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Semileptonic inclusive heavy meson decay: Duality in a nonrelativistic potential model
in the Shifman-Voloshin limit
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The quark-hadron duality in the inclusive semileptonic decayB→Xcln in the Shifman-Voloshin limitL
!dm5mb2mc!mb ,mc is studied within a nonrelativistic potential model. The integrated semileptonic decay
rate is calculated in two ways: first, by constructing the operator product expansion, and second by a direct
summation of the exclusive channels. Sum rules~Bjorken, Voloshin, etc.! for the potential model are derived,
providing a possibility to compare the two representations forG(B→Xcln). An explicit difference between
them referred to as the duality-violation effect is found. The origin of this effect is related to higher charm
resonances which are kinematically forbidden in the decay process but are nevertheless picked up by the OPE.
Within the considered 1/mc

2 order the OPE and the sum over exclusive channels match each other, up to the
contributions of higher resonances, by virtue of the sum rules. In particular this is true for the terms of order
dm2/mc

2 andLdm/mc
2 which are present in each of the decay channels and cancel in the sum of these channels

due to the Bjorken and Voloshin sum rules, respectively. The size of the duality violation effects is estimated
to be of the orderO(L21b/mc

2dmb) with b.0 depending on the details of the potential. Constraints for a
better accuracy are discussed.

PACS number~s!: 13.20.He, 12.39.Jh, 12.39.Pn
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I. INTRODUCTION

The interest in inclusive decays of heavy mesons is tw
fold: experimental study of such decays can provide imp
tant information on the weak mixing angles of heavy m
sons, and a theoretical treatment of such processes w
includes also nonperturbative effects is possible. The th
retical framework based on combining the operator prod
expansion~OPE! and heavy quark~HQ! expansion provides
decay rates and differential distributions as series in inve
powers of the heavy quark mass with the coefficients prop
tional to the matrix elements of the operators of a pro
dimension@1–4#. A remarkable property of this expansion
that in the leading-order this is just the free-quark decay,
the first correction appears only at order 1/mQ

2 .
On the other hand, it is understood that the quark-had

duality technically implemented through the OPE is an
proximate framework@5#. For example, the calculation base
on OPE does not take into account all the details of
hadron spectrum which lead to the dependence of the s
open decay channels on the momentum transfer. The O
ignores this fact and this inevitably yields some errors in
OPE results@6#.

The theoretical description based on the OPE repres
the decay rate as a contour integral in the complexq0-plane
~for details see the next section!. The OPE can be justified
only in regions of the complexq0-plane away from the
physical region, whereas in the case of the calculation of
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decay rate~both differential and integrated! the contour al-
ways involves a segment which is close to the physical
gion @1#. This can lead to duality-violating effects, i.e., th
difference between the exact and the OPE based results

However, it is not easy to estimate the errors arising in
OPE, since the exact hadron spectrum in QCD is com
cated and not exactly known. So, testing directly the ac
racy of the quark-hadron duality is only possible in few e
ceptional cases. Examples discussed in the literature
QCD in the Shifman-Voloshin~SV! limit @7#, and the
’t Hooft model @8#.

In the ’t Hooft model ~2-dimensional QCD withNc

→`) the spectrum is reduced to an infinite number of sin
bound states and known precisely so that the direct sum
tion of exclusive channels is possible. First numerical ana
sis of the sum over exclusive channels reported the pres
of the duality-violating 1/mQ correction for the total width
@9#. Later the summation was performed analytically for t
case of a massless light quark@10#. The result of the OPE
calculation agreed with the exact result in this case thro
1/mQ

4 order.
Duality in QCD in the SV limit @7# has been studied in

@11,12#. This limit requiresLQCD!dm5mb2mc!mQ . A
peculiar feature of the SV limit is that a summation ov
exclusive channels becomes possible due to kinematical
sons: the process occurs near the zero recoil and thus
few decay channels contribute in the leading 1/mQ order.
The expansion of the relevant transition form factors in t
kinematical region is known and the sum over exclus
channels can be evaluated. The absence ofLQCD/mQ correc-
tions to the free-quark result in the semileptonic~SL! decay
rate has been demonstrated in@11#. However, to check the

-
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absence ofLQCD/mQ anddm/mQ corrections within the SV
kinematics is not enough to ensure duality in the 1/mQ order
in the general case, beyond the SV limit. Namely, one sho
also check that potentially large terms of ord
O(LQCDdmn/mQ

n11) which are present in individual deca
rates cancel in the sum over exclusive channels. The ana
of the LQCDdm/mQ

2 terms in the exclusive sum was pe
formed in@12# for QCD in theV2A case. It was found tha
the duality within this accuracy requires a new sum rule. T
full comparison to higher orders has not yet been perform

We study the quark-hadron duality in the SV limit with
a nonrelativistic potential model. The model has several f
tures which make it especially suitable for this purpose:
model is self-consistent in the SV limit; the spectrum
bound states is relatively simple and can be calculated;
exact representations of the transition form factors in te
of the hadron wave functions are known. These features
vide a possibility to calculate the exclusive sum. We adop
technical simplification of a Lorentz scalar current instead
the V2A current, like it is done in Ref.@6#.

The main purpose of our analysis is to check whethe
not the OPE result calculated to some order is equal to
sum over exclusive channels expanded to the same o
Both series are double expansions in powers ofL/mc and
L/dm. They are asymptotic series@10#, and the question o
their convergence is left for a later publication@13#.

Our main results are as follows.
We construct the expansion of theT-product of the two

currents in a series of local operators~the OPE! in the po-
tential model for a general form of the quark potential. Tec
nically this is done by the expansion of the Lippman
Schwinger equation. We consider the expansion to all ord
in L/dm but neglect terms;Ln/mc

n with n>3. This OPE
series provides the expansion of the differential and in
grated semileptonic decay rates in powers ofL/mc and
L/dm.

Let us point out that the OPE series in the potential mo
has an important distinction from the Wilsonian scheme
the field theory: Namely, in QCD~perturbative! contribu-
tions of small distances below the scale 1/m is referred to the
Wilson coefficients while contributions of large distanc
above this scale is referred to the matrix elements of the lo
operators. As a result both thec-number Wilson coefficients
and the matrix elements of the local operators acquire
m-dependence. In the potential model we also expand
average of theT-product of the two current operators ov
the B meson in a series of local operators, but the result
c-number coefficents as well as the average values of
local operators@see Eq.~8!# do not have a scale dependenc

The OPE and the sum over exclusive channels are rel
to each other by sum rules, similar to the Bjorken@14#, the
Voloshin @15#, and the whole tower of higher moments@16#.
We derive these sum rules. They involve an infinite sum
terms corresponding to all hadronic excitations, with ea
term having a well-defined heavy mass expansion. The q
tion of the heavy mass expansion of the sum~in other words,
of the uniform convergence of the series! has not been tack
led in this paper. If the contribution of higher excitation
07400
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vanishes rapidly enough the uniform convergence is
pected.

The OPE provides a heavy mass expansion for the in
sive semileptonic decay rate. To compare it with the resul
summation over exclusive semileptonic decay channels
make use of the sum rules. An explicit difference betwe
the two expressions is found, both for the integrated and
differential rates. This difference corresponds to the con
bution of the resonances kinematically forbidden in the
cay process which are picked up by the OPE. This ‘‘unphy
cal’’ contribution is related to the poles in the comple
q0-plane outside the physical region which however contr
ute to the OPE result. The size of this duality-violation ca
not be estimated in all generality since it depends on
potential and on the convergence properties of the sums
resonances.

