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The quark-hadron duality in the inclusive semileptonic deBay X | v in the Shifman-Voloshin limitA
< dm=m,—m.<m,,m, is studied within a nonrelativistic potential model. The integrated semileptonic decay
rate is calculated in two ways: first, by constructing the operator product expansion, and second by a direct
summation of the exclusive channels. Sum riB®rken, Voloshin, etg.for the potential model are derived,
providing a possibility to compare the two representationsITtB— Xl v). An explicit difference between
them referred to as the duality-violation effect is found. The origin of this effect is related to higher charm
resonances which are kinematically forbidden in the decay process but are nevertheless picked up by the OPE.
Within the considered 2 order the OPE and the sum over exclusive channels match each other, up to the
contributions of higher resonances, by virtue of the sum rules. In particular this is true for the terms of order
sm?/mZ and A sm/m?2 which are present in each of the decay channels and cancel in the sum of these channels
due to the Bjorken and Voloshin sum rules, respectively. The size of the duality violation effects is estimated
to be of the ordeO(AZ*b/mﬁémb) with b>0 depending on the details of the potential. Constraints for a
better accuracy are discussed.

PACS numbd(s): 13.20.He, 12.39.Jh, 12.39.Pn

[. INTRODUCTION decay rate(both differential and integratedhe contour al-
ways involves a segment which is close to the physical re-
The interest in inclusive decays of heavy mesons is twogion [1]. This can lead to duality-violating effects, i.e., the
fold: experimental study of such decays can provide impordifference between the exact and the OPE based results.
tant information on the weak mixing angles of heavy me- However, it is not easy to estimate the errors arising in the
sons, and a theoretical treatment of such processes whiPE, since the exact hadron spectrum in QCD is compli-
includes also nonperturbative effects is possible. The theazated and not exactly known. So, testing directly the accu-
retical framework based on combining the operator productacy of the quark-hadron duality is only possible in few ex-
expansionNOPE and heavy quarkHQ) expansion provides ceptional cases. Examples discussed in the literature are
decay rates and differential distributions as series in invers®CD in the Shifman-Voloshin(SV) limit [7], and the
powers of the heavy quark mass with the coefficients proport Hooft model [8].
tional to the matrix elements of the operators of a proper In the 't Hooft model (2-dimensional QCD withN,
dimension[1—4]. A remarkable property of this expansion is — ) the spectrum is reduced to an infinite number of single
that in the leading-order this is just the free-quark decay, anthound states and known precisely so that the direct summa-
the first correction appears only at ordem%/. tion of exclusive channels is possible. First numerical analy-
On the other hand, it is understood that the quark-hadrosis of the sum over exclusive channels reported the presence
duality technically implemented through the OPE is an ap-of the duality-violating Irhg correction for the total width
proximate framework5]. For example, the calculation based [9]. Later the summation was performed analytically for the
on OPE does not take into account all the details of thecase of a massless light qudrk0]. The result of the OPE
hadron spectrum which lead to the dependence of the set eflculation agreed with the exact result in this case through
open decay channels on the momentum transfer. The OPEm“Q order.
ignores this fact and this inevitably yields some errors in the Duality in QCD in the SV limit[7] has been studied in
OPE resultg6]. [11,12. This limit requiresAgcp< dm=my—m,<mg. A
The theoretical description based on the OPE representseculiar feature of the SV limit is that a summation over
the decay rate as a contour integral in the compj®plane  exclusive channels becomes possible due to kinematical rea-
(for details see the next sectiorThe OPE can be justified sons: the process occurs near the zero recoil and thus only
only in regions of the complexi®-plane away from the few decay channels contribute in the leadingnd/order.
physical region, whereas in the case of the calculation of th&@he expansion of the relevant transition form factors in this
kinematical region is known and the sum over exclusive
channels can be evaluated. The absencegf,/mg correc-
*On leave from Nuclear Physics Institute, Moscow State Univer-tions to the free-quark result in the semilepto(tit) decay
sity, Moscow, Russia. rate has been demonstrated[iril]. However, to check the
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absence of\ ocp/Mg and Sm/mg corrections within the SV vanishes rapidly enough the uniform convergence is ex-
kinematics is not enough to ensure duality in thexd/order pected.

in the general case, beyond the SV limit. Namely, one should The OPE provides a heavy mass expansion for the inclu-
also check that potentially large terms of orderSive semileptonic decay rate. To compare it with the result of

O(AQCngn/mg—l) which are present in individual decay summation over exclusive semileptonic decay channels we

rates cancel in the sum over exclusive channels. The analysj ake use of th? sum rules. An explicit d|_fference hetween
5 . . the two expressions is found, both for the integrated and the
of the Agcpdm/mg terms in the exclusive sum was per- di

) ) fferential rates. This difference corresponds to the contri-
formed in[12] for QCD in theV—A case. It was found that p, ;tion of the resonances kinematically forbidden in the de-
the duality within this accuracy requires a new sum rule. Thq:ay process which are picked up by the OPE. This “unphysi-
full comparison to higher orders has not yet been performed.g|” contribution is related to the poles in the complex
We study the quark-hadron duality in the SV limit within 9 pjane outside the physical region which however contrib-
a nonrelativistic potential model. The model has several feagte to the OPE result. The size of this duality-violation can-
tures which make it especially suitable for this purpose: thénot be estimated in all generality since it depends on the
model is self-consistent in the SV limit; the spectrum of potential and on the convergence properties of the sums over
bound states is relatively simple and can be calculated; theesonances.
exact representations of the transition form factors in terms For the integrated decay rate the OPE prediction and the
of the hadron wave functions are known. These features prasum over exclusive channels matchp to the duality-
vide a possibility to calculate the exclusive sum. We adopt aviolating contributions of higher resonancesithin the 1m§
technical simplification of a Lorentz scalar current instead oforder: Terms of order&mzlmé, 5mA/mé, which are
the V—A current, like it is done in Ref.6]. present in any individual decay rate cancel in the sum over
The main purpose of our analysis is to check whether oall channels thanks to the Bjorkdii4] and Voloshin[15]
not the OPE result calculated to some order is equal to theum rules, respectively. For terms of ordelemé,
sum over exclusive channels expanded to the same orde,g.?»/mé(sm, etc., the agreemefagain up to contributions of
Both series are double expansions in powers\éf. and  higher resonancésis provided by the higher moment sum
Além. They are asymptotic seri¢$0], and the question of yles. The duality-violation induced by the kinematical trun-

their convergence is left for a later publicatipt8]. cation of these higher resonances in general has the order
Our main results are as follows. O(A2"P/mZsmP) whereb depends on the details of the po-
We construct the expansion of tAeproduct of the two  antigl V(r) both at large and smaill

currents in a series of local operatdtse OPE in the po- For the smeared differential distributions near maxigtal

tential model for a general form of the quark potential. Tech+he violation of the local duality is found at the order
nically this is done by the expansion of the Lippmann- , s../m?2
‘.

