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Exclusive production of pion pairs in g* g collisions at largeQ2
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We perform a QCD analysis of the exclusive production of two mesons ing*g collisions in the kinematical
domain of large photon virtualityQ and small hadronic invariant massW. This reaction is dominated by a scale
invariant mechanism which factorizes into a perturbative subprocessg* g→qq̄ or g* g→gg and a generalized
two-meson distribution amplitude. We develop in detail the phenomenology of this process ate1e2 colliders.
Using a simple model for the two-pion distribution amplitude, based on its general properties, we estimate the
cross section for the kinematics accessible at BABAR, BELLE, CLEO, and CERN LEP.

PACS number~s!: 13.40.2f, 12.38.Bx
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I. INTRODUCTION

Exclusive hadron production in two-photon collision
provides a tool to study a variety of fundamental aspects
QCD and has long been a subject of great interest~see, e.g.,
Refs.@1–3#, and references therein!. Recently a new facet o
this has been pointed out, namely the physics of the pro
g* g→pp in the region whereQ2 is large butW2 small @4#.
This process factorizes@5,6# into a perturbatively calculable
short-distance dominated scatteringg* g→qq̄ or g* g
→gg, and nonperturbative matrix elements measuring
transitionsqq̄→pp and gg→pp. We have called these
matrix elements generalized distribution amplitudes~GDAs!
to emphasize their close connection to the distribution a
plitudes introduced many years ago in the QCD descrip
of exclusive hard processes@7#.

Indeed it is instructive to considerg* g→pp as a gener-
alization of the processg* g→p0, where the distribution
amplitude of a single pion appears. Theg-p transition form
factor has been the subject of detailed theoretical studies@8#.
The experimental data@9# are well reproduced by a descrip
tion based on QCD factorization and provide one of the b
constraints so far on the form of the single-pion distributi
amplitude.

From a different point of viewg* g→pp is the crossed
channel of virtual Compton scattering on a pion. The kin
matical region we consider here is closely related to dee
virtual Compton scattering, which has attracted considera
attention in the context of skewed parton distributions@10#.

Our reaction can also be seen as the exclusive limit o
hadronization process. The hadronization of aqq̄ pair origi-
nating from a hard, short-distance process such as ag*g
collision is usually formulated in terms of fragmentatio
functions which describe in a universal way semi-inclus
reactions, specifically the transition from a quark or an
quark to a final-state hadron when one integrates over
final states containing this hadron. We specialize here to
0556-2821/2000/62~7!/073014~28!/$15.00 62 0730
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case where the final state consists of two mesons with sp
fied four momenta, and nothing else.

As with other hadronic matrix elements the GDAs a
process independent. It has recently been pointed out@11#
that they occur in the hard exclusive processg* p→ppp,
where the pion pair is or is not the decay product of ar
meson, and that the analysis of that reaction would ben
from the measurement of the two-pion GDA ing* g→pp.

All these aspects lead us to consider GDAs as a promis
new tool for hadronic physics, which may be used to unv
some of the mysteries of hadronization and the confin
regime of QCD. The processg* g→pp is well suited to
access these quantities experimentally. In the present pa
we develop in detail the phenomenology of this reaction a
emphasize the feasibility of its investigation at existinge1e2

colliders.
In Sec. II we discuss the kinematics of our process, re

its main properties in the factorization regime we are int
ested in, and sketch the crossing relation betweeng* g
→pp and deep virtual Compton scattering. In Sec. III w
list the general properties of generalized distribution am
tudes and in particular review their QCD evolution equ
tions. These properties lead us to construct a simple mod
the two-pion GDA, which is described in Sec. IV. Section
gives a comparison between one-pion and two-pion prod
tion in g*g collisions. Relations with the inclusive produc
tion of hadrons, commonly described by the photon struct
function, are discussed in Sec. VI. The phenomenology
our process ineg collisions is described in detail in Sec. VI
with special emphasis on the information contained in an
lar distributions and in the interference with the bremsstr
lung mechanism. In Sec. VIII we give estimates for the cro
section for various experimental setups at existinge1e2 col-
liders. Section IX contains our conclusions. In Appendix
we specify our sign conventions for pion states, and in A
pendix B we discuss what additional information can be o
tained with polarized beams.
©2000 The American Physical Society14-1
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II. THE PROCESS g* g\pp

A. Kinematics in the g* g center of mass

The reaction we are interested in is

e~k!1g~q8!→e~k8!1p i~p!1p j~p8!, ~1!

where four-momenta are indicated in parentheses. We fur
use

q5k2k8, Q252q2, P5p1p8, W25P2. ~2!

The pions may be charged~i 51, j 52! or neutral (i 5 j
50), and the leptone may be an electron or a positron
Scattered with large momentum transfer this lepton radia
a virtual photong* (q), and for theg*g subprocess we in
troduce the Bjorken variable

x5
Q2

2q•q8
5

Q2

Q21W2 . ~3!