For the integrated decay rate the OPE prediction and
sum over exclusive channels match,up to the duality-
violating contributions of higher resonances, within the 1/mc

2

order: Terms of orderdm2/mQ
2 , dmL/mQ

2 , which are
present in any individual decay rate cancel in the sum o
all channels thanks to the Bjorken@14# and Voloshin@15#
sum rules, respectively. For terms of orderL2/mQ

2 ,
L3/mQ

2 dm, etc., the agreement~again up to contributions of
higher resonances! is provided by the higher moment sum
rules. The duality-violation induced by the kinematical tru
cation of these higher resonances in general has the o
O(L21b/mc

2dmb) whereb depends on the details of the po
tential V(r ) both at large and smallr.

For the smeared differential distributions near maximalq2

the violation of the local duality is found at the order
Ldm/mc

2 .
We make an explicit proof of the present results for t

special case of the harmonic oscillator potential in Ref.@17#.
This is important since some demonstrations given below
rather formal.

In the next section we present some details of the ki
matics and discuss the analytical properties of the decay
plitude. In Sec. III the 1/mQ expansion of the quark propa
gator is performed and the OPE series for the SL decay
in nonrelativistic quantum mechanics is constructed. In S
IV we consider the HQ expansion of the exclusive form fa
tors in the potential model, and derive the inclusive su
rules~Bjorken, Voloshin, etc.! which are crucial for compar-
ing the exclusive sum and the OPE result. In Sec. V
provide an analytic expression for the duality-violation co
tribution and identify its origin. We estimate the accuracy
the OPE both for the integrated rate and the smeared di
bution near zero recoil. A special emphasis is laid on d
cussing the role of different inclusive sum rules in establi
ing the relationship between the OPE and the sum over
exclusive channels. A conclusion summarizes our results

II. KINEMATICS AND THE ANALYTICAL PROPERTIES
OF THE DECAY AMPLITUDE

We consider the inclusive SL decayB→Xcln. The rate of
this process reads
7-2
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SEMILEPTONIC INCLUSIVE HEAVY MESON DECAY: . . . PHYSICAL REVIEW D62 074007
G~B→Xcln!5
1

2MB
E d4q

2p
u~q0.uqW u!L~q!W~q!, ~1!

whereL is the leptonic tensor, and the hadronic tensorW is
defined as follows:

W5(
X

E d4pXu~pX
0 !d~pX

22MX
2 !^BuJuX~pW !&

3^X~pW !uJ1uB&d4~pB2pX2q!. ~2!

Here the relativistic normalization of states is implied:

^pup8&52p0~2p!3d~pW 2pW 8!. ~3!

For the sake of clarity we assume the technical simp
cation that the leptons are coupled to hadrons through
scalar current.1 In this case the leptonic tensor is a sca
function of only one variable,q2, and the hadronic tensorW
depends on the two invariant variablesn5PB•q/MB andq2.
In the rest frame of theB-meson these areq0 and q2. At
q0.0 and fixedq2 the sum in Eq.~2! runs over the hadronic

states with massesMX,MB2Aq2. The decay rate can b
written as follows:

G~B→Xcln!5
1

2MB
E dq2dq0uqW uu

3~q0.uqW u!L~q2!W~q0,q2!, ~4!

with q25(q0)22qW 2.
Equivalently, we can useq0 and qW 2. Let us consider the

W(q0,qW 2) as an analytical function ofq0 at fixed qW 2. One
can write the following relation:

1

2MB
W~q0,qW 2!5

1

2p i
discq0T~q0,qW 2!, ~5!

where

T~q0,qW 2!5
1

2MB
E dx exp2 iqx^BuT@J~x!,J1~0!#uB&

5
1

2MB
(
X

^BuJuX~2qW !&u2

MX2EX~2qW !2q0
, ~6!

EX(2qW )5AqW 21MX
2 is the energy of the state with the ma

MX and the total 3-momentum2qW . The sum overX in Eq.
~6! for T runs overall hadron states with the appropria
quantum numbers. The selection of the states kinematic
allowed in the decay process is made by the proper choic
the integration contour in the complexq0 plane. Namely, the

1Recall that for the case of theV2A current and massless lepton
the leptonic tensor has the formLmn;gmnq22qmqn , and for the
scalar currentL;q2. We consider throughout the paper the lepton
tensor of the generalized formL5(q2)N.
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decay rateG(B→Xcln) can be represented as the conto
integral in the complexq0 plane over the contourC(qW 2)
which depends on the value ofqW 2 ~Fig. 1! as follows:

G~B→Xcln!5
1

2p i E dqW 2uqW u E
C(qW 2)

dq0u~q0.uqW u!

3L„~q0!22qW 2
…T~q0,qW 2!. ~7!

It is important that the left crossing of the contourC(qW 2)
with the real axis in the complexq0 plane occurs at the poin
q05uqW u, otherwise the contour can be freely deformed in t
region where the functionT0(q0 ,qW 2) is analytic. We sym-
bolically mark this constraint with au-function in the inte-
grand. The integration over such contour selects at any g
qW 2 only physical states which can be produced in the de
B→Xcln, i.e. states with the invariant masses such t
AMX

21qW 2,MB2uqW u. Notice that whereas the left crossin
of the contour with the real axis is tightly fixed at the poi
Re (q0)5uqW u, Im (q0)50, the right crossing of the contou
with the real axis can be safely moved to the right. In t
general relativistic case there are cuts which correspon
other physical processes. In the SV limit these cuts are s
rated from the physical decay cut by windows of the wid
O(mQ). In the potential quark model such cuts are absen

The amplitudeT(q0,qW 2) is given by theT-product of the
two local current operators, which is the classical case
performing the OPE. Namely, one has

T~q0,qW 2!5
1

2MBi E dx exp~2 iqx!^BuT„J~x!,J1~0!…uB&

5(
n

Cn~q0,qW 2!^BuÔnuB&, ~8!

where Ôn are local operators andCn(q0,qW 2) are the
c-number coefficients. Introducing the expansion~8! into Eq.
~7! gives the integrated rate as a sum over various local
erators.

We shall obtain the integrated SL decay rate within o
model by two means: first, we construct the OPE series
T(q0,q2), and second, we calculate directly the sum ov
exclusive channels.

FIG. 1. Singularities of the amplitudeT(q0,qW 2) in the complex

q0 plane. Circles are hadronic (c̄q) poles which are only singulari-
ties in the confined potential model, and the cross stands for the

b→c quark process. The vertical line Re (q0)5uqW u separates the
kinematically allowed region of the real axis from the kinematica

forbidden region. The contourC(qW 2) embraces all states in th
allowed region. Poles at the left of the boundary correspond
kinematically forbidden bound states.
7-3
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III. THE MODEL

We consider this decay in the SV limit,

L!dm5mb2mc!mc ,mb . ~9!