Schwinger equation. We consider the expansion to all orders \y/o make an explicit proof of the present results for the

i NN i :
in A/ém but neglect terms- A"/m¢ with n=3. This OPE  g5eia| case of the harmonic oscillator potential in RET].
series provides the expansion of the differential and inteThjs js important since some demonstrations given below are
grated semileptonic decay rates in powers /ofm. and  (5ther formal.
Além. i L ) In the next section we present some details of the kine-
Let us point out that the OPE series in the potential modefnatics and discuss the analytical properties of the decay am-
has an important distinction from the Wilsonian scheme iNlitude. In Sec. Il the Th, expansion of the quark propa-
the field theory: Namely, in QCOiperturbative contribu-  gat0r js performed and the OPE series for the SL decay rate
tions of small distances below the scalg. 1¢ referred to the i nonrelativistic quantum mechanics is constructed. In Sec.

Wilson coefficients while contributions of large distances|y e consider the HQ expansion of the exclusive form fac-
above this scale is referred to the matrix elements of the locahs in the potential model, and derive the inclusive sum

operators. As_a result both tleenumber Wilson coefficie_nts rules(Bjorken, Voloshin, etg.which are crucial for compar-
and the matrix elements of the local operators acquire thg—‘hg the exclusive sum and the OPE result. In Sec. V we
u-dependence. In the potential model we also expand thgrovide an analytic expression for the duality-violation con-
average of thel-product of the two current operators over ripytion and identify its origin. We estimate the accuracy of
the B meson in a series of local operators, but the resultinghe OPE hoth for the integrated rate and the smeared distri-
c-number coefficents as well as the average values of thgytion near zero recoil. A special emphasis is laid on dis-
local operatorgsee Eq(8)] do not have a scale dependence. ¢ ssing the role of different inclusive sum rules in establish-
The OPE and the sum over exclusive channels are relatgfly the relationship between the OPE and the sum over the

to each other by sum rules, similar to the Bjorkerd], the  exclusive channels. A conclusion summarizes our results.
Voloshin[15], and the whole tower of higher momensg].

We derive these sum rules. They involve an infinite sum of
terms corresponding to all hadronic excitations, with eacl]I KINEMATICS AND THE ANALYTICAL PROPERTIES

term having a well-defined heayy mass ex_pansion. The ques- OF THE DECAY AMPLITUDE
tion of the heavy mass expansion of the s@imother words,
of the uniform convergence of the sepid®s not been tack- We consider the inclusive SL dec8y— X | v. The rate of

led in this paper. If the contribution of higher excitations this process reads
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4

d*q -
5> 0(a°>[a)L(@W(a), (D) C

1
F(B—>XC| V) = WBJ’

whereL is the leptonic tensor, and the hadronic tendbis 4 ,( }
defined as follows: a
o ) ) _ FIG. 1. Singularities of the amplitud&(q°,q?) in the complex
W= ; j d*px(py) 8(px—M3)(B|IIX(p)) q° plane. Circles are hadronicq) poles which are only singulari-
ties in the confined potential model, and the cross stands for the free
X<X(5)|J+|B>54(p3_px_q)_ 2 b—c quark process. The vertical line R@°Q=|ﬁ| separates the
kinematically allowed region of the real axis from the kinematically
Here the relativistic normalization of states is implied: forbidden region. The contouE(q?) embraces all states in the
allowed region. Poles at the left of the boundary correspond to
(p|p’y=2p°(2m)38(p—p’). (3)  kinematically forbidden bound states.

For the sake of clarity we assume the technical simplifi-decay ratel’ (B— Xclv) can be represented as the contour
cation that the leptons are coupled to hadrons through thiitegral in the complexg® plane over the contou€(g?)
scalar current" In this case the leptonic tensor is a scalaryich depends on the value qf (Fig. 1) as follows:
function of only one variableg?, and the hadronic tenstV

depends on the two invariant variables Pg- /Mg andg?. 1 > T

In the rest frame of th@-meson these arg’ and g2. At I'(B—Xd ”):z_wij dq Iquc(az)dq 6(a°>lal)
q°>0 and fixedg? the sum in Eq(2) runs over the hadronic

states with massesl ,<Mg— /g2. The decay rate can be X L((q°)%2—-gd)T(q°%q?). 7

written as follows: -
It is important that the left crossing of the contaD¢q?)

with the real axis in the complex® plane occurs at the point
do=|al, otherwise the contour can be freely deformed in the
0w 1> 2 0 2 region where the functioy(qo,q%) is analytic. We sym-
x(@">[ahL(a®)W(a®,q%), ) bolically mark this constraint with &-function in the inte-
grand. The integration over such contour selects at any given

with g?=(q%)2— g2 S _ . .
Equivalently. we can use® andd2. Let us consider the g“ only physical states which can be produced in the decay
quivaiently, 4 a- B—X.lv, i.e. states with the invariant masses such that

W(q°,g%) as an analytical function of® at fixed g2. One (A2, =2 2 . ,
can write the following relation: Mi+a°<Mg _|q|. Notice that yvhgreas Fhe left crossing
of the contour with the real axis is tightly fixed at the point

1 0 L o = Re @ =|ql, Im_(q°)=0, the right crossing of the contour
WBW(CI Q%) = 5 disceT(a7.97), (5 with the real axis can be safely moved to the right. In the
general relativistic case there are cuts which correspond to
where other physical processes. In the SV limit these cuts are sepa-
rated from the physical decay cut by windows of the width
O(mg). In the potential quark model such cuts are absent.

The amplitudeT(q°,q?) is given by theT-product of the
. two local current operators, which is the classical case for
1 (BIIIX(—q))|? performing the OPE. Namely, one has

= = , 6
2Mg X' My—Ex(—a)—q° ©

[(B—X |v):if dq?doP|q|6
c 2Mpg

(@6~ - | dxexs (BIT1900.9" (0)]]8)
=5 ,

1

T(q°,0? =—.deex —igx)(B|T(J(x),J%(0))|B

EX(—ﬁ)=\/ﬁ2+ Miis the energy of the state with the mass (a0 2Mgl M=) (BITETO)IB)

My and the total 3-momentur g. The sum oveiX in Eq. 0 Sou o

(6) for T runs overall hadron states with the appropriate :; Cn(a”,a°)(B[On|B), ®)

guantum numbers. The selection of the states kinematically

alloyved in the decay process is made by the proper choice Qfhere @n are local operators and:n(qo,ﬁz) are the

the integration contour in the compleg plane. Namely, the ¢ number coefficients. Introducing the expansighinto Eq.
(7) gives the integrated rate as a sum over various local op-
erators.

