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Exclusive production of pion pairs in y* v collisions at large Q®
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We perform a QCD analysis of the exclusive production of two meson4 jncollisions in the kinematical
domain of large photon virtualit®) and small hadronic invariant magé This reaction is dominated by a scale
invariant mechanism which factorizes into a perturbative subprogesgs-qq or v* y—gg and a generalized
two-meson distribution amplitude. We develop in detail the phenomenology of this proasssatolliders.

Using a simple model for the two-pion distribution amplitude, based on its general properties, we estimate the
cross section for the kinematics accessible at BABAR, BELLE, CLEO, and CERN LEP.

PACS numbe(s): 13.40—f, 12.38.Bx

I. INTRODUCTION case where the final state consists of two mesons with speci-
fied four momenta, and nothing else.
As with other hadronic matrix elements the GDAs are

. . Brocess independent. It has recently been pointed Hijt
QCD and has long been a subject of great intefese¢, e.g., that they occur in the hard exclusive procegsp— wp,

R(_afs.[l—S], and r_eferences thergirRecently anew facetof |\ here the pion pair is or is not the decay product of a
this has been pointed out, namely the physics of the procesgeson, and that the analysis of that reaction would benefit
y*y—mm in the region wher®” is large butW? small[4].  from the measurement of the two-pion GDA i y— 7.

This process factorizg$,6] into a perturbatively calculable, Al these aspects lead us to consider GDAs as a promising
short-distance dominated scattering® y—qq or y*y  new tool for hadronic physics, which may be used to unveil
—gg, and nonperturbative matrix elements measuring th&ome of the mysteries of hadronization and the confining
transitionsqq— 77 and gg— 77. We have called these regime of QCD. The process* y— mw is well suited to
matrix elements generalized distribution amplitud@®As)  access these quantities experimentally. In the present paper,
to emphasize their close connection to the distribution amwe develop in detail the phenomenology of this reaction and
plitudes introduced many years ago in the QCD descriptioremphasize the feasibility of its investigation at existafge™

of exclusive hard process€s]. colliders.

Indeed it is instructive to consider* y— 7w as a gener- In Sec. Il we discuss the kinematics of our process, recall
alization of the process* y— m°, where the distribution its main properties in the factorization regime we are inter-
amplitude of a single pion appears. Ther transition form  ested in, and sketch the crossing relation betweéry
factor has been the subject of detailed theoretical stles — 77 and deep virtual Compton scattering. In Sec. Ill we
The experimental datf®] are well reproduced by a descrip- list the general properties of generalized distribution ampli-
tion based on QCD factorization and provide one of the bestudes and in particular review their QCD evolution equa-
constraints so far on the form of the single-pion distributiontions. These properties lead us to construct a simple model of
amplitude. the two-pion GDA, which is described in Sec. IV. Section V

From a different point of viewy* y— 77 is the crossed gives a comparison between one-pion and two-pion produc-
channel of virtual Compton scattering on a pion. The kine-tion in y* y collisions. Relations with the inclusive produc-
matical region we consider here is closely related to deeplyion of hadrons, commonly described by the photon structure
virtual Compton scattering, which has attracted considerablé&nction, are discussed in Sec. VI. The phenomenology of

Exclusive hadron production in two-photon collisions

attention in the context of skewed parton distributiph@]. our process irey collisions is described in detail in Sec. VII,
Our reaction can also be seen as the exclusive limit of avith special emphasis on the information contained in angu-
hadronization process. The hadronization @fcppair origi- lar distributions and in the interference with the bremsstrah-

nating from a hard, short-distance process such agy lung mechanism. In Sec. VIIl we give estimates for the cross
collision is usually formulated in terms of fragmentation section for various experimental setups at exiséng~ col-
functions which describe in a universal way semi-inclusiveliders. Section IX contains our conclusions. In Appendix A
reactions, specifically the transition from a quark or anti-we specify our sign conventions for pion states, and in Ap-
quark to a final-state hadron when one integrates over apendix B we discuss what additional information can be ob-
final states containing this hadron. We specialize here to th&ained with polarized beams.
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Il. THE PROCESS y* y—mrmr

A. Kinematics in the y* y center of mass

The reaction we are interested in is
e(k)+y(q')—ek )+ m'(p)+m(p'), 1

where four-momenta are indicated in parentheses. We furthe
use

— ’ 2_ 2 — ’ 2 __ p2
a=k-k. Q @ P=ptpl W=PL Q) FIG. 1. The kinematics ofe(k) +y(q’)—e(k') + 7' (p)
The pions may be charged=+, j=—) or neutral (=] +7!(p") in the center of mass of the pion pair.
=0), and the leptore may be an electron or a positron.
Scattered with large momentum transfer this lepton radiates xl° for the energies in the laboratory frarh&or the c.m.
a virtual photony* (g), and for they* y subprocess we in- €nergies of theeandey collisions we have
troduce the Bjorken variable

See:(k+|)2a Sey:(k+q,)2:X23ee- 6)

2 2
= Q - Q 3) Let us now discuss the kinematics in th&y center of
29-q"  Q*+W*’ mass frame. We use a coordinate system with zhaxis

along g, and withx andy axes such thap lies in thex-z
In e"e™ collisions the photony(q’) can be obtained by plane and has a positivecomponent, i.e.
bremsstrahlung from the other beam lepton, so that the over-

all process is q=(q%0,0la)), p=(p°|p|sing,0/p|coshd), (6)

e(k)+e(l)—ek)+e(l"+7'(p)+a)(p’) (4  where we have introduced the polar anglef p. Another
natural variable for our process in this frame is the azingith
with g’=I—1". In the spirit of the equivalent photon ap- of k’, which is the angle between the leptonic and the had-
proximation we approximatg’? as zero and the momenta ronic planes, see Fig. 1. In terms of Lorentz invariants these
q’ and| as collinear. We writeE;=k° E,=1° andq’® angles can be obtained from

oS- 2q-(p'—p)
~BQT+WA)”

2k-(p' —p)(Q?+W?) + B cosb[ Q*(Se,— Q*— W?) — SeyWZ]

CoSp=
23 SiN 01/5,Q°W?(Se, — Q% —W?)
_ 4e,py5P+P") P kG’

sing= — — — (7)

B Sin 656, Q*W(s, — Q% — W?)

|
with €g105= +1 and the velocity which can be traded for
1-y
am? T 1-y+yI 10
B=N1-z (8)

the ratio of longitudinal to transverse polarization of the vir-
tual photony* (q).

: . . *_ (/0
of the pions. A further quantity we will use is the usyal Vg/e/z‘ffl?ally d?fme light cogg co(;nponint? =(a
variable for theey collision +a®)/v2 for any four-vectora and introduce the fraction

g-q’ Q2+W2 IWe neglect the small finite crossing angle between the beams at
y= T = S ) ) BELLE, so that in our parlance the lepton beams are collinear in the
ey “laboratory frame.”
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At leading order inag the amplitude is given by the dia-
gram of Fig. 3a) and the one where the two photon vertices
are interchanged. One calculates, for the hadronic tddgor

=i [ e ) (0 T30 0)10)

e (1, 2z-1
=—gf - T 2
92 fodzz(l—z)q)q (L WP, (12)

where gf” denotes the metric tensor in transverse space

Y (g3'=—1). The sum on the right-hand side runs over all
quarks flavorsg, is the charge of quark in units of the
FIG. 2. Spacetime diagram of* y— 7rar in the Breit frame. positron charges, and eJ; (x) is the electromagnetic cur-
rent. While the expression of the hard subprocegsy
pt  1+Bcosh —qq is explicit in Eq.(12), the soft part ofy* y— w7 is
(= P (11 parametrized by the generalized distribution amplitude

dx : +,,—
. i 2\ _ —iz(P™x7)
of light cone momentum carried by'(p) with respect to the Pq" (2,4 W) j 2m ©
pion pair. Naix)y*
X(m(p)7(p")[q(x")y"q(0)|0)

B. Factorization at large Q? and small W? 13

Let us briefly review howy* y— o factorizes in the for each quark flavog. We work in light cone gaugé™
kinematical regime we are interested in. First, we reqQife =0, otherwise the usual path ordered exponential of gluon
to be large compared with the scal’~1 Ge\? of soft  potentials appears between the quark fielbls.depends on
interactions, thus providing a hard scale for the process. Sethe light-cone fractiorz of the quark with respect to the pion
ondly, we askW? to be small compared with this large scale pair, on the kinematical variablgsandW? of the pions, and
Q2. In this regime the dynamics of the process is conve-on a factorization scale. The latter dependence, not displayed
niently represented in the Breit frame, obtained by boostingn Eq. (13), will be discussed in Sec. IlI B.
from the y* y center of mass along theaxis. The spacetime In Eq. (12) a scaling behavior for our process is manifest:
cartoon of the process one can derive from power countingt fixed ¢ and W? the y* y amplitude is independent @2,
and factorization arguments is shown in Fig. 2. up to logarithmic scaling violations from radiative correc-

In the Breit frame the real photon moves fast in the negations to the hard scattering and from the evolution of the
tive z direction and is scattered into an energetic hadroni¢wo-pion distribution amplitude. This scaling property is
system moving in the positive direction. The hard part of central to all processes where a factorization theorem holds,
this process takes place at the level of elementary constitand it is the basic signature one looks for when testing
ents, and the minimal number of quarks and gluons compatwhether the asymptotic analysis developed here applies to an
ible with conservation lawsgcolor, etc) are produced. At experimental situation at finit®2. There will of course be
Born level one simply has* y—qq, but through a quark power corrections il\/Q andW/Q to this leading mecha-
box the photons can also couple to two gluons. Each quarkism. Examples are the hadronic component of the real pho-
or gluon carries a fractiom or 1—z of the large light-cone ton, and the effect in the hard scattering of the transverse
momentum componei® ™. Subsequently the soft part of the momentum of the produced parton pair. We note that the
reaction, i.e., hadronization into a pion pair, takes place. crossed channel, i.e., virtual Compton scattering, has been

(b)

FIG. 3. (a) Factorization of the procesg’ y— mr in the regionQ?>W2, A2. The hard scattering is shown at Born level, with a second
diagram being obtained by interchanging the two photon vertices. The blob denotes the two-piobEO®Sssing relates this process to
deep virtual Compton scattering* 7— yr. The blob now denotes thiskewed quark distribution in the pion.
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analyzed in detail within the operator product expansion 1(dz . . _
[5,12,13, which may provide a framework for a systematic =~ Hq(X,&,t)= Ef ZG'X(P z)
study of higher twist effects.

Contracting the hadronic tens@t2) with the photon po- x{m(pHa(—=z"12)y"a(z"/12)|m(p))
larization vectors we see that in order to give a nonzero (16)
v* y— ma amplitude the virtual photon must have the same

helicity as t.he real one. A; in the case of deep virtyal Compwith P=(p+p’)/2. They have been recognized as objects of
ton scattering this is a direct consequence of chiral invarizongsiderable interest and have triggered intensive theoretical
ance in the colllngar hard-scattering procgs4,159 and is  gpq experimental work. The processgsy— m and y* 7
valid at all orders inas. In the case of the* y—gg sub- .. share many common features, from their scaling be-
process the photon helicities can also be oppddid. I hayior and the details of their helicity selection rules to the
any case the virtual photon must be transverse. As a consgygsibilities of phenomenological analysis, which we will
guence nonleading twist effects can be studied in the amp“develop in Sec. VII.

tude for longitudinaly* polarization, without any “back- The imaginary part of the forward virtual Compton am-
ground” from leading twist pieces. We will develop in Sec. plitude, y* m— »* 7, obtained from Fig. @) by replacing

VIl how the different y* y helicity amplitudes are experi- the o with a secondy*, gives the cross section for inclusive

mentally accessible. . deep inelastic scattering;* 7— X, where the ordinary par-
As we already mentioned, there is a close analogy of tWoggn gistributions in a pion occur.
pion production in the regio@®>W? A with the one-pion As observed in Ref(18] it is useful to implement cross-

channel, commonly described in terms of ther transition ing at the level of moments in momentum fractiqasand ¢
form factor. There again a factorization theorem holds,, GDAs, x and ¢ for SPDS, which depend only on a fac-
which allows the hadronic tensor“” to be expressed in torization scale and a Lorentz invariafst for GDAS, t for
terms of the single-pion distribution amplitud€” as SPD3. The moments of GDAs and of SPDs are connected
by analytic continuation in that invariant. In particular, ana-
lytic continuation to the point=0 leads to moments of the
ordinary parton distributions in the pion, which we will use
as an input for our model of GDAs in Sec. IV.

