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QCD heavy-quark potential to order v2: One loop matching conditions
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The one-loop QCD heavy-quark potential is computed to ovdein the color singlet and octet channels.
Several errors in the previous literature are corrected. To be consistent with the velocity power counting, the
full dependence ofp+p’|/|p’ —p| is kept. The matching conditions for the NRQCD one-loop potential are
computed by comparing the QCD calculation with that in the effective theory. The graphs in the effective
theory are also compared to terms from the hard, soft, potential, and ultrasoft regimes in the threshold expan-
sion. The issue of off-shell versus on-shell matching and gauge dependence is discussed in detail for the
1/(m|k|) term in the potential. Matching on-shell gives arifk|) potential that is gauge independent and does
not vanish for QED.

PACS numbgs): 12.39.Hg, 11.10.St, 12.38.Bx

[. INTRODUCTION The Feynman diagrams corresponding to this expectation
value build up the exponential of the static potential. As a
For processes involving a non-relativistic heavy quarkresult, in computing the static potentis~21) at orderj,
and antiquark, it is useful to combine the expansion of iterations of lower order terms in the potential{~2", n
QCD with an expansion in powers of the relative velocity <j, are subtracted. At three loops Appelquist, Dine and
v. The scattering of a heavy quark and antiquag{,p) Muzinich [3] have shown that infrared divergences are en-
+Q(—p)—Q(p’)+Q(—p’), can be described using a po- countered inv(~>4(R) which are not canceled by simply

tential V, which has an expansion in powers of the velopity Subtracting iterations of the lower order potentials. Thus, us-
and ag: ing the definition in Eq(3) at higher orders in perturbation

- " theory, or generalizing this approach to subleading terms in
N n n_ nj thev expansion, becomes cumbersome as the set of subtrac-
Vip.p )_nzz Ve, e )_,Zl Ve, tions are more complicated, and perturbative subtractions are
insufficient to render the potential in E() well defined.
where A convenient framework for investigating the expansion
vy V(n,j)anajs_ (1) in Eq. (1) is the effective field theory for non-relativistic
QCD (NRQCD), formulated with a power counting in
[4—16]. In the effective field theory, it is more convenient to

An important complication of non-relativistic scatter_ing Is define the potential as the Wilson coefficient of a four-quark
the presence of two low-energy scales; andmov?, which i(()perator[ll]'

correspond to the momentum and energy of the heavy quark,

respectively. In this paper, we will assume that?2 [o=— vV 2Ty T(x

>Aocp, and ignore any non-perturbative effects. P E apro (PP o)
The first term in Eq(1), V(" 2Y, is the Coulomb potential

at tree level: X p, (X)X —pr 1) X~ pe(X). (4)
(—21) Ao In Eqg. (10), the fields¢ and y annihilate a quark and an
vieer=C Ip—p’ 27 2 antiquark, respectively. The fields are labeled by a momen-

tum p, and a greek index for their color and spin. The op-
where the color facto€ depends on the relative color state erator in Eq.(4) is local on the scalg~ 1/mv?2, but non-local
of the incident quark and antiquark. Fpr-1, V(=21) are  on the scalgp~muv. The potentiaV is computed as a match-
perturbative corrections to the Coulomb potential which aréng coefficient at the scalg=m between QCD and an ef-
known to two loopd1,2]. fective theory for non-relativistic QCD valid below the scale
The static potential for a color singl@Q pair is often M- The effective theory is constructed to have the same in-
defined in terms of the expectation value of a rectangulaffaréd structure as perturbative QCD for the two heavy quark
Wilson loop of widthR and lengthT: system. Therefore, defining the potential as a matching coef-
ficient provides an infrared safe definition. For instance, Ref.
[17] shows how the three-loop static potential is infrared

1 . . h .
VE2(R)= — lim .—In<TrPex[{ig %dxMAgTa>>. safe, despite the divergence in the QCD potential of Ap-
T 1T pelquist, Dine and Muzinich3].
(3 Although several different formulations of the effective

theory for non-relativistic QCD are currently in use

[5—16,18—-20 certain universal features have emerged. The
*Email address: amanohar@ucsd.edu on-shell degrees of freedom in the effective theory include
"Email address: iain@schwinger.ucsd.edu quarks with energyE~mu? and momentunmp~mu, soft
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gluons with E~p~mv, and ultrasoft gluons witlE~p  to correctly cancel in the matching. Our results are compared
~mu?. The soft and ultrasoft modes are distinct; for in- to the matching calculation of Pineda and Spt@] for the
stance, a consistent power countingvindemands that the four-quark operators and to the threshold expangib3].
ultrasoft gluon interactions be multipole expandggl9],  The main difference between the non-relativistic theories in
while soft gluon interactions are not. The soft gluons areRefs.[16] and[11,12,19 is the way in which large loga-
essential to correctly reproduce the beta function in the efrithms ofv are summed in the effective theory. There is also
fective theory[14], and run between the scalesandmv.  some difference in the matching corrections; some contribu-
Other massless on-shell fields, such as light quarks, will haviions in VNRQCD that arise at the scgle=m are instead
ultrasoft and soft components too. There are also importartomputed afw=mv in PNRQCD. We will discuss the dif-
off-shell field components, such as the exchange of gluonferences between the two approaches in the text of the paper.

with E~mu? and p~mu that build up the potential. Soft  The full QCD calculation of theQQ scattering to order
heavy quarks wittE~p~mu are also off shell relative to 42,0 in the non-relativistic expansion has been done before

the heavy quark states of interest. These off-shell field compp2 23 In calculating the potentials, Ref22] performs an
ponents can be integrated out of the Lagrangian in the effecgqgitional expansion, assuming

tive theory. Doing this leaves a Lagrangian that is non-local , )

at the scalemv, but local atmv?. This procedure, which (p'+p) <1 ®)
treats the potential components as four quark operators, was (p'—p?2

first seriously investigated in ReffL1], and the resulting ef- . ,
fective theory is referred to as potential NRQQPN- !N the usuab power countingp andp” are both of ordeo,
RQCD). In Ref.[11] it was proposed that the matching onto so the ratio in E_q(S) is of o_rder unity, and cannot be treated
effective theories should take place in two stagesxa&m as_small. For this reason, in Sec. Il we rgdo tI'_1e QCD calcu-
one matches QCD onto NRQCD as originally defined in Ref.Iatlon, keeping the full dependence on this ratio for both the