Notice that in a non-relativistic model,L refers to a fixed
energy scale proportional to the light quark massmd , to the
average quark momentum in the hadron rest fra
(^BukW2uB&)1/2, to the parameterb defined in Eq.~24! andhbd
or eB to be defined in Eq.~11!. These parameters may b
strongly hierarchized, for example a genuine nonrelativis
situation implies (̂BukW2uB&)1/2!md , but all these quantities
remain constant asmc ,mb→`, they remain proportional to
some fixed hadronic scale which we callL by analogy with
QCD. This is to be distinguished fromdm which is taken as
an independent parameter. Thus we consider the double
dm/mc→0, andL/dm→0. Notice finally thatuqW u is of order
dm.

To avoid confusion, it is important to stress that the st
dard OPE expansion assumesdm/mQ constant, even if
small. So the order of a termO(Ln1m/mc

n(dm)m) in this
paper corresponds to the orderO(Ln1m/mQ

n1m) of the stan-
dard OPE expansion.

We treat the leptonic part relativistically, but for the ca
culation of the hadronic tensor we use the nonrelativis
potential model. The nonrelativistic treatment of the ha
ronic tensor is consistent within the SV kinematics and c
be used as a tool for studying some of the aspects of qu
hadron duality. We shall make use the fact that in the n
relativistic potential model we know the structure of the ha
ron spectrum and have an exact representation for
hadronic matrix elements of the quark currents.

It is convenient to use the nonrelativistic normalization
states~which is used hereafter!

^pup8&5~2p!3d~pW 2pW 8!, ~10!

and consider the process in the rest frame of the deca
B-meson. TheB meson is the ground eigenstate of t
HamiltonianĤbd ,

ĤbduB&5MBuB&5~mb1md1eB!uB&. ~11!

In the B-rest frame this Hamiltonian has the form

Ĥbd5mb1md1
kW2

2mb
1

kW2

2md
1Vbd~r ![mb1md1hbd .

~12!

For the B→Xc transition we need thecd̄ bound states
with the total 3-momentum2qW , which we denoteDn(2qW ).
These are eigenstates of the Hamiltonian

Ĥcd~qW !5mc1md1
~kW1qW !2

2mc
1

kW2

2md
1Vcd~r !, ~13!

such that
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Ĥcd~qW !uDn~2qW !&5EDn
~qW !uDn~2qW !&. ~14!

In this equationEDn
(qW ) is the nonrelativistic energy of the

bound stateDn with the 3-momentum2qW

EDn
~qW !5MDn

1
qW 2

2~mc1md!
, MDn

5mc1md1eDn
.

~15!

The expression~6! for the decay amplitudeT now takes the
form

T~q0,qW !5(
n

`

uFn~qW !u2
1

MB2EDn
~qW !2q0

, ~16!

whereFn(qW ) is theB→Dn transition form factor,

Fn~qW !5^BuJuDn~2qW !&, MB5mb1md1eB ,

and the sum runs over allcd̄ resonances. The expression~16!
can be also written as

T~q0,qW !5^BuJ
1

MB2q02Ĥcd~qW !
J1uB&, ~17!

where @Ĥcd(qW )2E#215Gcd(qW ,E) is the full off-energy-
shell Green function~propagator! of the cd̄ system. TheB
decay amplitude is thus given by an average of the Gr
function Ĝcd(qW ,E) at the pointE5MB2q0 over theB me-
son.

Let us specify the transition current operatorĴb→c . For
the sake of argument we neglect the quark spin effect
consider spinless nonrelativistic quarks and choose the q
current in the form

Ĵb→c5E dkWdkW8b̂~kW8!ĉ1~kW !, ~18!

whereĉ(b̂) is the annihilation operator of thec(b) quark.2

For the quark current~18! theB→Dn transition form fac-
tor in the rest frame of theB-meson reads

Fn~qW !5E dkWqcB~kWq!cDnS kWq1
md

mc1md
qW D , ~19!

wherekWq is the momentum of the light spectator.

2Notice that the standard scalar current readsĴb→c5*(dkW /

2k0)(dkW8/2k80)b̂(kW8) ĉ1(kW ) and in the nonrelativistic limit takes

the form .*dkW ĉ1(kW )dkW8b̂(kW8)(12kW2/4mc
2)(12kW82/4mb

2). Ne-

glecting the factor (12kW2/4mc
2)(12kW82/4mb

2) as done in Eq.~18!
leads to technical simplifications both in the OPE and in the exc
sive sum. It can be easily realized that a particular choice of
current however does not touch any arguments related to dual
7-4
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Similarly, for the current~18! the expression~17! takes
the form

T~q0,qW !5^Bu
1

MB2q02Ĥcd~qW !
uB&. ~20!

IV. THE OPE OF THE DECAY RATE

The main idea in constructing the OPE series forT, Eq.
~8!, is to single outĤbd from Ĥcd(qW ) in the denominator in
Eq. ~20! and to use the eigenvalue equation~11!. First, let us
introduce the operatordH(qW ) which measures the differenc
of the denominator of Eq.~20! from the inverse Green func
tion of the free-quark transition

MB2q02Ĥcd~qW !5S dm2
qW 2

2mc
2q0D 2dH~qW !. ~21!

Explicitly, one finds

dH~qW !5Ĥcd~qW !2mc2md2
qW 2

2mc
2eB . ~22!

Next, isolatinghbd in dH(qW ) we obtain

dH~qW !5~hbd2eB!1
1

2 S 1

mc
2

1

mb
D ~kW21V1!

1
kW•qW

mc
1OS b3dm

mc
3 D , ~23!
07400
where the scaleb is provided by the hadronic matrix ele
ments

b2.^BukW2uB&.^BuV̂1uB&. ~24!

As already mentioned,b is of the order ofL. The quantity
V1 here is a part of the expansion of the potentialVQq in
powers of 1/mQ

VQq5V01
1

2mQ
V11

1

2mQ
2

V21OS L4

mQ
3 D . ~25!

Equations~20! and ~21! allow us to construct the expan
sion of T(q0,qW 2) in inverse powers ofdm2qW 2/2mc2q0 as
follows:

T~q0 ,qW 2!5
1

dm2
qW 2

2mc
2q0

(
i 50

`
^Bu„dH~qW !…i uB&

S dm2
qW 2

2mc
2q0D i .

~26!

Making use of Eq.~23! we obtain
T~q0 ,qW 2!5^BuB&
1

dm2
qW 2

2mc
2q0

1^Bu~hbd2eB!uB&
1

S dm2
qW 2

2mc
2q0D 2 1^BuF dm

2mc
2 ~kW21V1!2

kW•qW

mc
G uB&

3
1

S dm2
qW 2

2mc
2q0D 2 1 (

i , j 51

3

(
n50

`

qiqj^BuF ki~hbd2eB!nkj

mc
2 G uB&

1

S dm2
qW 2

2mc
2q0D 31n 1O~L2/mc

3!. ~27!

The remainder has the orderO(L2/mc
3) if we keepqW 2.dm2 andq0 fixed.

Finally, using Eq.~11! and the relationŝBuki uB&50 and^Bukikj uB&5 1
3 d i j ^BukW2uB& we find the following OPE series:

T~q0,qW 2!5
1

dm2
qW 2

2mc
2q0

1
dm

2mc
2 ^BukW21V1uB&

1

S dm2
qW 2

2mc
2q0D 2

1 (
n52

`
^BuÔn22uB&

3mc
2

qW 2
1

S dm2
qW 2

2mc
2q0D n11 1O~L2/mc

3!, ~28!

whereÔn5( j 51
3 kj (hbd2eB)nkj . Hereafter the( symbol is omitted. We denotêBukW21V1uB&5b0

2, b0.L.
7-5
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The series~28! is a double expansion ofT(q0,q2) in L/mc andL/(dm2qW 2/2mc2q0), limited to second order inL/mc and
expanded to all orders inL/(dm2qW 2/2mc2q0). The poles are at

qc
0~qW 2!5dm2

qW 2

2mc
. ~29!