In e1e2 collisions the photong(q8) can be obtained by
bremsstrahlung from the other beam lepton, so that the o
all process is

e~k!1e~ l !→e~k8!1e~ l 8!1p i~p!1p j~p8! ~4!

with q85 l 2 l 8. In the spirit of the equivalent photon ap
proximation we approximateq82 as zero and the moment
q8 and l as collinear. We writeE15k0, E25 l 0 and q80
07301
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5x2l
0 for the energies in the laboratory frame.1 For the c.m.

energies of theeeandeg collisions we have

see5~k1 l !2, seg5~k1q8!25x2see. ~5!

Let us now discuss the kinematics in theg*g center of
mass frame. We use a coordinate system with thez axis
along q, and with x and y axes such thatp lies in thex-z
plane and has a positivex component, i.e.

q5~q0,0,0,uqu!, p5~p0,upusinu,0,upucosu!, ~6!

where we have introduced the polar angleu of p. Another
natural variable for our process in this frame is the azimutw
of k8, which is the angle between the leptonic and the h
ronic planes, see Fig. 1. In terms of Lorentz invariants th
angles can be obtained from

FIG. 1. The kinematics of e(k)1g(q8)→e(k8)1p i(p)
1p j (p8) in the center of mass of the pion pair.
cosu5
2q•~p82p!

b~Q21W2!
,

cosw5
2k•~p82p!~Q21W2!1b cosu@Q2~seg2Q22W2!2segW2#

2b sinuAsegQ2W2~seg2Q22W2!
,

sinw5
4eabgd~p1p8!apbkgqd

b sinuAsegQ2W2~seg2Q22W2!
~7!
ir-

s at
the
with e0123511 and the velocity

b5A12
4mp

2

W2 ~8!

of the pions. A further quantity we will use is the usualy
variable for theeg collision

y5
q•q8

k•q8
5

Q21W2

seg
, ~9!
which can be traded for

e5
12y

12y1y2/2
, ~10!

the ratio of longitudinal to transverse polarization of the v
tual photong* (q).

We finally define light cone componentsa65(a0

6a3)/& for any four-vectora and introduce the fraction

1We neglect the small finite crossing angle between the beam
BELLE, so that in our parlance the lepton beams are collinear in
‘‘laboratory frame.’’
4-2
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EXCLUSIVE PRODUCTION OF PION PAIRS INg* g . . . PHYSICAL REVIEW D 62 073014
z5
p1

P1 5
11b cosu

2
~11!

of light cone momentum carried byp i(p) with respect to the
pion pair.

B. Factorization at large Q2 and small W2

Let us briefly review howg* g→pp factorizes in the
kinematical regime we are interested in. First, we requireQ2

to be large compared with the scaleL2;1 GeV2 of soft
interactions, thus providing a hard scale for the process. S
ondly, we askW2 to be small compared with this large sca
Q2. In this regime the dynamics of the process is con
niently represented in the Breit frame, obtained by boost
from theg*g center of mass along thez axis. The spacetime
cartoon of the process one can derive from power coun
and factorization arguments is shown in Fig. 2.

In the Breit frame the real photon moves fast in the ne
tive z direction and is scattered into an energetic hadro
system moving in the positivez direction. The hard part o
this process takes place at the level of elementary cons
ents, and the minimal number of quarks and gluons com
ible with conservation laws~color, etc.! are produced. At
Born level one simply hasg* g→qq̄, but through a quark
box the photons can also couple to two gluons. Each qu
or gluon carries a fractionz or 12z of the large light-cone
momentum componentP1. Subsequently the soft part of th
reaction, i.e., hadronization into a pion pair, takes place.

FIG. 2. Spacetime diagram ofg* g→pp in the Breit frame.
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At leading order inaS the amplitude is given by the dia
gram of Fig. 3~a! and the one where the two photon vertic
are interchanged. One calculates, for the hadronic tensor@4#,

Tmn5 i E d4xe2 iq•x^p~p!p~p8!uTJem
m ~x!Jem

n ~0!u0&

52gT
mn(

q

eq
2

2 E
0

1

dz
2z21

z~12z!
Fq

pp~z,z,W2!, ~12!

where gT
mn denotes the metric tensor in transverse sp

(gT
11521). The sum on the right-hand side runs over

quarks flavors,eq is the charge of quarkq in units of the
positron chargee, and eJem

m (x) is the electromagnetic cur
rent. While the expression of the hard subprocessg* g
→qq̄ is explicit in Eq. ~12!, the soft part ofg* g→pp is
parametrized by the generalized distribution amplitude

Fq
pp~z,z,W2!5E dx2

2p
e2 iz~P1x2!