Twzif d*xe 19X 70| TIE (%) IL(0)]0)

s egfl 1
=e#> 3| dz——— ¢7(z 14
T4F 2 )0 "z(1-2) 4(2) a4 IIl. GENERAL PROPERTIES OF GDAS

) ) ) ) ) A. Charge conjugation and isospin properties
to leading order inxg, whereef” is the antisymmetric ten-

sor in transverse spacef=1) and Let us start by compiling some symmetry properties

which will be useful in the following. For the quark GDAs
_ (13) the invariance of strong interactions under charge con-

¢q(2)=i f Z—Xﬂe‘iz“’*x’)(qro( P)[G(x ")y 5a(0)|0). jugationC implies
(15 DI(2,, W)=~ DT(1-27,1-{,W?). (17)

Notice the different Dirac structures in the matrix elements't IS useful to project GDAs for charged pions on eigenstates
(13) and(15), due to the different parity transformation prop- ©f C parity
erties of one- and two-pion statgs|. 1

The theoretical analysis of this process has been highlycpqi(z,g,WZ): —[¢g+”_(z,§,W2)i¢g+”_(z,1— WA,
developed 8]. Its generalization to the production gfand 2
7' is also important, in particular with respect to the(SU (18
flavor structure of the QCD evolution equations and the mix-SO that
ing of the quark singlet and gluon channgl¥]. In Sec. V
we will further compare the production of a single pion with e _
that of a pion bl P gep O T =02 WA T DL (2L WD), (19)

In the C even sector Eq(17) reduces to
C. Relation with deep virtual Compton scattering and parton
distributions in the pion Dy (2,{, W) ==y (1-2,(,W?). (20)

The processy* y— i at largeQ? ands<Q? is related _ » o
by s-tcrossing to deep virtual Compton scattering on a pion QU Process is only sensitive to ti@even part ofbg
i.e., toy* 7y at largeQ? and —t<Q?. It turns out that ~ SINCe the |n|t|gll gtatg two—phot_o_n state _has positvparity.
factorization works in completely analogous ways for both©Of course amar= pair has positiveC parity as well, so that
cases, as is shown in Fig. 3. The nonperturbative matrix eldy ™ has noC-odd part at all.

ements occurring in the Compton process are skewed parton Let us now turn to isospin symmetry. Ti@eodd compo-
distributions(SPD9[10], defined in the pion case §%8] nent of a two-pion state has total isospin 1, whereas it
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even component contains botk=0 and|=2 pieces. The We are then concerned with the generalized quark and
quark operator inbg™ has only components with isospin  gluon distribution amplitudes im*=0 gauge:

=0 orl=1. Hence it is a consequence of the leading twist _

production mechanism and of isospin invariance that in our D (2,0, W2) = J' d_xefiz(PJ'x_)

process the pion pair is in a state of zero isospin, i.e., thatno 7>’ 2

component withl =2 is produced. Another consequence of

A TeV R Ve
isospin invariance is that X(m(p)m(p")[q(x")y"q(0)|0),
7070 1 dx~ . _
O 7 (2L W) =D (2L, W), @) gz o [ e e
so that the production amplitudes for neutral and charged x(m(p)m(p)|F#(x")F,*(0)]0)
M 1

pion pairs are equal. Deviations from isospin symmetry in

the present reaction would be interesting, but since one can L[ dx” 2P

expect them to be small we will assume isospin invariance to =2(1-2)P f on ©

hold throughout the rest of our study. Isospin invariance also

implies that X(m(p)m(p")|A*(x")A,(0)|0). (24)
Ol=0;, O, =—Dy, (22) Our gluon distribution amplitudég(z,g,wz) coincides with

®C(z,£,W?) introduced in Ref[16]. From the definition
so that in theC even sector we only need to know the(@U  (24) one readily obtains
flavor singlet combinatiod | + @ . ) )
The connection between the notatidr)~°* of Polyakov Pg(2,6,W)=Dg(1-2,{,W5, (25)

[19] and ours is and fromC invariance one has

D 0=d;, PTI=d,. (23 Dy(2,6, WD) =D y(1-2,1- {,W2), (26)

We remark that the second term in EQ.6) of Ref. [19]  Here we have given definitions for a two-pion state, but as
should come with a minus sigf20]. Our relaton®|~"  stated above the evolution equation for distribution ampli-
=@, takes this correction into account. tudes and GDAs is not specific to the details of the hadronic

Notice that the signs in Eq$21) and(23) depend on the system. The considerations of this and the following subsec-
choice of relative phases in the definition of charged piortion thus apply to any state in the parity even sector which
states. We specify our convention in Appendix A. has four-momentunt and total angular momentud,=0
along the axis defining the light cone variables.

We now study the evolution of the distributions for glu-

o ) ... ons and of quarks in the singlet combinationmfflavors.
In the process of factorization generalized distributiongq, convenience we introduce

amplitudes acquire a scale dependence in the same way as
usual distributions do. This scale dependence can be com- ng

puted within perturbative QCD, and there is nothing special 27 o(2)= 2 Dy(2), (27)
with multiparticle states since the scale dependence is a q=1

property of the nonlocal product of fields under consider- s

ation, rather than one of a particular hadronic matrix element °2°fg(2) = Dy(2), (28
(see Ref[21] for an approach exploiting this featurerhe o )

scale dependence of GDAs can be cast in the form of afhere we use the notatia=1-z. In the end we will return
Efremov-Radyushkin-Brodsky-Lepage evolution equationt® the amplitudesb, and @,

[22], and the only complication in the channel we are con- The scale dependence is controlled by the parameter
cerned with here is the mixing of quark and gluon distribu-

B. Evolution equation

tion amplitudes. The leading-logarithmic form of the evolu- 2 2= S 220 29
tion equations has been studied in detail for the parity-odd i) Br \as(n))’ @9

sector[17], where the relevant quark operatorgs ™ ysg.

Our application to pion pairs leads us to consider the paritywhere as is the one-loop running coupling and;=11
even sector, where the quark operatorjis’ q instead, see —2n¢/3. This parameter describes how the distribution am-
our remark after Eq(15). For completeness we give here the plitude evolves when one changes the factorization point
basic steps for deriving and solving the evolution equation ifffom w to u. The evolution equation takes the form

this channel, following the procedure outlined in Rf3].

Taking into account the different normalization conventions 9 _ _ Jl

we find agreement with the results of Baier and Grg2i, 0§f(z,§) Vel 0 duMz wf(u.é), (30
who reported a sign discrepancy with Chd&&] for the

gluon evolution kernel. wheref is a two-component vector
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z
m
QQQ
z

FIG. 4. The scattering amplitudd* f with f denoting the soft

thatV is the same matrix in Eq$30) and(33). We refer the
reader to the literature for a general discusgi®®].

The integration ovek* may be reexpressed as an inte-
gral over the incoming light cone fractiam The evolution
kernels contain the remaining part of the dynamics, in par-
ticular they describe the change of light cone fractions from

matrix elements an#i the hard scattering kernels. utoz We get
= fQ) 3 ul o1 ——
fo Voqg(z,u)=Cg a(z—u)z 1+ P +{u~u, Z(—)ﬂ-+ ,

andV is the 2x2 matrix kernel

V \Y
V=< QQ QG)_
Veo Vee

To obtain the leading logarithmic evolution equation it is . y
sufficient to consider one-loop corrections to the scattering _-F s _ —
amplitude. The latter is depicted in Fig. 4 and has the form Veo(z,W) __G(Z w7 (Z=2u—{ueu, 227
H*f, whereH=(Hq,Hg) denotes the hard-scattering ker-
nels. It turns out that in light cone gaugé =0 the relevant
one-loop diagrams consist of an insertion betwidlesmdf of
the graphs shown in Fig.(® to 5(e), supplemented by
(renormalizedl self-energy insertions on each line connecting
H to f in Fig. 4. Calling the sum of these insertio&¥ the
one-loop diagrams have the structiite £V+*f.

The evolution from zeroth to first order of the generalized
distribution amplitude may thus be written as

(32) Voe(z,u)=2nTg 0(z—u);(22—u)—{u<—>U, 27},

Cal ua  __ U
VGG(Z,LI)ZZ—7 G(Z—U) H—UU—Z

X[(2z—1)%+(2u—1)?] | +{u=U, 27}

+

—%nfoﬁ(u—z), (35

1
f<1>(z)=f<°>(z)+§f duM(z,u)fO(u). (33
0
where the color factors ar€=4/3, Te=1/2 andC,=3.

In the computation of the diagrams, tke integral is per- The subscript+ stands for thet distributions, whose action

formed by the Cauchy method of contour integration in theon a functionf may be expressed symbolically as
complex plane, and is the result of the integral over trans-
verse momentum from+= ug to k1= pu:

[ 1 f(u=[-]f(u)—f(2)]. (36)
2dk? ag(k?)
2 2y |~ T GsS\AT
yMo) = — . 34
fmtomd) JMS Kt 27 (34 The kernels(35) give the finite parts that remain after the

cancellation of infrared divergences between grémH (d)]
Despite the presence ofs in Eq. (34), &is not small ifx?>  and quark self-energyigluon self-energy insertions. A
> 3, and this signals the necessity of an all-order analysissimple way to obtain self-energy corrections is to notice their
This analysis leads to the evolution equation, with the featureelation to parton splitting23], that is,

z u
2
~
TK ;BB\
000 . FIG. 5. One-loop insertions, to be supple-
z 7 mented by self-energy insertions on every line
a) ) appearing in Fig. 4. The sum of all insertions
gives the evolution kernefV. We remark that
the one-loop grapke) must be multiplied by to
—000 avoid double countingu andz denote light cone
plus momentum fractions, and the loop four-
172 momentum.
—Q00,
b) d) e)
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n+1

' 1 1 1
f(Ql)(Z)|SE:_1_§J’ dXPQQ(X) fg))(Z) YQQ(n):CF E—m+2kZZF y (42)
= 1_§f dxPgo(x) [f5)(2), B n?+3n+4
: 7QG(n)__nfTF—n(n+1)(n+2)a
(1) — 1
f5'(2)|se= 1‘5[ dx EPGG(X) n’+3n+4

YeolN == 20k i 2)(n+ 3)°
&), (37

+n:P X
tPoal( )) ) )

1
Yea(n)= CA( s -

with the unregularized Dokshitzer-Gribov-Lipatov-Altarelli- 6 n(n+l) (n+2)(n+3)

Parisi splitting functions n+1
1
+ X2 + ZkZZ F

Poo(X)=Crr—rs -
1-x

+ §nfT|: .

Since for a givenn, the space of solutions with=ng is
Poc(X)=Te[x?+(1-x)?], stable under the application of the kernel one can find poly-
nomialsp,(x) andq,_4(x) satisfying

1+(1—x)?
Peo(x)=Ck X , Vaoo* Pn=—Yqo(N)Pn, Voe*Un-1= — Yoc(N)Pn,
1—x Veo*Pn=—7Yco(Mdn-1, Vee*dn-1=—Yce(MUn-1-
PGG(X):ZCA +—+X(1_X) . (43)
1-x X
(38 The symmetry properties of the kernels
The integral437) are not defined in the limix— 0,1, which 1= X2Wan(X.V)=(1—V2)V X
is a manifestation of the infrared divergence of self-energy ( Waglxy) = 1=y Vooly ),
graphs. 2CH(1-x3)Voa(X,Y) =N Te(1-y) Vgg(y X),
C. Solution (1-33)2Vga(x,y) =(1-Y) V(Y. X),
We will now solve the evolution equatid80). Given our (44)

application we restrict ourselves to tleeven partsI); of then imolv that th h I pol ial th
the quark distributions, the gluon distribution being of course, en imply that the '(’“? are or Zogona polynomials on the
even undecC from the start interval[ —1,1] with weight 1—x*, i.e., they are proportional
We look for solutions of the form to the Gegenbauer polynomial€®?(x), whereas the
(qn—1) are orthogonal ofi—1,1] with weight (1—x?)?, that
f(z,&)="f(z)e 7% (39 is, proportional to the Gegenbauer polynom'ﬁfé’zl)(x). To
complete the identification it is necessary to take into ac-

To this end it is convenient to change variables, introducingount the standard normalization of Gegenbauer polynomi-
y=2u—1 andx=2z—1, and to study the convolution of the ;s One finds tha’pn=C§13’2) and qn71=C§15,’21) fulfill Eq.

matrix kernelV with (43), provided one makes the replacements
X" ( 0 (40) n
0/’ anl ) ’)/QG(n)*)'}/(,;)G(n):gﬂ)’QG(n)v

wheren is an odd integer to accommodate the symmetry 3
properties(20) and (25). One finds YGQ(n)_)')’(,;Q(n): X Yoo(n). (45)
Voo*Y"= — Yoo(N)X"+O(x"~?),
The final step is to diagonalize thex2 anomalous di-
Voe*Y" = = yoa(n)X"+0(x"7?), mension matrices for each value mf The eigenvalues are

Veg*Y"=~ vao(MX" 1+ 0(x"73), o 1
Iy :E['}’QQ(n) + vea(n)
VeerY" 1= = vee(mX" 1+0(x"3),

(42) +V[790(N) = vea(M 1P+ 4v5a(N) YoM,
with anomalous dimensions (46)
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and the eigenvectors of the kernel matrix read 1 1 _ .
fo dzZ'd4(2)= W[(—IW)“W(D)W(FJ’)IQ(X)

v(i)(X)Z( (E:)f/igz);) , (47)
n On Cn—l(x) x')’+q(o)|o>]x:0’
where 1 1 1 i 1
T e o(n) fodﬂ_ Pg(2)= prmerl (710"
=) — n

X(m(p)m(p")|F#(X)F " (0)|0)Ix—o-
(53

’)’66(”)

The general even solution of Eq(30) may then be written
as

These local matrix elements are the plus components of ten-

sors that can be decomposed on a basis built up with the

f(x,&)= > {A(n+>v§]+>(X)e—r<n*)§+Agf)vgf)(x)efrﬁg} metric g#” and the vectorsgd+p’)* and (p—p’)*. Since
odd n (p+p ) =P* and p—p’)"=(2{—1)P" the moments
(49 (53) are then polynomials in 2-1 with degree at most

_ . + +1. TheA, andA’ are Gegenbauer moments dfd, and
with integration constanta|~ . n n 9 bPq

We now return to the amplitude®,,®4 and explicitly
expresst in terms ofuw and . The key result of this section
then reads

properties inl. Following Ref.[19] we expand them on the
Legendre polynomials, writing

n+1
Nt 2y _ 2
AL, W7)=6n B, (WP (2¢—1 54
Z @;(Z,MZ):Z(]._Z) 2 An(MZ)Cg/Z)(ZZ_l)’ n(g ) fe%l nl( ) I( g ) ( )
q=1 odd n
and the analogous expression #} with coefficientsB),.
<I>g(z,,u2)=22(1—z)2 z Ag(uz)cﬁ_’?@z— 1), The C in\_/ariance propertie$l7) and (26) r_estrictl t_o_even
odd n integers in theC even sector. The expansion coefficieBts

@, respectively, and therefore have the same polynomiality

(50 are linear combinations of the local operator matrix elements

with in Eq. (53) and are therefore analytic functionsWf. As we

ey K(H) oo k) W? leads to the moments of parton distributions in the pion.
An(Mz):A<n+)( as(p )) " +A()( as(p )) " , From Eq.(51) the factorization scale dependence of Bjg

ag(ud) ag(ud) may be written as
20y k(P ooy k() as(1?) K
fooay () ach| @strT) | (- a0 @) | B, (W2, u2)=B(") W2< S )
Al(u?)=g\" Al (as(ué) +g' Al s 1D) , nl(W9 u ni (W9) 2 id)
(51) )
Y e S 55
and exponent (~)=2T{*)/B,, which are positive except ni (W) ag(1) ’ (55)

for K{7)=0. Forn;=2,3,4, one explicitly finds
with an analogous equation fds,, involving the factors

., 32+6n; gt
K= =0.51, 0.62, 0.75, N :
99— 6n; In the limit x—o<0 only the terms with the smallest expo-
nentk (™) =0 in the coefficient$51) survive. The asymptotic
K{’=0.71, 0.76, 0.82, K{"'=1.45, 1.64, 1.85. form of the distribution amplitudes thus has only: 1 in the

(520 Gegenbauer expansidf0) and reads

From Eg.(51) we easily see that the integration constants ni
AL®) depend on the starting scalg, of the evolution 21 d (2,4, W?)=18nz(1-2)(2z— 1)[Bi; (W?)
through a factoras(,uﬁ)wai). ’
+BL, (WHPy(2(-1)],

D. Expansion in g N <I)g(z,§,W2)=4822(1—Z)2[B(18)(W2)
For a two-meson state, the coefficiestg and A, are
functions of the factorization scaje?® and of the remaining +B(1§)(W2)P2(2§—1)], (56)
kinematical variablest and W?. From the definition of
GDAs in term of fields given in Eq(24) one obtains mo- WhereP,(2{—1)=1—-6{(1—¢). Note thatB{;’ andB{;’
ments do not depend on a starting scalg becauseK(l’)zo. For
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reasons that will become clear we will also keep the termshe two-pion distribution amplitude from its asymptotic

with the first nonzero exponert{™) in our model for the

form. The @ distribution of the produced pion pair thus con-

GDAs to be developed in Sec. IV. For the quark distributiontains information about the dependence of the GDAszon

amplitudes this simply amounts to replaciB§,’ and B’

which as a loop variable is integrated over in the amplitude

in the first line of Eq.(56) with the u-dependent coefficients ©f the process, see E(L2).

