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Multibaryons in the collective coordinate approach to the SU„3… Skyrme model
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We obtain the rotational spectrum of strange multibaryon states by performing the SU~3! collective coordi-
nate quantization of the static multi-Skyrmions. These background configurations are given in terms of rational
maps, which are very good approximations and share the same symmetries as the exact solutions. Thus, the
allowed quantum numbers in the spectra and the structure of the collective Hamiltonians we obtain are also
valid in the exact case. We find that the predicted spectra are in overall agreement with those corresponding to
the alternative bound-state soliton model.

PACS number~s!: 12.39.Dc, 21.10.Hw, 21.80.1a
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I. INTRODUCTION

In the Skyrme model@1# and its generalizations, baryon
arise as topological excitations of a nonlinear chiral Lagra
ian written in terms of meson fields. These types of mod
have been quite successful in describing the propertie
single baryons such as the nucleon and the strange hype
~see, e.g., Refs.@2,3#!. This has lead people to investigate t
lowest energy Skyrmion configurations with a topologic
number greater than one, which are of inherent interes
examples of three-dimensional solitonic structures and m
also be relevant for nuclear physics. These studies were
ready started by Skyrme in his pioneering papers at the
ginning of the 1960s. However, it was only in 1987 that t
minimum energyB52 Skyrmion was correctly identified
@4#. Some time later the authors of Ref.@5# found the solu-
tions with B53, 4, and 5 by numerical relaxation calcul
tions. Finally, a few years ago@6#, after some demanding
numerical work, the global minimum energy configuratio
with some higher topological numbers were construct
One particularly interesting aspect of all these mu
Skyrmion fields is that they are very symmetric. While f
B52 the symmetry group corresponds to that of a torus,
B53,4,7 they possess the symmetries of the platonic p
hedraTd ,Oh ,I h , respectively, and forB55,6,8 the dihedral
symmetriesD2d ,D4d ,D6d , respectively. ForB59 there is a
subtlety which brings some uncertainties about the exis
identification of the lowest energy configuration@7#. Thus, in
this work we will restrict ourselves to the study of the co
figurations withB<8. It should be stressed that, in spite
the symmetries mentioned above, the multi-Skyrmion fie
are very complicated functions of the space coordina
which are only known numerically. Fortunately, rath
simple and accurate approximations to these configurat
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have been found@8#. They are based on someAnsätzewhich
are written in terms of rational maps and take advantage
the similarities between multi-Skyrmion fields an
Bogomol’nyi-Prasad-Sommerfield monopoles. These de
opments triggered several investigations concerning
properties of the multi-Skyrmions~such as, e.g., vibrationa
excitations@9#! as well as their application to baryonic sy
tems containing strangeness@10,11# and heavier flavors@12#.
The extension to flavored multibaryons is also motivated
the advent of heavy ion colliders with the possibility of pr
ducing strange@13# and even charmed@14# multibaryonic
states with rather low baryon number in the laboratory.
describe the strange multibaryons one has to extend
model to SU~3! flavor space. Here we follow the scheme
which the classical background configurations are simply
tained by embedding the SU~2! static multi-Skyrmions in the
isospin subgroup of SU~3!. Such embedded classical co
figurations are known to be energetically favored with
spect to alternative nonembedding configurations@15# and it
is unclear whether quantum corrections could change
situation. In order to obtain the spectrum with states of we
defined spin and isospin quantum numbers, as well as t
splittings, we have to perform the quantization of the SU~3!
embedded classical solutions. However, the presence o
rather important symmetry-breaking terms associated w
the mass of the strange quark makes the quantization pro
not completely trivial. In fact, two alternative methods ha
been suggested in the literature. One is known as the bo
state approach@16# ~BSA! in which strange baryons are de
scribed as SU~2! rotating soliton-kaon bound systems. Th
other scheme assumes that the strange degrees of fre
can still be treated as rotational modes but the correspon
collective Hamiltonian is to be diagonalized exactly@17#.
This method is usually called the rigid rotator approa
~RRA!. In two recent articles@10,11# SU~3! multi-Skyrmions
have been investigated following the BSA. In this work w
complement such investigations by considering these c
figurations within the framework of the RRA.
©2000 The American Physical Society10-1
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This paper is organized as follows. In Sec. II we provi
a brief description of the model and obtain the collect
Hamiltonian for the different baryon numbers. In Sec. III w
focus on the determination of the multibaryon quantum nu
bers and wave functions. In Sec. IV we present the numer
results and in Sec. V our conclusions. Finally, in the Appe
dix we give the explicit form of the collective Hamiltonian
for 3<B<8.