3^p~p!p~p8!uq̄~x2!g1q~0!u0&

~13!

for each quark flavorq. We work in light cone gaugeA1

50, otherwise the usual path ordered exponential of glu
potentials appears between the quark fields.Fq depends on
the light-cone fractionz of the quark with respect to the pio
pair, on the kinematical variablesz andW2 of the pions, and
on a factorization scale. The latter dependence, not displa
in Eq. ~13!, will be discussed in Sec. III B.

In Eq. ~12! a scaling behavior for our process is manife
at fixedz andW2 the g* g amplitude is independent ofQ2,
up to logarithmic scaling violations from radiative corre
tions to the hard scattering and from the evolution of t
two-pion distribution amplitude. This scaling property
central to all processes where a factorization theorem ho
and it is the basic signature one looks for when test
whether the asymptotic analysis developed here applies t
experimental situation at finiteQ2. There will of course be
power corrections inL/Q and W/Q to this leading mecha-
nism. Examples are the hadronic component of the real p
ton, and the effect in the hard scattering of the transve
momentum of the produced parton pair. We note that
crossed channel, i.e., virtual Compton scattering, has b
nd
to
FIG. 3. ~a! Factorization of the processg* g→pp in the regionQ2@W2, L2. The hard scattering is shown at Born level, with a seco
diagram being obtained by interchanging the two photon vertices. The blob denotes the two-pion GDA.~b! Crossing relates this process
deep virtual Compton scattering,g* p→gp. The blob now denotes the~skewed! quark distribution in the pion.
4-3
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analyzed in detail within the operator product expans
@5,12,13#, which may provide a framework for a systema
study of higher twist effects.

Contracting the hadronic tensor~12! with the photon po-
larization vectors we see that in order to give a nonz
g* g→pp amplitude the virtual photon must have the sa
helicity as the real one. As in the case of deep virtual Com
ton scattering this is a direct consequence of chiral inv
ance in the collinear hard-scattering process@14,15# and is
valid at all orders inaS . In the case of theg* g→gg sub-
process the photon helicities can also be opposite@16#. In
any case the virtual photon must be transverse. As a co
quence nonleading twist effects can be studied in the am
tude for longitudinalg* polarization, without any ‘‘back-
ground’’ from leading twist pieces. We will develop in Se
VII how the different g* g helicity amplitudes are experi
mentally accessible.

As we already mentioned, there is a close analogy of tw
pion production in the regionQ2@W2,L2 with the one-pion
channel, commonly described in terms of theg-p transition
form factor. There again a factorization theorem hol
which allows the hadronic tensorTmn to be expressed in
terms of the single-pion distribution amplitudefp as

Tmn5 i E d4xe2 iq•x^p0uTJem
m ~x!Jem

n ~0!u0&

5eT
mn(

q

eq
2

2 E
0

1

dz
1

z~12z!
fq

p~z! ~14!

to leading order inaS , whereeT
mn is the antisymmetric ten

sor in transverse space (eT
1251) and

fq
p~z!5 i E dx2

2p
e2 iz~P1x2!^p0~P!uq̄~x2!g1g5q~0!u0&.

~15!

Notice the different Dirac structures in the matrix eleme
~13! and~15!, due to the different parity transformation pro
erties of one- and two-pion states@4#.

The theoretical analysis of this process has been hig
developed@8#. Its generalization to the production ofh and
h8 is also important, in particular with respect to the SU~3!
flavor structure of the QCD evolution equations and the m
ing of the quark singlet and gluon channels@17#. In Sec. V
we will further compare the production of a single pion wi
that of a pion pair.

C. Relation with deep virtual Compton scattering and parton
distributions in the pion

The processg* g→pp at largeQ2 ands!Q2 is related
by s-t crossing to deep virtual Compton scattering on a pi
i.e., tog* p→gp at largeQ2 and2t!Q2. It turns out that
factorization works in completely analogous ways for bo
cases, as is shown in Fig. 3. The nonperturbative matrix
ements occurring in the Compton process are skewed pa
distributions~SPDs!@10#, defined in the pion case as@18#
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Hq~x,j,t !5
1

2 E dz2

2p
eix~P1z2!

3^p~p8!uq̄~2z2/2!g1q~z2/2!up~p!&

~16!

with P5(p1p8)/2. They have been recognized as objects
considerable interest and have triggered intensive theore
and experimental work. The processesg* g→pp andg* p
→gp share many common features, from their scaling
havior and the details of their helicity selection rules to t
possibilities of phenomenological analysis, which we w
develop in Sec. VII.

The imaginary part of the forward virtual Compton am
plitude, g* p→g* p, obtained from Fig. 3~b! by replacing
theg with a secondg* , gives the cross section for inclusiv
deep inelastic scattering,g* p→X, where the ordinary par-
ton distributions in a pion occur.