BigandBy,.
Let us finally remark that, as discussed in R&B], there

One-meson distribution amplitudes are real valued func-
tions due to time reversal invariance. This is not true for

is another generalized gluon distribution amplitude, with angeneralized distribution amplitudes: the two-pion “out”
operator different from the one in E€4). It corresponds to  State in the definitior(13) of 77 is transformed into an

pion pairs with angular momentud,= =2 and gives the

leading-twist part of the amplitudeg* y— 77 where the

“in” state under time reversal, and these states are different
because hadrons interact with each other. Below the inelastic

photon helicities are opposite. The evolution of this helicity-threshold, however, two-pion “in” and “out” states with
two distribution amplitude does not mix with any quark dis- definite angular momentum are related in a simple way via
tribution. Its smallest anomalous dimension is positive, sghe phase shifts of elastiem scattering. With the aid of
that this distribution amplitude tends logarithmically to zeroWatson’s theorem one then obtains the relatid,

asu—. The study of this distribution would be very inter- =B_, exp(—2i8) [19]. This fixes the phase of the expansion

esting. Nothing is, however, known about its size at present, o officientB
and in our phenomenological analysis we will neglect its

contribution.

E. Partial wave expansion

a1 up to its overall sign:

EnlzﬂnI|Enl|eXF(i5I)a nn=*1, (61)

whered is the wm phase shift for théth partial wave in the

The decomposition of generalized distribution amplituded =0 channel.
on Legendre polynomials performed in the previous section

translates into a partial waves decompositid®] if one
transforms from polynomial®,(2{— 1) to P,(cosé) using
that 20— 1= B cosé. The rearranged series reads

ng © n+l
2 dg=6nz(1-2) Y > Bu(W)
g=1 n=1 =0

odd even

X C¥2(2z—1)P,(cosh) (57)

for quarks, where the coefficienBs, (W?) are linear combi-
nations of the form

Bu=pB'[Bn+Ci1+2Bnisat - +Cnr1Bnns1] (58

with polynomialsc | in B?. Keeping onlyn=1 in the Ge-
genbauer expansion one is restricted tdSaand aD wave:

n¢
2, ©g=18n2(1-2)(22-)[ByW?)
=

+BiA W) Py(2¢{~1)]

=18n;z(1—-2)(2z—1)

X [B1o(W?) + B (W?)P,(cosh)] (59
with
- 1-p32
BlO(WZ):Blo(WZ)_ 25 BlZ(WZ)u
B W?) = B2B1 W?). (60)

It is a remarkable consequence of the condifiem+ 1

F. Momentum sum rule

Of particular interest are the momeiis18,19

fldz(Zz— 1)d, (2,4, W?)
0

2
=(P—+)z<7r+(p)w‘(p’)lT§+(o)|o>, (62)
1
fo dzdy(z,¢,W?)
: ++
=(p—+)z<7ﬁ(p)w*(p’)ng (0)[0), (63

where T¢"(x) and T4"(x), respectively, denote the Belin-
fante improved energy-momentum tensors for quarks of fla-
vor g and for gluons. After summing E62) over all flavors
these moments project out the coefficienBs(W?),
B1A(W?) andB;jo(W?), Bi(W?).

To proceed one decomposes” (p)7 (p')|T4"(0)[0)
on form factors. Their analytical continuation to zero or
negativeW? leads to the form factors of the matrix elements
(7" (p)|T4"(0)|7"(p’)) between one-pion states, with’®
=0 corresponding tp=p’. At that point we get from Eq.
(62).

10
B.x(0)= g—nfRﬁ, (64)

whereR . is the fraction of light-cone momentum carried by
guarks and antiquarks in the pion. No constrainBgg(0) is
obtained this way, since the corresponding form factor in the

that the presence of high partial waves implies a departure afecomposition o(w+(p)|Tg”(0)| 7" (p’)) is multiplied by
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bo [deg] 61 [deg]
180 t 180 1
135 ¢ 1 135 1
90 | T 90 1
45 ’ 45 FIG. 6. The phase shiftg, for
the Swave, §; for the P wave, and
0 s ; . 0 : : 8, for the D wave of elasticr
0.4 0.6 0.8 1 0.4 0.6 08 1 scattering.8, and &, refer to the
W [GeVl W [GeV] =0 channel. The points are
taken from Ref.[28], and the
55 [deg] curves fqr 50_ and 6, are simple
0 parametrizations. The curve féy
1 corresponds to the parameteriza-
tion N=1 of the pion form factor
F_(W?) in Ref.[30].
5 L
0 ‘ .
0.4 0.6 0.8 1
W [GeV]

a tensor that vanishes fpr=p’. In an analogous fashion one isospin relationg21) and(22), and take the asymptotic form
obtains an expression f@;,(0) from the sum rul€63). of the z dependence given in E@59). It thus remains to
We emphasize that both sides of Ef4) depend on the make an ansatz for the coefficiemtgy(W?) andB,(W?), or
renormalization scalg.. Only the total energy-momentum equivalently for B,o(W?) and B;(W?) introduced in Eq.

tensor, i.e., the sui*”=2,T¢"+Tg" over quarks and glu-  (gp).
ons is conserved, so that its matrix elements are renormal- For their phases, given by E(1), we use simple param-

ization scale independent. The appropriate sum of the MQsyrizations of the isosingleB-and D-wave phase shiftss,
ments(62) and(63) leads to a linear combination &;, and and 5, obtained in Ref[28]. They are shown in Fig. 6,

By, where the scale dependent term witf’ indeed drops  yhere for later use the phase shift of the P wave is also

out and ~only ?(15) is left. The normalization of gisplayed. The result61) only holds below the inelastic
(" (p)[T#*(0)| 7" (p)) thus fixes the expansion coefficient threshold inmw scattering, therefore we restrict all our stud-

ies to invariant masséd/ below 1 GeV. Around that mass,

(65) corresponding to th&K threshold, the phase shift, of the
Swave drastically increases. While the analysis of R28]
stops atW=0.97 GeV and does not exhibit this abrupt
change, the investigations in R¢29] find values of order
e 200° atW=1 GeV. Our parameterization &f in that region

”_} 3ny (66) is meant to be indicative rather than a precise description of
T 3ns+16’ this quantity. Through interference effects, the rapid varia-

tion of a phase shift leads to a characteristic behavior in the

in agreement with the well-known result from the evolution W spectrum of appropriate observables in our process, as we

10

(>)0)= ————
812 (0= gn 728

which through the relatio64) gives the asymptotic value

R

of singlet parton distributiong27]. shall see in Sec. VII.
The analyticity properties of thB,,, and the phase infor-
IV. A SIMPLE MODEL OF THE GDA mation from Watson’s theorerf61) may be used to obtain

So far no experimental information exists on the two-pionthewz dependence d,, via dispersion relations, which has
GDA. In the numerical studies to follow we will therefore P€en exploited in R3f$16]*_[19]' Note, hoyveyer, that while
use a simple ansatz fdp; (z,£,W?), which is based on the the complex phases are simple for Bg, it is the By, that
general properties we have discussed in the previous sectiof@ve simple analytic properties in the-plane, given their

We only consider the contributions fromandd quarks, definition through operator matrix elements. The transforma-
i.e., we taken;=2. As already mentioned we will use the tion from B, to B, introduces extra poles a/°=0,; see,
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e.g., the factorsg®=(W?—4m?2)/W? in Eq. (60). Further- the radiative corrections to the hard scattering, which have
more, the evaluation of the integrals that solve the dispersioheen worked out to one loop in Refl6]. Taking the
relations requires knowledge of the phases at energies aboagymptotic form(56) of the quark and gluon GDAs, includ-
the value ofW whereB,,, is evaluated. This further restricts iNg the asymptotic valu¢66) of the ratioR,, they were

= . . found to reduce the leading-order amplitude for equal photon
the range ofW where B,, can be obtained using thewr I P . .
phase shifts as input. helicities by 30% if ag=0.3, with most of the correction

To keep our model simple we will make a less Sophisti_bemg due to the contribution fronb. Finally, we recall

from the end of Sec. IlI D that we will neglect the contribu-
cated ansatz. We keep the energy depen.deni p@~ d tion of the helicity-two gluon GDA to the photon double
8, from Watson’s theoren(61). To determine/B;q,|B14,

; ) X helicity-flip amplitude, which is also a one-loop effect.

and the overall signgq, 712 in Eq. (61), we retain only the
kinematical factorsB? in the relation (60) and replace
B1o(W?) and B;,(W?) with their values atW=0. Close to
W=1 GeV one will not expect this to be a good approxima-  Given the close analogy between the production of one
tion for the Swave, given the presence of tlig(980). Be-  and of two pions it is natural to compare the production rates
low this there is however no prominentr resonance in the of these two processes. Since our estimationsrtoproduc-
I =0 channel, and the phase shifts show a smooth behaviofion are at lowest order inxg we will compare with the
It seems therefore reasonable to assume that the isosingl@rresponding expression for the one-pion case for consis-
form factorsB,, andB;, do not have a strong energy depen-tency, although experimental data and more refined theory
dence in that region, certainly not as strong as the electrcanalyses are available there. From the leading-order expres-
magnetic pion form factoF _ with its large variations in sion (14) we obtain the cross section for the process
modulus and phase due to tp€770. We do however not —en® as
claim our simple model to be better than, say, a factor of 2.

For the input value 08,,(0) we use the constrairi64) doey eq0 CY_3 1 0 2¢2 69)
with R, evaluated from the parton distributions in the pion. dQ®  s;,Q%1-¢ s
Taking the leading ordefLO) parametrization of Glek-
Reya-SchienbeitGRS) [31] we findR,, ranging from 0.5to  where we have used the asymptotic distribution amplitude
0.6 at a factorization scaje? between 1 and 20 GEVIn our o=—¢5=3v2f z(1-z) with f_~131MeV. For a
numerical studies we uge,=0.5. Note that this is very far |owest-order approximation, the cross sect{68) is in fair
from the asymptotic valu€66), which forn;=2,3,4 isR,  agreement with the da{®)].
=0.27, 0.36, and 0.43, respectively. While using the To compare with two-pion production, we integrate the
asymptotic form of thez dependence of the GDA for sim- cross section foey—en7° from threshold up tOW .
plicity (and lack of experimental informatipmve thus retain ~ With our model GDA(68) we find
a clear nonasymptotic effect in the coefficidf,(0). We

V. COMPARISON WITH 3* y—&°

also remark that in the GRS LO parametrization the contri-  doe,_¢70,0 2543 1 w2 ’
bution of strange quarks and antiquarksRp is at the level dQ? 7252 Q%(1—e) 4mzaxdW
of 5to 10% in a wide range of the factorization scale. This &y v
corroborates our restriction tw andd quarks in the GDA, [ am2/ _ 1.
although with the caveat that the sea quark distribution in the X \/1— W;( |B1g %+ 3 | Blz|2)
pion is not constrained from experimental dg34].
For the coefficienB,4(0) we make use of the relation 12543 1 22
=—— ———R‘m
B1o(0) =~ B1(0), (67) 24%,, Q(1=¢) 77
which has been obtained in R¢19] using chiral symmetry % /1_ 4m72-r/Wﬁ1ax E_ me
in the form of a soft-pion theorem. Notice that our ansatz Wﬁ]ax\ amz 4 WA )"
then has the property that f@— 1 theS andD-wave com-
ponents of the GDA have equal size and opposite sign, as is (70

easily seen from Eq60).
Putting everything together, we will take the following
model GDAs in our numerical studies:

A consequence of the identical scaling behavior of the two
processes is that the ratio of the cross sect{@ds and (69)
is independent 0Q? in the Born approximation.