II. THE MODEL

We start with the effective action of the SU~3! Skyrme
model supplemented with an appropriate symmetry-break
term @3#. Expressed in terms of the SU~3!-valued chiral field
U(x) it reads

G5E d4xH f p
2

4
Tr@]mU]mU†#1

1

32e2Tr@@U†]mU,U†]nU#2#J
1GWZ1GSB, ~1!

wheref p is the pion decay constant~593 MeV empirically!
and e is the so-called Skyrme parameter. In Eq.~1!, the
symmetry-breaking termGSB accounts for the differen
masses and decay constants of the pion and kaon fi
while GWZ is the usual Wess-Zumino action. Their explic
forms are

GSB5E d4xH f p
2 mp

2 12 f K
2 mK

2

12
Tr@U1U†22#

1
f p

2 mp
2 2 f K

2 mK
2

6
Tr@A3l8~U1U†!#

1
f K

2 2 f p
2

12
Tr@~12A3l8!~U]mU†]mU

1U†]mU]mU†!#J , ~2!

GWZ52 i
Nc

240p2E d5x«mnabg

3Tr@U†~]mU !U†~]nU !U†~]aU!U†~]bU !U†~]gU !#,

~3!

wherel8 is the eighth Gell-Mann matrix,Nc is the number
of colors,mp andmK are the pion and kaon masses, resp
tively, and f K is the kaon decay constant.

We proceed by introducing the followingAnsatzfor the
time-dependent chiral field

U~r¢,t !5A~ t !S exp@ i t¢•p¢ ~R 21~ t !r¢!# 0

0 1
DA †~ t !, ~4!

where the embedded SU~2! background configuration is rig
idly rotated both in SU~3! flavor space and real space, th
collective coordinates given byA(t)P SU~3! and R(t)P
07401
-
al
-

g

ds,

-

SO~3!, respectively. SubstitutingU(r¢,t) given by Eq. ~4!
into the effective action yields a Lagrangian of the gene
form

L52Msol1Lcoll , ~5!

whereMsol is the static SU~2! soliton mass andLcoll is the
collective Lagrangian, whose general expression will
given below. Following the usual steps in the RRA, we fi
find the soliton background configuration by minimizin
Msol . For this purpose we introduce the rational mapAn-
sätze @8# for the pion field

p¢ ~r¢!5F~r !n̂. ~6!

Here,F(r ) is the multi-Skyrmion profile which depends o
the radial coordinate only andn̂ is a unit vector given by

n̂5
1

11uRu2 @2 Re~R! ı̂12 Im~R! ̂1~12uRu2!k̂#, ~7!

with R5R(z) being the rational map corresponding to a c
tain winding numberB which is identified with the baryon
number. The complex variablez is related to the usual two
spherical coordinates (u,f) via stereographic projection
namely, z5tan(u/2)exp(if). For example, the map corre
sponding to theB51 hedgehogAnsatzis the identity map
R5z. The explicit form of the rational maps correspondin
to the other baryon numbersB<8 and the resulting expres
sion for the soliton massMsol can be found in Refs.@8,11#.
The radial profile functionF(r ) is determined by minimizing
the classical soliton energyMsol . Details of this procedure
as well as plots of these profiles for different baryon numb
are given in Ref.@8#.