[5], and then matches NRQCD onto PNRQCD at the scal&°l0r Singlet and octet channels. For the or/d;zé’r spin-
L=mo. independent potential, terms proportional fpHp')“ which

The matching of four-quark operators mtwas consid- Were dropped in previous calculatiof22,23 are necessary
ered in Ref[12], following the proposal in Ref:8] that the to match infrared divergences between the full and effective

matching procedure should be similar to that in heav uarlEheO”es' . .

effective theory(HQET). However, in general this prochqure In Sec. Iil we discuss the ordef’ potential of the form
seems to be slightly problemat[d6]. First note that it is (p'?=p?)?
necessary to include the kinetic term for the potential quarks m2(p’' —p)*
immediately below the scalm. For instance, this is neces- , ) .
sary to reproduce the threshold value of the two-loop anoma=0" free quark states this potential vanishes on shell by en-
lous dimension for the heavy quark production curf@d] ~ €rdy conservatiorp’=p®, and need not be included in the
in the effective theon[16]. With the kinetic energy term potential if one uses on-shell matchif#y]. The potential in

ncluded at leading order, the consisency of thgower idnd 8\ carar Couomo states, and s ofen incluced
counting forces us to have both ultrasoft and soft modeg, 4o quark potential. For instance, the usual Breit Hamil-

right below m(a'oﬂg W'th the multlp(_)le expansion exclf tonian includes a potential of the form in E&). A potential
we note that the kinetic energy term is necessary to correctly . i« only non-zero off shell can be gauge dependent, and
r_eproduce the Cqulor_nbic infrared d.ivergence.s in the eff_ecl“ncluding the potential of Eq6) induces gauge dependeﬁce
tive theory, then it might seem obvious that it must be in-jn the coefficients of on-shell potentials. Using an off-shell
cluded in order to have the correct infrared structure. At ongyotential gives correct results if all calculations are per-
loop, matching exactly at threshold in dimensional regularformed in the same gauge. We will use an on-shell basis for
ization seemed to provide a method of avoiding ffi], but  the potential where the term in E¢6) does not occur. The
this procedure fails at two loops. matching coefficients for the on-shell potential are gauge in-
Since we must include the kinetic energy term for@ll dependent, since scattering amplitudes are measurable quan-
<m, it seems quite natural to immediately consider match4ities. The difference between the on-shell matching potential
ing at u=m onto an effective theory where the off-shell and the Breit Hamiltonian is compensated for by a corre-
potential gluons and soft quarks have been integrated ousponding change in the|p/ —p| potential, as discussed in
Such a formulation was proposed in REE6] and will be ~ more detail in Sec. ll(see also Refd25-29).
considered in this paper. It will be referred to as YNRQCD. In Sec. IV we extend all of our results for the quark-
In this theory it is more appropriate to consider the running@ntiquark potential to the quark-quark potential and in Sec. V
from m to the scalesnv andmv? in a single step. This is We give the QED limit of our results. Section VI gives our
accomplished by using the velocity renormalization grouptonclusions.
[16]. Once the vNRQCD effective theory has been run down
to the low scale, the soft degrees of freedom have served
their purpose and may be integrated out. In this final effec- The vNRQCD effective Lagrangian has the form
tive theory no additional running needs to be considered.
In this paper we compute the one-loop matching for the L=Lyt Lo+ Lp. (@)

Q6 and QQ potentials between QCD and VNRQCD up to The ultrasoft LagrangiarC, involves the fieldsy,, which
corrections of ordep?. All infrared divergences are shown annihilate a quarky, which annihilate an antiquark, and*

(6)

Il. MATCHING THE POTENTIAL TO  O(v?)
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which annihilate and create ultrasoft gluons. The potential=1 (where the usual QCD scale parameter is denoted )by
LagrangianL, contains operators with four or more quark Therefore, for the matching at it is not essential to distin-
fields including the quark-antiquark potential. Finally the guish betweeng and uy .

soft LagrangianZg contains all terms that involve soft fields
which have energy and momenta of ordar. Heavy quarks

with soft energy and momenta are off shell and are therefore

integrated out, so they do not appear explicitlydg. The
terms we need in the ultrasoft Lagrangian are

1 (p—iD)*  p*
— _ “puprv ) 0_—
L,=-ZF FW+§p‘, wp[uD > e o
_ (p—iD)*  p*
T o_ " "7/
+Xp[ID om +8m Xp - (8)

The covariant derivative oy, and x, contains the color

matricesT” and T for the 3 and 3 representations, respec-
tively. HereD# involves only the ultrasoft gluon field§*
=gt +iguiA*=(D%—-D), so D°=¢+iguiA°, D=V
—iguyA. The factors of the ultrasoft scale parameigrare
included to makeg=g(uy) dimensionless imMl=4—2¢ di-
mensions. The ultrasoft gluon fiel* is orderv? and has
dimension ¢, so A*~(muv?)1™¢. Consistency of the
power counting for the covariant derivative dndimensions
then requiresu,=mv? where v~v. This reproduces the
dependence gk, on the subtraction velocity given in Ref.
[16]. The terms we need in the soft Lagrangian are

Es:% {|q'uA(]:]}_
>

p.p’,q,q’

1 _
5 Yo A AW+ iy eqr Cql Yy

qVAGL|2+ §0q¢]¢q+ quch}

2 2€

—g?ud [ Yo AL ATTU ) s,

+(p—x,T—T),
(9)

+ (Y TBZ ) (0 ¥ TB o)

whereA,, ¢4, andg, are soft gluons, ghosts, and massless

quarks. The functiont), W, Y, andZ are given in Appendix
A. After integrating out the soft quarks the Lagrangianis

no longer manifestly gauge invariant with respect to gauge

transformations at the scatev. Therefore, determining the
dependence of the soft scale parametgron » may seem

more difficult than the ultrasoft case. However, prior to inte-

grating out the soft quarks the combinatigngA, is from a
covariant derivative, ané ~(mv)1 €, yielding us~mv in
agreement with Ref.16]. In Eq.(9), g=g(ug). In general it
is important to realize that the scalings ofu, and ug are

different. If the matching calculation is performed at the

scalé m, then for this computatiop=us=uy=m and v

Y1t is not necessary to match exactlyratIf the matching scale is
pn=un~m, then one still setg.,=us=un, andv=1, and factors

The potential interaction relevant for our calculation is

- 2 Vaﬁ)\f(pipl)Mgewp’zwpﬁX—p’IX—pT . (10)

p.p’
The factor of u5° is included so that ird=4—2e dimen-
sions the potential/ has dimension-2. Herea, 8,\, 7 de-
note color and spin indices. We will use the basis in which
the potential is written as a linear combination ab1 and

