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We obtain the rotational spectrum of strange multibaryon states by performing 3¢ &lllective coordi-
nate quantization of the static multi-Skyrmions. These background configurations are given in terms of rational
maps, which are very good approximations and share the same symmetries as the exact solutions. Thus, the
allowed quantum numbers in the spectra and the structure of the collective Hamiltonians we obtain are also
valid in the exact case. We find that the predicted spectra are in overall agreement with those corresponding to
the alternative bound-state soliton model.

PACS numbd(s): 12.39.Dc, 21.10.Hw, 21.8%a

I. INTRODUCTION have been founfB]. They are based on som@msazewhich
are written in terms of rational maps and take advantage of
In the Skyrme mode]1] and its generalizations, baryons the similarities between multi-Skyrmion fields and
arise as topological excitations of a nonlinear chiral LagrangBogomol'nyi-Prasad-Sommerfield monopoles. These devel-
ian written in terms of meson fields. These types of model$pments triggered several investigations concerning the
have been quite successful in describing the properties Qfroperties of the multi-Skyrmionuch as, e.g., vibrational
single baryons such as the nucleon and the strange hyperoggcitations[9]) as well as their application to baryonic sys-
(see, e.g., Ref$2,3]). This has lead people to investigate the tems containing strangends9,11] and heavier flavorgL2].
lowest energy Skyrmion configurations with a topological The extension to flavored multibaryons is also motivated by
number greater than one, which are of inherent interest age advent of heavy ion colliders with the possibility of pro-
examples of three-dimensional solitonic structures and maygucing strangg13] and even charmefiLl4] multibaryonic
also be relevant for nuclear physics. These studies were atates with rather low baryon number in the laboratory. To
ready started by Skyrme in his pioneering papers at the betescribe the strange multibaryons one has to extend the
ginning of the 1960s. However, it was only in 1987 that themodel to SU3) flavor space. Here we follow the scheme in
minimum energyB=2 Skyrmion was correctly identified which the classical background configurations are simply ob-
[4]. Some time later the authors of R¢8] found the solu-  tained by embedding the $2) static multi-Skyrmions in the
tions with B=3, 4, and 5 by numerical relaxation calcula- jsospin subgroup of S@3). Such embedded classical con-
tions. Finally, a few years ag6], after some demanding figurations are known to be energetically favored with re-
numerical work, the global minimum energy configurationsspect to alternative nonembedding configuratifis and it
with some higher topological numbers were constructedis unclear whether quantum corrections could change this
One particularly interesting aspect of all these multi-sjtuation. In order to obtain the spectrum with states of well-
Skyrmion fields is that they are very symmetric. While for defined spin and isospin quantum numbers, as well as their
B=2 the symmetry group corresponds to that of a torus, fokplittings, we have to perform the quantization of the(3U
B=3,4,7 they possess the symmetries of the platonic polyembedded classical solutions. However, the presence of the
hedraTy,0p, 1y, respectively, and foB=5,6,8 the dihedral rather important symmetry-breaking terms associated with
symmetriedD ,4,D,4,Deq, respectively. FOB=9 there isa the mass of the strange quark makes the quantization process
subtlety which brings some uncertainties about the existingiot completely trivial. In fact, two alternative methods have
identification of the lowest energy configuratipfl. Thus, in  been suggested in the literature. One is known as the bound-
this work we will restrict ourselves to the study of the con-state approacfil6] (BSA) in which strange baryons are de-
figurations withB=<8. It should be stressed that, in spite of scribed as S(P) rotating soliton-kaon bound systems. The
the symmetries mentioned above, the multi-Skyrmion fieldsther scheme assumes that the strange degrees of freedom
are very complicated functions of the space coordinategsan still be treated as rotational modes but the corresponding
which are only known numerically. Fortunately, rather collective Hamiltonian is to be diagonalized exacfly7].
simple and accurate approximations to these configuratiorishis method is usually called the rigid rotator approach
(RRA). In two recent articlef10,11] SU(3) multi-Skyrmions
have been investigated following the BSA. In this work we
*Email address: schat@chbpf.br complement such investigations by considering these con-
TEmail address: scoccola@tandar.cnea.gov.ar figurations within the framework of the RRA.
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This paper is organized as follows. In Sec. Il we provideSO(3)’ respectively. SubstitutingJ(F,t) given by Eq.(4)