The collective Lagrangian written in terms of the colle
tive degrees of freedom and the corresponding angular
locities Va ,va defined by1

~R 21Ṙ!ab5eabcVc , ~8!

A 21Ȧ5
i

2
lava , ~9!

takes the general form

Lcoll5
1

2
(
a,b

~Qab
J VaVb1Qab

N vavb12Qab
M Vavb!

1
1

2
QS(

k
vk

22
NcB

2A3
v82

1

2
GSB~12D88!, ~10!

1Here and in the following the spin/isospin indicesa,b,c run over
$1, . . . ,3%, the flavor index a over $1, . . . ,8% and the k
P$4, . . . ,7% index corresponds to excitations into strangeness
rections.
0-2
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with D885
1
2 Tr@l8Al8A †#. The moment of inertia in the

strangeness directionQS is

QS5E d3r
12c

2 F f K
2 1

1

4e2 S F8212B
s2

r 2D G , ~11!

where we have introduced the short-hand notations5sinF,
c5cosF. The spinQab

J , isospinQab
N and mixed moments o

inertia Qab
M are

Qab
J 5E d3rs2r 2F S f p

2 1
F82

e2 D1
1

2

s2

e2 ¹cn̂•¹cn̂G¹an̂•¹bn̂,

~12!

Qab
N 5E d3rs2F S f p

2 1
F82

e2 D ~dab2n̂an̂b!

1
s2

e2 ~dab22n̂an̂b!¹cn̂•¹cn̂G , ~13!

Qab
M 52E d3rs2r F S f p

2 1
F82

e2 D1
1

2

s2

e2 ¹cn̂•¹cn̂G¹an̂b .

~14!

For the rational maps we are interested in all these mom
of inertia are diagonal@11#. This is a direct consequence o
the symmetries of theseAnsätze. Finally, the symmetry-
breaking parameterGSB is

GSB5
2

3
~ f K

2 2 f p
2 !E d3r S F8212B

s2

r 2D c

1
4

3
~ f K

2 mK
2 2 f p

2 mp
2 !E d3r ~12c!. ~15!

GivenLcoll , the spin and flavor canonical momentum o
eratorsĴa and F̂a are defined in the usual way

Ĵa5
]Lcoll

]Va
; F̂a5

]Lcoll

]va
. ~16!

The collective Hamiltonian is conventionally obtained as
Legendre transformationHcoll5JaVa1Fava2Lcoll , re-
sulting in

Hcoll5KSFC2„SU~3!…2
3

4
B22N̂21g~12D88!G1HB

JN .

~17!

Here,C2„SU(3)…5(aF̂a
2 stands for the quadratic SU~3! Ca-

simir operator,N̂a[F̂a is the isospin operator in the solito
frame, g5QSGSB is the dimensionless flavor symmetr
breaking parameter andKS51/(2QS). In order to obtain Eq.
~17! we have usedNc53 and the constraintF85
2(A3/2)B. Finally, the detailed form of the spin-isospin co
lective HamiltoniansHB

JN depends on the soliton symmet
group. The method to derive them is very similar to the o
described in Sec. III of Ref.@11#. ForB51,2 the correspond
07401
ts

-

e

e

ing groups are the continuous groupsO(3) andD`h , respec-
tively. In those cases there are some relations between
spin and isospin operators which lead to the well-known
pressions for the spin-isospin collective Hamiltonians

HB51
JN 5

1

2QJ
Ĵ2, ~18!

HB52
JN 5

1

2Q1
J ~ Ĵ22 Ĵ3

2!1
1

2Q1
N ~N̂22N̂3

2!1
1

2Q3
N
N̂3

2 .

~19!