Pf=dF=102(1-2)(2z- 1R, Figure 7 shows the ratio of the cross secti@¢iA®) and
, (69 as a function of the upper integration limi¥,,,,. We
3=B7 s w2 : 2 see that, even when integrating up\ib=1 GeV, the single-
R (W?) 24l 82(W9) . ’ . s
X 5 €0+ BTel?2 T IPy(cosh) | (68)  hion production comes out as clearly dominant. We remark

that the measured production raf@$for a singlen or %' are

with R,.=0.5. comparable to that of @°. With our isospin relatiori21) the

With this we can easily calculate the scattering amplitudecross section fory* y—=#* 7~ is twice that of y*vy
for y* y— 7 to leading order inxs. We shall neglect here — 7°#°, the relative factor 1/2 forr°#° being due to the
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ACeny—sendn® g1 . ' , which are a subject of considerable importance in the physics
Ao o of exclusive processes.
Tey—end

Taking the asymptotiz dependence of the distribution
amplitudes as an example, we can explicitly see how impor-
tant the end-point contributions are in the leading-order ex-
0.05 + ] pressiong12) and(14). For single pion production the inte-
grand in Eq.(14) is a constant then, so that 50% of the
integral comes from the regions whezer 1—z is smaller
than 0.25. For two-pion production the integrand is propor-
tional to (22— 1)?, and 50% of the integrand comes from the

0 ' regions with z or 1—z smaller than (2 %3/2~0.1.
0.4 0.6 0.8 1 Given these numbers, one can expect that corrections to our
Wonax [GeV] leading-order calculation will not be negligible fa®?

around 4 Ge¥, which is the lowest value considered in our

FIG. 7. The ratio of the cross sectioig0) and (69) for the numerical estimates in Sec. VIII.

production of7°#° and of #° in the limit of largeQ?. The cross

section forey—en?7° is integrated ovekV from threshold up to
W VI. RELATIONS WITH THE PHOTON STRUCTURE

FUNCTION
phase space of identical particles. Because of the phase space ) . ,
one does not expect the production of more than two pionsto 1he exclusive process we consider here contributes of
be important forW below 1 GeV, except for the decays ~ CoUrse to the inclusive reactiopf y—X. As we mentioned
—.37 and 7' — 5. The picture thus emerges that with our N the previous section, the inclusive process is built up from
estimation fory* y— ma the production of hadrons ig*y & limited number of exclusive channels in the mass region of
collisions up to 1 GeV is dominated by the pseudoscalalV P€low 1 GeV. Let us examine the connection between our
channel, in other words by the parity-odd sector as Opposeglscussmn of one- and two-pion production with the familiar
to the parity-even one. This is reminiscent of the special rolél€Scription of inclusivey” y scattering in the kinematical

played by the axial current in low-energy QCD. limit we are taking here. _ , _ . .
At this point we wish to comment on the end-point re- The unpolarized cross section for inclusive deep inelastic

gions of the integrals ovez in the factorized expressions SCaftering on a photorgy—eX, can be parameterized by
(12) and (14) for two-pion and one-pion production. Far WO photon structure functiorSy andF, as

—0 andz—1 the hard-scattering kernels are divergent, cor-4
responding to the quark exchanged between -ihend y* = 2 2
goirF:g on-ghell. Thgse poles aregcanceled by)tthe er)1/d—p0irFE|QZdW2 557 XQZ(l_f)[ZXFT(X'Q J+eF QO]
zeroes of the two-pion and one-pion distribution amplitudes, (71)
so that the end-point regions give a finite contribution to the
scattering amplitude in both cases. Quantitatively, the quar

virtualities in the hard-scattering diagrams @@’ and (1 * o
—2)Q?, and it is clear that for a given finit®? there is a ?:’ '_;2?: trfr;sverse structure functié is often traded for
2= T L

region inz where our leading-order expressions should re- At the level of partons inclusive hadron production is de-

ceive important corrections. At small virtualities the Strongscribed bvv* v—s G a to leading order inve. which aives the
coupling becomes large, increasing the sizeagf correc- yy" y—q9t 9 S 9
well-known expressiong2]

tions, and wherz@? or (1—2)Q? becomes comparable to

2
Oey—eX 2ma

hereF+ and F |, respectively, give the contribution from
ransverse and longitudinal polarization of the exchanged

the square of typical transverse quark momenta in a pion, _ 3a 1+
then power corrections due to the effect of the transverse Fd9=_——> eg{m—q x2+(1—x)2
momentum of the producedig-pair will be important. We 2m % 1-Bq
recall in this context that various theoretical attempts to 2 4
. . X m m

evaluate such corrections lead to fair agreement with the data +4x(1—x) —g— 8X2—2}
for the y— & transition form factof9,32] down to rather low Q Q
values ofQ?, m2

For pion pair production both the hard-scattering kernel —Bq[(l—Zx)z+4x(1—x) _g“
and the distribution amplitude are zerozat 1/2 due to the Q
constraints from charge conjugation invariance, so that com- 5
pared to the single-pion case the integrakiis more sensi- an_@E 21— g %In 1+,
tive to the end-point regions. We thus expect that for inter- LT n g d Pq W2 1-Bq)

mediate values of? corrections to the lowest-order results (72)

will be more important iny* y— 7 than they are iny* y

— 7%, The experimental comparison of @ dependence Wwhere B,=(1—4mz/W?)*2 Note thatm, is to be under-

of these two processes will therefore be interesting and magtood here as a cutoff parameter, which regulates the collin-
help us to better understand the origin of these correctionsgar divergence in the box diagram with massless quarks.
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The limit of largeQ? at fixed smalW? we are taking here unambiguous. While more sophisticated procedures have
impliesx—1 and is different from the Bjorken limit, where been elaborated in the literature, we consider it sufficient for
W2 is scaled up witfQ? so thatx remains constant. Neglect- our purpose to use the quark mass regulator in(Eg). One
ing terms of order + x~W?/Q? and mf]/Q2 the expressions Mmight also take massless quarks and a lower cutoftn the

(72) become transverse quark momentum, obtaining the same régsit
with mg replaced byx, in the expression of3,. While

aq 3a 4l 1+ By T W2 keeping us away from the region where perturbation theory

Fq :_Wé €) ! 1_Bq_ﬂq , F'=0 Q_ breaks down, such phenomenological regulators become of

73 course inadequate as one approaches the “threshold” where
Bq=0. For our numbers this is &/=580 MeV. One should

We observe that in our limit the leading-order expression foear this in mind when using the expressi@8) for invari-

Fr becomes independent G, i.e., it has the same scaling ant massesV around 1 GeV. . .
behavior as the exclusive channeig y—= and y*y On the other hand we saw in Sec. V that with our estimate

— mrar. This is to be contrasted with the Bjorken limit, where Of two-pion production the hadronic mass spectrum below 1
In[(1+,Bq)/(l—,Bq)]~In[Q2/nﬁ]+In[(1—x)/x] gives rise to the GeV is dominated by the single-meson statdsy, 7. It is
well-known logarithmic scaling violation o at zeroth or- clear_that in such a region the parton—lgvel result can only
der in as. hold in the sense of parton-hadron duality, averaged over a
Just as in the case of y— 7, the contributiorF, from sufficiently large interval inW. We therefore integrate the

longitudinal photons is power suppressed in our limit. Let usCoSS section foey—eX over W from threshold up to 1
add that in the Bjorken limit the hadronic part B¢, often ~ C€V. The parton-level result, obtained from Hg3) with
parameterized using vector meson dominance, is only sur?-quzmdz290 MeV, amounts to 2'.42 times the cross section
pressed by a factor 1@? with respect to the pointlike part (69 for oone-pion production. This factor shoqld _bg com-
(72), but does not survive our limiting procedure here: sincePared with the factor # 0.26+0.97+2.64 for the 'nd'V'dlfal
hadronic structure functions typically decrease like a powefontributions of the exclusive channets+zm+ 7+ 7",
of 1—x for x—1, it becomes a correction W2/ Q2. Here we used Ed.74) for two-pion prqductlon, whgreas for
The contribution of our process to the structure functions”? @1d 7" we replacedf . =131 MeV in Eq.(69) with the
is, with our ansat£68) for @, respective val_ues 129 and 213 MeV taken from the analysis
of Ref.[32]. Given the caveats of parton-hadron dualibe-
B 1 _ low 1 GeV there are very few resonances in the two-photon
(|Blo|2+ §|Blz|2) channel, andV=1 GeV is just above the’ threshold and
those of the parton-level calculation itséffiscussed aboyge
we find the agreement remarkably fair.

E ata + 7070 _ 25a
T ~ 9677

_B2% [ 2, 1
B i T e
VIl. PHENOMENOLOGY

As a function ofW this quickly rises from the threshold at  \ye will now discuss the phenomenology of our process
2m;, levels off for W afounf' flOOOt(g 500 MeV, and then i, e, and ine*e collisions. The production of neutral and
remains flat with a valuec7 ™ "7 7 /a~0.0077. Let us charged pion pairs is rather different in this respect, since
compare this with the resul73) of the qq calculation foru  7%#° is only produced by the* y subprocess we have dis-
andd quarks(including strange quarks would only lead to a cussed so far, whereas far* 7~ production this process
minute change due to the charge faoﬁzé}. With the quark interferes with bremsstrahlung, i.e., the production of the
massesn,=my= 290 MeV from the parametrization of the pion pair from a timelike photon radiated off the beam lep-
photon structure function by Gordon and Storrf88] we  ton. We start with the simpler case of neutral pions, and then
get a value OF-?—E/CY~015 atWw=1 GeV, much |arger than discuss CharQEd paiI’S. In the fOIIOWing we will restrict our-
the one we obtain for pion pairs. selves to unpolarized photon and lepton beams. A brief dis-
It is worth remembering thay* y— qq also is the hard- cussion of beam polarization will be given in Appendix B.
scattering subprocess in our factorized expressiomyfoy
— . As we discussed at the end of the previous section, A. Helicity amplitudes

the collinear divergence of this process shows up as singu- The pyilding blocks of our investigation are the helicity
larities at the end-point o_f theintegration in Eq(12) and is amplitudes fory* y— m, which describe the dynamics of
canceled by the end-point zeroes of the GDA, i.e., by thenis hrocess in a model independent way. They are obtained

hadronization process. In the calculation of openproduc-  fom the hadronic tensof*” by multiplying the reduced
tion no such cancellation takes place and the divergence %{mplitudes

the diagram has to be regulated. This reflects the fact that

even in the limitQ?— o inclusive hadron production from Aij(QZ,W2,0)=ei"TM,,ej”’, i=+,0—, j=+,—

v* vy cannot be calculated in perturbation theory al¢ne- (75
like for instance inclusive hadron production from a single

timelike photon and that the separation &f; into a pertur-  with the squared elementary chargfe In the y* yc.m. our

bative pointlike and a nonperturbative hadronic part is nofphoton polarization vectors read
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1 0 1 _ ) do’eyﬂeww ‘ :a_3 B 1
6026(|q|1010g )7 Ei:E(Oa_'_ 11_|1O) (76) szdWZd(COSG)dQD‘G 167T g?;y Q (1_ 6)

for the virtual and X (AL [P +]AZ L2+ 2€] Ag. |2

L —cosg R[A* , Ag, —A* Ag, }2\e(1+€)
€.=—(0,1,+i,0 (77)
V2 —cos2p Re[A* ,A_,126), (80)

for the real photon, where we have used the coordinate sysvhere the subscriph indicates that the pions are produced
tem described in Sec. Il A. By parity invariance, there arein a y* y subprocess. Forr’7° production the phase space
only three independent helicity amplitudes, which we choosén Eq. (80) is understood as restricted to abs(0,1), ¢
tobeA, ., A_., andAy, . e (0,27) because there are two identical particles in the final

Each of these three amplitudes plays a distinctive dynamistate. We notice the close similarity of the expressi80)
cal role in the kinematical regio@?>W? A2 Itis A, , that  with the cross section of the crossed channel process of vir-
receives the leading twist contribution we have discussed itual Compton scattering, and much of what we discuss in the
detail, and which in the scaling regime gives access to théllowing has its counterpart thefé4].
generalized quark distribution amplitudég™ To obtain thee™e™ cross section we use the equivalent

photon approximatiof2]
2

e 2z—-1
A= = f dz———®T"(z,{,W?) (79 doeeeenn
7 2 Jo z(l-z) 9 2
dQ?dW2d(cosh)dedx,
2 12
to zeroth order ines. The amplitudeA_, has a leading- _ Ei 1+(1—-x%y) n mad X2)
twist part at ordereg, due to the helicity-two gluon GDA. T X3 2 Q/2(X,)
We briefly discussed this at the end of Sec. Ill D; for more
detail we refer to Ref[16]. Finally, the contributionA —(1-%y) doey_enn (81)
from a longitudinaly* is nonleading twist. The predicted 271 dQ?dWAd(cosf)de’

power behavior inQ? at fixed W? and ¢ is therefore that

A. . becomes independent @F, whereash, deCfgé}SGS at whereQ;2, andQ/2, are the minimal and maximal virtuality

least as 1. The amplitudeA_, should becom®* inde-  of the photorg’, respectively. We have a lower kinematical

pendent. If the helicity-two gluon GDA is, however, not suf- jimit Q/2 =x2mZ/(1—x,) determined by the electron mass

ficiently large,A_, may be dominated by higher-twist con- me, Wherea:Qr’nzaX depends on experimental cuts and will be

tributions at accessible values@f and should decrease as a discussed in more detail in Sec. VIII A. We remark that for a
. - 2 - .

power of 1Q in the correspondin®“ range. Of course all  yiyen eecollider energy the variables, andy are not inde-

these predictions are to be understood as up to corrections Bendent at fixed)? and W2, since

log Q% At sufficiently largeQ?, the longitudinal amplitude ’

Ao is thus predicted to be small compared with . . One

; 2 Q%+ W?
can also expect tha_ , will be smaller thamA, , , since its YXo= , (82
leading-twist part is suppressed by. See

To discuss the different partial waves in which the pion _ )
pair can be produced, we expand each of the amplitudednd that in Eq(81) one can easily tradex, for dy.