Thefirst termin Eq. ~28! givesthe free quark decay amplitude. A remarkable feature of this series is that theL/dm andL/mc
corrections to the free-quark decay are absent thanks to Eq.~11! and the relation̂Buki uB&50. The expansion~28! substitutes
the whole set of hadron poles by a complicated quark singularity at the pointq05qc

0(qW 2).
Let us treat the series~28! formally and calculate the integrated rate which is obtained as a double expansion inL/mc and

L/dm.
Let us rewrite the expression~28! as follows:

T~q0,qW 2!5S 12
^BukW21V1uB&

2mc
2

dm
]

]dm
1qW 2(

n52

`
^BuÔn22uB&

3mc
2

1

n! S 2
]

]dmD nD 1

S dm2
qW 2

2mc
2q0D . ~30!

This representation is very convenient for the calculation of the decay rate Eq.~7!: the integration overq0 is now easily
performed since

E
C(qW 2)

dq0L„~q0!22qW 2
…u~q0.uqW u!

1

S dm2
qW 2

2mc
2q0D 5L~qc

0~qW 2!,qW 2!u~ uqW u,2mc1Amc
212mcdm!, ~31!

where theu-function u(uqW u,2mc1Amc
212mcdm) reflects the fact that the left crossing of the contour with the real axi

the complexq0 plane should always happen at the point Re(q0)5uqW u. The integrated rate is then given by the expression3

GOPE~B→Xcln!5S 12
^BukW21V1uB&

2mc
2

dm
]

]dmD I 1~dm,mc!1 (
n52

`
^BuÔn22uB&

3mc
2

1

n! S 2
]

]dmD n

I 3~dm,mc!, ~32!

where

I n~dm,mc!5E
0

2mc1Amc
2
12mcdm

dqW 2uqW unL„@qc
0~qW 2!#22qW 2

…. ~33!

For the free quark decay one finds

G~b→cln!5I 1~dm,mc!. ~34!

Let us consider the leptonic tensor of the general formL(q2)5(q2)N. For semileptonic decays to massless spin 1/2 lept
N51. The caseN50 corresponds to scalar leptons. Since the leptonic tensor is proportional toq2, it is now convenient to
introduce a new integration variableq2 as follows:

q25@qc
0~qW 2!#22qW 2. ~35!

Then the integrated rate takes the form

3A remark is in order here. When computing the decay rate in Eq.~32! we have interchanged the derivation with respect todm and the
integration overdq0. We can also directly integrate the expression Eq.~28! over dq0. In this case we should take into account that t

contourC(qW 2) in the complexq0-plane always lies on the right-hand side~RHS! of the line Re(q0)5uqW u. If we erroneously do not take this
condition into account then multiple poles in Eq.~28! do not contribute at all since the complex integral vanishes when the multiple p
are inside the contour as well as when they are outside~see also discussion in@2#!. To proceed correctly, one should replace a multiple po
say a double pole, by an equivalent set of two neighboring poles. Then the crossing of the boarder gives a nonvanishing result wh
the two poles is inside the contour and the other one is outside. Integrating before taking the derivative with respect todm as in Eq.~32!
corresponds to treating in a specific way the crossing of the boarder by the multiple poles. We show elsewhere@13# that both treatments lead
to the same result.
074007-6
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GOPE~B→Xcln!5G~b→cln!2
^BukW21V1uB&

2mc
2

dm
]

]dm
I 1~dm,mc!1 (

n52

`
^BuÔn22uB&

3mc
2

1

n! S 2
]

]dmD n

I 3~dm,mc!, ~36!

where we have taken into account thatI 1(dm,mc) gives the exact free-quark decay rate. A simple algebraic exercise giv
the 1/mc

2 accuracy

I 1~dm,mc!5~dm!2N13FA1/2
N S 12

3

2

dm

mc
1

15

8

dm2

mc
2 D 1

5

8
A3/2

N dm2

mc
2

1OS dm3

mc
3 D G ,

~37!

I 3~dm,mc!5~dm!2N15FA3/2
N 1OS dm

mc
D G ,

where

Am
N5E

0

1

dxxm~12x!N5B~N11,m11!, A3/2
N 5

3

2N15
A1/2

N , ~38!

B(p,q) being the Euler function. Finally, we come to the relation

G~B→Xcln!

G~b→cln!
511

^BukW2uB&

2mc
2

2~2N13!
^BuV1uB&

2mc
2

1 (
n53

2N15
~21!nC2N15

n

2N15

^BuÔn22uB&

mc
2dmn22

1OS L2dm

mc
3 D , ~39!
o

ca

to
f

s
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to

o
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x
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x-
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e-
the
with Cn
k5n!/k!(n2k)!. Notice that the coefficient of the

term ^BukW2uB& does not depend onN, i.e. it does not depend
on the form of the leptonic tensor.

Summing up, the OPE predicts the following features
the inclusive SL decay rate.

The LO term reproduces the rate of the free-quark de
processb→c.

The 1/mc and 1/dm corrections are absent. This is due
the fact that the average over theB-state of the operator o
the relevant dimension vanishes.

Lowest-order corrections to the free-quark proce
emerge in the 1/mc

2 order. A main part of these corrections
due to the average values of the dimension-2 opera

^BukW2uB& and ^BukW21V1uB&. Also the operators Ôn

5kj (hbd2eB)nkj contribute in the 1/mc
2 order. Their contri-

bution is however suppressed with the additional powers
dm.

In the next section we shall analyze the accuracy of
OPE predictions.

V. HEAVY QUARK EXPANSION AND THE HADRONIC
SUM RULES

Before proceeding with the direct summation of the e
clusive channels one by one we derive hadronic sum r
which are important for the comparison of the exact res
with the OPE analysis.

A. Heavy quark expansion of the form factors
in the potential model

The wave function of theQq̄ bound state has the form
07400
f

y

s

rs

f

e

-
s

lt

CpW~kWQ ,kWq!5d~pW 2kWQ2kWq!cX mQmq

mQ1mq
S kWq

mq
2

kWQ

mQ
D C

5d~pW 2kWQ2kWq!cS kWq2
mq

mQ1mq
pW D , ~40!

wherepW is the momentum of the bound state.
The B→Dn transition form factor is the average over th

meson states of the operatorVbc(qW ) given by the following
kernel:

^kWbuVbc~qW !ukW c&5d~kWb2kW c2qW !. ~41!

So the transition form factor is defined by the following e
pression:

^B~pW B!uVbc~qW !uDn~pW n!&5d~pW B2pW n2qW !Fn„~vW B2vW n!2
…,

~42!

with vW B5pW B /(mb1mq) andvW n5pW n /(mc1mq) and

Fn~vW B2vW n!5E dkWqcBS kWq2
mq

mb1mq
pW BD

3cDnS kWq2
mq

mc1mq
pW nD . ~43!