On the other hand, forB>3 the symmetry groups are finit
@6#. Thus, the general form of the spin-isospin collecti
Hamiltonian is

HB>3
JN 5(

a
~Ka

JĴa
21Ka

NN̂a
222Ka

MĴaN̂a!, ~20!

where

Ka
J5

1

2

Qa
N

Da
, Ka

N5
1

2

Qa
J

Da
, Ka

M5
1

2

Qa
M

Da
. ~21!

andDa[Qa
JQa

N2(Qa
M)2. The explicit form for each baryon

number can be found in the Appendix.

III. QUANTUM NUMBERS AND COLLECTIVE WAVE
FUNCTIONS

In order to calculate the rotational corrections to t
multi-Skyrmion masses we have to find the correspond
wave functions. Following the Yabu-Ando procedure@17#,
they should diagonalize the flavor-symmetry-breaking te
in the collective Hamiltonian. At the same time they shou
satisfy the constraints imposed by the symmetries of the c
sical soliton configuration. Thus, the general form of su
eigenfunctions will be

uBJJz ,YIIz ,N&5 (
J3N3

aJ3N3

JN DJzJ3

J C (Y,I ,I z),(B,N,N3) . ~22!

Here, DJzJ3

J is the usual SU~2! Wigner function and

C (Y,I ,I z),(B,N,N3) is a function depending on the eight Eul
angles that parametrize the SU~3! manifold. To obtain
C (Y,I ,I z),(B,N,N3) we should solve the eigenvalue equation

KS@h1g~12D88!#C5eC, ~23!

where h5C2„SU(3)…2 3
4 B22N(N11). The coefficients

aJ3N3

JN are determined in such a way that the full wav

function transforms as some particular one-dimensional i
ducible representation~irrep! of the soliton symmetry group
G. This will be discussed in some detail below.

To solve Eq.~23! we expandC (Y,I ,I z),(B,N,N3) in a basis of

SU~3! Wigner functionsD (Y,I ,I z),(B,N,N3)
(p,q) , where (p,q) are

the labels used to identify the SU~3! irrep. Namely,
0-3
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C (Y,I ,I z),(B,N,N3)5 (
(p,q)

b (p,q)Ad(p,q)D (Y,I ,I z),(B,N,N3)
(p,q) ,

~24!

where d(p,q)5(p11)(q11)(p1q12)/2 is the dimension
of the irrep. In such a basish is diagonal and the matrix
elements of the symmetry-breaking term can be expresse
a product of two SU~3! Clebsch-Gordan coefficients. To de
termine, for a given value ofB, the allowed values of theY,
I, and N quantum numbers as well as which SU~3! irrep
should be included in the basis we proceed as follows.
already seen, the value of the right hyperchargeYR[
22F8 /A3 is fixed by the constraintYR5B. Thus, any SU~3!
irrep that appears in the expansion, Eq.~24!, should have a
maximum value of hypercharge equal or larger thanB. Thus,
the possible values of (p,q) should satisfy

p12q

3
5B1m, ~25!

with p and q non-negative integer numbers andm
50,1,2, . . . . Theirreps corresponding tom50 are the so-
called minimal irreps that we will denote (p0 ,q0). It is pos-
sible to show@18# that the matrix element ofh in any state
that belongs to a minimal irrep iŝh&053B/2. To determine
the relevant values ofY, I, and N it is enough to conside
such irreps. Although for nonvanishing strangenessS other
values of the quantum numbers could be allowed, they
be of no interest to us. In fact, it is not difficult to show th
for the first state with ‘‘nonminimal quantum numbers’’ th
matrix element ofh is more than twicêh&0. Therefore, such
a state is expected to appear as a highly excited state in
spectrum. Since the minimal irreps have maximum right
perchargeYR5B it is clear that corresponding possible va
ues of the body-fixed isospinN are N5p0/2. On the other
hand, those of the hyperchargeY are

2
2p01q0

3
<Y<

p012q0

3
. ~26!