T2® T2 in color space. One can convert to the color singlet

and octet potential using the linear transformation
1 —C¢

Vsinglet V1®1

[ = s (11

2 Cr

Voctet V1eT.
whereCr=(N2—1)/(2N,) andC,=N,. We will also need
the invariants C;=(N2—1)/(4N?) and Cyq=N.—4/N,.
These arise in the identities

— 1 —
TATE@TATP= — 2 (Ca+Cy) Th0 TA+ Ch10 1,

__ 1 _
TATBR TBTA= 7(Ca~ CyTA®TA+C 1 1. (12)

Written as a matrix, the order 2 Coulomb potential is

V(T) V(l)

VD= (TAR TA)— 2 +(1®1) (13

wherek=p’ —p, and the coefficienty " and V(") have an
expansion inag.
The orderv? potential includes

v vOp2ep) pD
VO =(TAx TA i i
( ) m? 2m?k? m?
v y
+?A(D',p)+FT(k)
V(l) V(l)
+(181) =it (14)
m
where
o1t oy , S (p’'Xp)
== A(p’,p)=—i e
3k'0'1k'0'2
TK)=0q1- 00— ———, (15

k2
and o,/2 and o,/2 are the spin operators on the quark and
anti-quark. Note that on shall’2=p?, but we have written
p?+p’? in Eqg. (14) so that the Lagrangiad, is Hermitian.
The tree level diagram in Fig. la generates terms of

of In(u,/m) appear in the matching coefficients. For convenience®(v?*ag), k=—1, in the QCD potential. Matching at

we chooseu,,=m in this paper.

=m, v=1 gives
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FIG. 1. QCD diagrams for tree level matching.

090099999999,

~
o

Vi =dmaym), V=0, V{P=4amaym),

dmag(m
v@=-$, VD= —6maym),
m
VST):_%(), yW=0, V=0, v=0. (16
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leading-logarithmic values of the ordeP potentials in Eq.
(14) were calculated in Refd.30,20, but are not needed
here. Nonzero values fov{"" are generated in the renor-
malization group flow below the scafa [20], as well as by
the one-loop matching as we will see below.

At one loop the matching onto QCD gives order 1¢rms
of the form

2
v<—1>=%[v§T>(TA®TA)+V(k1)(1® 1],
where the coefficienta’{"? are dimensionless. In=4
—2e dimensions the one-loop matching produces a potential
with the dependencg?¢/|k|**2¢. We have chosen to define
V(=1 by taking thed—4 limit, which differs from the defi-
nition of this operator used in Rdi31].

(18

A. QCD calculation

The annihilation diagram in Fig. 1b generates terms of To perform the potential matching calculation, we con-

orderasv2k,_k>0_in the potential. Using Fierz identities anc_i sider the on-sheIQa scattering amplitude in QCD and in
charge conjugation, these operators can be transformed INRQCD to ordera?v®. We will use the Feynman gauge
S " )

the basis in Eq(14) and give additional contributions to the
matching. Onlyvg'l) receive non-zero annihilation contri-
butions at tree level:

1 (NZ2-1)
VviD=—raym), VH=—T "
s,a S 2N§

N, = 17

s,a mag(m).

regulate infrared divergences with a finite gluon mass
and renormalize ultraviolet divergences with dimensional
regularization and the modified minimal subtractiodS)
scheme. Since the calculation is performed on shell, the re-
sulting matching coefficients will be gauge independent.

We begin by considering the QCD diagrams. The most

The complete tree level matching is given by adding thecomplicated diagram is the QCD box diagrgd2,33 which

terms in Eqs(16) and(17). We have found it convenient to

includes contributions of order 43, 12, 1 andv®, as

distinguish the annihilation contributions by including an ad-well as higher order terms which we do not need in this
ditional subscripta on the coefficients they generate. The paper:

2imm
P

(TATE © TATP) [

io?
=%
w2k

D)
Bimk2A

S5pk k®
2 — ——
{6” Tty

a(5) ~ 41 (53)

A2 A2

| 5_1.9_2_)32 —

kT kR
; }

3K2A — (pk PR
(o + 12 12+ k)

2 2y (kK
+ mp p? — K9 @ = 1) {k2 In (_/\_p) —4p“In (X)}

ink*S?
3mp (4p? — k2
. irk®*T
- 6mp (4p* — k?)
irk’R
~ 2mp (4p? — k)2
i
 2mp (4p* - k)
k

4 E 21,2 4
+ (80p" — 16p% +k)ln(X)}

— {4t - B i (2—;’) + (~8p% + k2 In (5)}
{k2 —4p? + (4p* + k) In (2—13)}

{4p2k2 k-

A

){k2 —4p® + (5k* — 12p*) In (%) — (4p* +k*)In (;)}

A

k
2p
2 2 2
K(4p? + k )1n(7)
_OR | 8ES? T
m?2 3m?2 3m?

+ln (é){56p2 _

k/ | 3m? m?

2Using a finite gluon mass is dangerous in the presence of diagrams with the non-Abelian gluon vertices. All such diagrams we require here

are IR finite in the Feynman gauge.

12k2A B 8k?8? 3 2k2T} 41 k- [4k?
3m? 3m? n( ){nﬂ B

v o
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wherek= k|, p=|p|=|p’| and
R=(p+p’)-o1(p+p’)- 0,.

(20

The real part of the order d/amplitude agrees with Reffi22] in the limit p—k/2. We have kept the fulp dependence since
taking this limit is not justified by the power counting. We have also kept imaginary terms generated by the cut amplitude to
emphasize how these terms are correctly reproduced in the effective theory. The real part of the spin dependéht order
amplitude agree with the result in R¢B4]. The real part of the spin independent ord8ramplitude agrees with Ref23],

except for the order® In(k) and Inq.) dependence. The difference is due to the condifidr p|<k which was imposed in
Refs.[22,23, but which violates the power counting[For the crossed box given below in E§1a), the order® In(\) and

In(k) also differs from Ref[23].] The remaining direct scattering diagrams are less complicated since they have no cuts:

_ia2 AB =BARA k2 7T2k

Ay [8k%  56p® 12K2A  8k2S?  2k2T
+In (E){W T3 T T2 32 T 3z }
+In (ﬁ){ J —2’“252} 2k 2k*8? KT

m m?  m? m2  3m? = 3m?|’