a brief description of the model and obtain the collectivejnq the effective action yields a Lagrangian of the general
Hamiltonian for the different baryon numbers. In Sec. Ill we ¢y,

focus on the determination of the multibaryon quantum num-

bers and wave functions. In Sec. IV we present the numerical L=—M. +L (5)
. . . . sol coll»

results and in Sec. V our conclusions. Finally, in the Appen-

dix we give the explicit form of the collective Hamiltonians whereM,, is the static S(2) soliton mass andL is the

for 3<B<8. collective Lagrangian, whose general expression will be
given below. Following the usual steps in the RRA, we first
ll. THE MODEL find the soliton background configuration by minimizing

Mg, . For this purpose we introduce the rational map-

We start with the effective action of the &8 Skyrme 8'329[8] for the pion field

model supplemented with an appropriate symmetry-breakin
term[3]. Expressed in terms of the $&)-valued chiral field

U(x) it reads a(r)=F(r)n. (6)
. fi : 1 : ) ) Here,F(r) is the multi-Skyrmion profile which depends on
sz d™) 5T, Ua*U ]+ 55 5T [U79,U,U 9, U]7] the radial coordinate only amuis a unit vector given by

+T\wz+ g, (1) R 1 R R A
weroee 1= 17 Rp2 RERITH2IMR)]+ (1 [RPKL - ()
wheref , is the pion decay constaf&=93 MeV empirically
and e is the so-called Skyrme parameter. In Ed), the . _ . . .

. 4 with R=R(z) being the rational map corresponding to a cer-
symmetry-breaking terml's accounts for the different tain winding numbeB which is identified with the baryon

mrzﬁsers a’?d tﬂecay clos\?tantsz of _the plt(_)n a_rll_g kaon lf.'e.ltdﬁumber. The complex variableis related to the usual two
whie 1 wz IS the usual Wess-2umino action. Their explicit ghperical coordinates6(¢) via stereographic projection,

forms are namely, z=tan(6/2)exp{¢). For example, the map corre-
24 2F2m2 sponding to thdB=1 hedgehodAnsatzis the identity map
FSBZJ d“x[LKKTr[UJrUT—Z] R=z. The explicit form of the rational maps corresponding
12 to the other baryon numbeB<8 and the resulting expres-
£2m2 — £2m2 sion for the soliton masM,, can be found in Ref48,11].
+ LKK-”[ V3NE(U+UN] The radial profile functior=(r) is determined by minimizing
6 the classical soliton energylsy . Details of this procedure
2 _f2 as well as plots of these profiles for different baryon numbers
+ K T (1- \3A8) (U, UTomU are given in Ref[8].
12 The collective Lagrangian written in terms of the collec-
tive degrees of freedom and the corresponding angular ve-
+U%9,UomU T)]] , (2) locitiesQ,, o, defined by
N (R 71R)ab: €ancllc, (8
Twz=—i—— f d®xen by ,
240m° Ly ]
AT A= E)\awa, (9)

xTr[U'(9,U)U%(a,U)UT(3,U)UT(3,U)UT (3, U)],
(3)  takes the general form

where)?® is the eighth Gell-Mann matrix\ is the number 1
of colors,m_ andmy are the pion and kaon masses, respec- |_C0”=E > (02,0,00+ 0N w0, +20M 0 wp)

tively, andfg is the kaon decay constant. a,b
We proceed by introducing the followingnsatzfor the 1 N.B 1
. S .
time-dependent chiral field +_®SE wﬁ— wg— —Geg(1—Dgg), (10)
2k 2\/§ 2

exdi7 (R ~L(t)r)] O

:
0 1 AN, (4

U(rt)=A(t)

IHere and in the following the spin/isospin indice®,c run over
where the embedded $2) background configuration is rig- {1,....3, the flavor index o over {1,...,8 and the k
idly rotated both in SUB) flavor space and real space, the {4, ...,7 index corresponds to excitations into strangeness di-
collective coordinates given byl(t) e SU(3) and R(t) e rections.
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with Dgg=3Tr[AgANgAT]. The moment of inertia in the ing groups are the continuous groupé3) andD..;,, respec-
strangeness directiof S is tively. In those cases there are some relations between the
spin and isospin operators which lead to the well-known ex-

pressions for the spin-isospin collective Hamiltonians

0S= f d3r— . (1D

1 2
et — F’2+ZB
4e?