Finally, given a value ofY that satisfies this relation, th
allowed values of the isospinI are

UY2 1
p02q0

3 U<I<
p01q0

2
2

1

2 UY2
p02q0

3 U. ~27!

In Table I we list, for each baryon number 3<B<8, the
minimal SU~3! irrep which lead to states withN,3 together
with the allowed values of isospin for some values
strangeness. Given a set of possible (B,I ,Y,N) quantum
numbers one should find all the SU~3! irreps withm.0 that
enter in the expansion, Eq.~24!. This is done by selecting
from all the irreps which satisfy Eq.~25! those that contain a
state with this same set of quantum numbers. This lead
different towers of SU~3! irreps for each set of quantum
numbers. Once this is done, it is a simple task to transfo
Eq. ~23! into an ordinary linear eigenvalue problem who
solution provides the energy eigenvaluese and the coeffi-
cientsb (p,q) . Of course, to do that one should work with
07401
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basis of finite size. Since we are interested only in the f
lowest eigenvalues the minimum size is fixed by the con
tion that those eigenvalues remain unchanged under a fu
increase of such size.

Having determinedC (Y,I ,I z),(B,N,N3) and the correspond
ing possible quantum numbers we have still to obtain
coefficientsaJ3N3

JN of Eq. ~22! and the allowed values ofJ.

For this purpose, only the spinJ and isospinN are relevant.
Thus, the situation is very similar to that of theS50 case
discussed in Sec. IV of Ref.@11#. As already mentioned the
full wave function should transform as a one-dimensio
irrep of the multisoliton symmetry groupG. For the configu-
rations we are dealing with we have that, except for theB
55 and B56 cases, such a one-dimensional irrep is
trivial irrep of the corresponding symmetry groups. ForB
55, G is the A2 irrep of D2d , while for B56 the wave
functions should transform as theA2 irrep of D4d . Using
standard group theoretical arguments@19# we know that the
product representationJ3N of SU~2! is in general a reduc-
ible representation ofG. The projector operator into the one
dimensional irrepG is

PG5
1

uGu (
gPG

xG* ~g!r~g!, ~28!

whereuGu is the rank of the group,xG(g) is the character of
operationg, andr(g) is the representation ofg in J3N

r~g!5DJ~g!3DN~Dg!, ~29!

TABLE I. Minimal SU~3! irreps and allowed values ofN and I
for states with some selected values of strangeness forB5328.
Only states withN,3 are listed.

B Minimal SU~3! irrep N Allowed values ofI

S50 S521 S52B

3 35 1/2 1/2 0, 1 1,2

64 3/2 3/2 1, 2 0,1,2,3
81 5/2 5/2 2, 3 1,2,3

4 28 0 0 1/2 2

81 1 1 1/2, 3/2 1,2,3

125 2 2 3/2, 5/2 0,1,2,3,4
5 80 1/2 1/2 0, 1 2,3

154 3/2 3/2 1, 2 1,2,3,4

216 5/2 5/2 2, 3 0,1,2,3,4,5
6 55 0 0 1/2 3

162 1 1 1/2, 3/2 2,3,4

260 2 2 3/2, 5/2 1,2,3,4,5

7 143 1/2 1/2 0, 1 3,4

280 3/2 3/2 1, 2 2,3,4,5

405 5/2 5/2 2, 3 1,2,3,4,5,6

8 91 0 0 1/2 4

270 1 1 1/2, 3/2 3,4,5

440 2 2 3/2, 5/2 2,3,4,5,6
0-4
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whereDg is the isospin operation associated with the sp
operationg. The eigenvalues ofPG can either vanish or be
equal to one. The eigenvectors corresponding to each no
nishing eigenvalue provide precisely the coefficientsaJ3N3

JN

of Eq. ~22!, and there are as many wave functions as nonz
eigenvalues. If all eigenvalues vanish there is no collec
state with the givenJ,N. If there is only one, the wave func
tion is an eigenfunction of the collective Hamiltonian.
case there would be more than one, we choose those co
nations which diagonalize the parity operator.