IRecall that for the case of the— A current and massless leptons, ~ We shall obtain the integrated SL decay rate within our
the leptonic tensor has the form,,~g,,9°—q,d,, and for the model by two means: first, we construct the OPE series for
scalar current. ~ g2 We consider throughout the paper the leptonic T(q%,g?), and second, we calculate directly the sum over
tensor of the generalized forin=(q?)". exclusive channels.
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Hl. THE MODEL A DIDA(— @) =Ep (DID4(— ).  (14)
We consider this decay in the SV limit,

In this equationEp ((i) is the nonrelativistic energy of the
A< Sm=my—m,<m,,m,. 9) " >
bound stateD,, with the 3-momentum-q

Notice that in a non-relativistic model\ refers to a fixed =y

energy scale proportional to the light quark magg to the > a _
average quark momentum in the hadron rest frame Eo, (@)=Mp, * 2(me+my)’ Mp,=Me Myt ep,.
((B|K?|BY)2, to the parametes defined in Eq(24) andhyy (15

or eg to be defined in Eq(1l). These parameters may be
strongly hierarchized, for example a genuine nonrelativisti
situation implies (B|k? B))Y><myq, but all these quantities
remain constant as. ,my—o°, they remain proportional to *

some fixed hadronic scale which we callby analogy with T(qo,ﬁ): Z |Fn(ﬁ)|2
QCD. This is to be distinguished fro@m which is taken as n

an independent parameter. Thus we consider the double limit

sm/m,— 0, andA/8m—0. Notice finally thatq| is of order ~ WhereF (q) is theB— D, transition form factor,
om. - -

To avoid confusion, it is important to stress that the stan- Fa()=(B[J[Dn(—q)), Mg=my+my+eg,
dard OPE expansion assumeésni/mg constant, even if _
small. So the order of a ter®(A""™/m2(6m)™) in this and the sum runs over al resonances. The expressid®)
paper corresponds to the ord®(A"™*™/mg™™) of the stan-  €an be also written as
dard OPE expansion.

We treat the leptonic part relativistically, but for the cal-
culation of the hadronic tensor we use the nonrelativistic
potential model. The nonrelativistic treatment of the had-
ronic tensor is consistent within the SV kinematics and Cayhere TH () —E1 1=G.(4.E) is the full off-energy-
be used as a tool for studying some of the aspects of quark—h I G[ Cd(?) t'] Cd(qt’ ) f the od svst Thg
hadron duality. We shall make use the fact that in the nong € reenl_t UQC [orﬁropaga o)rg ecad sys emf. the G
relativistic potential model we know the structure of the had- ecaY amphtude 1s thus 9'?’9” y an az)/erage ot the Lreen
ron spectrum and have an exact representation for thBinction Geq4(q,E) at the pointE=Mg—q" over theB me-

%The expressioii6) for the decay amplitud@ now takes the
orm

= : 16
MB_EDn(q)_qo 1

1
——-J1"[B), 17

T(q%q)=(B|J
Mg—q°—Hcq(q)

hadronic matrix elements of the quark currents. son. .
It is convenient to use the nonrelativistic normalization of  Let us specify the transition current operatiyr,.. For
states(which is used hereafter the sake of argument we neglect the quark spin effect and
consider spinless nonrelativistic quarks and choose the quark
(plp"Vy=(2m)38(p—p’), (100  current in the form

and consider the process in the rest frame of the decaying
B-meson. TheB meson is the ground eigenstate of the

HamiltonianH 4,

3y o= j dkdk bR )& (R), 18)

wherec(b) is the annihilation operator of the(b) quark?
Hbd|B>=|\/|B|B>=(mb+ my+ €g)|B). (11) For the quark currenl8) the B— D,, transition form fac-
tor in the rest frame of th8-meson reads
In the B-rest frame this Hamiltonian has the form

k2 K2 Fn(5)=f qu¢B(Eq)¢Dn

Hoy=m+my+ — + —— 4V q(r)=m,+my+ hy .
bd b d 2mb zmd bd() b d bd

My
mc+ My

Kq+ a) . (19

(12 WhereIZq is the momentum of the light spectator.

For the B— X, transition we need thed bound states

with the total 3-momentum-¢, which we denotd ,(—q). Notice that the standard scalar current realjs..= J(dk/
These are eigenstates of the Hamiltonian 2k%)(dk'/2k'®)b(K")¢* (K) and in the nonrelativistic limit takes
fra2 @2 the form =fd|2f:+(I2)(EIZ’B(IZ’)(liIZ2/4m§)(l—IZ’2/4m§). Ne-
F.y(q) = Mg+ my+ (k+q) b Vey(r), (13 glecting the factor (% k?/_4m§_)(1—k’2/4_,m§) as done in Eq(18)
2m. 2my leads to technical simplifications both in the OPE and in the exclu-
sive sum. It can be easily realized that a particular choice of the
such that current however does not touch any arguments related to duality.
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Similarly, for the current(18) the expressior{17) takes
the form

where the scalgs is provided by the hadronic matrix ele-
ments

0 1
T(q%q) <B|MB—q° A |B> (20 B2=(B|K?|B)=(B|V,|B). (24)

IV. THE OPE OF THE DECAY RATE ) ] )
As already mentioned3 is of the order ofA. The quantity

V; here is a part of the expansion of the potenWg, in
powers of Iing

The main idea in constructing the OPE series ToiEq.

(8), is to single outH, 4 from H 4(q) in the denominator in
Eqg. (20) and to use the eigenvalue equatidd). First, let us

introduce the operato/i’H(ﬁ) which measures the difference

of the denominator of Eq20) from the inverse Green func- 1 1 A4
tion of the free-quark transition Vog=Vot 5—Vi+ —5V,+0| —|. (25)
2mq 2mj mg

N2

Flog(d) = (6m—q——

Mg—q° 5o )—5H<ﬁ). (21)

Explicitly, one finds

Equations(20) and(21) allow us to construct the expan-
sion of T(q%,g?) in inverse powers ofm—q%/2m,—q° as

-y follows:
SH(A)=Heo(d) —me=mg— 50— (22
Next, isolatingh, g in 5H(q) we obtain (0.6 = 1 i (B|(5H(q))'|B)
OR] - ) < ) [
N 1/1 1 9 0 I
oH(q)=(hpg—€p) + 5 H_—)(kZJFVO om 2m; q (5m 2m, q )
¢ (26)
k-q 3sm
+ q+o('8 3 ) (23
Me me Making use of Eq(23) we obtain
. 1 . k-q
T(do.q%)=(B|B) 7 +(B|(hpg—€p)[B) = > +(B| 2m2(k +V1)—— |B)
_ _q0 _ _
om m, q (5m om, q°
3 0
l k'(hbd_f )nk 1
X 7 z+ij2_l 2 a(Bl| = sz LiB) o — 1 O(AYMY). (27)
_ _ 40 A c _ _ 40
om 2mc q (§m 2mc q