. . HN, =—32 (18)
where we have introduced the short-hand notasiersinF, B=1 '

c=cosF. The spin®3,, isospin®%, and mixed moments of

inertia®, are N , P
E2 12 1 Hg-»= .J('J 33)+ (N 3)+—2®,3\,N3-
d3rs?r? f2+—) E;VCnVCn}Van-Vbn, (19)
(12) On the other hand, fdB=3 the symmetry groups are finite
[6]. Thus, the general form of the spin-isospin collective
fdars f2+ (5ab NaN,) Hamiltonian is
s? ~oon 32 WNRi2_ oMy R
2 (B 2Ry Vo Ve 13 HN = E (K22 +KNN2-2KMINL), (20
F'2) 1 g2 where
@)M:—f d3rs?r (f2+—) = V-V ﬁ}v Ny
ab w 22 0 e Talb oL oY L 0] L oy -
(14 a=27x, RaTzn, RT3 (21)

For the rational maps we are interested in all these moments
of inertia are diagondl11]. This is a direct consequence of &
the symmetries of thesé@nsaze Finally, the symmetry-
breaking parametéBgg is

andA,=00Y—(®M)2. The explicit form for each baryon
number can be found in the Appendix.

I1l. QUANTUM NUMBERS AND COLLECTIVE WAVE

2 FUNCTIONS
Goo5 (1212 | o | .

3 In order to calculate the rotational corrections to the
multi-Skyrmion masses we have to find the corresponding
wave functions. Following the Yabu-Ando procedyfer],
they should diagonalize the flavor-symmetry-breaking term
in the collective Hamiltonian. At the same time they should

GivenLo, the spin and flavor canonical momentum op- satisfy the constraints imposed by the symmetries of the clas-
eratorsJ, andF, are defined in the usual way sical soliton configuration. Thus, the general form of such
eigenfunctions will be

2 SZ
F'2+2B=|c
r2

+5(f2m2— f,imi)f d®(1—-c). (15)

wl &

j _’?Lcoll_ IA: _&Lcoll (16)
200, Y dw,
a wa |BJJZ,Y”Z,N>:J2N ag?”\‘N3D:]]ZJ3\I}(Yy|ylz)y(ByNyNg)' (22)
3N3

The collective Hamiltonian is conventionally obtained as the
Legendre transformatiorH ;o =J Qs+ F,0,—Lcon, - Here, DﬂZJS is the usual S(R) Wigner function and

sulting in \P(YMZ),(BYN,Ns) is a function depending on the eight Euler
3 R angles that parametrize the &)Y manifold. To obtain
Heon=KS C2(SU(3))— ZBZ— N2+ y(1—Dgg) |+ H3". W (v,1.1).(.N.N,) We should solve the eigenvalue equation
1
an K h+ y(1—Dgg) ¥ =€V, (23

_v F2 ; ;
Here,C,(SU(3))=Z= F? stands for the quadratic $8) Ca where h=C,(SU(3))— 2B2—N(N+1). The coefficients

simir operatosr,NaE_Fa is thg isospin operator in the soliton N are determined in such a way that the full wave-
frame, y=0>Ggg is the dimensionless flavor symmetry- ¢ 373 ¢ icul di ional i
breaking parameter arS=1/(205). In order to obtain Eq. unction transforms as some particular one-dimensional irre-

(17 we have usedN,=3 and the constraintFg= ducible representatiofirrep) of the soliton symmetry group

— (1/3/2)B. Finally, the detailed form of the spin-isospin col- G. This will be discussed in some detail belqw. .
lective HamiltoniansH2" depends on the soliton symmetry To solve Eq(23) we expandI'(Y| 1).(B.N.Ny) I @ basis of
group. The method to denve them is very similar to the oneSU(3) Wigner functionsD {§:{) ).(B.N.N) » Where 0,q) are
described in Sec. Ill of Refl11]. ForB=1,2 the correspond- the labels used to identify the $8) irrep. Namely,
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TABLE I. Minimal SU(3) irreps and allowed values &f and|
W (v.11,).BNNy)= > ,B(p,q)\/d(p,q)DEQ’??m,(B‘N,N3), for states with some selected values of strangenes8 08— 8.
(p.0) Only states wittiN<3 are listed.

