaV(r ,m) on theMS mass param-
eter m(m). The figure keepsr 50.1 fm fixed. The diagram is dis
played for the ‘‘natural choice’’ of the renormalization scalem
51/regE.
07401
t

e
-

or

aF~r !5aMS~r 8!F11 f 1

aMS~r 8!

p
1 f 2S aMS~r 8!

p D 2G
~45!

wherer 85r exp(gE) and the constants are given by

f 152
35

36
CA1

1

9
TFnf ~46!

FIG. 11. The position dependence ofaF(r ,m) and the forceF
for different choices of the renormalization scalem. The scale
choice corresponding to the respective lines is the same as in F
The force in the lower plot is in GeV2, r in GeV21.
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f 25
1

16F S 2
7513

162
1

229

27
p22

1

4
p41

22

3
z3DCA

2

1S 3410

81
2

88

27
p22

56

3
z3DCATFnf2S 31

3
216z3D

3CFTFnf2S 560

81
2

16

27
p2D ~TFnf !

2G . ~47!

In general, the relation for the massive case is given by

aF~r ,m!52r 2
]„aV~r ,m!/r …

]r

5aMS~m!F11 f 1~r ,m,m!
aMS~m!

p

1 f 2~r ,m,m!S aMS~m!

p D 2G ~48!

at the two loop level. Explicit expressions forf 1(r ,m,m) and
f 2(r ,m,m) are given in the Appendix. The distance depe
dence of the perturbative coupling definition ofaF(r ,m) is
presented in Fig. 11 for the natural scale choice~dashed line!
and fixedm5MZ ~solid line!. The former leads to a lowe
value ofaF(r ,m) at larger distances. Overall, it can be se
that the coupling defined from the force is much smaller a
given source separationr than aV(r ,m) @and even smaller
than aMS(m51/regE)]. Even at r 50.2 fm ~[1 GeV21) it
still seems to be acceptable from a perturbative point
view. This could make a comparison with lattice results ve
interesting. Overall, the renormalization scale dependenc
also strong foraF(r ,m). The lower graph displays the forc

FIG. 12. The dependence ofaF(r ,m) on theMS mass param-

eterm̄. The figure on the top keepsr 50.1 fm fixed while the one on
the bottom hasr 50.2 fm. Both diagrams are displayed to th
‘‘natural choice’’ of the renormalization scalem51/regE. The ef-
fect of mass terms is clearly visible.
07401
-

a

f
y
is

itself in units of @GeV2#. The mass dependence ofaF(r ,m)
is given in Fig. 12 analogously to Fig. 10 by varying th
MS-mass parameter between 0 and 5 GeV and for two fi
values ofr. The dependence on the mass terms is not as la
for smallMS in comparison toaV(r ,m); however, it can still
be a few percent. It can also be seen that the effect for
MS bottom quark mass is roughly 7% compared to the ma
less result atr 50.1 fm, while it is about 10% atr 50.2 fm.

V. CONCLUSIONS

We have calculated the coordinate space static QCD
tential through two loops with quark masses. The resul
obtained by reconstructing the exact momentum sp
Monte Carlo results from Ref.@9# by analytically fitting the
Gell-Mann–Low function. The reconstructed results are
good ~few percent! agreement with the fermionic results o
the exact calculation. Based on these solutions we have
tained the Fourier transform in coordinate space and
force between the heavy quarks. TheaV(r ,m) coupling itself
grows quicker thanaMS(m), which is mainly due to its larger
value at Q5MZ . The mass dependence is strongest
small MS masses up to 1 GeV at large distances~0.1 fm!,
where the perturbative regime breaks down. At these
tances the effect of keeping a massive charm or bottom qu
can be a significant effect, although perturbation the
might not be trustworthy anymore at distances of order
fm. An important indicator of this fact is the strong reno
malization scale dependence from uncanceled higher o
terms which can lead to substantially different results.

For the corresponding definition ofaF(r ,m) we find also
a strong dependence on the mass terms. The effect is n
large for smallMS masses; however, it can still be a fe
percent. At 0.2 fm the effect is of the order of 10% for th
bottom quark mass. The renormalization scale depende
from uncanceled higher order terms is also large
aF(r ,m). The overall smallness of this coupling paramet
however, indicates that it could serve as a suitable quantit
compare the perturbative and non-perturbative approac
even above scales ofO(0.1 fm!.