The remainder has the ord&(A%/m?) if we keepg?=sm? andqj fixed.
Finally, using Eq.(11) and the relationgB|k;|B)=0 and<B|kikj|B):%5ij(B|I22|B> we find the following OPE series:

- 1 om - 1
T(q%.q%)= = + —(Blk*+Vy|B) 7 2
— s ¢ _ _ 0
om T q (5m 2m, q )
o (B[On 2[B) . 1
XA e HO(AZm)), (28)
n=2 3mC ( q 0
om— —q
2m,

whereO,=3?_kj(h,q— €)"k; . Hereafter thes symbol is omitted. We denoteB|k?+V,|B)= 3, Bo=A
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The serie$29) is a double expansion d%(q°,q%) in A/m, andA/(Sm—g%/2m.—q°), limited to second order iA/m, and
expanded to all orders in/(dm—qg%2m.—q°). The poles are at

N2

- q
0,32\ — _
qC(q )_5m ch'

(29

Thefirst termin Eq. (28) givesthe free quark decay amplituda remarkable feature of this series is that theSm and A/m,
corrections to the free-quark decay are absent thanks t@lfEand the relatioqB|k;|B)=0. The expansiof28) substitutes
the whole set of hadron poles by a complicated quark singularity at the qp‘b#m‘c’(ﬁz).

Let us treat the serig®8) formally and calculate the integrated rate which is obtained as a double expangidmirand
Além.

Let us rewrite the expressidi28) as follows:

- (B|K?+V,|B) . w (B|O,_,B) 1 g \" 1
0 ~2)— _ 2 | =
¢ ¢ om— ——q°
2m.

This representation is very convenient for the calculation of the decay raté7Edhe integration over® is now easily
performed since

. R 1 e
JC(&z)quL((qO)Zq2)0(q°>q)( 7 =L(02(%),a%) 6(]a < = me+ ymZ+2mcom), (31)
sm— —qo)

2m,

where theg-function 0(|ﬁ| <-m¢+ \/mc2+ 2m.ém) reflects the fact that the left crossing of the contour with the real axis in
the complexq® plane should always happen at the point d®@& |§| The integrated rate is then given by the expression

<B|On (BlOn2lB) 1 [ d |"
2 T n,( %) ls(omme), (32

2
(BIR*+Vy[B) 4 ) ot

OPE, _
IOPEB— X, v) (1 = m——1l

where
—m m2 m~.om = "n = =
I o(8m,mg) = fo e 2Ny 62| g1 "L ([92(62) 12— 62). (33

For the free quark decay one finds
I'(b—clv)=1,(5m,my). (34)

Let us consider the leptonic tensor of the general farfg?) = (q)"N. For semileptonic decays to massless spin 1/2 leptons
N=1. The casdN=0 corresponds to scalar leptons. Since the leptonic tensor is proportiogal itois now convenient to
introduce a new integration variabtg as follows:

9?=[a%(q*) 1> g (39)

Then the integrated rate takes the form

3A remark is in order here. When computing the decay rate in(&2).we have interchanged the derivation with respecéitoand the
integration overdq®. We can also directly integrate the expression @& over dqP. In this case we should take into account that the
contourC(dz) in the complexg®-plane always lies on the right-hand sid@HS) of the line Re(®) = |d|. If we erroneously do not take this
condition into account then multiple poles in E&8) do not contribute at all since the complex integral vanishes when the multiple poles
are inside the contour as well as when they are outsiele also discussion |2]). To proceed correctly, one should replace a multiple pole,
say a double pole, by an equivalent set of two neighboring poles. Then the crossing of the boarder gives a nonvanishing result when one of
the two poles is inside the contour and the other one is outside. Integrating before taking the derivative with respeas to Eq.(32)
corresponds to treating in a specific way the crossing of the boarder by the multiple poles. We show eld8}titboth treatments lead
to the same result.
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<B|I22+V1|B)5 P

2m§ Joém

én—2|B> i

~ (B
I'OPEB—-X lv)=T(b—clv)— Iy(8m,me)+ >, &l 3 ,
n=2 3mc n!

g \n
<—m) I3(5m,mc), (36)

where we have taken into account thatém,m;) gives the exact free-quark decay rate. A simple algebraic exercise gives to
the 1/mZ accuracy

s _sm2v+3 an [ 1 35m+156m2 +5AN 5m2+o om?
1(6m,m¢) =(om) 12 1= 5 e ng 3 3/2m_§ m_g ,
om &7
I 3(8m,mg)=(8m)2N*S| AY,+ O F”
C
where
AN=jldxxm(1—x)N=B(N+1m+1) AY :LAN (39
m 0 ’ ’ 3/2 2N+5 1/2»
B(p,q) being the Euler function. Finally, we come to the relation
I'(B—Xcv B|Kk?B BIV4B) “N0°(—1)"Chy.s (B|O,_,|B A26m
(BoXdv) | (BIRIB) o (EBIVIB) o5 (B]0y-2[B) a9
F(b—)C'V) 2m§ 2m§ n=3 2N+5 mg(‘)‘mnfz m(?:’
|
with Ci=n!/k!(n—k)!. Notice that the coefficient of the o o momg [ Kq Ko
term (B|k?|B) does not depend o, i.e. it does not depend Wik Kg)=a(p—kq—kq) ¥ metmim  ma
on the form of the leptonic tensor. Q" T Q
Summing up, the OPE predicts the following features of - - - . mg -
the inclusive SL decay rate. =(p—kq—Kg) | kg~ mQ+mqp . (40
The LO term reproduces the rate of the free-quark decay
processb—c. wherep is the momentum of the bound state.

The 1/, and 16m corrections are absent. This is due to
the fact that the average over tBestate of the operator of
the relevant dimension vanishes.

Lowest-order corrections to the free-quark proces
emerge in the 111§ order. A main part of these corrections is ~ T U S
due to the average values of the dimension-2 operators (Kol Qocl(0) ko) = S(kp—ke— ).
(B|k?|B) and (B|k?+V4|B). Also the operatorsO,
=K;(hpq— €g)"k; contribute in the lhg order. Their contri-
bution is however suppressed with the additional powers o

sm. - DA S L AVE (a2
B(Pg)| Que(d)|D = 5(Pg—Pn—DFn((Vs—0p)d),
In the next section we shall analyze the accuracy of the (B(Pe) | Qoc(@IDn(Pn)) = APs=Pn = A)Fn((vs=0n)%)

The B—D,, transition form factor is the average over the

meson states of the operalﬁgc(ﬁ) given by the following
4<ernel:

(41)

So the transition form factor is defined by the following ex-
Pression:

OPE predictions. (42)
with vg=pg/(My+mg) andv,=p,/(m.+m,) and
V. HEAVY QUARK EXPANSION AND THE HADRONIC m
SUM RULES Pt = | dkgte] Ry o)
. . . . mb+mq
Before proceeding with the direct summation of the ex-
clusive channels one by one we derive hadronic sum rules Q q - 43
which are important for the comparison of the exact result XYp,| kg™ me+ mqp“ ' (43)

with the OPE analysis.