A, Ags A_. as Since the helicity amplitudes,; are independent ob
they can be partially disentangled from thaelependence of
" the cross section, which is completely explicit in E80). In

. 2 NNy . o particular, the relative size and th®? behavior of the
Aij _|=§J:-,i Aiji (Q°WHP{(cosf), T=+,0-, j=+, ¢-independent term and of the terms with goand cos 2
even (79 allow detailed tests of the scaling predictions. This provides
indicators on how close one is to the asymptotic regime at
finite values ofQ?. The ¢-independent term in the large
where P|" denotes the associated Legendre polynomial corparentheses of E¢80) receives contributions from leading-
responding to the value o, of the 7 system in its c.m. twist amplitudes and should thus display scaling behavior.
The coefficient of cos is the interference of leading-twist
and nonleading twist amplitudes and should be suppressed
by at least one power of @. Finally, the cos & term should
The differentialey cross section for neutral pion pair pro- scale or be power suppressed depending on the size of the
duction reads helicity-two gluon GDA.

B. The y* y subprocess andm=’#° production
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Apart from standard fitting techniques a way to separatavhere d() =d(cosé)de. Notice that since it is not normal-
terms with different angular dependence is the use ofzed, S.,(w) is not just the average value of the function
weighted cross sections. Weighting each event with a funow( e, 6), and includes information about the size of the cross
tion w(¢,6) we define section itself. Interpretin@,.(w) as a statistical variable one

) doe, can calculate its standard deviation and finds for its relative
Sey(W):J dQ d\’\’zdﬂmw(@’a)’ (83 statistical error(see, e.g., Ref34])

do \/ do
2 \\2 ey .2 24 \\2 &
1 \/fdQ dw-dQ dQZdWZdQW((’D'a) [dQ“dW-dQ dQ%dAWAdN

s(w)=—= , (84)
TN FAdQ2AWPAO 2787 o o)
dQ?dW2dQ) '
|
where if only for reasons of phase space. It is easy to see from Egs.

(79) and (80) that for a superposition of partial wavés
) doe, =0,2,...L the moment of comg in Eg. (86) is a linear
N=L| dQ*dWdQ dQ2dW2dQ) (85 combination of polynomiald®;(cos#) with highest degree

2L. Weighting the cross section with cagf)P5, . ,(cos6)
is the expected number of events for a given integrated luand integrating ovey and ¢ then gives a zero result. Using
minosity £. Equation(84) generalizes the well-known result these weights thus provides one way to estimate from experi-
that the relative statistical error of the cross section, i.e., ofental data how many partial waves are relevant. Let us
Se,(1), is 1A/N. We emphasize that the method of weighted,reca" the physical relevance of this information: in the scal-

cross sections is very flexible, and that the choice of Weightgqg regt|m_e :he frl:ghefst Ft)ﬁrt'fl wave rg!etv%m?m pr0v||.(t:leds .

w(¢,8) can for instance be adapted to experimental Condiﬁfg&nﬁsﬂgyrﬂgtoﬁ\g fgrrm easvvv(\)/_eplgigculzs”e duihog;r:n%:g €S

O 25 i g Sceeplance of il One 21 Let us assume that ol parial waves Wi L cffec
ghting P tively contribute in the cross secti@B0). The 6§ dependence

ables than onlyy and ¢. In the following we will also use of the moments in Eq(86) is then determined biz+1 co-
weighted differential cross sections, where only some of th ¢t iants form=0. L coefficients form=1 and L coeffi-

kinematical variables have been integrated out while other§jants form=2 corresponding to the number of polynomials

are held fixed. In a data analysis, one may thus use thgm(cose) with 1=<L. On the other hand. there aré 2+ 1

weighting technique for some variables and fitting for Otherscglmplex amplitudeg;;; with |<L in the expansiori79), so

The weighting technique is convenient to project out dif-iha¢ there are B+ 2 real quantities one would like to deter-
ferent terms in the cross section. As an immediate examplg,ine. A global phase is however unobservable in the cross
we note that the terms constant ¢n with cose, and with  gection(80), and one may for instance refer all phases to the
cos 2p in the ey cross section are obtained from phase ofA, . ,. The 3 +1 coefficients one can extract from
the dependence of the cross sectiongoand 6 thus allow
one to reconstruct theA;; | and their relative phases. Since
the relation between the angular coefficients and the ampli-
tudes is quadratic, there will however be multiple solutions
with m=0, 1, and 2, respectively. If the moments with  in general. More information can be obtained with polarized

—1 and 2 are measured to be small compared with the md2€ams, which we briefly discuss in Appendix B.
mentm=0, this can be because any two of the amplitudes Th€ situation is simplest if thé-dependence of the cross
A, . As:,A_, are much smaller than the third, or it may section is compatible with the” 7" system being produced
be due to their relative phases. From the theoretical consioiny n .anﬂS ?ng ab V\_/avet,hzlgd i mdagdmon thep d?p_ebrll-
erations in Sec. VII A the most natural hypothesis in this caséjence 'Sd t‘;‘\ ssuming th0+ é’m -+ are negligiole
is, however, thatA,, and A_, are small compared with compare ++» ONE can then decompose

dS;,(cosme)
dQ*dW?d(cos6)

(86)

A++ . do-ey*?eﬂo’ﬂo 2
While the ¢ dependence of the cross secti@?) gives  §oZqwPd(coso) = Coot CooP2(cos0) + Cyf P1(cosh) ]
access to the various helicity combinations of the real and (87)

virtual photon, its dependence @hcontains information on

the angular momentum states in which the pion pair is proand project out the coefficients, using thaC
duced.A priori there can be arbitrarily high partial waves, =dSe,(Wi))/(dQ?dW?) with weights

but to analyze th&-distribution in practice one will assume 5

that at a giverW only a finite number of them is important, Woo= — 75(1-42 co$ +49coé 0),
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(a) (b)

2WCy [fb GeV‘3] 2WCyy [fb GeV‘?’]
150 . . : E, 150
100 | 100 |

0.4 0.6 0.8 1 0.4 0.6 0.8 1

FIG. 8. (a) The coefficientL),, in the differential cross sectiof87), evaluated with our model GDA68). They are plotted again¥v
instead of W? and therefore have been multiplied with a Jacobial. ZThe values of the remaining kinematical variables 8Le
=50 Ge\? andQ?=5 Ge\2. (b) The same with the alternative ansatz for the GDA described in the text.

35 C. Production of =+ a~ and interference with bremsstrahlung
Wop=— §(1—6 cog 6+5 cod 6),
For the production ofr* 7~ pairs iney collisions, the
v* y reaction we want to study competes with bremsstrah-
35 lung, where the pion pair originates from a virtual photon
W22=E(3—3o cog #+35coé 6). (88) radiated off the lepto2], see Fig. 9. This process produces
the pion pair in theC-odd channel and hence does not con-

tribute for 7%#°. Its amplitude can be fully computed for

From these coefficients one can readily extract the amplivalues ofwzwhere the timelike electromagnetic pion form
tudes|A, o|,|A, .|, and the cosine of their relative phase. factor F-(W?) is known. The modulus of . has been well

In Fig. 8(a) we show the coefficient€y, Cgy, andC,,  Measured ir"e”— 7" 7. By Watson’'s theorem its phase
obtained with our model GDA68). The interference term IS equal to theP-wave phase shif;, provided thaWWis in
between thé&S andD waves contains a factor cagt-8,) and  the range whererm scattering is elastic. This is rather well
thus is sensitive to the phase shifts. Characteristic features Batisfied folW up to 1 GeV. In our numerical studies we use
the W dependence ofC,, are the point wheres,— 5,  for F . the parametrizatioN=1 of Ref.[30], which is in
=90°, and the sudden change just beli# 1 GeV due to  good agreement with the data fié% .|> shown in Fig. 10. It
the behavior of thes wave. To explore the dependence of also gives a fair description of the phase Fof in the W
these observables on our input GDA we have made an atnge where we use it, as we see from the comparison with
hoc madification, changing the sign in the predicti@¥) the phase shifé; in Fig. 6.
from chiral dynamics and taking insteds;;(0)=B,(0) The contribution of they* y subprocess to the cross sec-
with B,,(0) fixed by the constraint64) as before. Notice tion of ey—ew" 7w~ has the same forni80) as for ey
that this flips the overall sigey; of the Swave in our model. —en°#%. We recall that with the isospin relatiog21) the
The result is shown in Fig.(B) and illustrates the sensitivity, leading-twist helicity amplitudé\ . , in Eq. (78) is the same
especially of theS-D interference, to the detailed dynamics for neutral and for charged pion pairs. The bremsstrahlung
of the v* y process. contribution reads

(b)

FIG. 9. The two subprocesses
contributing to the reactiorey
—entn™: (@ y*y scattering
'y*(P) and(b) bremsstrahlung. There is a
+ second bremsstrahlung diagram,

where the photon vertices are in-
¥ terchanged on the lepton line.
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50 ' - ' Cs;=—ReF*A_ }xesiné. (91)
40 | Remember that in our kinematical limit-1x~W?/Q? is
small. The structure of the bremsstrahlung contributi®®)
20 then becomes rather simple, sinceQft>W? the terms in
|Fr(W7)] large parentheses reduce to’d#inWith the scaling predic-
20 ¢ tions for they* v amplitudes discussed in Sec. VII A we also
obtain theQ? behavior for each of the coefficien®, in the
10 | interference tern{90).
. . . The relative dependence @7, W? and one of the three
0 0.4 0.6 0.8 1 contributions to the cross section is controlled by the prefac-
’ ) ' tors
W [GeV]
2
FIG. 10. The square of the electromagnetic pion form factor in 1 2B V2B (92)
the timelike region. The data points are from RES5] and the Q%(1—€)’ W€’ ‘/WZQ?e(l—e)

curve is the parametrizatioh=1 of Ref.[30].

for v* v, bremsstrahlung and their interference, respectively,
doe, enn | o B 22 - and by the pion form factdf .(W?), which appears linearly
dQ%dWAd(cos6)de| _ESTVW“:”(W )l in the interference and squared in the pure bremsstrahlung
& term. The factor®Q? andW? in Eq. (92) can be traced back
to the propagator of the virtual photon in each subprocess,
and the extra factor oB in the bremsstrahlung amplitude
reflects the fact that the pion pair is produced in Ehevave
+c0Ssp2X(1—X)(2x—1)Je(1l+€)2 sinh cosH there.
From the factor$92) it follows that they* y contribution
—c0s 2pX(1—X)2€ Sir? 6). (89 decreases faster wit? than bremsstrahlung. On the other
hand they* y process is enhanced at largevhereas brems-
Finally, the interference term of the two subprocesses can b#rahlung profits from smak. To study the amplitudes;

B

X ([1—2x(1—x)]sir? +4x(1—X)ecos 0

written ag either in they* y contribution or in the interference term,
one will therefore go to larger values ef corresponding to
doey onn o B Vag small or intermediate values: qf_(notice thate=0.8. corre-
40%d 2; dal = —28— — —_——— sponds toy=0.5). The behavior irQ? andy of the different
Q*dWd(cost)dg), 167 s, YW?Q%(1~¢) contributions to theee cross section can be seen in Figs. 11
and 12, respectively, which have again been obtained with
X (Cqg+Cqcose+C,cos2p+Cyc083p) our model GDA(68). Notice that apart from the facto(92)

(90)  just discussed, there is a global dependencey @md Q2
through the factor lséy in the ey cross section and through
with e =1 for positrons and-1 for electrons, and coeffi- the variablex, in the real photon flux, see Eq®) and(82).

cients A very strong effect on the relative weight of the different
contributions comes from the pion form facter.(W?). As
Co=Re[F*A_ ,}V2x(1—x)Je(1+ €)cosh one can anticipate from Fig. 10 it leads to a considerable
enhancement of the bremsstrahlung term in a biWeadter-
+Re[F A }(1—x)Ve(1+€)sing, val around thep mass, thereby also enhancing the interfer-
ence. TheW?-dependence of the different terms, obtained
Ci=ReF*A,  J[1-(1-X)(1+¢€)]sing with of our ansat268) for the GDA, are shown in Fig. 13.
As we discussed in Sec. IV this ansatz most likely oversim-
—Re[F}Ag; }V2x(1—x)2€ cosh plifies theW? dependence of the coefficierBs, andB;, in

@, , but the corresponding error in estimating & be-
havior of A, . should not change the qualitative picture of
Fig. 13.
Co=—Re[F,Ag; }xVe(1+€)sing In the limit of largeQ? the different contributions to the
B . — cross section have distinctive dependencespoifhe y* y
Re[F7A_ . }V2x(1-x)Ve(1+ €)coso, contribution is predicted to be constant ¢gnwith a cos 2
modulation due to the produ&* ,A_, . The bremsstrah-
lung term should be flat, and the interference between them
2A ¢ program containing the expressio(@), (89), (90), (91), as  Should be domingted by cgsand cos 3, going with A,
well as the amplitude . . calculated with our model GDA6S), andA_ . , respectively. We show examples of thebehav-
can be obtained from the authors. ior in Fig. 14, remembering that in our mod&l . is zero

+Re[FXA_,}(1—x)sind,
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(b)

daee—»ee wto— —4 dUee—>ee7r+7r— _4
7 ifb GeV — ==L [{b GeV
TR dpdy GV T2 AW dp dy | )

100 G 100

10 F=
1t
0.1 0.1
4 5 6 7 8 9 10 4 5 6 7 8 ] 10

0% [GeV?] 0% [GeV)]

FIG. 11. (a) The contributions to the differentialecross section from* y, bremsstrahlung and their interference. Kinematical variables
are W=400MeV, ¢=0, y=0.1, E;=3.1GeV, E,=9 GeV. For the real photon flux in Eq81) we take a5>=300 mrad and|T®
=100 MeV as explained in Sec. VIII A. The sign of the interference term correspondseiojasubprocessb) The same aga), but with
y=0.2.