A simple change of variableskWq→kWq1mq /(mb1mq)pW B
makes it obvious that the decay form factor depends on
square of the relative 3-velocities of the initial and final m
sons, and not on the relative 3-momentum squared as
elastic form factor. Nevertheless in theB rest frame we write
7-7
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Fn~qW !5E dkWqcB~kWq!cDnS kWq1
mq

mc1mq
qW D . ~44!

The wave functioncQq̄ is an eigenstate of the Hami
tonian

hQq̄5
kW2

2 S 1

mQ
1

1

mq
D1VQq~r !, ~45!

wherekW is the conjugate variable torW. The transition form
factors Fn has some general properties independent of
details of the potentialVQq̄ . Such properties of the transitio
form factors are derived by performing the HQ expansion
the Hamiltonian. To this end we apply the usual quant
mechanical perturbation theory.

For our purposes it is convenient to considerhbd as the
full Hamiltonian, hcd as a nonperturbed Hamiltonian, an
Û5hbd2hcd as the perturbation. The perturbation has
form

Û5
1

2 S 1

mb
2

1

mc
D ~kW21V1!1OS b3

dm

mc
3 D

52
dm

2mc
2 ~kW21V1!1OS b2

dm2

mc
3 D , ~46!

where we assume the following expansion of theQq̄ poten-
tial

VQq̄5V01
1

2mQ
V11

1

2mQ
2

V21••• . ~47!

The perturbation has the orderdm/mc
2 such that we can con

struct the HQ expansion of the wave functions and the bi
ing energies. Let us remind the standard formulas: Let$cDn

%
be the full system of eigenstates of thehcd , and the$eDn

% the

corresponding eigenvalues. Then, the mass of thenth exci-
tation in the cd̄ system readsMDn

5mc1md1eDn
. Let

$cBn
% be the full system of eigenstates of thehbd , and the

$eBn
% the corresponding eigenvalues.

The standard formulas give

cBn
5cDn

1 (
mÞn

Umn

eDn
2eDm

cDm
1O~dm2b2/mc

4! ~48!

and

eBn
5eDn

1Unn1 (
mÞn

uUmnu2

eDn
2eDm

1•••, ~49!

where4

4eB0
is justeB defined in Eq.~11!. We also usually writeB instead

of B0.
07400
e

f

e

-

Umn52
dm

2mc
2 ^cDn

ukW21V1ucDm
&1OS b2

dm2

mc
3 D . ~50!

The excitation energies satisfy the relation

eDn
2eDm

.~n2m!lnm , lmn.b. ~51!

In terms of the wave functions, the transition form fact
~44! takes a simple form:

Fn~qW !5^cB0
ucDn

~2qW !&. ~52!

The expansion of the wave functioncB0
[cB reads

cB0
5cD0

1 (
mÞ0

1

2 S 1

mb
2

1

mc
D ^cD0

ukW21V1ucDm
&

eDn
2eDm

cDm

1O~dm2b2/mc
4!, ~53!

such that

Fn~qW !5^cD0
1 (

mÞ0

1

2 S 1

mb
2

1

mc
D ^cD0

ukW21V1ucDm
&*

eD0
2eDm

3cDm
ucDn

~qW !&1O~dm2b2/mc
4!

5 f 0n~qW !1 (
mÞ0

S 2
dm

2mc
2D ^cD0

ukW21V1ucDm
&*

eD0
2eDm

f mn~qW !

1O~dm2b2/mc
4!, ~54!

where f mn(qW )5^cDm
ucDn

(qW )&. By virtue of Eq. ~44! one
obtains

f nn
2 ~qW !512r nn

2 qW 2

mc
2

1O~qW 4/mc
4!,

f nm
2 ~qW !5r nm

2 qW 2

mc
2

1O~qW 4/mc
4!, mÞn, ~55!

with r mn being numbers of order unity plus higher ord
1/mc corrections. We shall use the notationr n5r n0. Notice
that the radiir n describe the form factors of the transition
between different levels in thecd̄ system (D0→Dn) and so
know nothing aboutdm.

We now rewrite Eq.~54! as follows:

F0~qW !512r 0
2 qW 2

2mc
2

1 (
mÞ0

S 2
dm

2mc
2D ^cD0

ukW21V1ucDm
&*

eD0
2eDm

3 f m0~qW !1OS dm2b2

mc
4 D . ~56!

At qW 250 we thus come to the relation
7-8
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F0~0!511O~dm2b2/mc
4!. ~57!

One can see that theO(dmb/mc
2) term in Fn(0) is absent.

This is a nonrelativistic analog of the Luke theorem@18#.
For the squares of the form factors we obtain the follo

ing important relations:5

F0
2~qW !512r0

2 qW 2

mc
2

1OS dm2b2

mc
4 D , r0

25r 0
21OS bdm

mc
2 D ,

Fn
2~qW !5rn

2 qW 2

mc
2

1OS dm2b2

mc
4 D , rn

25r n
21OS bdm

mc
2 D .

~58!

As we shall see later the radiirn ~as well asr n) are not
independent and satisfy certain sum rules. The relations~58!
are the main result of this section. They are necessary for
calculation of the decay rates.

B. Inclusive hadronic sum rules

To obtain a nonrelativistic equivalent of the whole tow
of sum rules@16#, i.e., the Bjorken sum rule, the Voloshi
and the higher moments, we consider the following set
quantities (i 50,1, . . . ):

Si~qW !5^Bu„dH~qW !…i uB&, ~59!

wheredH(qW ) is defined in Eq.~21!. Notice thatSi(qW ) appear
in the expansion forT(q0,qW 2), Eq. ~26!. We shall derive two
different representations forSi(qW ) and obtain sum rules
equating these representations.

The first representation is obtained by inserting the
system of the eigenstatesuDn(2qW )& of the Hamiltonian
Hcd(qW ) in Eq. ~59!. The uDn(2qW )& are also eigenstates o
the operatordH(qW ) that is made obvious usingdHcd(qW ) in
the form Eq.~22!:

dH~qW !uDn~2qW !&5dn~qW !uDn~2qW !&,

dn~qW !5eDn
2eB1

qW 2

2~mc1md!
2

qW 2

2mc
. ~60!

As a result of inserting the full system we find

Si~qW !5 (
n51

`

uFn~qW !u2„dn~qW !…i . ~61!

Equation~49! gives the following expansion fordn(qW ):

5At any n states with angular momentaL50, . . . ,n exist. The

form factors f n(qW 2) and Fn(qW 2) are thus understood as proper

normalized sums(L50
n f nL(qW ) and(L50

n FnL(qW ), respectively.
07400
-

he

f

ll

dn~qW !5Dn1
1

2 S 1

mc
2

1

mb
D ^D0ukW21V1uD0&

2
mdqW 2

2mc~mc1md!
1OS dm2b3

mc
4 D , ~62!

where

Dn[eDn
2eD0

. ~63!

Notice that within the leading-order accuracy we can repl

^D0ukW21V1uD0& with ^BukW21V1uB&.
Another representation forSi(qW ) is obtained by using

dH(qW ) in the form ~23!:

Si~qW !5^Bu„dH~qW !…i uB&

5^BuXĥbd2eB1
kW21V1

2 S 1

mc2
1

mbD
1

kW•qW

mc
1OS b3dm

mc
3 D Ci

uB&. ~64!

This formula givesSi(qW ) in terms of the matrix elements o
various operators over theB-meson.