A simple change of variable&,— Kq+mq/(my+my)pg
makes it obvious that the decay form factor depends on the
square of the relative 3-velocities of the initial and final me-
o sons, and not on the relative 3-momentum squared as the
The wave function of th&qg bound state has the form  elastic form factor. Nevertheless in tBaest frame we write

A. Heavy quark expansion of the form factors
in the potential model
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Fold) = | dRgsa(ky v ('“ Tl @ oM g |2 Ll
n(Q Kata(Kq) ¥, | Kq mc+mqq : Umn:—z—m§<¢0n|k +Vilyp )+0O| B ?g, . (50
ton-:-:ne wave functiongqgq Is an eigenstate of the Hamil- The excitation energies satisfy the relation
k2 1 6Dn_€Dm:(n_m)7\nmr Amn=B. (5
hog=—=| =+ —| +Voq(r), 45 . "
Q4™ 2 Mg My o) 49 In terms of the wave functions, the transition form factor

. . (44) takes a simple form:
wherek is the conjugate variable to. The transition form

factors F,, has some general properties independent of the Fn(a):<¢B [ o (—a)>, (52
details of the potentid¥ 5. Such properties of the transition oo

form factors are derived by performing the HQ expansion of  The expansion of the wave functiafy = /5 reads
the Hamiltonian. To this end we apply the usual quantum 0

mechanical perturbation theory. <2+
For our purposes it is convenient to considigy as the e =t + E }(i_ i><%o|k Vl|¢Dm> .
full Hamiltonian, h.4 as a nonperturbed Hamiltonian, and 0 ° mzo2 M, mg €p,~€p,, m
U=hpy—h.q as the perturbation. The perturbation has the
form i P +O(omPB2m}), (53
11 1) _om such that
UZE H—H(k +V1)+O ,8—3 - N
b Me me F ) s 1( 1 1 )(¢’D0|k +Vi|yp )
= + ) ———
om , oM’ D=t S zlm T e, e,
=——2(k +V,)+0| B —5 | (46) .
2m; e X o, | ¥, (Q)) + O(om?A2/mp)

where we assume the following expansion of Qﬁpoten— sm\ (¥p ||22+V1|¢D )
. - 0 m >
tial =fon(@+ 2 | =~ — frun(0)
m#0 2mg €D, €D,
1 2 02/ 4
Voa=Vo+ —Vi+ —=Vot---. (47) +0(sm*B/me), (54)
Qq 0 2mQ 1 zmé 2 C

where f.,,(q)= 9)). By virtue of Eq. (44) one
The perturbation has the ordém/m? such that we can con- obtains () WD’“' Vo, (@) By a

struct the HQ expansion of the wave functions and the bind-
ing energies. Let us remind the standard formulas:{h/@tn} 2

) - q -
be the full system of eigenstates of thg, and the{ep, } the f2(q)=1— rﬁnﬁ +0(q*/md),
corresponding eigenvalues. Then, the mass ofntheexci- ¢
tation in the cd system readsM p,=Mc+Mg+ep . Let ﬁz
{g,} be the full system of eigenstates of thgy, and the fan(@)=ran—+0(am)), m#n, (55)
mC

{es } the corresponding eigenvalues.

The standard formulas give with r,, being numbers of order unity plus higher order

U 1/m, corrections. We shall use the notatippn=r,o. Notice
Y =p + > — iy +O(Sm?BYm?) (48  that the radiir, describe the form factors of the transitions
" " m#né€p —€p T between different levels in thed system Dy—D,) and so
know nothing aboutm.

and We now rewrite Eq(54) as follows:

[Umil® . N

GBnZGDn+ Unn+ 2 %"' t oy (49) N 2 q2 5m <¢D0|k2+vl|¢Dm>*
m#n €p_~ €p_ Fo(@)=1-rog—+ - p—
y 2m; m#0 2mg Dy~ €D,
wher
R 5m?B?
X fmo(q)+0O |- (56)
C
4530 is justeg defined in Eq(11). We also usually writd instead R

of By. At g>=0 we thus come to the relation
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Fo(0)=1+0(Sm?B%/m2). (57) R 1/1 1 .
° ¢ Sn(Q)=Ant 5| == ™ (Dolk?+V4|Do)
C
One can see that tk@(&mﬂ/mﬁ) term in F,(0) is absent.

This is a nonrelativistic analog of the Luke theorgh@]. myq? om?g3
For the squares of the form factors we obtain the follow- _2mc(mc+ My) mt |’ (62)
ing important relations: ¢
) s where
q om-B Bém
1-p5—+O . p5=r3+0 , _
( 9)= Po 3 mc mé Po=Tg mg An—eDn €p,: (63
. - Notice that within the leading-order accuracy we can replace
F2(G) = q_+o 5m4/3  p2=r2+0 B ) (Do|k?+ V4| Do) With(B.|k2+V1|Ba>. ' . |
C mg m Another representation fo%;(q) is obtained by using
(58 sH(Q) in the form(23):
As we shall see later the radii, (as well asr,) are not () =(Bl(SH(A)IB
independent and satisfy certain sum rules. The relaii58s S(@)=(B|(H(@)[B)
are the main result of this section. They are necessary for the . |22+\/l 1 1
calculation of the decay rates. =(B||hpg— 63+T me Eb)
B. Inclusive hadronic sum rules k-q ,335m
. R . +—+0 |B> (64)
To obtain a nonrelativistic equivalent of the whole tower C

of sum rules[16], i.e., the Bjorken sum rule, the Voloshin

and the higher moments, we consider the following set ofrhis formula g|ves&(q) in terms of the matrix elements of
quantities {=0,1,...): various operators over tH&meson.
> >\ The representationg1) and (64) for S(q) provide the
=(B|(sH '|B), 59 )
S(@) =(B|(oH(a))[B) 9 LHS and the RHS of the sum rules, respectively. Let us

- . . ) - notice that terms denoted (3%6m/m?) in Egs.(62) and
wheresH(q) is defined in Eq(21). Notice thatS,(q) appear (64) do not depend om. All g-dependent terms are shown

in the expansion fofr (q°,q%), Eq. (26). We shall derive two explicitly.
different representations fog(gq) and obtain sum rules Using Eq. (11) and the relations(B|k;|B)=0 and

equating these representations. B|kik:|B)Y=15,(B|k?|B) we come to the set of sum rules
The first representation is obtained by inserting the fu“l<n |falct]|ezz\ch301IcJ §[h(l,se| s>um rules is equivalent to an infinite

systeam of the eigenstatdﬁ)n(jﬁ» of the Hamiltonian number of relations at different powers @f and 1m;.
Hcq(q) in Eq. (59). The |D,(—q)) are also eigenstates of  j—q-
the operatorsH(q) that is made obvious usingH4(q) in
the form Eq.(22): - R
So=2 [Fa(@)]*=1. (65)
SH(A)|Dn(— 1)) = 34(@)[Dr(—aD), o
Obviously the RHS does not depend gnAt g?=0 this is