(24)
where d(p,q)=(p+1)(q+ 1)(p+q+2)/2 is the dimension B  Minimal SUQJ) irrep N Allowed values ofl
of the irrep. In such a basis is diagonal and the matrix S=0 S=-1 S=-B
elements of the symmetry-breaking term can be expressed as —
a product of two S(B) Clebsch-Gordan coefficients. To de- 3 35 12 12 01 12
termine, for a given value dB, the allowed values of th¥, 64 32 32 1,2 0,123
[, and N quantum numbers as well as which @Wirrep 81 5/2  5/2 2,3 1,2,3
should be included in the basis we proceed as follows. Ag 28 0 0 1/2 2
already seen, the value of the right hypercharge= 81 1 1 1/2, 32 1,2,3
—2F4//3 is fixed by the constraintg=B. Thus, any S(B) 125 2 2 3/2,5/2 0,1,2,3,4
irrep that appears in the expansion, E24), should have a 5 80 12 12 0,1 2.3
maximum value of hypercharge equal or larger tBaithus, 152 32 32 1.2 1.23.4
the possible values ofp(q) should satisfy 216 52 52 2.3 012345
p+2q 6 55 0 0 12 3
3 = B+m, (25 162 1 1 1/2,32 2,3,4
260 2 2 3/2,52 12345
with p and g non-negative integer numbers angh 7 143 12 172 0,1 3,4
=0,1,2 . ... Theirreps corresponding tm=0 are the so- 280 32 32 1,2 2,3,4,5
called minimal irreps that we will denoteg, o). It is pos- 405 5/2  5/2 2,3 1,2,3,4,5,6
sible to show[18] that the matrix element df in any state g 91 0 0 1/2 4
that belongs to a minimal irrep {$),=3B/2. To determine 270 1 1 1/2, 32 345

the relevant values oY, I, andN it is enough to consider
such irreps. Although for nonvanishing strangengssther
values of the quantum numbers could be allowed, they will
be of no interest to us. In fact, it is not difficult to show that
for the first state with “nonminimal quantum numbers” the

440 2 2 3/2,5/2 23,456

basis of finite size. Since we are interested only in the few
lowest eigenvalues the minimum size is fixed by the condi-

ma:n;( e_Iement (?{h(;stmore than tW'Cﬁwr?l' Ther_?f%rei[stuch ttion that those eigenvalues remain unchanged under a further
a state is expected to appear as a highly excited state in the. <. ¢ sich size.

spectrum. Since _th_e minimal irreps have maximum_ right hy- Having determined¥ y | |, . and the correspond-
perchargeYg=B it is clear that corresponding possible val- - (Y,1,1,),(B,N,Ng) _ _
ing possible quantum numbers we have still to obtain the

ues of the body-fixed isospiN are N=py/2. On the other a0 N
coefflmenISaJsN3 of Eq. (22) and the allowed values af.

hand, those of the hypercharyeare
For this purpose, only the spihand isospinN are relevant.
Po+20p Thus, the situation is very similar to that of tli&=0 case
: (26) discussed in Sec. IV of Refll]. As already mentioned the
full wave function should transform as a one-dimensional
Finally, given a value ofY that satisfies this relation, the irrep of the multisoliton symmetry grou@. For the configu-
allowed values of the isospinare rations we are dealing with we have that, except for Bhe
=5 and B=6 cases, such a one-dimensional irrep is the
@7 trivial irrep of the corresponding symmetry groups. Fr
' =5, I' is the A, irrep of Dy, while for B=6 the wave
functions should transform as th, irrep of D,y. Using
In Table | we list, for each baryon number<B<=8, the standard group theoretical argumeft8] we know that the
minimal SU3) irrep which lead to states with<<3 together  product representatiodx N of SU(2) is in general a reduc-
with the allowed values of isospin for some values ofible representation d&. The projector operator into the one-
strangeness. Given a set of possibR,I(Y,N) quantum dimensional irred" is
numbers one should find all the &) irreps withm>0 that
enter in the expansion, Eq24). This is done by selecting 1
from all the irreps which satisfy E¢25) those that contain a Pr=@ E X1 (9)p(9), (28
state with this same set of quantum numbers. This leads to 9eG
different towers of S(B) irreps for each set of quantum
numbers. Once this is done, it is a simple task to transfornivhere|G| is the rank of the groupyr(g) is the character of
Eq. (23) into an ordinary linear eigenvalue problem whoseoperationg, andp(g) is the representation @ in JXN
solution provides the energy eigenvaluesand the coeffi-
cients B, ) - Of course, to do that one should work with a p(g9)=D7(g)xDN(Dy), (29)