P E e 2k
| +[§&% - A;C(T ®T)3m( )+4+ZZ
o (EV[4F_4EST BT akPA
(D) -2 - -2
N [6p7  9K*A 2k2S? kT
+in (o~ o~ e~ i)
4P 8K 2KS? BT
m2 m2 m2 2m2 3
— ia? 22
E E . p
E + 3 = —? (2Cp— Ca)(T* 0 T*) [{2111 (7—n—2)+1n (—2)+4}M
"}m-mg(}(‘ +_IEZ_ B 2/9282 B k2T 2]{?2/\ 4/€2 | A
m2 " 3mz T 6mE  mZ " 3m2 n(a) ,
QGG%
- E _ ia2 °Cp T4 o 74 5] A2 : 2
I R (GO CHR
o El 2 \
e, Iy _ oy A o A [ O 7 31 0
'@zg@ + \a// = = CA(T T ){gln(ﬁ)+§}M ,

and the light quark loops famn; flavors gives

_ia? 2 20
%) -2 (TA®TA){ m(5)+5 }MO,

while the heavy quark fermion loop gives

é — (4 2 4k?
A Ay 2 H Nar0 357
k2 TF(T er ){3 In (mz)M 15m2}'

In Egs.(219—(21g the matrix element

MO— 14 p?> k®’S 3k2A KT
m2 3m? 2m? 12m?

(219

(21b

(219

(210

(219

(211)

(219

(22)

Note that we disagree with Ref23] on the ordew?® spin independent part of EqR1b). Referencg 23] has an additional
non-logarithmic Ih? term. The difference arises because we find a different value for the ldrtierm in the non-AbeliaifF ;

form factor. Equation$210—(21g) agree with Ref[23].
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The diagrams in Eq9.19) and (21) have contributions from several different scales. In particular, in the language of the
threshold expansiofil3], the hard regime gives Ip{/m)’s, the soft regime gives In(/k)’s, and the ultrasoft regime gives
In(w/N)’s. There are alsoIn(\/p) andi In(\/k) terms from the Coulomb divergence in the potential regime. In addition to
logarithms, all regimes can give constant factors. In the effective theory, terms from the hard regime are absorbed into
matching coefficients such as the four-quark potential operators and the remaining terms correspond to graphs involving modes
in the effective theory. These graphs are discussed in more detail below.

Next consider the one-loop annihilation diagrams in QCD. Since the intermediate gluons are hard, we expect these graphs
to include a factor of 1h?, thus giving hard ordes® contributions to the potential. However, the graph in &80 also has
terms enhanced by a factor wi/p, which are order 1/ contributions.

T+ L =Rl one (F-royrors)

x (82 —2)(m+2—21n2)—CA{(%;T”(l@l)Jr (TA®TA)}
ir 1 In2 _ /A

* S’{i?a-%- ()] (233
:l?;@mm’< + >o'o‘mf@:j: =—-—= CA {(TA ®TA)NC l1el)y~—_=—m-= (N2]\7 1)}

st{aln(i“ﬂg*?l?‘%}’ @3
;>«m< >mm€ —Ca) {(TA ®TA)N 1® 1)(N22N 1)}

x S {ﬂpm-i—?”;mln(%)—él-l-ﬂn( ) +4ln (T’:l)} (230
%ﬂm< + perms =:—§Cp{(TA®TA)N (1®1)%2}

><S2{ln(:;)+ln(m)+2}, (239
el mOn( = Lalaeorn L aonlED)

sz{ln(Z—Z)—2ln2+?—;+iﬂ}, (238

and the light quark loop fon; flavors gives

;2
0= -2 orng ruon i)
xs2{1n(m)-2ln2+§+m} (23f)

while the heavy quark loop gives

’O‘ Tr f 4 o 4 (N2 -1)
Ol =2 3{(T ®T) +1onEs }
2
2 [ 8

x S {ln(ﬁ)+§}. (239
In the limit p—k/2, the results in Eq23) agree with Ref[22], except for Eq(23¢) and differences that can be accounted for
by the fact that we are usingS rather than an on-shell subtraction scheme. For(E8p), Ref.[22] has a—2w?m/k term
which for us ism?m/p. The sign for ourm?m/p term is in agreement with Reff35]. The imaginary parts of these one-loop

annihilation amplitudes agree with R¢&]. Note that in Eqs(19), (21), and(23), as= a(u).
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B. Effective theory calculation

The effective theory contains potential, soft and ultrasoft loops. We have organized the terms by their order in the velocity
expansion. The order in can be determined using thepower counting formufhin Eq. (40) of Ref.[16]. A loop graph with
two insertions of the Coulomb potential contributes to @>Igotential, and with an insertion of one Coulomb and 4%

potential contributes to a d/potential. A soft loop with two vertices of order ando’ contributes to the oro' =2 potential.
Graphs involving the exchange of an ultrasoft gluon begin to contribute to the potential av Byddc.

1. Order ¥v°
In the effective theory taking two insertions of the tree level Coulomb potential in a loop gives the only diagram that is

order a?/v*:
_ WP ars o sy 2imT K

Taking x=m and v=1 and using the tree level value ¥{", this graph exactly reproduces the orde¥/v® “Coulomb
singularity” term in the QCD box diagram in E@19). Thus, there is no matching correction at this order.

2. Order ¥v?

At order ai/u2 in the effective theory, the only non-zero diagram involves the exchange of soft gluons, ghosts and quarks:

’ia2(/./,s) A - =a | 4TFny —11C, (1 ,U%- 20Tpny — 31C4
% § == (Tt e T | —1—= {g+ln(——2—)}+———9 : (25

where 1E=1/e— y+In(4m) is the combination subtracted in {0 zero. For the Inf) terms this is a consequence of the

the MS scheme. The divergence in this graph is responsiblé,(vard identity derived in Ref.3]. . :
for the one loop running o\‘/ff’ . At one loop, to ordev? the The constant factor (Agn;—31C,)/9 vanishes in the

. . matching condition am, and is carried to scales belawby
effective theory counterterm@nd running of the potentigl the soft modes. If at the scate=v,~k/m we integrate out

were computed in Ref20] and from now on tzhe Eldepen-  the soft modes, then the Coulomb potential for the theory
dence will be dropped. The sum of ordef/v? terms from  pejou this scale),;, will obtain an additional contribution

the QCD diagrams in Eq¢19) and(213 is from this second stage of matching’(v,)=V " (vy)
—(20Teng—31C,) @2(mu})/9. In this expression (" (v,)