R az az an identity. Using the definitiof68) and comparing the term
on(Q)=e€p + 2(mtmy)  2my’ (60 Jinear ing? we find theNR Bjorken sum rul¢14]

As a result of inserting the full system we find pi= > p2. (66)

S(a)= 2, Fa(@)[2(8,(a))'. (61) i=1: The RHS of this sum rule reads

n=1
) 1/1 -, B36m
Equation(49) gives the following expansion fof,(q): 51:§ ﬁc— m. <B|k +Vy[B)+0 . (67)
C

where we have used Eo[ﬂ_l) and(12). The RHS of this sum

°At any n states with angular momenta=0, ... n exist. The  ryle is also independent @f. From the definition59) and
form factorsf,(g?) and F,(g?) are thus understood as properly using Eq.(62) as well as the SR65), we rewrite Eq(67) as
normalized sum&!_, f,.(q) and=!_,F,.(q), respectively. follows:
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E)F?(*)Az q'm +0
= n(@)Bn 2mg(mg+my)

3
P mim) 69

C

Notice that the term@(ﬂzém/mg) cancel between RHS

amd LHS. Comparing the linear iﬁz term yields theNR
Voloshin sum rulg15]

” 2 My 1
2 pibn=7 — (69)
R 1+ —
mC

Let us notice that the RHS of the E@9) does not contain
higher-order I, corrections.

Combining the Bjorken and the Voloshin sum rules pro-

vides a simple constraint on the parameiéwhich is in fact
the slope of the Isgur-Wise function. Namely,

Po=2 pr=r 2 Prda< 2 il
n=1 1n=1 1n=1

_Ma 1M 70
=28, 1+ mgim, ~2A;’ (70

whereA,, are defined in Eq(63)
i=2: The RHS of this sum rule reads

52 2 4 2
5, T(BIK |B>+O(/3 om ) a1

2 4
3mg mg

Using Eqgs.(65) and (67) yields for the LHS

B?6m

- - q%(B|k?(B)
> Faqai=————|1+0
n=0 3m

C

-}4m2 45m2
M P (72

The linearg? term yields

1+0

2
A mim) ) (73

C

” 1 .
>, piAZ==(B|k?|B)
A=1 3

i=3:

For i=3 we find for the RHS

PHYSICAL REVIEW D 62 074007

|

1 q%(Blk:(h,4— €g)k|B S
53:_Q< [kj( bd2 ep)K;| >(1+O('8£n
3 m

C mC
65m3
+0 A 5 (74)
mC
Using Eqgs.(65)—(71) yields for the LHS
- . 92(B|k;(hpg— €g)ki|B sm
> rxgaz= DK kIB) ) | o fom
=0 3m?2 m2
¢ [mipZem| q°
LI .
mC mC mC
55m2
vol 22 ) (79)
mC

The linearg? term yields

” Blki(h,q— en)k:|B
S, paz Bl o—eolk >(1+O
n=1

Bém
m
). (76)

Similarly at higheri=3 one obtains at th@sm/m? ac-
curacy

Bom
me

1+0

1 A
~5(Bl0,/B)

~ 1 . 1 .
nzl pﬁAln:§<B|kj(hbd_ GB)l_ij|B>: §<B|Oi—2|B>-
(77)

These sum rules are used in the next section for comparison
of the exact decay rate with the OPE result and for analyzing
the duality-violation effects.

VI. SUMMATION OVER THE EXCLUSIVE CHANNELS

We now proceed to the summation of the exclusive chan-
nels. As the first step, let us show that there is an explicit
difference between the exclusive sum and the OPE series.

A. The origin of duality violation

Proceeding with the sum over the exclusive channels we
write
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1< - Fa(@)?
HBHXIWZ——TEDdeLm5f do|g|—————=
¢ 27 “n C(a?) ||Mb—q°—Edm
. - [Fa(q)]?
2 0
7 S [ ddtiad [ aold— :
2m 0+5n(q)
C
1< L Fa(@)? 55(9)
_ 2 2 0 n n
_ _ 0 _ _ A0
om m, q I om om, q ]
n(q?) N2 5 T
: F S,
f dq2L<q2)E f q°lq | “(fi” 1- “ES) +oo |, (79)
sm—m -q° Sm— -q°
2m. L 2m, i

where in the RHQﬁl V(q%)?—q?. Notice that the sum is truncated at the propég?) which is the maximal number of

hadron resonances kmemancally allowed at a given valug’of.e., resonances satisfying the relatidn<Mg— \/_ The
contourC(qg?) is responsible for this selection, since only the resonances enclosed by the contour contribute into the sum. Al
states which are beyond this contour do not contribute.

Finally, the serieg78) can be written in the form

n(g?)
[(B—Xclv)= fde %Mq5fd¢ﬂfmw«&V q? ¢5E IFa(q)?

J 2 aZ
4 T 5%(g2 . 0_ _
x(1+ 5.(9? )05m+ 52(q ) )5<q 2m, 5m). (79
On the other hand, the sum rulé&7)—(74) allow us to rewrite the decay rat82) in the form
[OPEB— Xl v)= f da’L(9%)6(q) f dolde’|a] ((a°)* - a?= ) X [Fa(a)I?
2 62
T2 0_ _
1+ 6 ( )a5m 6 2(q ) 5(q T 6m>. (80)
|
It is easy to see that the exact result and the result of the OPE sm  36m? smP—q?
are different due to contributions of highly excited statts: | = Vom? —qz( 1- +o— 5 )
any ¢ the OPE picks up also the contribution of the reso- 2m. 8 me 8mg
(81)

nances forbidden kinematically at thig.qrhus the accuracy
of duality is determined by the accuracy of violating the sum

rules connected with the truncation of the exclusive sum, and The general expression fpq| in the B— Dyl » transition

is therefore connected with the convergence of these sums: atq” reads
- oM, 3 M2
=\oM2—q?| 1— +=
B. Sum of the exclusive channels and the accuracy of the OPE [l n—d ( 2(me+mg) 8 (m+my)2
We now calculate the individual decay rates keeping 5Mﬁ—q2
terms of order A%/m2)(Sm/A)" in the decay rates but ne- L — (82
8(m¢+mgy)

glecting higher orders/(?’/mg)(ém/A)”. The necessary ex-
pressions with the relevant accuracy are given below.

|g| in the free-quark decalg—clv atg? has the form

where 6M,=Mg— M,
(50) and (63).