FIG. 13. The Feynman diagram which can contain both ma
less and massive~thick line! quark loops or two flavors of differen
non-zero mass at the two loop level.
9-11
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In terms of practical applications, the relatively simple form of Eqs.~30! and ~35! makes it possible to investigate th
uncertainty of a massive charm contribution in the determination of the bottom quark mass@36#.
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APPENDIX

Explicit two loop results with quark masses for aF„r ,m…

In this appendix we give the explicit expressions for the two loop results for the strong coupling parameter defined f
force between two static color singlet sources. The general definition is given in Eq.~48! and is given by

f 1~r ,m,m!5CAS 2
35

36
1

11

6
@ log~mr !1gE# D1TFF2

5

9
1

2

3
exp~2Aa0mr!1

1

3 S log
a0m2

m2
12Ei~1,Aa0mr!D G

f 2~r ,m,m!5
CA

2

16 S 2
7513

162
1

229

27
p22

p4

4
1

22

3
z32

928

27
@ log~mr !1gE#1

484

9
@ log~mr !1gE#2D . ~A1!

2TF
S 19

6
H 2

1

2
F expS 2Aa31Aa3

224a2

2a2

mrD 1expS 2Aa32Aa3
224a2

2a2

mrD G1

a3

2
2a1

Aa3
224a2

3@exp~2Aa32Aa3
224a2mr!2exp~2Aa31Aa3

224a2mr!#J 2
55

27
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27
CA2
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27
TFD

3exp~2Aa0mr!2
22

9
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11
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CA

p
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2

9

TF
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81
1

56

3
z3D

2
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216z3D
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25
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TF1
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4
F log

~a31Aa3
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2a2m2
12EiS 1,Aa31Aa3

224a2
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mrD 1 log
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2a2m2
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Aa3
224a2

S log
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I3~r ,m,m![E
0

`

log
Q21a0m2

Qm
log

Q2

m2
cos~Qr !dQ ~A3!

I4~r ,m,m![E
0

`

log2
Q21a0m2

m2
cos~Qr !dQ. ~A4!

For the runningMS mass one needs to add the following contributions:

f 2„r ,m~m!,m…5 f 2~r ,m,m!2
1

6
CFTFS 413 log

m2

m2D $Aa0mr exp~2Aa0mr!2@12exp~2Aa0mr!#% . ~A5!

Mixed massive and massless fermionic contributions at the two loop level

In this part of the appendix we briefly comment on the type of contribution depicted in Fig. 13. This diagram can c
the same flavor in both loops as well as different ones. In the former case, the contribution is already containe
discussion above. In Sec. II A we demonstrated that for the Gell-Mann–Low function only one flavor needs to be con
On the level of the potential, however, we have also the latter case represented in Fig. 13.

In a practical situation, we can often set the masses of the three lightest quarks,u, d ands to zero. In this case the Feynma
graph 13 contributes with a multiplicity factor 2 and we find the resulting expression

23~Fig. 13!0,m522
4pCF

Q2 S 31

36
CA2

5

9
TFnf1

1

4
b0log

m2

Q2D S 31

36
CA2

5

9
TF1

11

12
CAlog

m2

Q2
2

1

3
TFlog

m2

Q21a0m2D aMS
3

~m!

p2
.

~A6!

In the case of two non-zero and different quark loops we find, analogously,

23~Fig. 13!m,m8522
4pCF

Q2 S 31

36
CA2

5

9
TF1

11

12
CAlog

m2

Q2
2

1

3
TFlog

m2

Q21a0m2D
3S 31

36
CA2

5

9
TF1

11

12
CAlog

m2

Q2
2

1

3
TFlog

m2

Q21a0m82D aMS
3

~m!

p2
. ~A7!

In the above expressions we used again the approximate one loop solution for the vacuum approximation. If desired,
course be substituted with the exact function containing more complicated expressions@24#. We also already divided by a
factor i to obtain the contribution to the potential.
,
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@12# Y. Schröder, Phys. Lett. B447, 321 ~1999!.
07401
@13# J. Collins, Renormalisation ~Cambridge University Press
Cambridge, England, 1984!.
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