As observed in Ref.@18# it is useful to implement cross
ing at the level of moments in momentum fractions~z andz
for GDAs, x andj for SPDs!, which depend only on a fac
torization scale and a Lorentz invariant~s for GDAs, t for
SPDs!. The moments of GDAs and of SPDs are connec
by analytic continuation in that invariant. In particular, an
lytic continuation to the pointt50 leads to moments of the
ordinary parton distributions in the pion, which we will us
as an input for our model of GDAs in Sec. IV.

III. GENERAL PROPERTIES OF GDAS

A. Charge conjugation and isospin properties

Let us start by compiling some symmetry properti
which will be useful in the following. For the quark GDA
~13! the invariance of strong interactions under charge c
jugationC implies

Fq
pp~z,z,W2!52Fq

pp~12z,12z,W2!. ~17!

It is useful to project GDAs for charged pions on eigensta
of C parity

Fq
6~z,z,W2!5

1

2
@Fq

p1p2

~z,z,W2!6Fq
p1p2

~z,12z,W2!#,

~18!

so that

Fq
p1p2

5Fq
1~z,z,W2!1Fq

2~z,z,W2!. ~19!

In the C even sector Eq.~17! reduces to

Fq
1~z,z,W2!52Fq

1~12z,z,W2!. ~20!

Our process is only sensitive to theC even part ofFq
p1p2

since the initial state two-photon state has positiveC parity.
Of course ap0p0 pair has positiveC parity as well, so that

Fq
p0p0

has noC-odd part at all.
Let us now turn to isospin symmetry. TheC odd compo-

nent of a two-pion state has total isospinI 51, whereas itsC
4-4
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even component contains bothI 50 and I 52 pieces. The
quark operator inFq

pp has only components with isospinI
50 or I 51. Hence it is a consequence of the leading tw
production mechanism and of isospin invariance that in
process the pion pair is in a state of zero isospin, i.e., tha
component withI 52 is produced. Another consequence
isospin invariance is that

Fq
p0p0

~z,z,W2!5Fq
1~z,z,W2!, ~21!

so that the production amplitudes for neutral and char
pion pairs are equal. Deviations from isospin symmetry
the present reaction would be interesting, but since one
expect them to be small we will assume isospin invarianc
hold throughout the rest of our study. Isospin invariance a
implies that

Fu
15Fd

1 , Fu
252Fd

2 , ~22!

so that in theC even sector we only need to know the SU~2!
flavor singlet combinationFu

11Fd
1 .

The connection between the notationF i
I 50,1 of Polyakov

@19# and ours is

F i
I 505Fu

1 , F i
I 515Fu

2 . ~23!

We remark that the second term in Eq.~2.6! of Ref. @19#
should come with a minus sign@20#. Our relation F i

I 51

5Fu
2 takes this correction into account.

Notice that the signs in Eqs.~21! and~23! depend on the
choice of relative phases in the definition of charged p
states. We specify our convention in Appendix A.

B. Evolution equation

In the process of factorization generalized distributi
amplitudes acquire a scale dependence in the same wa
usual distributions do. This scale dependence can be c
puted within perturbative QCD, and there is nothing spec
with multiparticle states since the scale dependence
property of the nonlocal product of fields under consid
ation, rather than one of a particular hadronic matrix elem
~see Ref.@21# for an approach exploiting this feature!. The
scale dependence of GDAs can be cast in the form of
Efremov-Radyushkin-Brodsky-Lepage evolution equat
@22#, and the only complication in the channel we are co
cerned with here is the mixing of quark and gluon distrib
tion amplitudes. The leading-logarithmic form of the evol
tion equations has been studied in detail for the parity-o
sector@17#, where the relevant quark operator isq̄g1g5q.
Our application to pion pairs leads us to consider the par
even sector, where the quark operator isq̄g1q instead, see
our remark after Eq.~15!. For completeness we give here th
basic steps for deriving and solving the evolution equation
this channel, following the procedure outlined in Ref.@23#.
Taking into account the different normalization conventio
we find agreement with the results of Baier and Grozin@24#,
who reported a sign discrepancy with Chase@25# for the
gluon evolution kernel.
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We are then concerned with the generalized quark
gluon distribution amplitudes inA150 gauge:

Fq~z,z,W2!5E dx2

2p
e2 iz~P1x2!

3^p~p!p~p8!uq̄~x2!g1q~0!u0&,

Fg~z,z,W2!5
1

P1 E dx2

2p
e2 iz~P1x2!

3^p~p!p~p8!uF1m~x2!Fm
1~0!u0&,

5z~12z!P1E dx2

2p
e2 iz~P1x2!

3^p~p!p~p8!uAm~x2!Am~0!u0&. ~24!