=om—A,—mpBy/(2m,) from Egs.
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The necessary accuracy for the transition into the groun®ow everything is ready for the calculation of the integrated

state is SL decay rate. We again conside# (g?)N.
,32 2 sm 1. The integrated rate and the global duality
|(i|n 0= \/5m2( 1- %) —q2< T 2(motmy) It is convenient to represent the results for the partial de-
c ¢ d cay rates in terms of their ratios to the free quark decay rate.
3om2  SmP—qP o The latter has the form
8 m? 8m2 | 83
C(bos el = (sm2N+3| AN [ 1 3 6m 156m?
Recall thatg2=(B|K?+V,|B). (b—c¢lv)=(om) T2 me 8 me
For |ﬁ|n¢o less accuracy is enough since the contribution 5 5
of theD,,,n#0 into the SL decay rate is suppressed by the 5 n om om
o 22/ 02 T 5A3—5 t0| — (88)
additional factorg®/mg: 8 ¥ m? mg
|&|n¢o= /( sm—A,)2— g2 (84) Making use of the relatiofi38) we find
~ With these formulas folq| the decay rates of the exclu- I'(B—Dolv) 32 sm® 3 my  om
sive channels take the following form. =1— + = -
Free quark decap—clv: I'(b—clv) 2N+5 mZ 2 1+mg/me mZ
1 dI'(b—cly) —(2N+3)ﬁ, (89)
L) d¢? 2ms
2
|q|<1_5_m §5m q ) F(B—Dyl»)_om* 3p% [ A, "
me 2 m; 2m’ T(b—clv) m2 2N+5|" om
36m 15Am?> 5 8m?—q?
=\/5m2—q2(1———+— > += 2q ) _ 3p; 5m2_ 3( ) i
2 mC 8 mc 8 mc 2N+5 mg pn n mc mg
(85) 2N+5 2 Ak
% 2 (- 1)k ck (SPnAn)
The B— Dyl v channel 2N+5 “2N+5 o k-2
1 dI'(B—Dglv) _ig ( sm . 3 sm? (90
2 Ain=0 5 7
L(a") do® MetMg 2 mg Some remarks are in order.
9 Po (1) The main part of the OPH.e., the free quark decay
~3 ) 2| 913_,, (86) is reproduced by thé' (B— Dglv), within the leading and
m; the subleading b, orders. The excited states contribute

using the definitior(56). only within the (5m)%m?2 and Adm/m? orders in the SV

TheB—D,lv (n#0) channel: limit. o .
(2) Nevertheless, each of the individual exclusive chan-

nels contains potentially large terms of the or(ﬁnzlmﬁ
1 dI'(B—D, Iu) p2 2 .. . :
2(( sm—A,)2—q?)¥2 (87) andAsm/m¢ which are absent in the OPE series.

L(9%) dg® Now summing over all exclusive channels we find
|
I'(B— X sm? fmax om Nmax
lf(becclvz): T (pé—nZl pr 2|\|3+5+3 2 1+md/mc nZ = )
Nmax I Nmax 5k
_(2N+3)<BIEZ+—VFB> PR 2 P )+ 1 P80 (- 1)kczN+5(3n21 ”“A“)_ @1
2m? 2m? m2ém k=3 2N+5 smk—3
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The sum over the charm resonance levels is truncated at * My

Nmax,» Which is the number of the resonance levels opened at > r2Ap=sr————,

q?=0. For the confining potential and in the SV limit, . is n=1 2(1+mg/me)

found from the relation\, = ém. . (99
Using the sum rule$66)—(77) to rewrite the OPE result E r2(A )(k+2):1<D Ik;(heg— €p.)¥k{|D )

(39) as the sum over hadronic resonances, the difference be-  a=1 " " 3\ ot ed Do/ ByTHO/

tween the OPE and the exclusive suytine duality-violating

contribution explicitly reads k=0,1,2....
I'OPEB—-X lv)—T(B—Xv) Hence, the behavior of the radiﬁ at largen are connected
T'(b—cly) with the ﬁnite_zness of the_RHS of the sum r_ules. We can
guarantee this for the Bjorken and Voloshin sum rules,
Ssm2 2N+5 (—1)*Cky,5 6O . where finite values stand in the RHthe ground state radius
=— 2 ONT5 —k+O(A26m/mc), ro is finite for the confining potentialIn general, the finite-
me k=0 om ness of the matrix elements of the operatiofd.q— €o)"k;

(92) (such as, e.g., the kinetic energy of quarks in the ground
statg depend on the properties of the potential at sméthe

where ultraviolat behavioy and probably also at large(the infra-
red behavio).” We have assumed throughout the paper that
o the average kinetic energy of the light spectator quark in the

sW="3  pAA)k ground state is finite, i.e(Do|k? Do)=A2. This already re-

N=Nmax* 1 stricts some properties of the potential at smradind pro-

o0 vides convergency of one more sum rule in E2f). If, in

= > [r2+0o(Asmimd)](Ap. (93)  addition to this, we assume that the average values of the

N=Nmaxt1 operatorsk;(hgy— eDo)kk]- for k=1, ... K over the ground

A d. this dualitv-violati ibution i dstate are finite, then combining with the behavior of the en-
s expected, this duality-violating contribution is connecte ergies at large we come to the following estimate:

with the charm resonance states forbidden kinematically in

the decay process. This kinematical truncation of the higher 1 1|2t
resonances induces a violation of duality equal to rﬁs (_> . >0 (96)
[(8m)2~*/m2]6® for everyk<2N+5. nt*e | n?

To estimate the error induced by the truncation and thus ) L L
the size of the duality-violation effects, we need to know theThis allows us to obtain the duality-violation originating
behavior of the excitation energies and the transition radii atom the truncation of the various sum rules:

largen. K2
: . . 2 2 2
(1) For quite a general form of the confining potential we . Ll , _om°[ 1
. . . Bjorken: —5-6%=— > oris—
can write the following relations fon,, for large n (recall 2 m2 free | m2 \ nd
that in the SV limitA, = om): ¢ ¢ ¢ max
A2 A\K
A =AC(Nyad?=m, ZF<%) !
max C
(94)
AHZACI’]a, N>Nmax; . om om 5 om 1 Kt
Voloshin: — 6M=— > riA,.=—A|—
with C anda some positive numbers. In particular, this esti- Me Me Pmax Me \Nmax
mate is valid for the confining potentials with a power be- A2 A \K
havior at larger. ~ _2(_) 97
This estimate for,, is only depending on the behavior of mg om

the potential at large distances (the infrared region) o . _
(2) The transition rad”'ﬁ Satisfy sum rules similar to sum Similar estimates can be don-e for h|gher moment sum rules.
2 .
rules forp? in Sec. V, namel§/ One can see that the truncation error in any of the sum rules
leads to the duality-violation of the same order
o O(A2"¥/mZsmX). An interesting feature about these esti-
2_ 2
="ro,
n=1
"We do not have a classical Wilsonian scheme where the ultravio-
let region is referred to the Wilson coefficients and the infrared
®Notice that these relations are exact and do not have any 1/ region is referred to the matrix elements of the operators, so we can
corrections. have these regions mixed.