2po+0o
-y =Y=—

X+ po_%‘glgpo*'%_}

2 3 | 2 2

_Po—%
3
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TABLE II. Soliton mass(per baryon unijt strangeness inertia TABLE IIl. Spin, isospin, and mixed inertia parameters tr
parameter and symmetry breaking parameteiBfer3— 8. =3-8.
B M. /B KS v B K’ (MeV) KN (MeV) KM (MeV)
(GeV) (MeV)
3 11.28 37.99 7.19
3 1.64 55.12 38.43 4 6.29 28.94 0
4 1.58 43.18 61.18 28.94
5 1.59 32.80 105.69 24.10
6 1.58 27.03 154.83 5 3.77 20.74 —-0.88
7 1.54 23.96 194.76 3.77 20.74 —-0.88
8 1.56 20.04 279.99 4.27 24.71 —-0.67
6 2.66 19.06 0
2.66 19.06 0
whereD is the isospin operation associated with the space 3.09 17.93 0.94
operationg. The eigenvalues dP can either vanish or be 7 2.23 16.72 0
equal to one. The eigenvectors corresponding to each nonvg- 1.73 14.23 0
nishing eigenvalue provide precisely the coefﬁciet:tf,é\‘,\13 1.73 14.23 0
of Eq.(22), and there are as many wave functions as nonzero 1.53 15.38 —0.47

eigenvalues. If all eigenvalues vanish there is no collective
state with the gived,N. If there is only one, the wave func-

tion is an eigenfunction of the collective Hamiltonian. In as well as the number of independent components depends
case there would be more than one, we choose those comiginly on general properties of thnsaze

nations which diagonalize the parity operator. Given the values of the inertia and symmetry-breaking
parameters we can proceed to calculate the matrix elements
IV. NUMERICAL RESULTS of the rotational Hamiltonian. For this purpose we have to

find the solutions of the eigenvalue equation E2@). As

To calculate the multibaryon spectra we use the followingexplained in the previous section this amounts to determin-
set of values for the parameters appearing in the effectiveng the coefficientsg, 4y appearing in Eq(24). We have
action, Egs.(1)—(3). We fix ., m,, andmg to their em-  done this calculation for the different sets of allowed quan-
pirical values and take=4.1 andfi/f,=1.29. This set of tum numbers. It is interesting to note that the amount of
parameters leads to a single baryon excitation spectrurconfiguration mixing increases witB. This can be clearly
which is in very good agreement with the one observed foobserved in Fig. 1 where we display the decomposition of
the octet and decuplet baryons. As well known, however, théhe lowest energy states with strangengs9 (full line) and
use of the empirical value fofr implies aB=1 Skyrmion = S=—B (dashed lingfor B=3 andB=8. In this figure the
mass of around 1.7GeV. Consequently, the absolute valuesymboli labels the different|§,q) irrep that appear in each
of the calculated masses come out to be too large. This prolstecomposition. Of coursé=0 indicates the corresponding
lem is nowadays known to be solved by the inclusion ofminimal irrep. We see that while f@= 3 about 80% of the
Casimir effects[20,21. We will come back to this issue wave function corresponds to the minimal irrep, B8
below. With these values we can calculddg, and the dif-  such an irrep represents about 30% with the rest of strength
ferent quantities that appear in the expressioh @f;, given
by Eq.(10). The results for the different baryon numbers up 14
to B=8 are tabulated in Tables Il and Ill. From Table Il we
observe that althougi /B tends, on average, to decrease
as a function oB it always lies above 1.5 GeV. This clearly 081
indicates that Casimir effects will be also important to deter-
mine the absolute masses of the configurations ®Rithl. In 0.6
any case, as in previous works whefrg was adjusted to
reproduce the empirical nucleon mass, we observe some dé€s
viation from a smooth behavior. Also listed in Table Il are ~ °*7
the strange inertia parametér and the symmetry-breaking
parametery. We see that, roughlyiK® decreases as B/ 0.2
while y increases a82. As we will see this has important
consequences on the amount of configuration mixing as ¢
function of the baryon number. In Table Il we list the spin, 0.0
isospin, and mixing inertia parameters for the different val-
ues ofB. We find that the values we obtained behave, as a
function of B, as those of Ref[11]. In fact this is to be FIG. 1. Contribution of higher irreps to the lowest energy states
expected since, as explained in that reference, such behaviaith S=0 (full line) andS=—B (dashed ling
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TABLE IV. Quantum numbers and rotational excitation ener-  TABLE V. Quantum numbers and rotational excitation energies
gies for theS=0 states. The excitation energies are taken with(per unit of strangenesfor S=—1 andS= —B states. The exci-
respect to that of the lowest energy state for each baryon numbetation energiegin MeV) are taken with respect to that of ti&