Our gluon distribution amplitudeFg(z,z,W2) coincides with
FG(z,z,W2) introduced in Ref.@16#. From the definition
~24! one readily obtains

Fg~z,z,W2!5Fg~12z,z,W2!, ~25!

and fromC invariance one has

Fg~z,z,W2!5Fg~12z,12z,W2!. ~26!

Here we have given definitions for a two-pion state, but
stated above the evolution equation for distribution amp
tudes and GDAs is not specific to the details of the hadro
system. The considerations of this and the following subs
tion thus apply to any state in the parity even sector wh
has four-momentumP and total angular momentumJz50
along the axis defining the light cone variables.

We now study the evolution of the distributions for glu
ons and of quarks in the singlet combination ofnf flavors.
For convenience we introduce

zz̄f Q~z!5 (
q51

nf

Fq~z!, ~27!

z2z̄2f G~z!5Fg~z!, ~28!

where we use the notationz̄512z. In the end we will return
to the amplitudesFq andFg .

The scale dependence is controlled by the parameter

j~m2,m0
2!5

2

b1
lnS aS~m0

2!

aS~m2!
D , ~29!

where aS is the one-loop running coupling andb1511
22nf /3. This parameter describes how the distribution a
plitude evolves when one changes the factorization po
from m0 to m. The evolution equation takes the form

]

]j
f ~z,j!5V* f 5E

0

1

duV~z,u! f ~u,j!, ~30!

wheref is a two-component vector
4-5
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f 5S f Q

f G
D ~31!

andV is the 232 matrix kernel

V5S VQQ VQG

VGQ VGG
D . ~32!

To obtain the leading logarithmic evolution equation it
sufficient to consider one-loop corrections to the scatter
amplitude. The latter is depicted in Fig. 4 and has the fo
H* f , whereH5(HQ ,HG) denotes the hard-scattering ke
nels. It turns out that in light cone gaugeA150 the relevant
one-loop diagrams consist of an insertion betweenH andf of
the graphs shown in Fig. 5~a! to 5~e!, supplemented by
~renormalized! self-energy insertions on each line connecti
H to f in Fig. 4. Calling the sum of these insertionsjV the
one-loop diagrams have the structureH* jV* f .

The evolution from zeroth to first order of the generaliz
distribution amplitude may thus be written as

f ~1!~z!5 f ~0!~z!1jE
0

1

duV~z,u! f ~0!~u!. ~33!

In the computation of the diagrams, thek2 integral is per-
formed by the Cauchy method of contour integration in
complex plane, andj is the result of the integral over trans
verse momentum fromkT5m0 to kT5m:

j~m2,m0
2!5E

m0
2

m2 dkT
2

kT
2

aS~kT
2!

2p
. ~34!

Despite the presence ofaS in Eq. ~34!, j is not small ifm2

@m0
2, and this signals the necessity of an all-order analy

This analysis leads to the evolution equation, with the feat

FIG. 4. The scattering amplitudeH* f with f denoting the soft
matrix elements andH the hard scattering kernels.
07301
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thatV is the same matrix in Eqs.~30! and~33!. We refer the
reader to the literature for a general discussion@26#.

The integration overk1 may be reexpressed as an int
gral over the incoming light cone fractionu. The evolution
kernels contain the remaining part of the dynamics, in p
ticular they describe the change of light cone fractions fr
u to z. We get

VQQ~z,u!5CFFu~z2u!
u

z S 11
1

z2uD1$u↔ū, z↔ z̄%G
1

,

VQG~z,u!52nfTFFu~z2u!
u

z
~2z2u!2$u↔ū, z↔ z̄%G ,

VGQ~z,u!5
CF

zz̄ Fu~z2u!
u

z
~ z̄22ū!2$u↔ū, z↔ z̄%G ,

VGG~z,u!5
CA

zz̄ Fu~z2u!S uū

z2u
2uū2

u

2z

3@~2z21!21~2u21!2# D1$u↔ū, z↔ z̄%G
1

2
2

3
nfTfd~u2z!, ~35!

where the color factors areCF54/3, TF51/2 andCA53.
The subscript1 stands for the1 distributions, whose action
on a functionf may be expressed symbolically as

@¯#1 f ~u!5@¯#@ f ~u!2 f ~z!#. ~36!

The kernels~35! give the finite parts that remain after th
cancellation of infrared divergences between graph~a! @~d!#
and quark self-energy@gluon self-energy# insertions. A
simple way to obtain self-energy corrections is to notice th
relation to parton splitting@23#, that is,
-
e
s

FIG. 5. One-loop insertions, to be supple
mented by self-energy insertions on every lin
appearing in Fig. 4. The sum of all insertion
gives the evolution kerneljV. We remark that
the one-loop graph~e! must be multiplied by1

2 to
avoid double counting.u andz denote light cone
plus momentum fractions, andk the loop four-
momentum.
4-6
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f Q
~1!~z!uSE5F12jE dxPQQ~x!G f Q

~0!~z!