. 2 2 2
M(TA@)?A) ﬁm Ll 4Tan—11CA £ is the value oﬂ/(cT) obtained from running this coefficient
k? 3 m? 3 k? from v=1 to v=v, using its two-loop anomalous dimen-
sion. This reproduces the constant factor that is typically
N 20Tgns—31Cx (26) associated with the Coulomb potential at next-to-leading or-
9 : der (see for instance, Refl]). Similarly, one can obtain the

analogous terms from the matching contributions fordfie
At the scaleu= ps=m the MS values of Eq(25) and Eq. potentials amv from the value of the soft loops given in Eq.
(26) are identical, so there is no one-loop matching correc{3D).
tion to V.. The difference in Ing)’s in Egs.(26) and(25) is

the change irB function fromn¢+ 1 to n; flavors. We would

expect a new contribution t, only if the QCD graphs have ~ The possible ordesZ/v diagrams with soft gluons vanish
a contribution from the hard regime where energy and moexplicitly, so the only ordenﬁ/v diagrams in the effective
menta are ordem. In Egs.(21b), (210, and(210), the fac- theory involve two iterations of the potential. There are two
tors of — 3 In(m?) +4 are from the hard regime, but they sum diagrams with insertions olfi(cT) :

3. Order Yv

Cc

Ve Ve Vo Y .
VP ars o i
-+ AE>Q<= - TATP @ TAT? (Ir + 207 1), (27)

3Here the power ob is given for the amputated diagram, so unlike Ef) in Ref.[16] the factors oy associated with external lines are
not included.
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where the integrals, and! ¢ are given in Appendix B. The dependenceldft is not needed since tree level matching gives
Vgl)z 0. In the first diagram in Eq27), the cross denotes an insertion of fifém® operator from Eq(8). The second diagram
is nominally ordera?/v?; however, it depends on the heavy quark endggyp?/(2m) —p*/(8m®) + - - -. The graph includes
a contribution of order?/v when the energy is expanded in terms of momenta, which we indicate by the preA&ctorEq.
(27). Each of the diagrams in E€R7) has an IR divergence that is not regulated\hyut the IR divergence in the sum of the
integrands for the two diagrams is regulated.

Additional aﬁ/v diagrams are generated by including one insertion of the Coulomb potential and one bpiential:

VC V’r VT VC

DOV L ,
Ve Vs Vs Ve .
PP(T) -
Ve Va Va Ve iV(T)V(T) o
O+ O = BT T o T (A ) ). (289
Ve v, Vs Ve _ip@y@ o

—doy - 02(Ip - 315) + R(12]p - 12[A+3[o)} , (280
vc vs,a. vs,a VC iV(T)V(T) . -
m
VDY) i}
pie Tea 2 TAQTA (% 20p). (289

The last two diagrams involve insertions of terms in the po-coefficient for the annihilation graphs if the results of Ref.
tential generated by the tree level annihilation diagram. I{22] had been used for the full theory graph.

Egs.(27) and(28) the dependence onzll potentials whose The matching coefficients in ER9) correspond to a con-
coefficients vanish at tree level are not shown. Thus, both thiibution to the 1 potential at the scalg=m, which does
1®1 andT®T contributions are only shown in E¢28e. not come from the hard part of any graph. This is in apparent
The new integral$p, I 4, Ig, I, andlp that appear in Eq. contradiction with the threshold expansion. It also appears to

X i ; ; : . disagree with Refd.19] and[31], where the 1k| four-quark
(289 are given in Appendix B, anR is defined in Eq(20). . - . .
) . X . potential operator is said to only arise at the seale How-
The infrared divergences in thevlamplitude are due to ever, in Refs[19] and [31] a formulation of NRQCD is

the Coulomb singularity. The .d|vergenpes in the full theorybeing used in which off-shell potential field components
are reproduced by the potential loops in EGS) and (28). L3y not been integrated out for scates< w<m, but in-
The imaginary terms in the amplitude from the QCD boXgieaq are considered to be dynamical fields in the Lagrangain
graph exactly agree with those in the effective theory, and d?see Refs[7,10)). In the full theory the 1k| terms come
not contribute in the matching coefficients, as expected. Sulgrom three types of graphs, shown in E49) and Egs.
tracting the effective theory graphs in Eq®7) and (28)  (21a,(21b). At the scalem there are now effective theory
from the ordera?/v terms in Egs.(19), (218, (21b and  graphs analogous to those in E81b) but with two A® po-
(230 gives the matching result for thé" 1) potential atw  tential gluons and ond&' potential gluon, which reproduce
=m, v=1: the 1/k| term. For the box and crossed box in Feynman
gauge the 1k| terms are reproduced by contributions that
7Ca  Cy4 . Ci can be associated with the potential momentum regime.
- E) 1% )=as(m)7. (290  Thus, in Refs[19] and[31] the 1/k| potential in Eq.(29)
effectively exists at the scala. In our approach off-shell
potential gluons and soft quarks are integrated out, so the
For the color singlet channel this gives the matching coeffimatching for the 1k| potential is not simply given by the
cient V= a?(m)(C2/2—C:C,) in agreement with Ref. hard part of the QCD diagrams in the threshold expansion.
[23]. Note that the real part of thedlamplitudes in the full 0
and effective theory has a complicated dependenge amd 4. Orderv
k, but the momentum dependence of the matching for the For the ordera?v® matching we will consider the direct
direct potentials in E(29) is only of the form 1k|. For the  and annihilation diagrams separately. The sum of the order
annihilation graphs the fi/terms cancel between the full and «2v° terms in the direct scattering QCD diagrams in Egs.
effective theories. There would have been a bdatching (19 and(21) is

Vi) =ag(m)
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. 2 -2 2
fas(w) ) ki 8 [\ tag(p) _, —, |p°[31C, 16C, [N| 38Ch ,u)
- mz (1®1)C1[4—25 +21In a _§|n E - m2 (T ®T ) E 9 + 3 In ; + In I
8C: 2Cy4 N [7Cq 4SCA> (M 8Cr 31C, cd> w
+ ZCF_3CA_Cd+ 3+3_2CA)In(M)+(6_ 6 In E + T‘f‘ 6 —7 In a
1CA ,bL M > Cd l?CA 4CF CA ,LL) 7CA M
TA| T TG TCAN k)_4CAIn<m S22 m T3 e Mk N
T 49C, Cg SCA| (u (:AI M) . 4I w2\ 20/ [p? S 3A T
N1 T3 e Mk T3 MM T3 e T e 32 T2
4T 2\[p? & 3A T| 4T
AN (UL A LN Al (30)
3 \m?/lke 3 2 12[ 15
The effective theory contribution from ordezrgu0 diagrams with soft gluons, ghosts or quarks is
_10(us) 14C, . usy G
102(Bs) (ra o A usy [43  38p° §2 5T
el AaCrANG o L2y = =0 ==
+ == ( ®T)CA1n(k) 5~z tTAt Gt
7Cd Hms Cd 7CA 310,4])2 7CAA 14CAS2 13CAT
——Z% (== e T -
s (Pt o 6 57 " 108
4. ud 20}{1)2 S2 3A T
—In(ES)y+ oW 2 2o .
+"fTF{3 (B TNETT 2 12} 31