The absolute rotational energies of those states are indicated in0 lowest energy state for each baryon number. The absolute ro-

brackets. tational energies of those states are given in Table IV.
B JP I N EcxdMeV) S=-1 S=-B

B JP I N Eo/|S| J° | N EJ/|S
3 1/2* 1/2 1/2 (847 exe/IS] exe/IS]
5/2° 1/2 1/2 61 3 1/2 0 1/2 2635 1/2 1 12 2917
3127 312 3/2 110 12 1 1/2 3040 32 0 3/2 2929
4 o* 0 0 (808 52 0 12 3250 52 0 372 3044
4+ 0 0 126 4 ot 12 0 287.9 6 o0 2 302.8
0" 2 2 180 4% 12 0 413.7 6 2 0 308.5
5 1/2* 1/2 1/2 (837 ot 32 2 425.1 o 1 2 311.8
3/2* 1/2 1/2 9 5 12" 0 12 2794 1/2 1 32 3017
3/12° 1/2 1/2 11 32" 0 12 2881 1/2 1 3/2 3036
6 1t 0 0 (827 327 0 1/2 2908 3/2 1 32 3047
3" 0 0 27 6 1" 12 0 299.1 o 1 2 308.6
0" 1 1 34 ot 12 1 313.5 r 1 2 309.5
7 (ra 1/2 1/2 (872 3" 12 0 325.7 r 1 2 310.3
372" 3/2 3/2 24 7 7/2" 0 1/2 2820 32 2 332 3013
9/2* 3/2 3/2 71 32t 1 32 2987 52 1 572 3028
8 0" 0 0 (828 728 1 12 299.1 712 1 52 305.1
2" 0 0 10 8 ot 12 0 301.3 o 2 2 313.5
1t 1 1 32 27 12 0 311.7 r 1 3 314.8
it 12 1 319.3 2 2 2 314.8

distributed in almost 10 irreps. This kind of behavior can be

simply understood using second order perturbation theoryand V it is apparent that there is a clear separation of three
Within that approximatiorg; _ , that is the coefficient of the different energy scales. There is a 1 GeV scale related to the
first nonminimal irrep, will be proportional toy/((h);  classical masseger baryon numbg¢rand the eigenvalues of
—(h)o). Itis not hard to show that, for the ground states withEd. (23) for S=0 states, there is another scale of about 300
S=0, one has (h);—(h)o)=B. Since we have seen that MeV for the excitation of one unit of strangeness, and finally
«B? we obtain thaf3; _; should increase roughly & Simi- @ 10—100 MeV scale related to spin-isospin excitations. This
lar arguments can be used for the c8se— B. This explains last energy scale is evident in Table IV, while it appears as a
why the configuration mixing is quite independent of thesmall correction in Table V. In this way we recover the three
value of strangeness as it can be seen in Fig. 1 by comparirigading-order contributions in thid, expansionN, ,N and

the solid lines with the dashed ones. From a numerical poini_ *, which are more explicitly separated in the BSA.