5F12jE dxPGQ~x!G f Q
~0!~z!,

f G
~1!~z!uSE5F12jE dxS 1

2
PGG~x!

1nf PQG~x! D G f G
~0!~z!, ~37!

with the unregularized Dokshitzer-Gribov-Lipatov-Altarell
Parisi splitting functions

PQQ~x!5CF

11x2

12x
,

PQG~x!5TF@x21~12x!2#,

PGQ~x!5CF

11~12x!2

x
,

PGG~x!52CAF x

12x
1

12x

x
1x~12x!G .

~38!

The integrals~37! are not defined in the limitx→0,1, which
is a manifestation of the infrared divergence of self-ene
graphs.

C. Solution

We will now solve the evolution equation~30!. Given our
application we restrict ourselves to theC even partsFq

1 of
the quark distributions, the gluon distribution being of cou
even underC from the start.

We look for solutions of the form

f ~z,j!5 f ~z!e2gj. ~39!

To this end it is convenient to change variables, introduc
y52u21 andx52z21, and to study the convolution of th
matrix kernelV with

S xn

0 D , S 0
xn21D , ~40!

where n is an odd integer to accommodate the symme
properties~20! and ~25!. One finds

VQQ* yn52gQQ~n!xn1O~xn22!,

VQG* yn2152gQG~n!xn1O~xn22!,

VGQ* yn52gGQ~n!xn211O~xn23!,

VGG* yn2152gGG~n!xn211O~xn23!,
~41!

with anomalous dimensions
07301
y

e

g

y

gQQ~n!5CFS 1

2
2

1

~n11!~n12!
12(

k52

n11
1

k D , ~42!

gQG~n!52nfTF

n213n14

n~n11!~n12!
,

gGQ~n!522CF

n213n14

~n11!~n12!~n13!
,

gGG~n!5CAS 1

6
2

2

n~n11!
2

2

~n12!~n13!

12(
k52

n11
1

k D 1
2

3
nfTF .

Since for a givenn0 the space of solutions withn<n0 is
stable under the application of the kernel one can find po
nomialspn(x) andqn21(x) satisfying

VQQ* pn52gQQ~n!pn , VQG* qn2152gQG~n!pn ,

VGQ* pn52gGQ~n!qn21 , VGG* qn2152gGG~n!qn21 .
~43!

The symmetry properties of the kernels

~12x2!VQQ~x,y!5~12y2!VQQ~y,x!,

2CF~12x2!VQG~x,y!5nfTF~12y2!2VGQ~y,x!,

~12x2!2VGG~x,y!5~12y2!2VGG~y,x!,
~44!

then imply that the (pn) are orthogonal polynomials on th
interval @21,1# with weight 12x2, i.e., they are proportiona
to the Gegenbauer polynomialsCn

(3/2)(x), whereas the
(qn21) are orthogonal on@21,1# with weight (12x2)2, that
is, proportional to the Gegenbauer polynomialsCn21

(5/2)(x). To
complete the identification it is necessary to take into
count the standard normalization of Gegenbauer polyno
als. One finds thatpn5Cn

(3/2) and qn215Cn21
(5/2) fulfill Eq.

~43!, provided one makes the replacements

gQG~n!→gQG8 ~n!5
n

3
gQG~n!,

gGQ~n!→gGQ8 ~n!5
3

n
gGQ~n!. ~45!

The final step is to diagonalize the 232 anomalous di-
mension matrices for each value ofn. The eigenvalues are

Gn
~6 !5

1

2
@gQQ~n!1gGG~n!

6A@gQQ~n!2gGG~n!#214gQG8 ~n!gGQ8 ~n!#,

~46!
4-7
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and the eigenvectors of the kernel matrix read

vn
~6 !~x!5S Cn

~3/2!~x!

gn
~6 !Cn21

~5/2!~x! D , ~47!

where

gn
~6 !5

Gn
~6 !2gQQ~n!

gQG8 ~n!
. ~48!

The generalC even solution of Eq.~30! may then be written
as

f ~x,j!5 (
odd n

$An
~1 !vn

~1 !~x!e2Gn
~1 !j1An

~2 !vn
~2 !~x!e2Gn

~2 !j%

~49!

with integration constantsAn
(6) .

We now return to the amplitudesFq ,Fg and explicitly
expressj in terms ofm andm0 . The key result of this section
then reads

(
q51

nf

Fq
1~z,m2!5z~12z! (

odd n
An~m2!Cn

~3/2!~2z21!,

Fg~z,m2!5z2~12z!2 (
odd n

An8~m2!Cn21
~5/2!~2z21!,

~50!

with

An~m2!5An
~1 !S aS~m2!

aS~m0
2! D

Kn
~1 !