The representations~61! and ~64! for Si(qW ) provide the
LHS and the RHS of the sum rules, respectively. Let
notice that terms denoted byO(b3dm/mc

3) in Eqs.~62! and

~64! do not depend onqW . All qW -dependent terms are show
explicitly.

Using Eq. ~11! and the relations^Buki uB&50 and

^Bukikj uB&5 1
3 d i j ^BukW2uB& we come to the set of sum rules

In fact each of these sum rules is equivalent to an infin
number of relations at different powers ofqW 2 and 1/mc .

i50:

S05(
n

`

uFn~qW !u251. ~65!

Obviously the RHS does not depend onqW . At qW 250 this is
an identity. Using the definition~58! and comparing the term
linear in qW 2 we find theNR Bjorken sum rule@14#

r0
25 (

n51

`

rn
2 . ~66!

i51: The RHS of this sum rule reads

S15
1

2 S 1

mc
2

1

mb
D ^BukW21V1uB&1OS b3dm

mc
3 D , ~67!

where we have used Eqs.~11! and~12!. The RHS of this sum
rule is also independent ofqW . From the definition~59! and
using Eq.~62! as well as the SR~65!, we rewrite Eq.~67! as
follows:
7-9
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(
n50

`

Fn
2~qW !Dn5

qW 2md

2mc~mc1md!
1OS b3dm

mc
3 D . ~68!

Notice that the termsO(b2dm/mc
2) cancel between RHS

amd LHS. Comparing the linear inqW 2 term yields theNR
Voloshin sum rule@15#

(
n51

`

rn
2Dn5

md

2

1

11
md

mc

. ~69!

Let us notice that the RHS of the Eq.~69! does not contain
higher-order 1/mc corrections.

Combining the Bjorken and the Voloshin sum rules p
vides a simple constraint on the parameterr0

2 which is in fact
the slope of the Isgur-Wise function. Namely,

r0
25 (

n51

`

rn
25

1

D1
(
n51

`

rn
2D1,

1

D1
(
n51

`

rn
2Dn

5
md

2D1

1

11md /mc
,

md

2D1
, ~70!

whereDn are defined in Eq.~63!
i52: The RHS of this sum rule reads

S25
qW 2^BukW2uB&

3mc
2

1OS b4dm2

mc
4 D . ~71!

Using Eqs.~65! and ~67! yields for the LHS

(
n50

`

Fn
2~qW !Dn

25
qW 2^BukW2uB&

3mc
2 X11OS b2dm

mc
3 D C

1
qW 4md

2

4mc
2~mc1md!2

1OS b4dm2

mc
4 D . ~72!

The linearqW 2 term yields

(
n51

`

rn
2Dn

25
1

3
^BukW2uB&X11OS b2dm

mc
3 D C. ~73!

i>3:
For i53 we find for the RHS
07400
-

S35
1

3

qW 2^Bukj~hbd2eB!kj uB&

mc
2 X11OS bdm

mc
2 D C

1OS b6dm3

mc
6 D . ~74!

Using Eqs.~65!–~71! yields for the LHS

(
n50

`

Fn
2~qW !Dn

35
qW 2^Bukj~hbd2eB!kj uB&

3mc
2 X11OS bdm

mc
2 D C

1
qW 4

mc
4

OS md
2b2dm

mc
2 D 1

qW 6

mc
6

O~md
3!

1OS b5dm2

mc
4 D . ~75!

The linearqW 2 term yields

(
n51

`

rn
2Dn

35
^Bukj~hbd2eB!kj uB&

3
X11OS bdm

mc
2 D C

5
1

3
^BuÔ1uB&X11OS bdm

mc
2 D C. ~76!

Similarly at higheri>3 one obtains at thebdm/mc
2 ac-

curacy

(
n51

`

rn
2Dn

i 5
1

3
^Bukj~hbd2eB! i 22kj uB&5

1

3
^BuÔi 22uB&.

~77!

These sum rules are used in the next section for compar
of the exact decay rate with the OPE result and for analyz
the duality-violation effects.

VI. SUMMATION OVER THE EXCLUSIVE CHANNELS

We now proceed to the summation of the exclusive ch
nels. As the first step, let us show that there is an exp
difference between the exclusive sum and the OPE serie

A. The origin of duality violation

Proceeding with the sum over the exclusive channels
write
7-10
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G~B→Xcln!5
1

2p i (
n

` E dq2L~q2!E
C(q2)

dq0uqW u
uFn~qW !u2

Mb2q02En~qW !

5
1

2p i (
n

` E dq2L~q2!E
C(q2)

dq0uqW u
uFn~qW !u2

dm2
qW 2

2mc
2q01dn~qW !

5
1

2p i (
n

` E dq2L~q2!E
C(q2)

dq0uqW u
uFn~qW !u2

dm2
qW 2

2mc
2q0F 12

dn~qW !

dm2
qW 2

2mc
2q0

1•••G
5

1

2p i E dq2L~q2! (
n

n(q2) E
C(q2)

dq0uqW u
uFn~qW !u2

dm2
qW 2

2mc
2q0F 12

dn~qW !

dm2
qW 2

2mc
2q0

1•••G , ~78!

where in the RHSuqW u5A(q0)22q2. Notice that the sum is truncated at the propern(q2) which is the maximal number o
hadron resonances kinematically allowed at a given value ofq2, i.e., resonances satisfying the relationMn,MB2Aq2. The
contourC(q2) is responsible for this selection, since only the resonances enclosed by the contour contribute into the s
states which are beyond this contour do not contribute.

Finally, the series~78! can be written in the form

G~B→Xcln!5E dq2L~q2!u~q2!E dq0dqW 2uqW ud„~q0!22q22qW 2
… (

n

n(q2)

uFn~qW !u2

3S 11dn~qW 2!
]

]dm
1

1

2
dn

2~qW 2!
]2

]dm2
1••• D dS q02

qW 2

2mc
2dmD . ~79!

On the other hand, the sum rules~67!–~74! allow us to rewrite the decay rate~32! in the form

GOPE~B→Xcln!5E dq2L~q2!u~q2!E dq0dqW 2uqW ud„~q0!22q22qW 2
…(

n

`

uFn~qW !u2

3S 11dn~qW 2!
]

]dm
1

1

2
dn

2~qW 2!
]2

]dm2
1••• D dS q02

qW 2

2mc
2dmD . ~80!
P

o

m
an
m

in
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It is easy to see that the exact result and the result of the O
are different due to contributions of highly excited states:at
any q2 the OPE picks up also the contribution of the res
nances forbidden kinematically at this q2. Thus the accuracy
of duality is determined by the accuracy of violating the su
rules connected with the truncation of the exclusive sum,
is therefore connected with the convergence of these su

B. Sum of the exclusive channels and the accuracy of the OPE

We now calculate the individual decay rates keep
terms of order (L2/mc

2)(dm/L)n in the decay rates but ne
glecting higher orders (L3/mc

3)(dm/L)n. The necessary ex
pressions with the relevant accuracy are given below.

uqW u in the free-quark decayb→cln at q2 has the form
07400
E

-

d
s.

g

uqW u5Adm22q2S 12
dm

2mc
1

3

8

dm2

mc
2

1
dm22q2

8mc
2 D .

~81!