There are also non-zero ordeév0 diagrams with an ultrasoft gluon and one insertion of the Coulomb potential. These
diagrams were calculated in R¢20]:

% + ... = %as(ug)as(py) In (%)[—Cﬂl@l)

= Cd 3CA 2p20,4
TeT 4 _xA
+T® ){CF+ T 1T Tl (32
|
In Eqg. (32 the ellipses denote all possible diagrams that are VD=—L(Ce+Cpa?(m), V=0,
generated by attaching the ultrasoft gluon to two fermion
legs. Subtracting the sum of Eq81) and(32) from Eq.(30) . N , , )
and setting=pus=u,=m gives the one-loop matching V3§ =(2Ce—HCy—5Ca+ 75 Tr) @i(m),
contribution for the orden? direct potentials. At order® we
find that all the infrared divergences in QCD are matched b
v N Y V= 2Ciadm). 33

infrared divergences from the effective theory graphs with
ultrasoft gluons. All Ink)’s in the full theory are matched by
In(k)'s in Eq. (31). The contributions to the matching coeffi- The total ordem§v° matching coefficients are given by add-

cients at one-loop are ing the tree level values in E¢L6) to the results in Eq(33),

and are summarized in Table | at the end of the paper.

y(W=0, yW=p, Next consider the matching of the ordefv® annihilation
contributions. Since there are no corresponding diagrams in

Vg): —4(CF+CA)a§(m), V(Al)ZO, the effective theory, the sum of tmﬁvo terms in Eq.(23)

directly gives the matching coefficients. This sum is infrared
finite. Matching atu=m,»=1 we find that the one-loop
VD=(iCy—2Ca—2Cp)ad(m), VI=-2Ca%(m), annihilation contributions to the potential coefficients are
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M Cy ) 5 1 (109C, TABLE |I. Matching coefficients for the quark-antiquark poten-
Vsa= N —2C|(im+2—2In2)ag(m)+ N 36 tial at u=m,v=1. The tree-level contributions are the ordey
[ Cc

terms, and the one-loop corrections are the oraﬂérterms. The

neTe 5 8T values are for the on-shell potential, so all off-shell potentials such
—4Ce+ T( 2In2— 3" i 77) - T] aﬁ(m), as theV, potentials in Eq(35) are set to zero. Contributions to the
matching from annihilation diagrams are given separately and are
denoted by an extra subscript
C, C4(N2-1)
yR={ T " (it 2 2In2) aX(m) VD 4magm)
N 8Ng Vt(:l) 0
(T)
(N2—1) (109C, sc V(kl) a?(m)(§Ca—5Cq)
oNZ | 36 - Vi e¥(m)ic,
VD 4mzag(m)
N Te 5 . 8Te| , vy o
3 (2'”2_ 377y [as(m), V(I —6may(m)—4(Ce+Ca)a(m)
(1)
vy’ 0
(T)
- Cq _ ) Vs —3may(m)+(3Ca— 5Ca—3Cr) s(m)
V2,a:_ m—ch (im+2—2In2)ag(m), V(sl) —2C1a§(m)
Cc
V(D —3mway(m) - 35(Ce+Cp)aZ(m)
2 Vi o
C,; Cy(Ng—1
Y=ol 2y d(—cz) (im+2—2In2) a?(m). VD (2Ce— 13C4— 5Ca+ 15 T) a?(m)
: N 8N?2 vE  HcCiai(m)

(39 .
The imaginary terms in these potentials contribute to the’ (STa) Wcms(mH(T[\jccd_ZCl
cross section for annihilation of a color octet heavy quark 1
and anti-quark into light hadrons, and agree with the results +—
of Ref. [5]. The total annihilation contribution to the order N
aﬁuo matching coefficients are given by adding the tree level (N2-1) 1 (N?-1) . 5
results in Eq(17) to the results in Eq(34), and are summa- Vs, Ty\|cz—7""s(m)+ ﬁccﬁwcd (im+2=21In2)ag(m)
rized in Table I. ¢

(im+2—21n2)aZ(m)

nfTF ) 8T|:
or-acet " @iz -im- 5 e

[

If a different matching scaley;,, had been used, then the (Ng_l)(@ 3 niTe s _ﬁ] 2
coefficients in Egs(33) and (34) would also depend on " 2N 3% Cam4Ce+ 3 (2In2757im) = 5~ jas(m)
In(u,/m). Since the prediction for observables is independent 1
of wn, the most convenient choiceu,=m, has been V) —2(mcc,—2c1 (im+2—-21In2)aZ(m)
adopted. ¢

In the threshold expansion, the full QCD diagram is the 1 (N2—1) _ )
sum of hard, soft, ultrasoft and potential graphs. The softy() —2|{ Gt oz Ca (im+2-21n 2)ag(m)

C

ultrasoft and potential graphs are the graphs in the effective
theory up to renormalization effects such as the dependence
on the scalesg and w, . The matching conditions in Egs.
(33) and(34) can also be computed from the hard part of the

full theory graphs, and we have verified that this gives theVeltmann scheme for the epsilon tensors so #)gat,; and
same result as in Eq$33) and (34). The matching onto €% are only non-zero when the indices are in four and three
four-quark operators was first considered by Pineda and Sodimensions respectively. This convention was used in both
in the context of PNRQCI12]. In their approach, the hard the soft loop integrals as well as when cross-checking our
parts of the vertex correction and wave function renormal+esult by computing the hard part of the box diagrams using
ization are included in matching coefficients in the singlethe threshold expansion. This scheme dependence is related
heavy quark sector of the Lagrangian. The direct matchingo the issue of evanescent operati86—38. The annihila-

for four-quark operators is given by the hard part of the boxion results in Eq(34) agree completely with Ref12].