1An
~2 !S aS~m2!

aS~m0
2! D

Kn
~2 !

,

An8~m2!5gn
~1 !An

~1 !S aS~m2!

aS~m0
2! D

Kn
~1 !

1gn
~2 !An

~2 !S aS~m2!

aS~m0
2! D

Kn
~2 !

,

~51!

and exponentsKn
(6)52Gn

(6)/b1 , which are positive excep
for K1

(2)50. Fornf52,3,4, one explicitly finds

K1
~1 !5

3216nf

9926nf
50.51, 0.62, 0.75,

K3
~2 !50.71, 0.76, 0.82, K3

~1 !51.45, 1.64, 1.85.
~52!

From Eq. ~51! we easily see that the integration consta
An

(6) depend on the starting scalem0 of the evolution

through a factoraS(m0
2)Kn

(6)
.

D. Expansion in z

For a two-meson state, the coefficientsAn and An8 are
functions of the factorization scalem2 and of the remaining
kinematical variablesz and W2. From the definition of
GDAs in term of fields given in Eq.~24! one obtains mo-
ments
07301
s

E
0

1

dzznFq~z!5
1

~P1!n11 @~2 i ]1!n^p~p!p~p8!uq̄~x!

3g1q~0!u0&#x50 ,

E
0

1

dzzn21Fg~z!5
1

~P1!n11 @~2 i ]1!n21

3^p~p!p~p8!uF1m~x!Fm
1~0!u0&#x50 .

~53!

These local matrix elements are the plus components of
sors that can be decomposed on a basis built up with
metric gmn and the vectors (p1p8)m and (p2p8)m. Since
(p1p8)15P1 and (p2p8)15(2z21)P1 the moments
~53! are then polynomials in 2z21 with degree at mostn
11. TheAn andAn8 are Gegenbauer moments of(qFq and
Fg , respectively, and therefore have the same polynomia
properties inz. Following Ref.@19# we expand them on the
Legendre polynomials, writing

An~z,W2!56nf (
even l

n11

Bnl~W2!Pl~2z21! ~54!

and the analogous expression forAn8 with coefficientsBnl8 .
The C invariance properties~17! and ~26! restrict l to even
integers in theC even sector. The expansion coefficientsBnl
are linear combinations of the local operator matrix eleme
in Eq. ~53! and are therefore analytic functions inW2. As we
mentioned in Sec. II C their continuation to zero or spacel
W2 leads to the moments of parton distributions in the pio
From Eq.~51! the factorization scale dependence of theBnl
may be written as

Bnl~W2,m2!5Bnl
~1 !~W2!S aS~m2!

aS~m0
2! D

Kn
~1 !

1Bnl
~2 !~W2!S aS~m2!

aS~m0
2! D

Kn
~2 !

, ~55!

with an analogous equation forBnl8 involving the factors
gn

(6) .
In the limit m→` only the terms with the smallest expo

nentK1
(2)50 in the coefficients~51! survive. The asymptotic

form of the distribution amplitudes thus has onlyn51 in the
Gegenbauer expansion~50! and reads

(
q51

nf

Fq
1~z,z,W2!518nfz~12z!~2z21!@B10

~2 !~W2!

1B12
~2 !~W2!P2~2z21!#,

Fg~z,z,W2!548z2~12z!2@B10
~2 !~W2!

1B12
~2 !~W2!P2~2z21!#, ~56!

whereP2(2z21)5126z(12z). Note thatB10
(2) and B12

(2)

do not depend on a starting scalem0 becauseK1
(2)50. For
4-8
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reasons that will become clear we will also keep the ter
with the first nonzero exponentK1

(1) in our model for the
GDAs to be developed in Sec. IV. For the quark distributi
amplitudes this simply amounts to replacingB10

(2) andB12
(2)

in the first line of Eq.~56! with them-dependent coefficient
B10 andB12.

Let us finally remark that, as discussed in Ref.@16#, there
is another generalized gluon distribution amplitude, with
operator different from the one in Eq.~24!. It corresponds to
pion pairs with angular momentumJz562 and gives the
leading-twist part of the amplitudesg* g→pp where the
photon helicities are opposite. The evolution of this helici
two distribution amplitude does not mix with any quark d
tribution. Its smallest anomalous dimension is positive,
that this distribution amplitude tends logarithmically to ze
asm→`. The study of this distribution would be very inte
esting. Nothing is, however, known about its size at pres
and in our phenomenological analysis we will neglect
contribution.

E. Partial wave expansion

The decomposition of generalized distribution amplitud
on Legendre polynomials performed in the previous sec
translates into a partial waves decomposition@19# if one
transforms from polynomialsPl(2z21) to Pl(cosu) using
that 2z215b cosu. The rearranged series reads

(
q51

nf

Fq
156nfz~12z! (

n51
odd

`

(
l 50
even

n11

B̃nl~W2!