IV. NUMERICAL RESULTS

To calculate the multibaryon spectra we use the follow
set of values for the parameters appearing in the effec
action, Eqs.~1!–~3!. We fix f p , mp , andmK to their em-
pirical values and takee54.1 andf K / f p51.29. This set of
parameters leads to a single baryon excitation spect
which is in very good agreement with the one observed
the octet and decuplet baryons. As well known, however,
use of the empirical value forf p implies aB51 Skyrmion
mass of around 1.7GeV. Consequently, the absolute va
of the calculated masses come out to be too large. This p
lem is nowadays known to be solved by the inclusion
Casimir effects@20,21#. We will come back to this issue
below. With these values we can calculateMsol and the dif-
ferent quantities that appear in the expression ofLcoll given
by Eq. ~10!. The results for the different baryon numbers
to B58 are tabulated in Tables II and III. From Table II w
observe that althoughMsol /B tends, on average, to decrea
as a function ofB it always lies above 1.5 GeV. This clear
indicates that Casimir effects will be also important to det
mine the absolute masses of the configurations withB.1. In
any case, as in previous works wheref p was adjusted to
reproduce the empirical nucleon mass, we observe some
viation from a smooth behavior. Also listed in Table II a
the strange inertia parameterKS and the symmetry-breakin
parameterg. We see that, roughly,KS decreases as 1/B,
while g increases asB2. As we will see this has importan
consequences on the amount of configuration mixing a
function of the baryon number. In Table III we list the spi
isospin, and mixing inertia parameters for the different v
ues ofB. We find that the values we obtained behave, a
function of B, as those of Ref.@11#. In fact this is to be
expected since, as explained in that reference, such beh

TABLE II. Soliton mass~per baryon unit!, strangeness inertia
parameter and symmetry breaking parameter forB5328.

B Msol /B KS g
(GeV) (MeV)

3 1.64 55.12 38.43
4 1.58 43.18 61.18
5 1.59 32.80 105.69
6 1.58 27.03 154.83
7 1.54 23.96 194.76
8 1.56 20.04 279.99
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as well as the number of independent components dep
only on general properties of theAnsätze.

Given the values of the inertia and symmetry-break
parameters we can proceed to calculate the matrix elem
of the rotational Hamiltonian. For this purpose we have
find the solutions of the eigenvalue equation Eq.~23!. As
explained in the previous section this amounts to determ
ing the coefficientsb (p,q) appearing in Eq.~24!. We have
done this calculation for the different sets of allowed qua
tum numbers. It is interesting to note that the amount
configuration mixing increases withB. This can be clearly
observed in Fig. 1 where we display the decomposition
the lowest energy states with strangenessS50 ~full line! and
S52B ~dashed line! for B53 andB58. In this figure the
symbol i labels the different (p,q) irrep that appear in each
decomposition. Of course,i 50 indicates the correspondin
minimal irrep. We see that while forB53 about 80% of the
wave function corresponds to the minimal irrep, forB58
such an irrep represents about 30% with the rest of stren

TABLE III. Spin, isospin, and mixed inertia parameters forB
5328.

B KJ (MeV) KN (MeV) KM (MeV)