The general expression foruqW u in the B→Dnln transition
at q2 reads

uqW un5AdMn
22q2S 12

dMn

2~mc1md!
1

3

8

dMn
2

~mc1md!2

1
dMn

22q2

8~mc1md!2D , ~82!

wheredMn5MB2Mn.dm2Dn2dmb0 /(2mc) from Eqs.
~50! and ~63!.
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The necessary accuracy for the transition into the gro
state is

uqW un505Adm2S 12
b0

2

2mc
2D 2

2q2S 12
dm

2~mc1md!

1
3

8

dm2

mc
2

1
dm22q2

8mc
2 D . ~83!

Recall thatb0
25^BukW21V1uB&.

For uqW unÞ0 less accuracy is enough since the contribut
of the Dn ,nÞ0 into the SL decay rate is suppressed by
additional factorqW 2/mc

2 :

uqW unÞ05A~dm2Dn!22q2. ~84!

With these formulas foruqW u the decay rates of the exclu
sive channels take the following form.

Free quark decayb→cln:

1

L~q2!

dG~b→cln!

dq2

5uqW uS 12
dm

mc
1

3

2

dm2

mc
2 2

q2

2mc
2D

5Adm22q2S 12
3

2

dm

mc
1

15

8

Dm2

mc
2 1

5

8

dm22q2

mc
2 D .

~85!

The B→D0ln channel

1

L~q2!

dG~B→D0ln!

dq2 5uqW un50S 12
dm

mc1md
1

3

2

dm2

mc
2

2
q2

2mc
2D 2

r0
2

mc
2 uqW un50

3 , ~86!

using the definition~56!.
The B→Dnln (nÞ0) channel:

1

L~q2!

dG~B→Dnln!

dq2 5
rn

2

mc
2 „~dm2Dn!22q2

…

3/2. ~87!
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Now everything is ready for the calculation of the integrat
SL decay rate. We again considerL5(q2)N.

1. The integrated rate and the global duality

It is convenient to represent the results for the partial
cay rates in terms of their ratios to the free quark decay r
The latter has the form

G~b→cln!5~dm!2N13FA1/2
N S 12

3

2

dm

mc
1

15

8

dm2

mc
2 D

1
5

8
A3/2

N dm2

mc
2

1OS dm3

mc
3 D G . ~88!

Making use of the relation~38! we find

G~B→D0ln!

G~b→cln!
512

3r0
2

2N15

dm2

mc
2

1
3

2

md

11md /mc

dm

mc
2

2~2N13!
b0

2

2mc
2

, ~89!

G~B→Dnln!

G~b→cln!
5

dm2

mc
2

3rn
2

2N15 S 12
Dn

dmD N

5
3rn

2

2N15

dm2

mc
2

23~rn
2Dn!

dm

mc
2

1
1

mc
2

3 (
k52

2N15

~21!k
1

2N15
C2N15

k
~3rn

2Dn
k!

dmk22
.

~90!

Some remarks are in order.
~1! The main part of the OPE~i.e., the free quark decay!

is reproduced by theG(B→D0ln), within the leading and
the subleading 1/mc orders. The excited states contribu
only within the (dm)2/mc

2 and Ldm/mc
2 orders in the SV

limit.
~2! Nevertheless, each of the individual exclusive cha

nels contains potentially large terms of the orderdm2/mc
2

andLdm/mc
2 which are absent in the OPE series.

Now summing over all exclusive channels we find
G~B→Xcln!

G~b→cln!
512

dm2

mc
2 S r0

22 (
n51

nmax

rn
2D 3

2N15
13

dm

mc
2 S 1

2

md

11md /mc
2 (

n51

nmax

rn
2DnD

2~2N13!
^BukW21V1uB&

2mc
2

1~2N14!

S (
n51

nmax

rn
2Dn

2D
2mc

2
1

1

mc
2dm

(
k53

2N15
~21!kC2N15

k

2N15

S 3 (
n51

nmax

rn
2Dn

kD
dmk23

. ~91!
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The sum over the charm resonance levels is truncate
nmax, which is the number of the resonance levels opene
q250. For the confining potential and in the SV limitnmax is
found from the relationDnmax

.dm.
Using the sum rules~66!–~77! to rewrite the OPE resul

~39! as the sum over hadronic resonances, the difference
tween the OPE and the exclusive sum~the duality-violating
contribution! explicitly reads

GOPE~B→Xcln!2G~B→Xcln!

G~b→cln!

5
dm2

mc
2 (

k50

2N15
~21!kC2N15

k

2N15

d (k)

dmk
1O~L2dm/mc

3!,

~92!

where

d (k)[ (
n5nmax11

`

rn
2~Dn!k

5 (
n5nmax11

`

@r n
21O~Ldm/mc

2!#~Dn!k. ~93!

As expected, this duality-violating contribution is connect
with the charm resonance states forbidden kinematically
the decay process. This kinematical truncation of the hig
resonances induces a violation of duality equal
@(dm)22k/mc

2#d (k) for everyk,2N15.
To estimate the error induced by the truncation and t

the size of the duality-violation effects, we need to know t
behavior of the excitation energies and the transition rad
largen.

~1! For quite a general form of the confining potential w
can write the following relations forDn for large n ~recall
that in the SV limitDnmax

.dm):

Dnmax
5LC~nmax!

a5dm,

~94!
Dn>LCna, n.nmax,

with C anda some positive numbers. In particular, this es
mate is valid for the confining potentials with a power b
havior at larger.

This estimate forDn is only depending on the behavior o
the potential at large distances (the infrared region).

~2! The transition radiir n
2 satisfy sum rules similar to sum

rules forrn
2 in Sec. V, namely6

(
n51

`

r n
25r 0

2 ,

6Notice that these relations are exact and do not have any 1mc

corrections.
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(
n51

`

r n
2Dn5

md

2~11md /mc!
,

~95!

(
n51

`

r n
2~Dn!(k12)5

1

3
^D0ukj~hcd2eD0

!kkj uD0&,

k50,1,2, . . . .

Hence, the behavior of the radiir n
2 at largen are connected

with the finiteness of the RHS of the sum rules. We c
guarantee this for the Bjorken and Voloshin sum rul
where finite values stand in the RHS~the ground state radiu
r 0 is finite for the confining potential!. In general, the finite-
ness of the matrix elements of the operatorskj (hcd2e0)kkj
~such as, e.g., the kinetic energy of quarks in the grou
state! depend on the properties of the potential at smallr ~the
ultraviolat behavior! and probably also at larger ~the infra-
red behavior!.7 We have assumed throughout the paper t
the average kinetic energy of the light spectator quark in
ground state is finite, i.e.,^D0ukW2uD0&.L2. This already re-
stricts some properties of the potential at smallr and pro-
vides convergency of one more sum rule in Eq.~95!. If, in
addition to this, we assume that the average values of
operatorskj (hcd2eD0

)kkj for k51, . . . ,K over the ground
state are finite, then combining with the behavior of the e
ergies at largen we come to the following estimate:

r n
2&

1

n11« S 1

naD 21K

, «.0. ~96!

This allows us to obtain the duality-violation originatin
from the truncation of the various sum rules:

Bjorken:
dm2

mc
2

d (0)5
dm2

mc
2 (

nmax

r n
2&

dm2

mc
2 S 1

nmax
a D K12

.
L2

mc
2 S L

dmD K

,

Voloshin:
dm

mc
2

d (1)5
dm

mc
2 (

nmax

r n
2Dn&

dm

mc
2

LS 1

nmax
a D K11

.
L2

mc
2 S L

dmD K

. ~97!