and crossed box. The hard part of our box and crossed box Note that in a leading-logarithmic expansion the two-loop
agree with Ref[12], except for the finite part of the; -0,  anomalous dimension is needed at the same time as the one-
terms, which causes ouri” and V" to disagree with |oop matching results. In the color-singlet channel the? 1/
theirs. This is related to the treatment of epSilon tensors anﬂNo-|oop anomalous dimension is knOV{ﬂ,Z], since the

the non-relativistic reduction of matrix elements of spin op-rynning of the Coulomb potential is still given by the Q@D
erators ind dimensions. We have chosen to take the lowesfynction at this order. The result for the two-loop anomalous
order term in the matrix element of“y”y")® y1,7,74 10 dimension forv() will be presented in another publication

be €, 50 o¥ok , and have used the 't Hooft— [39].
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Ill. TERMS IN THE POTENTIAL WHICH VANISH
ON SHELL

For the scattering Q(pS,p)+Q(p3,—p)—Q(p3.p’")
+Q(pY,—p’) consider adding
(P3—pY)°
s

(p12_ p2)2 (35)
m2k#

VO=[vD(TAeTH+VH(101)]
+V QT e+ VY H(1e1)]

to the potential in Eq(14). Herek=p’ —p and by energy

conservatiorp— pd=p5— pJ. On shell, the potentials in Eq.

(35) vanish, since$=p3, p3=p5, andp?=p’2. However, if

we work off shell, they are valid terms and in fact show up in

PHYSICAL REVIEW D 62 074015

Vl=4maym), V=0, v{=0, v{=o0,
(36)
while in the Coulomb gauge one gets a different answer
vil=0, V{{=0, V{)=-4ma(m), V{}=0. 37)

Unlike the on-shell potentials discussed in the previous sec-
tion, the matching conditions for off-shell potentials are
gauge dependent. Using the expressions for the soft vertices
in Feynman gauge in Appendix A, the one loop anomalous
dimensions are

Jd
T)
v— V3= —2Bag(mv)?,

J
v—V{H=0.

J
—py0_
14 VAl e

v (38)

many calculations that make use of time-ordered perturba-

tion theory.

Matching to the tree level diagrams in Fig. 1 wi]
* pg gives a contribution to the potentials in E§5). In the
Feynman gauge one finds

Vc Va VA Vc iV(T) V(AT) B I 1)
+ — ¢ . T A A
><>m< >a©< e T TP e TATP 4 DE A T Ay

Including the potential in Eq35) modifies the matching
condition for the 1k| potentials and also makes this match-
ing gauge dependent. This is because in the effective theory
there are now two new order?/v diagrams:

SP(T L

In Eq. (39) the box labeled by, denotes an insertion of for arbitrar%/g(T'l). For instance, at the matching scale taking

both operators in Eq35), the ellipses denote operators that {(V=0,7(T

vanish by the equations of motiofproportional to p‘f

—p?/2m,p3—p’?/2m etc), and we have defined
v=y@+v @, vP=vH+v{. (@0

In the Feynman gauge the matching conditions in 2§)
now become

———), ViP=a2(mCy, (42)

while in the Coulomb gauge

VR=Cpal(m), V{E=0. (42)

—8mag(m) effectively transforms the Feyn-
man gauge result in Eq$36) and (41) into the Coulomb
gauge result in Eq¥37) and(42). Furthermore, taking®

=0 and {("=4maym) transforms the off-shell Coulomb
gauge result into the on-shell result in Sec. Il. These trans-
formations convert terms in the potential that are orglgr°

to orderaﬁ/v. Similar transformations for the position space
color singlet potentials have been pointed out previously in
Refs.[25-27.

IV. QUARK-QUARK POTENTIAL

The quark-quark potentials in the effective theory can be
defined in the same way as the quark-antiquark potentials.

The only difference is that the(" terms are now the coef-

The 1Jk| potential is often referred to as the non-Abelian ficient of theTA® T tensor, rather than th&*® T* tensor.

potential. From Eqgs(41) and (42), we see that the [K|

The computation of the quark-quark potential is almost iden-

potential only vanishes in QED if the potential is taken totical to that of the quark-antiquark potential. The result can

The result in Eq(39) shows that in the off-shell matching the annihilation terms, and making the substitutioDg

potential one can make the replacements
V(D v+ (M)

V-V 4+ D)

1 1
ViD= VID+ VD (= 2 (Car oD,

77_2

1
v vB+ @vgﬂclgm, (43

——Cq andTA—>TA. The change in sign ot arises from
the identities in Eq(12). ReplacingT by T in these equa-
tions changes the sign of th&, terms.

The potential in the symmetric and antisymmetQg

color channelgthe 6 and 3 for SU(3)] is given by

Ne—1
[ Vsymmetric Jz 2N, Vie1 (44)
Vantisymmetri N.+1 Viet)
2N,
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The spin-1QQ combination is spin symmetric and the Fore'e™ we haven;=0 and the terms in ow? potentials
spin-0QQ combination is spin antisymmetric. For identical agree with Ref[15].

fermions in the initial state, for the symmetric spin-color  For identical particles with charg®, there is only the
states we must antisymmetrize the potential in the momentajirect potential contribution, which is given b®2(Vg
V=V(p,p’)~V(—p.p’), and for the antisymmetric spin- +V., 1), with C;=Cr=Te=1, C4=Cy=0, anda,— a as
color states we must symmetrize the potential in the mogpove. As discussed in Sec. IV, including the crossed dia-
menta,V=V(p,p’) +V(—p,p’). This corresponds to includ- grams gives a final potential that is symmetric or antisym-
ing the crossed diagrams in the computation of theénetric in the momenta depending on the symmetry of the

potentials. spin state.
V. QED
. . . . VI. CONCLUSION
It is straightforward to obtain the QED potential from our N
results. For oppositely charged particles of charg®, the We have computed th@ Q andQQ scattering amplitudes

QED direct potential is given bR*(Vys1—Vrs1), Where  jn QD to order?, and compared our results with previous
Y1®l_and_VT®T are given by our QCD results WitlC,  caicylations. We have also computed the scattering graphs in
=Cp=Tg=1, Ca=C¢=0, andas—a. The on-shell 1k|  \NRQCD, and computed the matching conditionzatm
potential does not vanish in this limit. In the results for thepy .. aen the two theories. The matching potential was com-
annl_hl_latlon potentials at t_he scaie_ln Eqs._(l?) and (34), puted using on-shell matching, omitting terms which vanish
explicit factors ofN, were included in the Fierz transforma- by the equations of motion. The result was compared with
ilr?gs,escr)egﬁss:lmplest to just separately list the QED limit of approaches that include terms in the potential that vanish on
' shell. The one-loop matching coefficients are summarized in

V= —(im+2-2In2)a?(m)Q?, Table I, and can be combined with the two-loop running to

give the potential at next to leading logarithmic order. The

(1) 2 44 ng computation of the heavy quark production current at next to
Vi=ma(mQo+{ — —+—= : ) . ° .

sa 9 3 leading logarithmic order uses these results and will be dis-

cussed in a subsequent publicat{@9].