3 11.28 37.99 7.19
4 6.29 28.94 0

28.94
24.10

5 3.77 20.74 20.88
3.77 20.74 20.88
4.27 24.71 20.67

6 2.66 19.06 0
2.66 19.06 0
3.09 17.93 0.94

7 2.23 16.72 0
8 1.73 14.23 0

1.73 14.23 0
1.53 15.38 20.47

FIG. 1. Contribution of higher irreps to the lowest energy sta
with S50 ~full line! andS52B ~dashed line!.
0-5
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distributed in almost 10 irreps. This kind of behavior can
simply understood using second order perturbation the
Within that approximationb i 51, that is the coefficient of the
first nonminimal irrep, will be proportional tog/(^h&1
2^h&0). It is not hard to show that, for the ground states w
S50, one has (̂h&12^h&0)}B. Since we have seen thatg
}B2 we obtain thatb i 51 should increase roughly asB. Simi-
lar arguments can be used for the caseS52B. This explains
why the configuration mixing is quite independent of t
value of strangeness as it can be seen in Fig. 1 by compa
the solid lines with the dashed ones. From a numerical p
of view the increase of configuration mixing implies that
larger values ofB are considered one has to increase the s
of the basis in which the eigenfunction is expanded in or
to obtain convergence. In all the cases of interest we fo
that no more than 15 to 20 configurations were needed.

The resulting multibaryon spectra are summarized
Tables IV and V. In Table IV we report the rotational co
rections to the masses of theS50 states. They are given a
excitation energies taken with respect to the correspond
lowest energy state whose absolute rotational energy is i
cated in brackets. It is important to mention that for theB
51 systems it was shown that this rather large abso
value is almost completely cancelled by the Casimir corr
tions due to kaon loops@21#. Since similar cancellations ar
expected to happen forB.1, the excitation energies result t
be the most meaningful quantities to look at. We observe
the predicted spectra are in agreement with the ones obta
in the alternative bound-state approach@11#, except for a few
changes in the ordering of the states in the case ofS52B
and B55,8. From the numbers presented in Tables II,

TABLE IV. Quantum numbers and rotational excitation ene
gies for theS50 states. The excitation energies are taken w
respect to that of the lowest energy state for each baryon num
The absolute rotational energies of those states are indicate
brackets.

B JP I N Eexc(MeV)

3 1/21 1/2 1/2 ~847!
5/22 1/2 1/2 61
3/22 3/2 3/2 110

4 01 0 0 ~808!
41 0 0 126
01 2 2 180

5 1/21 1/2 1/2 ~837!
3/21 1/2 1/2 9
3/22 1/2 1/2 11

6 11 0 0 ~827!
31 0 0 27
01 1 1 34

7 7/21 1/2 1/2 ~872!
3/21 3/2 3/2 24
9/21 3/2 3/2 71

8 01 0 0 ~828!
21 0 0 10
11 1 1 32
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and V it is apparent that there is a clear separation of th
different energy scales. There is a 1 GeV scale related to
classical masses~per baryon number! and the eigenvalues o
Eq. ~23! for S50 states, there is another scale of about 3
MeV for the excitation of one unit of strangeness, and fina
a 10–100 MeV scale related to spin-isospin excitations. T
last energy scale is evident in Table IV, while it appears a
small correction in Table V. In this way we recover the thr
leading-order contributions in theNc expansionNc ,Nc

0 and
Nc

21 , which are more explicitly separated in the BSA.

V. CONCLUSIONS

In this work we have studied the multibaryon spectra
baryon number 3<B<8 and strangeness valuesS50,21,
2B within the SU~3! collective coordinate approach to th
three flavor Skyrme model. To describe the classical ba
ground solutions we have usedAnsätze based on rationa
maps@8#, which provide very good approximations and al
share the same symmetries as the exact solutions. The
metry structure is responsible for the spin and isospin ass
ments to the spectrum states. Therefore, the collec
Hamiltonians and wave functions we obtain are of gene
validity, while the mass splittings depend on the particu
values of the moments of inertia and of the symmet
breaking parameter.

We have found that, in general, the ordering of the diff
ent spin/isospin states corresponding to a given baryon n
ber as well as the energy separation between those s
obtained by using the present approach are very simila

er.
in

TABLE V. Quantum numbers and rotational excitation energ
~per unit of strangeness! for S521 andS52B states. The exci-
tation energies~in MeV! are taken with respect to that of theS
50 lowest energy state for each baryon number. The absolute
tational energies of those states are given in Table IV.