Similar estimates can be done for higher moment sum ru
One can see that the truncation error in any of the sum r
leads to the duality-violation of the same ord
O(L21K/mc

2dmK). An interesting feature about these es

7We do not have a classical Wilsonian scheme where the ultra
let region is referred to the Wilson coefficients and the infrar
region is referred to the matrix elements of the operators, so we
have these regions mixed.
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mates is that the dependence ona has disappeared from th
final result. Hence,the estimates are independent of the d
tails of the potential at large r, provided the potential guar
antees the confinement, i.e.,a is positive.

These are however rather crude estimates which do
take into account further possible suppressions~due, e.g., to
the orthogonality of the wave functions of the groundn50
and the excited statesn.0). In such a case the real accura
is better, and might depend on the details of the poten
also at larger. In general, we can state that the truncati
~duality-violaiton! error occurs at the order

L2

mc
2 S L

dmD b

, ~98!

where the exponentb.0 depends on the properties of th
potential ~in general, both at short and long distances!. A
more detailed analysis of which potentials satisfy the ab
requirements is beyond the scope of this paper and is lef
another publication@13#.

If we would like to have the truncation error of a high
order in 1/mc , e.g. in O(L3/mc

3), this is not so straight
Namely, in this case we need

d (k)

dmk
.OS L3

dm2mc
D . ~99!

As we have noticed, the series ford (k) in the main part does
not depend onmc , so the only possibility to have the relatio
~99! fulfilled in the SV limit, is to haver n

250 starting from
some numbern. ~Exactly this situation takes place for th
HO potential where allD0→Dn transition radii forn.1 are
equal zero@17#!. In this case for large enough values ofdm,
the term proportional tor n

2 in Eq. ~93! disappears and th
second term provides the truncation error of the or
O(dm2L2/mc

4).
As we are going to show elsewhere, the accuracy of

ality of orderL3/mc
3 can be achieved if we keep a fixed rat

dm/mc when mc→`. One can proceed exactly along th
same lines, but technically a bit different treatment is nec
sary: namely, at several places throughout the paper term
the orderdm3/mc

3 have been omitted, and they should
kept if the limit dm/mc5const is considered. This analys
will be presented in@13#.

Finally, it is interesting to notice that all resonance lev
opened atq250 are contributing on equal footing to the su
rules and therefore to the decay rate. So, a considerable d
in opening channels with largen compared to the channe
with smalln with the increasing recoil does not matter at a
This is a very important feature which basically determine
high accuracy of the OPE calculation of the integrated de
rate ~cf. @6,12#!.

2. The smeared q2 distribution and the local duality

The situation however differs considerably if we consid
the differential decay widths. We find it more physical to u
here the four vectorq2 variable. The region nearqmax

2 ~zero
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recoil! is special: as we move to higherq2, the excited chan-
nels close one after another leaving ultimately only theD0
ground state opened.

Let us consider a partially integrated decay rate in theq2-
region above the threshold of theDn51 channel. In this case
the relation between the OPE and the exact result~which is
reduced in this case to the exclusiveB→D0ln decay! reads

E
(dm2D1)2

dm2

dq2
dG~B→Xcln!

dq2

5E
(dm2D1)2

dm2

dq2
dG~b→cln!

dq2 F11OS D1dm

mc
2 D G .

~100!

In this formula we have neglected a difference between
upper boundaries of the quark and hadron channels of
order L2/mc

2 . Equation~100! means that local duality nea
maximalq2 is violated at orderO(L1dm/mc

2). As we have
seen, the dangerous terms of this order are cancelled in
integrated rate against similar contributions of other chann
due to the Voloshin sum rule. However, theO(Ldm/mc

2)
violation of the local duality might have negative cons
quences for the application of the method to the analysis
the experimental results. For example this happens if
observes only a small part of the phase space near max
q2 @6#.

VII. CONCLUSION

We have studied quark-hadron duality in decays of he
mesons in the SV limit using the nonrelativistic potent
model for the description of mesons asqq̄ bound states. Our
main results are as follows:

~1! The OPE is constructed and the followingL/mc and
L/dm double series is found for the integrated decay rat

GOPE~B→Xcln!

G~b→cln!
511C0

^BukW21V1uB&

2mc
2

1~12C0!
^BukW2uB&

2mc
2

1 (
k51

k0

Ck

^BukW~hbd2eB!kkW uB&

2mc
2~dm!k

1OS L2dm

mc
3 D ,

where Ck are calculable constants andk0 depends on the
leptonic tensor.

~2! The HQ expansion of the transition form factors in t
nonrelativistic potential model is performed. A nonrelativi
tic analog of the Luke theorem for the exclusive transiti
form factor between the ground states is obtained.
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It is shown that the sum of the squares of theB→Dnln
transition form factors are expressed through the expecta
values of the operators emerging in the OPE series. Th
nonrelativistic analogs of the Bjorken, Voloshin, and high
order sum rules provide a bridge between the sum over
clusive channels and the OPE series.

~3! The integrated decay rate is calculated by direct su
mation of exclusive channels. For the comparison of t
directly calculated G(B→Xcln) and the corresponding
GOPE(B→Xcln) the sum rules are necessary. A differen
~duality-violation! between the two expressions is observ
As shown explicitly by the use of the sum rules, this diffe
ence is connected with the highercd̄ resonances which ar
forbidden kinematically in the decay process but are imp
itly taken into account in the OPE approach. Therefore
accuracy of the OPE is directly related to the error induc
by the kinematical truncation in the sum rules~Bjorken, Vo-
loshin, etc!. The actual error depends on the convergence
the series, i.e., on the nature of the potential. We have
cussed the constraints on the latter convergence which
to the duality violation of orderO(L21b/mc

2dmb) with b
depending on the behavior of the potential both at the s
and long distances.

Up to the mentioned duality-violation, the agreement be
tween the OPE and the exclusive sum is achieved wi
different 1/mc orders due to different reasons:

The leading order and the subleadingdm/mc and L/mc
orders the free quark integrated decay rateG(b→cln) is
equal to the rate of the transition into the ground stateD0.
This is due to the specific behavior of the transition fo
factor between the ground states near the zero recoil~Luke
theorem!. Also part of theL2/mQ

2 correction in the OPE

result proportional to thêBukW21V1uB& matches the contri-
s.

ay
N
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bution of the ground stateD0 in the exclusive sum.
For higher order terms the agreement between the O

and the exclusive sum is a collective effect due to sub
cancellations in the sum over exclusive channels:

Namely, each of the individual decay ratesG(B→Dnln)
contain potentially large terms of the orderdm2/mc

2 and
Ldm/mc

2 . These terms cancel in the exclusive sum due to
Bjorken and Voloshin sum rules, respectively. The high
order sum rules allow us to represent the contribution
exclusive channels in terms of the average values of the
eratorsOi over theB-meson state.

~4! If the differential semileptonic decay widths are co
sidered near maximumq2, the violation of the local duality
occurs at orderO(Ldm/mc

2).
Clearly, in QCD the situation is more complicated b

cause of the multiparticleXc states, pion emission, hybri
and multiquark exoticD mesons, radiative corrections. Ne
ertheless the duality violation due to the kinematical trun
tion of the series should be quite similar to the case of n
relativistic quantum mechanics. Also similar is the role
the inclusive sum rules in obtaining the duality relations.
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