074007-13



A. LE YAOUANC et al. PHYSICAL REVIEW D 62 074007

mates is that the dependence ahas disappeared from the recoil is special: as we move to highgf, the excited chan-
final result. Hencethe estimates are independent of the de-nels close one after another leaving ultimately only Ehe
tails of the potential at large,rprovided the potential guar- ground state opened.
antees the confinement, i.a.js positive. Let us consider a partially integrated decay rate inghe

These are however rather crude estimates which do nekgion above the threshold of tiie,_; channel. In this case
take into account further possible suppressi@hse, e.g., to the relation between the OPE and the exact rgsutich is
the orthogonality of the wave functions of the groume O reduced in this case to the exclusiBe~ Dyl v decay reads
and the excited states>0). In such a case the real accuracy
is better, and might depend on the details of the poterjtial Sm2 dr'(B— X »)
also at larger. In general, we can state that the truncation f (A

(

(duality-violaiton error occurs at the order sm—244)2 do?
sm? dI'(b—clv A,;Sm
AZ[ AN 08 =f ST el PR
me | om) (98) (om-4y)2 dq m?
(100

where the exponertt>0 depends on the properties of the
potential (in general, both at short and long distances  In this formula we have neglected a difference between the
more detailed analysis of which potentials satisfy the aboveipper boundaries of the quark and hadron channels of the
requirements is beyond the scope of this paper and is left foorderAzlmg, Equation(100) means that local duality near
another publicatio13]. maximal g? is violated at ordeO(A,m/m?). As we have

If we would like to have the truncation error of a higher seen, the dangerous terms of this order are cancelled in the
order in 1M, e.g. in O(A%mp), this is not so straight. integrated rate against similar contributions of other channels

Namely, in this case we need due to the Voloshin sum rule. However, tkgA 6m/m?)
violation of the local duality might have negative conse-
5™ A3 quences for the application of the method to the analysis of
ﬂz Sm2m, ' ©9  the experimental results. For example this happens if one

observes only a small part of the phase space near maximal

2

As we have noticed, the series f6f in the main part does g° [6].
not depend om., so the only possibility to have the relation
(99) fulfilled in the SV limit, is to haverﬁ=0 starting from VII. CONCLUSION
some numben. (Exactly this situation takes place for the : oo
HO potential where alD,— D, transition radii forn>1 are we ha_ve studied quark-h_adron duality in qle_:cays of he_avy

. mesons in the SV limit using the nonrelativistic potential
equal zerd17]). In this case for large enough valuesdh, o -
the term proportional tcﬁ in Eq. (93) disappears and the model for the description of mesons @g bound states. Our

second term provides the truncation error of the ordefMain results are as follows: _
O(5m2A2/m4) P (1) The OPE is constructed and the followingm, and
2.

As we are going to show elsewhere, the accuracy of dug\/&m double series is found for the integrated decay rate:

ality of orderA®/ mg’ can be achieved if we keep a fixed ratio

Sm/m, when m.—o. One can proceed exactly along the IOPEB—Xlw) (BIk?+V4|B)

same lines, but technically a bit different treatment is neces- [(b—cly) 0 2m?

sary: namely, at several places throughout the paper terms of ¢

the ordersm3/m> have been omitted, and they should be (B|k?|B)

kept if the limit Sm/m.= const is considered. This analysis +(1_C0)T

will be presented if13]. Me
Finally, |2t_|s mterestlng to .notlce that all resonance levels ko (B|K(hpg— GB)kk|B>

opened ay“=0 are contributing on equal footing to the sum + E Cy >

rules and therefore to the decay rate. So, a considerable delay k=1 ch(5m)k

in opening channels with large compared to the channels 5

with smalln with the increasing recoil does not matter at all. 10 A 6m)

This is a very important feature which basically determines a mg '

high accuracy of the OPE calculation of the integrated decay

rate (cf. [6,12). where C, are calculable constants atg depends on the

leptonic tensor.
(2) The HQ expansion of the transition form factors in the
The situation however differs considerably if we considernonrelativistic potential model is performed. A nonrelativis-
the differential decay widths. We find it more physical to usetic analog of the Luke theorem for the exclusive transition
here the four vectoq? variable. The region near>,, (zero  form factor between the ground states is obtained.

2. The smeared fdistribution and the local duality
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It is shown that the sum of the squares of #e:D | v bution of the ground statB, in the exclusive sum.
transition form factors are expressed through the expectation For higher order terms the agreement between the OPE
values of the operators emerging in the OPE series. Thesend the exclusive sum is a collective effect due to subtle
nonrelativistic analogs of the Bjorken, Voloshin, and highercancellations in the sum over exclusive channels:
order sum rules provide a bridge between the sum over ex- Namely, each of the individual decay ratééB— Dl v)
clusive channels and the OPE series. contain potentially large terms of the ordém?/m? and

(3) The integrated decay rate is calculated by direct sumA sm/m2. These terms cancel in the exclusive sum due to the
mation of exclusive channels. For the comparison of thiqgjorken and Voloshin sum rules, respective|y_ The h|gher
directly calculatedI'(B—X.lv) and the corresponding order sum rules allow us to represent the contribution of
IOPE(B—X,lv) the sum rules are necessary. A differenceexclusive channels in terms of the average values of the op-
(duality-violation between the two expressions is observed.eratorsO; over theB-meson state.
As shown explicitly by the use of the sum rules, this differ-  (4) If the differential semileptonic decay widths are con-
ence is connected with the highed resonances which are sidered near maximurg?, the violation of the local duality
forbidden kinematically in the decay process but are implic-occurs at ordeO(A&m/mﬁ).
itly taken into account in the OPE approach. Therefore the Clearly, in QCD the situation is more complicated be-
accuracy of the OPE is directly related to the error inducectause of the multiparticleX, states, pion emission, hybrid
by the kinematical truncation in the sum rul@jorken, Vo-  and multiquark exoti® mesons, radiative corrections. Nev-
loshin, etg. The actual error depends on the convergence ogrtheless the duality violation due to the kinematical trunca-
the series, i.e., on the nature of the potential. We have digion of the series should be quite similar to the case of non-
cussed the constraints on the latter convergence which leadlativistic quantum mechanics. Also similar is the role of
to the duality violation of ordeO(Az*b/mﬁémb) with b the inclusive sum rules in obtaining the duality relations.
depending on the behavior of the potential both at the short
and long distances.
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