because we have neglected the contribution of the helicityA,, from different photon polarizations. On the other hand it
two gluon GDA. We notice that the cog2erm in brems- gives access to the phases of these amplitudes relative to the
strahlung, which is kinematically suppressed by-X  phase of the pion form factd¥ ., which is equal to thers
~W?/Q?, is clearly visible at the larger energyV  phase shifts; in the range oW we are considering. In ki-
=800 MeV. The # dependence, shown in Fig. 15, is also nematical regions where the bremsstrahlung amplitude is
quite different for the three components of the cross sectionarge, especially folVV around thep mass peak, the interfer-
For they* v term and the interference it depends in detail onence can also be used to “amplify” thg* y signal.
the coefficients of the different partial waves contributing to  For this to be useful it is essential that one can cleanly
the amplitudes;; . separate the interference tef@®@0) from the purey* y and
bremsstrahlung contributions in the cross section. This is
possible since the* y collision produces the pion pair in the
C-even channel, whereas in bremsstrahlangoccurs in the
C-odd projection. The interference term can therefore be
The interference between thg*y and bremsstrahlung separated by reversing the charge of the lepton inethe
subprocesses provides an opportunity to studyythg con-  collision, a possibility that is automatically providedeste ™

tribution atamplitudelevel. On one hand this means that onecolliders. Alternatively, any observable that is odd under ex-
can completely separate the contributighs, , A_., and

D. Studying the y* v subprocess through the interference
term

AC et ry—ret rtm—
oW 2 T T [ (ReV 3
dUee—»eew+w— b CQ V__4 dQ2 dW? dg& [ ]
> [fb GeV™]
1000 s 3 | (EE,’
- B b2 016 T I
[ e |
100 150
100
50 x
0k il ‘ .
01 L TR 0.4 0.6 0.8 1
0.05 0.1 0.5 1 W [GeV]
y
FIG. 13. TheW dependence of the different contributions to the
FIG. 12. The same as Fig. 11, but as a functionyait Q? differential e*y cross section aiQ?=5 Ge\?, ¢=0 and Sey
=5 Ge\. =50 Ge\2. The corresponding values pfrange from 0.1 to 0.12.
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, (a) ] (b)
Oety—et pta— —4 Oety—et nta— —4
TRV dp [fb GeV™4] J02 IV dy [fb GeV™]
40 120 FIG. 14. (a) The ¢ dependence
of the different contributions to
20 60 . the differentiale* y cross section
at Q=5 Ge\?, W=400 MeV,
0 0 andy=0.1. (b) The same forW
o =800 MeV.
20t g 0 o
B .......................... B
a0 I ) 120 -1 ‘
0 /2 b3 3n/2 2n 0 n/2 b1 3n/2 2n
]
change of ther™ and 7~ momenta is only sensitive to the a® (Bxy)? ol -1
interference term, which in turn drops out in any observableK (Q? W?,e)= — (— 7 — ) (94)
even under this exchange. In terms of the variables we are 8 Q° JWQ%(1-¢)

using, this exchange corresponds to the substitutiye)
—(7m— 6,7+ ¢). This means that we have direct access to
the interference through the angular distribution of the pion
pair in its rest frame. We emphasize that on the experimental
level this does not require a perfect angular measurement,
but only that the detection and reconstruction does not intro-
duce a bhias between positive and negative pions.

From thee dependence of the cross section one can ex- _
tract the four coefficientE,, in Eq. (90), which determine +
the three quanties RE:A. .}, ReF:A,.}, and xe€
Re[F*A_,}. In fact, they overdetermine them, and one can
for instance use onl{Z,,C,,C5, and keep the information
from C, for a cross check. We remark in passing that this is
owed to the fact that pions have zero spin, otherwise there
would be more helicity amplitudes for thg y reaction than

and weights

W, =Ssir? 6 cose

\/m

(sm2 0+ 4e cos 0)cos 3p,

2 cosé sin 6 cos 2p

Wo= —Sin f cosf cos 2p

+ \/2(1)(_X)\/1teco§ 6 cos 3p,

independent observables one can extract from the
¢-dependence. Using themomentq86) with m=1,2,3 and
inverting the relation betwee,,C,,C5; and the helicity W_=—cos 3. (95)
amplitudes we obtain
K dS.(w.) By taking weights that are odd under the exchange ofthe

1—(1—x)(1+ ) dQ%dWd(cosg) 1/ ™= 0 and 7~ momenta and summing over configurations with

=2 RgF*A ,}sin® g,

a1t o dQPdWed(cosh) 10T O

=2 RgF* Ay, }sir? 6 cosd,

K dS,(wo)

xe d0?aW2d(cos) (0T 0}

=2RgF*A_,}sing

with a global factor

(93

and 7 — 6 we have canceled the contributions from the pure
v* v and bremsstrahlung terms in the cross section. We re-
mark that our method can easily be adapted to the case where
one does not have full acceptanceginsince the moments of
COS¢e, COS 2p, and cos @ are always linear combinations of
RelF XA}

The functionsw; have been chosen such that they are
finite, because the use of unbounded weighting functions is
problematic. As a consequence, the term§M34;} on the
RHS of Eq.(93) are still multiplied with functions of. One
can avoid the rather strong suppression of anglesar 0 or
m in Re[FXA, 1sin® 0 if the measurement of the moments
(93) indicates thatA_, and Ay, are small compared with
A, .. In this case one may replace the weight with
cos¢, whose moment is dominated By, ., sin 8 with correc-
tions of ordery1—xAq, and (1-x)A_, . Alternatively, the
moment of
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(a) (b)

d05+7_,e+7,+ﬂ-— _ dUe+ ettt 4
fb GeV—* 1 fb GeV
dQ2?dW?2d cos(8) dp [fo GeV™] dQ? dW?d cos(8) dy [fb GeV™]
30 : " 90

FIG. 15. (a) The 6 depen-
dence of the different contribu-
tions to the differentiale*y
cross section a?="5 Ge\?, W
=400 MeV, ¢=0, andy=0.1.
(b) The same foiW=800 MeV.

-10 -30
R 60+ .S
-30 - . . -90 J . .
0 /4 /2 3n/4 n 0] n/4 n/2 3n/4 n
) 0
A NI _4 1+2 cog ¢
W =sinf cose— — mz C0SsH cos 2p, W+0—37TCOS‘(,D( cos 6),
(96)
projects onA, _sir? # with corrections only of order (1 16
—X)A_, . In a similar way the moment of ca&os 2p ap- W=~ 3—C0Sp(1-4 cos ). (98)
proximately projects oy, sinfdcosd if A_ . is sufficiently
small. ]
The 6 dependence of the momer{@3) contains informa- In Fig. 16 we show the moments of agsv_ o andw_,

tion on the partial wave decomposition of the pion pair. One?S @ function ofW for our model GDA(68) and also for the
way to extract the partial waves is of course to fit the alternative ansatz described at the end of Sec. VIIB. We

dependence of the weighted differential cross secti@gs  clearly see the sensitivity of our observables to the detailed

Alternatively, one can use weighted cross sections integrate@hase structure of the*y amplitude.

over bothe and 6. The weight cos 8P;%(cos6)/sin 6 readily

projects out thdth partial wave inA_, as we easily see E. Comparison with lepton pair production

from Eq.(93). Note that, sincd?(cos6)=sir? 6, this weight-

ing function is a trigonometric polynomial. Similarly,

cos z,oP,l(cosH)/sina can be used to obtain thieh partial

wave inA, if the contribution fromA_ , is small enough.
For A, , the situation is more complicated, because th

In this section we compare our procesg—en ' 7~ with
the production of a muon paigy—eu™* ™, in the same
kinematics. This is interesting in itself becaysé u~ pro-
duction is the QED analogue of the reaction we are studying,
: . , . ut also because it constitutes an experimental background to
functions  w, P'(COSH)/S”P 6, W’.P(cosf)/sir6, and the extent that a muon pair can be r%isidentified as?i pair of
coseP(cosb)/sind are all unbounded. The same problem charged pions.
occurs for the functiomvoPﬂ(cosﬁ)/(sin2 #cosd). In practice The helicities of the muons can couple to 0-bL along
one may proceed as we discussed in Sec. VIIB and restrighe direction of thex™ momentum in they*y c.m. From
the analysis to a finite number of partial waves, which has toangular momentum conservation in the subprocesées
be determined from the data. Decomposing the coefficient_w+#— and y* —u*u~ (the latter occurring in brems-
C,, in Eq. (92) on polynomialsP/', ;(cos6) one can see that strahlung it is clear that the dependence 6érand ¢ must be
if only partial waves with <L are relevant in the amplitudes gifferent in the cross sections for pion and for muon pair
Ajj , then weighting the cross section with ewsP,", 5(cosf)  production. We therefore restrict ourselves here to the cross
and integrating ovep and # must give zero. For a restricted sections integrated over these angles. For the bremsstrahlung
number of partial waves one can then find weights to projectontribution we have
out the corresponding amplitudes. In the case where

andA,, are negligible and only the partial waves 0 and doeyex @ 1-2x(1-x)(1—e¢) X2 (99
| =2 are important irA, ., we have, for instance, szdW2|B_3S§y s(W%, (99
K ds. (w where
Seyz( +;)=R8{F*A++|}, 1=0,2
1-(1-x)(1+e) dQdW g

97) v BIFLWA2 L 2B,(3-B2)

BT we o BT
with (100
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(b)

2W—L—= [fb GeV 3 2W—1—% [fb GeV 3
a7 | ] agzawe [ GeV™] | |
FIG. 16. (a) Differential
500 ' ' ' 500 cross sections weighted with
cosy, W.o, and w,,. The
250 ¢ ) 1 250 ¢ curves are calculated for & y
collision at s, =50 Ge\? and
0 0 Q%=5 GeV? with the model
GDA in Eq. (68). (b) The same
250 | cos 250 | for. the alternative GDA de-
................ Wi scribed at the end of Sec. VIIB.
W2
-500 ' : : -500 - A ‘
0.4 0.6 0.8 1 0.4 0.6 0.8 1
W [GeV] W [GeV]

with the muon velocitys, = (1—4m2/W3)¥2 in the y*y
c.m. For they* y process we can easily adapt the re$u8)
for opengq-production to theu™ .~ case and find

daeyﬂx| - o3 _
dQ%dWP| .~ 452 Q¥(1—e) fa(W?), (10D
where
f7T+7T_(25R7T 2 1 2 2 1 4
+ - 1+8
“p— “
f& 8 Inl—ﬁﬂ ﬁﬂ), (102

up to corrections of ordei?/Q?. Notice that both for

expressiong102). In part it also comes from the logarithm

log(1-8,) in f’éf“ , Which is generated by the collinear
regions around?=0 and as discussed in Sec. VI. Notice
that for this reason thg™* 1~ cross section will be relatively
sensitive to cuts that affedt. The same will apply to the
interference between bremsstrahlung afid, which drops
of course out after angular integration. From the resultsﬁ)n
andfé we expect that the ratio of muon to pion pair produc-
tion will be appreciable in the interference term.

Another experimental background, again due to particle
misidentification, iss* y—e*e*e”. Compared withu ™ .~
production there are further Feynman diagrams, which can
be obtained from the muon case by interchanging the lines
with momentak’ and eitherp or p’, now corresponding to
identical particles. We shall not analyze these diagrams here,
but will at least assess the contributions from those diagrams

bremsstrahlung and foy* y, the Q% dependence is the same that are also present in muon production. Replagngvith

in the pion and the muon case.

B we obtain velocities extremely close to 1. Nothing dra-

The functionsfé andfé are compared in Fig. 17. We see matic happens in the bremsstrahlung pa€0), but the loga-
that for the bremsstrahlung contribution pion production isrithm in the y* y subproces$102) is now much larger than

enhanced by the strong resonance effect aroung tnass,

for muons. This large logarithm is however generated by

as manifested irF (W?). In the y*y subprocess, on the transverse momenta, of orderm, in the y*y c.m., which
other hand, we find that with our estimate of the GDA, pioncorrespond to extremely small angleé®f orderm,/W. For
production is suppressed compared to muons by a factor 58ny cut that effectively leads to a minimum andlg, much
to 100. This is mostly due to the numerical constants in thdarger than that, one has to replaég with coséy, in Eg.

(a)

(b)

X -1 X FIG. 17. (a) The functionsf?
2W g [GeVT] 2W f& [GeV] occurring in the bremsstrahlﬁng
100 : i — 60 contribution (99) to = 7~ and

u" e~ production. They are plot-

ted againstW instead ofW? and
40 ¢ therefore have been multiplied

50 | with a Jacobian . (b) The same

for the functionsfy in the y* y

20 ¢ fr contribution (101). Note that the
; ¢ curve for pions, obtained with our

‘ model GDA(68), has been multi-

° 04 06 0.8 1 0" 0.4 06 08 1 plied by a factor 100.
W [GeV] W [GeV]
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FIG. 18. () The pion ener-
gies p; (solid) and p/° (dotted
in the laboratory as a function of
the angled in the two-pion c.m.
The values of the remaining ki-
nematical variables arg;=3.1
GeV, E,=9 GeV, Q?=5 Ge\?,
W=400 MeV,y=0.1, ¢=0. (b)
The same for the transverse pion
momentap,, and p|, in the
laboratory.