S521 S52B
B JP I N Eexc/uSu JP I N Eexc/uSu

3 1/21 0 1/2 263.5 1/21 1 1/2 291.7
1/21 1 1/2 304.0 3/22 0 3/2 292.9
5/22 0 1/2 325.0 5/21 0 3/2 304.4

4 01 1/2 0 287.9 01 0 2 302.8
41 1/2 0 413.7 01 2 0 308.5
01 3/2 2 425.1 01 1 2 311.8

5 1/21 0 1/2 279.4 1/21 1 3/2 301.7
3/21 0 1/2 288.1 1/22 1 3/2 303.6
3/22 0 1/2 290.8 3/22 1 3/2 304.7

6 11 1/2 0 299.1 02 1 2 308.6
01 1/2 1 313.5 12 1 2 309.5
31 1/2 0 325.7 11 1 2 310.3

7 7/21 0 1/2 282.0 3/21 2 3/2 301.3
3/21 1 3/2 298.7 5/21 1 5/2 302.8
7/21 1 1/2 299.1 7/21 1 5/2 305.1

8 01 1/2 0 301.3 01 2 2 313.5
21 1/2 0 311.7 11 1 3 314.8
11 1/2 1 319.3 22 2 2 314.8
0-6
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the results of the alternative bound-state treatment of
SU~3! Skyrme model. This fact together with the observati
that in the collective approach the relative strength of
flavor symmetry-breaking term increases with increas
baryon number~cf., Fig. 1! seems to indicate that both ap
proaches tend to coincide asB grows. In this sense we ca
conclude that our finding that the increase of one unit
strangeness implies a cost in energy of about 300 M
rather independently ofB>3, appears to be a rather gene
prediction of the SU~3! Skyrme model.

Finally, note that in the present calculation we have
the meson decay constants to their empirical values. Co
quently, all the resulting absolute masses are too large.
example, we find values ofMsol /B of about 1.60 GeV and
S50 ground-state rotational corrections of about 0.8 Ge
These values are expected to be largely compensated b
pion and kaon contributions to the Casimir energies, resp
tively. In fact, this has been recently shown to happen in
B51 sector of the model@21#. Unfortunately, forB.1 the
difficulties associated with the treatment of the fluctuatio
around nonspherically symmetric soliton backgrounds h
prevented so far the explicit evaluation of the Casimir eff
even in the SU~2! case.
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APPENDIX

In this appendix we give the explicit expressions of t
spin-isospin collective Hamiltonian forB>3. The form of
these expressions depends only on the symmetries of
soliton configurations. The method to derive them is ve
similar to the one described in Sec. III of Ref.@11#. In fact,
the following expressions can be easily obtained from
ones given in that reference by setting the correspond
hyperfine splitting constants to zero. Note that although
symmetry groups forB56 andB58 are different the corre-
sponding collective Hamiltonian have the same form. As
plained in Ref.@11# this is a consequence of the fact that
both cases the moment of inertia tensors have similar dec
positions in terms of the irrep of those groups:

HB53
JN 5KJĴ21KNN̂222KMN̂W • ĴW , ~A1!

HB54
JN 5KJĴ21K1

NN̂21~K3
N2K1

N!N̂3
2 , ~A2!

HB55
JN 5K1

J~ Ĵ22 Ĵ3
2!1K1

N~N̂22N̂3
2!22K1

M~N̂W • ĴW2N̂3Ĵ3!

1K3
JĴ3

21K3
NN̂3

222K3
MN̂3Ĵ3 , ~A3!

HB56
JN 5HB58

JN 5K1
JĴ21K1

NN̂21~K3
J2K1

J!Ĵ3
2

1~K3
N2K1

N!N̂3
222K3

M N̂3Ĵ3, ~A4!

HB57
JN 5KJĴ21KNN̂2. ~A5!
ys.
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