5
x| 2In2— ——iﬂ-) a?(m)Q?,
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APPENDIX A: COEFFICIENTS FOR THE SOFT LAGRANGIAN

The coefficient functions for the soft Lagrangian in E§). in the Feynman gauge are

1 Ug@:_(zp’—Zp—Q)i’ Ui(g):_(lo—p’—q)i Ui(_o):—2q°5n',
i ®-p? (-2

U(O):
® q (p'—p)?

(A1)

yw_ (P'FPa (p'4p)-q icea[ax(p—p)]  (pP—p?)

©7 2m@®)?  m(p'—p)? m(p’ —p)? 2m(p’—p)?’
U(()P:_(|0+|0’)i+icF<0|><<r)i+ a’(p+p)' iceql(p—p") ¥ o]
2md’ 2m¢®  2m(p’'—p)? 2m(p’ —p)?
s _ (PP) icel(p-p'ra)xo]  d’(ptp) iceq’l(p—p)x o]
° 2md 2mg 2m(p’—p)>  2m(p'—p)?
icrelk ok (p+p")"+icee™(p—p')ko’

U= ————+[261q"+ 6M(2p’ —2p—0q) + &M(p—p’'— )’
i om T[28%q (2p"—2p—q) (p—p'—09)'] mp’ —p)?

@_ CoP’=P)? cdo(p'xp)  (p-q)?+ (P (2-Co)(P—p")-q, (1-Cp)d’
8m2q0 4m2q0 2m2(q0)3 4m2q0 4m2q0
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@)= [p-ap+a)'+p'-a2p'~q)'] icelgxol(p+p’)-q (co-D(p—p'+a) , (2p'~2p—0)

4m?(q°)? 4m?(q%)? 4m? 4m?
o cso-(p'xp)| (p'2-pd o (2p'=2p—q)'(p'*—p?)?
PR s L(p+p) +ceia (p' X p)]— YR vE—

(p"—p) 4m“(p'—p) 4m*(p’—p)

y@_ [P-a(P+p'+a)'+p"-q(p+p'~)] icel(p—p’'+ @)X ol (p+p)-q (co-1)d  (p—p'~0)
00— — - + +
4m?(q°)? 4m?(q%)? 4m? 4m?
Co Cso-(p'xXp)| (p'?-p?) . (p—p'—q)'(p'>~p*)?
- - [(p+p")'+cria (p'Xp)] -
2 (p'—p)? ami(p —py b TR PR 4m?(p' —p)*

y@_ PP (PP ci(p—p)-ad’ ice(ptp)l(p—p)x ol iceeda-(ptp))
1] 4m2q0 4m2q0 4m2q0 4m2q0

+icFe”"ak(p+p’)~q+(1—CE)q‘(p—p’+q)i czqs’ i8g°csia(p'xp) 20°8 (p'2—p?)?

4m2qo 4m2q0 4m2q0_ 2m2(p1_p)2 4m2(p/_p)4 ’

00 2m Zm(qO)Z ’ Oi 2mqo ’ i0 quoa ij 2m,
\((0>:__q0 vy 3 (PP +iceo-[aX(p—p')]
(p'—p)? 2m(p’ —p)? ’

Y(Z): CDqO . CSi g (p/ X p)qo
8m?  4mi(p’'—p)? '

ZO= = 70_-g zM-o, Zi(l):_(p+p')i_ic|:[(p_p')><o-]i,
(p'—p) 2m(p’ —p)*
2oL 1 c_D_cSia-(prxP)’ 7@ =0.
am?[ 2 (p'-p)?

These expressions differ from those in R&0] by terms proportional tp’2— p?, and the values in Eq§A1) are the complete
on-shell expressions. Thg'2—p? terms were not needed in calculating the one-loop running of the on-shell ofder
potentials in Ref[20]. In Sec. lll, these terms were used to compute the running of the off-shell potential (88Ecand this
result depends on the fact that we used the on-shell soft Lagrangian. The coefficient§Af)E@n be written in a manifestly
Hermitian form; however, we have instead usge:q+p—p’ andq’°=q%+ p°—p’? to eliminateq’ since this form is more

convenient for calculations. Reparametrization invarigdé® can be used to eliminaig; by the relationcs=2c—1. The
running ofcp andcg is given in Ref[41].
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APPENDIX B: INTEGRALS

The effective theory integrals that appear in E@¥) and (28) are

I=fd3q ! S In()\—z)
° [(q—p)2+N2][(q—p') 2+ \2][q?—p?—ie] 8m|plk? | k2]’

I —fdgq—1 _
F (q-p)2(q—p")2 8k’

| fd3 ! ! + | | (2|p|) (B1)
= = n -,
) q[(q—p’)2+)\2][q2— p2—ie] 16p| 8mlp[ | A
and
q -
d’q —=(p’+p)'la,
f [(@—p)2+N2][(q—p')?+N2][0?—pP—ie] )
f qq
d’q —=58g+(p'—p)'(p'=p)lc+(p' +p)(p'+p)lp,
[(a=p)?+N?][(a=—p")?+\?|[g*—p°—i€]
(B2
wherek=p’—p and
_ (2|pl[k|—k?)— 2ik?In(2|p|/\) — 4i p?In(\*/k?)
A 16| p|k2(4p2—k?) '
- _ (2lp|~[k]) -+ 2ilplin(ap?lK?)
® 16m(4p2—k?) ’
| _ (2lpl|k|—k?) 7~ 2i(4p?—k?)— 2ik?In(2|p|/\ ) — 4i p?In(N?/k?)
¢ 32m|p|K2(4p2— Kk?) ’
= 2|p|— kD) ?(4|p| +|k|)|k| 7+ 2i k?(4p?— k?
D 32W|p|k2(4p2_k2)2[( [Pl —[kD*(4lp|+k][K[ = (4p*—k?)
2 A2
—2ik2(12p2—k2)ln(¥) —4ip?(4p*+ |<2)|n(p . (B3)
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