0 /4 /2 3n/4 n 0 n/4 /2 3n/4 n

(102, which can significantly reduce the size of the loga-carry large transverse momentum which helps to detect
rithm. them. An exception are configurations with the c.m. argjle

We finally note that the differential cross sections forclose to 0 ora, which in the laboratory correspond to an
e'e —etee’e” and ete —e'e u*u~ have been asymmetric sharing of momentum between the two pions.
fully calculated to first order in QED and are available in theThis is illustrated in Fig. 18.

form of Monte Carlo generatof$6]. It is instructive to consider the point where there the
system has zero longitudinal momentu® in the labora-
VIIl. CROSS SECTION ESTIMATES tory. With the approximatioW?<Q? we find
A. Laboratory kinematics and experimental cuts 3 1-y Q2
. . . Pl=yE,———, (105
Before giving our estimates for the cross section of our y 4E;
process at various™ e~ colliders, we give a brief discussion 3
of the kinematics in the laboratory frame and the effects off0 thatP{=0 wheny equals
some experimental cuts. Starting with the kinematics of the >
scattered leptok’, we remark that there is a simple trans- :i 1 Q _ & 106
7 H ’ Yo 2E 2 4E. " ( )
formation between the variablesQt,y) and E;,ay), 1 16E7 1

whereE; anday, , respectively, are the energy and scatter-
ing angle ofk’ in the laboratory frame. Imposing minimum
values on both quantities we have

For Q<E; this simplifies toy,=Q/(2E,). If y is very dif-
ferent fromy, the 77 system is strongly boosted along the
beam axis, and if this boost is too large then one or both
Q2 E Q2 Eim‘” pions vvjll go out of the_ detector acceptance.
y=1+ 2E2 E. <1+ e E (103 We finally have to discuss the kinematics of the scattered
1o 1 1 lepton1’ in the laboratory. In terms of its scattering angle
as. We have, up to electron mass corrections

and
i 1, =(1—x%,)E;sin 10
Q? 1+cosay Q2 1+cosa" 1= (1mx)E,sinag, (107
=1 — —_— =1 _—
y=1 4E7 1-cosay ~ 4EZ 1—cosal™ for the transverse component Idf and
(104 2
Q%= —q'2=(1-x,)EZ 2 sin"2 (108
The condition(103) cuts on large values gfand is generally q 2/=2 2

not very serious, because most information on #i¢ pro-
cess is obtained from low or intermediate@s we discussed for the photon virtuality. For smalk,_ we obtain the simple
after Eq.(92). The lower cut(104), on the other hand, se- relation
verely restricts the interestingrange in some experimental
setups ifQ? is not large enough. We will encounter an ex-
ample of this in Sec. VIIIB.

The transformation of the pion momenta into the labora-
tory system leads to rather lengthy expressions, which wé turns out that an antitagging condition on the lepton
will not give here. Notice that the leptok’ has a large i.e., ay < a5 with a5 determined by the acceptance of a
transverse momentunk|, =Q+1—y in the laboratory, lepton inthe detector, is not enough to ke small. With
which must be compensated by the two pions. Even thougthe parameterg, and 52 in Tables | and Ill we find that,

the r7r system has a rather low invariant mass, the pions thusxcept in the region ok, very close to 1, the maximum

(109
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TABLE I. Cross sections foe"e”—e*e w7, integrated over the rang&/=300 to 1000 MeV,
Q?=4 to 20 GeV, andy from its lower kinematical limit(110) up to 0.5. The cut parameterg,™ and
I"=100 MeV determine the real photon flux as described in Sec. VIII A. In the column for CLEO, the sign
of the weighted cross sectioBs sgn(cosp)] and S,¢(cos¢) corresponds to a tagged .

BABAR BABAR BELLE BELLE CLEO
e~ tagged e" tagged e~ tagged e’ tagged
E, [GeV] 9 3.1 8 35 5.3
E, [GeV] 3.1 9 35 8 5.3
ay® [mrad] 684 300 154 112 227
o [fb] 452 452 452 452 453
o [fb] 15 15 14 15 15
og [fb] 437 438 437 438 438
Sce [SgN(cos)] [fb] —51 52 -51 51 51
Sce (cOsg) [fb] -40 40 -40 40 41
JN [ sgn(cosp)] 8.8 8.8 8.8 8.8 8.8
JN&(cose) 7.7 7.7 7.7 7.7 7.7

values ofQ’? andl 2 are a few Ge¥. Under such circum- S, (cosg), defined in complete analogy with the weighted
stances it is clearly inappropriate to approximaté as zero ey cross section$83). We remark thatS,J sgn( cosp)] is
and the moment&|’,q" as collinear, which we have done simply the left-right asymmetry of the pions in their c.m. We
throughout this work. Both the kinematical transformationintegrate over from its lower kinematical limit
from the ey frame to the laboratory and the calculation of 5 )
the cross section have to be modified then. One must not - Q+W
only recalculate the two-photon and bremsstrahlung pro- y= 4E.E,
cesses of Fig. 9 but also include further diagrams contribut-
ing to the reactiore"e”—e*e” mrar. Although this is pos- up to y=0.5. Choosing a larger value increases the cross
sible in principle, we wish to retain here the simpler section, but the gain is mainly due to bremsstrahlung. Up to
expressions for the cross section with one real photon. Wwhich values ofy one can extract useful information on the
therefore require thad’? be small compared with the other "y process depends of course on the detailed kinematics
kinematical invariants in our problem. and must be studied in each particular case. The same is true
A way to achieve this, suggested by E§09), is to im-  for the upper limit of theQ? integration. For its lower limit
pose an upper cut df ,, i.e., in practical terms on the sum We take 4 Ge¥as a minimum value where one might expect
|k +p,+p/ .| of the reconstructed transverse momenta@ lowest-order calculgtlon to be rehatgle', see our Fhscussmn
possibly supplemented by a lower cut or &,. In our nu- I Sec. V. To dgtermme the valug o« in the equivalent
merical studies we determine the maximum virtua@yZ, ~ Photon flux we impose the cuts discussed at the end of Sec.

in the photon flux of Eq(81) through Egs(107) and (108  VIIIA. Our results for e'e —e'e w' 7 are given in
' <" max_100 MeV.  1able I, where apart from the quantities just discussed we

by requiring both a, <af™ and 1|, <I|[ ) - : ; o

This leads to considerably smaller virtualities than the anti8lso give the coeff|C|ent§ in the relat|ve.stat|st|cal errors

tagging condition alone, although fas very close to 1 the 8(w)~consti/N of the weighted cross sectioig{(w). We

resulting Q'2,, is still not very much smaller that\?. In  S€€ that the results for the different kinematical situations are

practice one may therefore consider an additional cutgn  Practically identical. This indicates that it is the cllt,
100 MeV which determines the real photon flux in most of

but we have refrained from this in our estimates. Notice tha :
the Q'2 spectrum of the photon flux is logarithmic so that a the rélevant parameter space, and not the cutgn which

substantial part of the cross section comes fi@ff much IS different in each of the five cases. We also find that
2 Se(cosy) has a slightly smaller relative statistical error than

smaller tha S .
MQmax Sed sgn(cosp)] and thus greater sensitivity to the interfer-
_ ence term.
B. B factories To estimate the effects of experimental acceptance for the

We have now all elements to give cross section estimatedetected particles we impose a af/"<ay <ay™* on the
for existinge*e™ facilities. We start with theB factories  scattering anglew;, of the tagged leptork’, a cut g™"
BABAR, BELLE, and CLEO, running at a c.m. energi§..  <(6,,6))<6"* on the polar angleg, and 6, of the pion
around 10 GeV. Using our model GD&8) we calculate the momentgp andp’ (measured with respect to the direction of
integrated cross sectios and the individual contributions the initial beam leptok) and a minimum transverse momen-
o and og from the y* y and bremsstrahlung subprocessestum of 100 MeV for the tagged lepton and for each of the
To project out their interference term we take simple ex-pions. All quantities refer of course to the laboratory frame.

amples of weighteé* e~ cross sectionS.J sgn(cosp)]and  The results are shown in Table II.

(110
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TABLE Il. As Table | but with cuts imposed on the detection angles as specified, and in addition a
minimum transverse momentum for the tagged lepton and for both pions of 100 MeV in the labdgatory.
E,, and a5 for each column are the same as in Table I.

BABAR BABAR BELLE BELLE CLEO
e~ tagged e’ tagged e~ tagged e’ tagged
o™ [mrad 300 684 112 154 227
(m— "™ [mrad| 684 300 154 112 227
gm" [mrad| 300 684 297 524 314
(m— 0™ [mrad| 684 300 524 297 314
o [fb] 329 433 443 443 446
og [fo] 6 12 13 13 14
og [fb] 323 422 420 430 433
See [SON(cosp)] [fb] -31 48 -50 51 52
S.«(cosg) [fb] —24 38 -39 40 41
VN &[sgn(cose)] 10.5 8.9 8.7 8.7 8.6
JN 8(cose) 9.0 7.8 7.6 7.6 7.5

Comparing with Table | we see that the effects of thesee, =E,=45 GeV and LEP2 aE;=E,=95 GeV. In the
cuts are generally quite moderate. The strongest effect igolumns labeled “no cuts” in Table |1l we list our predicted
observed for BABAR kinematics in the case whereéhels  cross sections, with cuts only of, anda,, so that the real
tagged. This can be traced back to the constraifif’  photon flux is defined. For the kinematics we have chosen,
<ay . The minimum value ofy implied by Eq.(104) for  the cross sections come out about a factor 2 to 3 larger than
Q?=4 Ge\fis 0.46 in this case, which effectively cuts away at theB factories. Luminosities at LEP are, however, much
all phase space where théy process is relevant. The situ- smaller, so that unfortunately we estimate rather low achiev-
ation improves rapidly a®? goes up, and foQ?=6 GeV?  able event rates, and it is not clear to what extent studies of
our cut impliesy=0.19. For the other experimental configu- our process in this kinematical regime will be feasible.
rations the same cut is much less restrictive: for BABAR To see the effect of cuts on the detected particles we
kinematics with a tagge@” our cut onay impliesy  require afi"<ay <7—al"™ with o]i"=30 mrad andE;
=0.18 atQ’=4 Ge\?, whereas in the cases of BELLE and =0.7E, for the tagged lepton, as well ﬁ‘ing(gL,gﬁ)gW
CLEO there is not 2restrlct|0n oy from the inequality(104) — """ with #""=262 mrad(corresponding to pseudorapidi-
at all, not even aQ?=4 GeV’. _ _ ties | 7|=<2) and a minimum transverse momentum of 100

We find that in the kinematics @ factories the interfer-  \jev for each of the pions. The results are given in the
ence term is clearly larger than the contribution frofy — ¢olumns “with cuts” of Table IIl. The most serious restric-
alone. With several 10 fb' integrated luminosity our esti-
mated cross sections give event rates of order 10 000. As we TABLE IlI. Cross sections foe"e”—ete 7" 7, integrated
see from the tables, the relative statistical error on the interever the rang&V=300 to 1000 MeVQ?=4 Ge\? to Q?,,, andy
ference term, extracted through the momentsfrom its lower kinematical limit(110 up to 0.5. The columns
Sed sgn(cosp)] or S;(cose) is about 8 to 10 times larger marked “no cuts” correspond to imposing only the cuts that deter-
than for integrated cross sectiofwhere it is 1A/N), so that mine the real photon flux as explained in Sec. VIII A, with param-

the interference could be measured with statistical errors igters a3 =30mrad andl[**=100MeV. The columns “with
the 10% range. cuts” refer to the additional cuts described in the text. The sign of

For the production of neutral pion pairs we easily obtainthe weighted cross sectiogd sgn(cosp)] and Se¢(cosy) is for a

the cross section without cuts by multiplyirg; in Table | taggede”.
with a factor3, due to the restricted phase space of identicaf

particles. We refrain from a discussion of the experimental LEP 1_ LEP 2 _

reconstruction of the four-photon state coming from two no cuts  with cuts  no cuts  with cuts
pion decays, but for an order-of-magnitude indication ofE12: E; [GeV] 45 45 95 95
event rates one may take half of the cross sectiogsin ~ Qmax [GeV] 20 20 40 40
Table_lll. We then es_:timate hundreds of_eyents with severa|. [fb] 1023 167 1333 50
10%6. Thus stucies of both charged and newtra patr producz® [ o s
. ) .. og [fb] 937 114 1209 33
tion seem promising to us. s, Jsgn(coss)] [fb] 128 a1 159 13
Sed(cose) [fb] 101 32 125 10

C.LEP VN [ sgn(cosp)] 8.0 4.0 8.4 3.7

Let us now investigate the situation at high-energy collid-\/N §(cos¢) 7.0 35 7.4 3.3

ers, taking as examples the CERNe™ collider LEP1 at
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tion here is the cut on the pion anglésand 6, . This can be sions for the quantum numbers of relevance here. A simul-
understood from our considerations after E406). The taneous expansion @b (z,£,W?) in the parton momentum
value ofy where therr system has zero longitudinal mo- fractionz and partial waves of the pion system leads to local
mentum in the laboratory i®/(2E,) and thus of order 0.01 matrix elements between the vacuum and a two-pion state.
to 0.05 here. Over most of therange the pions are therefore By analytic continuation they are related to the moments of
so strongly boosted in the lab that they appear under exthe parton distribution functions of the pion. We have used
tremely small angles and cannot be detected. We observe [i€ guark momentum fractioR, in the pion, determined
fact in Table IIl that the effect of cuts is stronger at LEP2 TOM a global fit of these distributions, as an input for our
with its higher beam energy, and that it is more pronouncedldel of®(z,{,W"). The corresponding value & is well

for bremsstrahlung than for the* y process, the latter being PEIOW its asymptotic value under perturbative evolution,
less affected by a loss of events at larger which may be an indication that the lowest non-asymptotic

At LEP1 the cut ona;, puts no restriction ory, but for terms in the _cro;sed—chanr)el quantity(z,¢,W?) are not .
LEP2 we find that foQ?=4 Ge\? it implies y>0.5, so that small at factor'lzatlon scales in the G_eV range. We em_phaS|ze
one must go to larged?. ForQ? of about 8 GeV there is no that the question o_f how cl_ose one is to the asymptotic result
restriction ony from the constraint104) any more. (_)f evolution is partlcularly_mterestlng, be_ca_use_ln the case of

We finally note that at the very large values@? acces- light pseudoscalars the single-meson distribution amplitudes

sible at high-energy colliders one can afford invariant masse, ay bel sugp:rgi;ingly close to their asymptotic form even at
W well above 1 GeV, while still fulfilling the basic condition ow scaleg9,32].

W2<Q? of our study. We have not explored this mass re- . From a theozry DO‘T“ of view it is a_Iso interest_ing to con-
gion, since our model for the pion GDA is not applicable SI4€r®q(z.£, W), defined by the matrix element in EG.3),

there. It is however clear that there will be a strong enhancef—or values ofW much larger than the scale of nonperturbative

ment of the GDAs aWV around the masses @f-even reso- Interactions. While the _dynamics mq(z,g,wz) i_s entirely
nances, such as tHg(1270). soft for smallw, part of it becomes hard whaf increases.