of view the increase of configuration mixing implies that as
larger values oB are considered one has to increase the size
of the basis in which the eigenfunction is expanded in order
to obtain convergence. In all the cases of interest we found In this work we have studied the multibaryon spectra for
that no more than 15 to 20 configurations were needed.  baryon number 3:B<8 and strangeness valu€s=0,— 1,

The resulting multibaryon spectra are summarized in—B within the SU3) collective coordinate approach to the
Tables IV and V. In Table IV we report the rotational cor- three flavor Skyrme model. To describe the classical back-
rections to the masses of ti$e=0 states. They are given as ground solutions we have usethsadze based on rational
excitation energies taken with respect to the correspondinghaps[8], which provide very good approximations and also
lowest energy state whose absolute rotational energy is indshare the same symmetries as the exact solutions. The sym-
cated in brackets. It is important to mention that for Bie  metry structure is responsible for the spin and isospin assign-
=1 systems it was shown that this rather large absolutgnents to the spectrum states. Therefore, the collective
value is almost completely cancelled by the Casimir correcHamiltonians and wave functions we obtain are of general
tions due to kaon loop21]. Since similar cancellations are validity, while the mass splittings depend on the particular
expected to happen f&> 1, the excitation energies result to values of the moments of inertia and of the symmetry-
be the most meaningful quantities to look at. We observe thasreaking parameter.
the predicted spectra are in agreement with the ones obtained We have found that, in general, the ordering of the differ-
in the alternative bound-state appro4th], except for afew ent spin/isospin states corresponding to a given baryon num-
changes in the ordering of the states in the cas8-of-B ber as well as the energy separation between those states
and B=5,8. From the numbers presented in Tables Il, IV,obtained by using the present approach are very similar to

V. CONCLUSIONS
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the results of the alternative bound-state treatment of the APPENDIX
SU(3) Skyrme model. This fact together with the observation
that in the collective approach the relative strength of the
flavor symmetry-breaking term increases with increasin
baryon numbexcf., Fig. 1) seems to indicate that both ap-

In this appendix we give the explicit expressions of the
pin-isospin collective Hamiltonian faB=3. The form of
hese expressions depends only on the symmetries of the

proaches tend to coincide &sgrows. In this sense we can soliton configurations. The method to derive them is very

conclude that our finding that the increase of one unit OtS|m|Iar to the one described in Sec. Il of RgL1]. In fact,

strangeness implies a cost in energy of about 300 Me\/the following expressions can be easily obtained from the

: ones given in that reference by setting the corresponding
rather independently d=3, appears to be a rather general ; o
prediction of the S(B) Skyrme model. hyperfine splitting constants to zero. Note that although the

Finally, note that in the present calculation we have Set@ymmetry groups foB=6 andB=8 are different the corre-

the meson decay constants to their empirical values. Consép;i::g'dn?ncgg?a'\ll]etmggI?gfgszaniézg So?rtr;%ffo;{;'tﬁ;t ?r)l(
quently, all the resulting absolute masses are too large. F : q

example, we find values d¥l..,/B of about 1.60 GeV and oth cases the moment of inertia tensors have similar decom-

S=0 ground-state rotational corrections of about 0.8 GeV.pOSItlons in terms of the irrep of those groups:

These values are expected to be largely compensated by the . . -
pion and kaon contributions to the Casimir energies, respeddzss=K?J?+KNNZ—2KMN.
tively. In fact, this has been recently shown to happen in the

B=1 sector of the modd21]. Unfortunately, forB>1 the [N —kJI324 KNNZ+ (KY-K))RZ, (A2)
difficulties associated with the treatment of the fluctuations

around nonspherically symmetric soliton backgrounds have N 350 A2 NP, MoE R e
prevented so far the explicit evaluation of the Casimir effectig=5=K1(J°—J3) + K7 (N“=N3) = 2K7(N-J—N3J3)
even in the S(R) case.

3, (A1)

+ K35+ KYNZ— 2K ¥NZI3, (A3)
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