In the limit W>1 GeV and to leading order irg one can
explicitly write q>q(z,g,w2) in terms of a perturbative sub-
process and thgq distribution amplitudes for each separate
In this paper we have analyzed in detail the procesgion [37]. The resulting®,(z,¢,W?) is very far from the
¥* y— arr in the domain where the virtualit® of the y* is ~ asymptotic form inz. It receives substantial contributions
much larger than the invariant magéof the two-pion sys- from high partial waves of therm system, has a power-law
tem. It factorizes into a parton-level subprocess, which idalloff similar to 1M?, and its imaginary part is small com-
under perturbative control, and nonperturbative matrix elepared to its real part.
ments called generalized distribution amplitudes. This makes We have constructed a model for the GDAVEtbelow 1
the reaction a laboratory to study the nonperturbative dynamSeV, using simple structure as a guide, @&gdand therw
ics of a two-pion system forming from a well-defined par- phase shifts as phenomenological inputs. Comparing the
tonic state, namely, from a quark-antiquark or a two-gluonrates for the production ofrr and of a single pseudoscalar
pair produced at small distance. The perturbative stage of th@eson, we found that the hadron spectrurmyiny collisions
overall process is completely analogous to the one in singlébelow 1 GeV is strongly dominated by the single resonances
meson production, well studied in the case oy 7, and w°, n, and7’.
»'. It results in a scaling behavior of the amplitude @% We have further compared our process with operpro-
increases at fixedlV?, selects characteristic helicity combi- duction, which at higher invariant mass@gis commonly
nations of the two photons, and predicts that the two pionsised to describe the part of the total hadromity cross
are produced with total isospin zero. The dynamical contensection due to the pointlike part of the real photon. Interest-
of the nonperturbative matrix elements, on the other hand, iggly, we find that in our particular kinematical limit, the
more complex than for a single particle. Even the lowestcorresponding scattering amplitude has the same scaling be-
Fock state of r)®| ), that is,gq®qq, contains more par- havior and helicity structure as the one for the exclusive
tons that the initialgqq or gg system from which the two processesy™ y— m and y* y— . The main difference is
pions are formed. In this sense a GDA describes the transthat in the 7 and 77 cases the collinear divergence of the
tion between different parton configurations in the non-lowest-order hard scattering diagrams is regulated by the
perturbative regime. The two-pion distribution amplitude hadronization process. This is encapsulated in the distribu-
contains the full strong interactions between the two pionstion amplitudes, which vanish at the end poiatsO and 1.
leading to dynamical phases which, by Watson’s theoremin the opergq calculation, on the other hand, the divergence
are identical to the phase shifts in elastier scattering as has to be regulated explicitly. We also note that the sensitiv-
long asW is below the inelastic threshold. We use this rela-ity to the soft end-point region may be larger for pion-pair
tion as an input for our model GDA, and therefore restrictproduction than for a single pion, because for two pions the
our study to thew region up to 1 GeV. hard scattering and the distribution amplitudes vanish at
The evolution equation giving the factorization scale de-=3 for symmetry reasons. Thus one may expect the onset of
pendence of the GDAs is more complex than for a singlehe scaling behavior to occur at differe@t in the two cases,
pion due to the mixing ofjq or gg amplitudes, and we have an issue that will be interesting to study in experiment.
given the relevant splitting functions and anomalous dimen- An investigation of the structure of the cross section

IX. SUMMARY AND OUTLOOK
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shows that iney and e*e™ collisions information on the we have studied here, due both to the lesser luminosity and
v* v process can be obtained either through the square of tHbe strong longitudinal boost of the pion system. In conclu-
¥* vy amplitude, or from its interference with the bremsstrah-sion, we find that the procesg® y— m can offer valuable
lung process if the pions are charged. This interference caisight into the interactions between quarks, gluons and had-
readily be projected out by appropria@odd observables, ron.s_,'and that it should well be measurable at existihg™
and it offers the opportunity to separate the differetity  facilities.
helicity amplitudes. If further provides direct access to their
dynamical phases, although a full phase reconstruction re- ACKNOWLEDGMENTS
quires polarized beanisee Appendix R

The angular distribution of the pion pair in its c.m. con-
tains detailed information about the dynamics of gity
process. The dependence on the azimpeparates the dif-

ferent helici_ty combinatio_ns_ of the r_eal and virFuaI _ph_Oton’Rembold, S. Uehara, and M. Wang for their interest and
each of which plays a distinct role in the scaling limit. In \ g aple information about experimental aspects. M.D.
particular it permits one to study leading-twist and nonleadynanks CPhT and LPNHE ofdle Polytechnique for kind
ing twist amplitudes at the same time, which should providgpyitations. SUBATECH is Unitenixte 6457 de I'Universite
additional insight into how far one is from the asymptotic ge Nantes, de I'Ecole des Mines de Nantes et de
regime. Thed dependence, on the other hand, gives access gN2P3/CNRS. CPhT is Unitenixte C7644 du CNRS. This
the partial waves in which the two pions are produced. It isyork was supported by Department of Energy contract DE-
sensitive to the phases, which reflect the dynamics ofithe  AC03-76SF00515 and by TMR contracts FMRX-CT96-0008
system and its resonances. Even though one will probablgnd FMRX-CT98-0194. M.D. was supported by the Feodor
not be able to perform a full extraction of ther phase shifts Lynen Program of the Alexander von Humboldt Foundation.
in this way, our process provides constraints on these quan-
tities that are independent of the analyses of elasticscat- APPENDIX A: PION ISOSPIN STATES
tering. The presence of higher partial waves would in itself
be very interesting, since it gives indirect information on the We specify in this appendix our sign convention for the
deviation of®(z,¢,W?) from its asymptotic form irz. definition of pion states. The relative sign fei” and 7~ is

We have restricted ourselves to the production of piorrelevant because it determines the relative sign of the GDAs
pairs in this work, but it is clear that many of our results arefor charged and neutral pion pairs. .
also valid for other exclusive systems. The most obvious In terms of eigenstatgsr') of the isospin operatoris (i

generalization is to charged or neutk pairs, whose com- = 1,2,3) we define
parison with7zr7r would allow one to study aspects of flavor
SU(3) breaking in the context of the quark-hadron transition. N 1 N o B 1 N
At even higher values oiV? there is the production gfp, | )ZE(W y+i[7)), | >:%(|7T )—il7%),
where extra spin degrees of freedom come in, as in the well-
studied case of the parton distributions of the nucleon. 0 3
Another very similar process is the productionof u~ |7°)=|77). (A1)
pairs, i.e., the QED analogue of our reaction. Comparing the ) _ )
rates ofey—eu ™ 1~ with our estimate foey—en* 7~ we Not|<_:e that the sign fof7 ™) is op_posne to the usual con-
find that the bremsstrahlung mechanism prefers piodgig ~ vention for eigenstates of p). This has to be remembered
in the vicinity of thep mass, reflecting the strong resonanceWhen writing down two-pion states with definite isospin us-
effect in themm system. For the production from* y, on  ing the Clebsch-Gordan coefficients. _
the other hand, the cross section is considerably larger in the The convention(Al) is in line with the customs of field
case of muon pairs. We remark that this could not be anticitheory, see for instance Sec. 12.5 of Reg]. If, starting
pated from a dimensional analysis. The amplitudesyfoy  rom the real scalar fields associated witit) and| %), one
— up and for y* y— 7 have the sam®? dependence in  constructs the complex spalar fiefdwhich creatgsi;w‘) ou_t
our kinematical limit, and the two-pion distribution ampli- Of the vacuum, thefr ™) is created by the conjugated field
tude, which describes that pions are not pointlike but have?™ - If one used the opposite sign in definifwg”), which is
internal structure, is a dimensionless quantity. more natural in the context of isospin, then there would be an
Using our model GDA to calculate the cross section for€xtra minus sign between the fields creating ) and|7").
e+e_4)e+e_ T, We find encouraging rates for the kine- Through the LSZ reduction formula thIS Sign WOU|d ShOW up
matics and luminosity oB factories. Thus there should be in crossing relations. With our definitiofA1) this does not
enough statistics for detailed studies at these facilities. Oupappen, and we have for instance that the spacelike pion
estimates of the effect of cuts also indicate that in the kineform factor
matical region interesting in our context, the pions and the
tagged lepton are well within the experimental acceptance. (T (PG 0w (p"))=(p+p")*FL(1). (A2)
For high-energy colliders such as LEP, our predictions are
less optimistic, at least in the rangeWfbelow 1 GeV which  with t=(p—p’)? becomes

It is a pleasure to thank P. Aurenche, S. J. Brodsky, T.
Feldmann, M. Fontannaz, P. Hoyer, L. Mankiewicz, O.
Nachtmann, M. Polyakov, and O. V. Teryaev for discus-
sions, and H. Marsiske, C. Munger, V. Savinov, Sld8er-

073014-26



EXCLUSIVE PRODUCTION OF PION PAIRS INy* y ... PHYSICAL REVIEW D 62 073014

(m*(p)m (p")|I4(0)|0)=(p—p")*F.(s) (A3) WwhereP, andP,, respectively, denote the longitudinal po-
larization of the lepton and photon beam, ranging frefhto
with s=(p+p’)? in the timelike region. We remark in pass- 1. Together with_ Eq(80) we see that if both lepton and
ing that if one uses the isospin relati®?) and neglects the photon are polarized, one has enough independent terms to

contributions from strange and heavy quarks, one has theeconstruct the real and imaginary parts of the interferences

squared termsA, . |?> and |A_,|? come with a different
B ~ 5 relative sign in the unpolarized cross section and the double
f dz®, (z,{,W)=(2{— 1)F 7(W7). (A4 polarization asymmetry.
The bremsstrahlung contribution to the cross section reads
The choicg/Al) also leads to a convenient relation for the

action of the charge conjugation opera€@rnamely, doe, e ‘
y—emwmT

Clm*)y=|7"), C|=%=|=%. (A5)  dQ*dWd(cost)del,

The impossibility to find a sign convention that is natural for 3 5

both charge conjugation and the isospin algebra is discussed _ Eq. (89)+ @ _'f_ 2_32_“: (W2)|2
at length in Chap. 5, Sec. 7 of R¢89] (where the other sign 16w sg, Woe' 7

in defining|7*) was chosen We also remark that the defi-

nition (Al) implies X PP (2x 1)@ Sir 0
(7 [UL()da(0)|0)=(7|da(X)ug(0)|0),  (AB)

+c0Sp2X(1—X)Ve(1l—€)2 sing cosb]. B2
and therefore a relative plus sign between the distribution o2x( el ) | B2

amplitudes forr™ and 7.

Our definition is the same as the one chosen by Polyako
et al.[18] and it was also adopted in R¢B7]. We finally
mention that the definition leading to E@.5) of Ref.[4] has
the opposite sign fofr ™).

Notice that it only contributes to the unpolarized cross sec-
tion and the double polarization asymmetry, but not to single
polarization asymmetries. Finally, the interference term can
be written as

APPENDIX B: BEAM POLARIZATION
do—ey~>ew*rr ‘

As we have shown in Secs. VII B and VII D, the unpolar- dQZdWZd(cosa)dcp\l
ized ey cross section contains detailed information on the
¥* v helicity amplitudesA;; . From Egs.(80) and (9)) it is

however clear that this information is not sufficient to fully Eq. (90)—2 o B V2B
i i =Eq. 20— ——————
reconstruct the three independent complex amplitédes, q 167 Sﬁy éwzQze(l_ )

Ag.: , andA, . For completeness we give in this appendix

the expressions of the cross section with longitudinally po-

larized lepton and photon beams, and discuss what additional X[P,(C! sing+C} sin 2¢)

information can be obtained from single and double polar-

ization asymmetries. ) ) )
Starting with they* y contribution, we have +P(C{sing+CJsin2p+CJsin3¢)

3
orerees | g (001 e b TPIP,(Cy+Cycosg+Cylcos )] (BIY)
dQ*dWd(cosf)de| 167 s, Q*(1—e)

with coefficients
X[(P,sing IM{A* . Ag, —A* Ay, }2\e(1—¢)
Cl=—Im{F*A, ,}x\1—€’sin6

+P,sing IM{A%  Ag, +A* Ay, 12 /e(1+e€)
+Im{F*A_,}(1—x)V1—€sing,

+P,sin2¢ IM{A% | A__}2¢
ChL=Im{F*Ay, }x\Je(1—¢) sind

+ P|P7{|A++|2_ A PV1-€
—Im{F*A__ }V2x(1—x)Ve(1—€) cosd (B4)

— PP, coseRE[AY A +A* [ Ag,}2Ve(1—€)],
(B1)  for lepton polarization,
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Cl=—Im{F:A,  }[1-(1-x)(1—¢€)]sin6
+IM{F*Ag, }V2x(1—x)2€ cosh
—Im{F*A_,}(1—-x)sin@

Cl= Im{F’;Aw}XMSin 0
+Im{F*A_,}V2x(1—x) Ve(1+ €) cosh,

Cl=Im{FLA_,}xesin® (B5)

for photon polarization, and

Cy=ReF*A, . }/2x(1—x)e(1—¢€) cosd
—Re[FXAq, }H(1-x)\e(1—e) sino,

C’=RegF*A,  }Jx\1—€’sing
—Re[F*A_,}(1—x)1—€?sins,

PHYSICAL REVIEW b2 073014

Cy=—ReF*Ay, }x\/e(1—¢) sind

+Re[F*A_ }V2x(1—x)Ve(l—€)cosd  (B6)

if both lepton and photon are polarized. We see that with
polarized photons one can extract{fiA, .}, Im{F:A,,},

and In{F:A_,}, which together with the unpolarized
interference term makes it possible to reconstruct all three
complex y*y amplitudes for values ofW where the
pion form factor F,. is known. One cannot achieve the
same with a polarized lepton beam alone, since there are
only two terms in thep dependence. In this case one can still
use the suppression by—Ix of the second term irC'l in
order to approximately extract KR:A, ,}. Finally, the
double polarization asymmetry gives access to the
same quantities one can already obtain in the unpolarized
case.
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