3Cn
~3/2!~2z21!Pl~cosu! ~57!

for quarks, where the coefficientsB̃nl(W
2) are linear combi-

nations of the form

B̃nl5b l@Bnl1cl ,l 12Bn,l 121¯1cl ,n11Bn,n11# ~58!

with polynomialscl ,l 8 in b2. Keeping onlyn51 in the Ge-
genbauer expansion one is restricted to anS and aD wave:

(
q51

nf

Fq
1518nfz~12z!~2z21!@B10~W2!

1B12~W2!P2~2z21!#

518nfz~12z!~2z21!

3@B̃10~W2!1B̃12~W2!P2~cosu!# ~59!

with

B̃10~W2!5B10~W2!2
12b2

2
B12~W2!,

B̃12~W2!5b2B12~W2!. ~60!

It is a remarkable consequence of the conditionl<n11
that the presence of high partial waves implies a departur
07301
s

n

-

o

t,

s
n

of

the two-pion distribution amplitude from its asymptot
form. Theu distribution of the produced pion pair thus co
tains information about the dependence of the GDAs onz,
which as a loop variable is integrated over in the amplitu
of the process, see Eq.~12!.

One-meson distribution amplitudes are real valued fu
tions due to time reversal invariance. This is not true
generalized distribution amplitudes: the two-pion ‘‘out
state in the definition~13! of Fpp is transformed into an
‘‘in’’ state under time reversal, and these states are differ
because hadrons interact with each other. Below the inela
threshold, however, two-pion ‘‘in’’ and ‘‘out’’ states with
definite angular momentum are related in a simple way
the phase shifts of elasticpp scattering. With the aid of
Watson’s theorem one then obtains the relationB̃nl*

5B̃nl exp(22idl) @19#. This fixes the phase of the expansio
coefficientB̃nl up to its overall sign:

B̃nl5hnluB̃nluexp~ id l !, hnl561, ~61!

whered l is thepp phase shift for thel th partial wave in the
I 50 channel.

F. Momentum sum rule

Of particular interest are the moments@4,18,19#

E
0

1

dz~2z21!Fq
1~z,z,W2!

5
2

~P1!2 ^p1~p!p2~p8!uTq
11~0!u0&, ~62!

E
0

1

dzFg~z,z,W2!

5
1

~P1!2 ^p1~p!p2~p8!uTg
11~0!u0&, ~63!

where Tq
mn(x) and Tg

mn(x), respectively, denote the Belin
fante improved energy-momentum tensors for quarks of
vor q and for gluons. After summing Eq.~62! over all flavors
these moments project out the coefficientsB10(W

2),
B12(W

2) andB108 (W2), B128 (W2).
To proceed one decomposes^p1(p)p2(p8)uTq

mn(0)u0&
on form factors. Their analytical continuation to zero
negativeW2 leads to the form factors of the matrix elemen
^p1(p)uTq

mn(0)up1(p8)& between one-pion states, withW2

50 corresponding top5p8. At that point we get from Eq.
~62!.

B12~0!5
10

9nf
Rp , ~64!

whereRp is the fraction of light-cone momentum carried b
quarks and antiquarks in the pion. No constraint onB10(0) is
obtained this way, since the corresponding form factor in
decomposition of̂ p1(p)uTq

mn(0)up1(p8)& is multiplied by
4-9
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FIG. 6. The phase shiftsd0 for
theSwave,d1 for theP wave, and
d2 for the D wave of elasticpp
scattering.d0 and d2 refer to the
I 50 channel. The points are
taken from Ref. @28#, and the
curves ford0 and d2 are simple
parametrizations. The curve ford1

corresponds to the parameteriz
tion N51 of the pion form factor
Fp(W2) in Ref. @30#.
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a tensor that vanishes forp5p8. In an analogous fashion on
obtains an expression forB128 (0) from the sum rule~63!.

We emphasize that both sides of Eq.~64! depend on the
renormalization scalem. Only the total energy-momentum
tensor, i.e., the sumTmn5(qTq

mn1Tg
mn over quarks and glu-

ons is conserved, so that its matrix elements are renorm
ization scale independent. The appropriate sum of the
ments~62! and~63! leads to a linear combination ofB12 and
B128 where the scale dependent term withB12

(1) indeed drops
out and only B12

(2) is left. The normalization of
^p1(p)uTmn(0)up1(p)& thus fixes the expansion coefficie

B12
~2 !~0!5

10

9nf148
, ~65!

which through the relation~64! gives the asymptotic value

Rp →
m→` 3nf

3nf116
, ~66!

in agreement with the well-known result from the evoluti
of singlet parton distributions@27#.

IV. A SIMPLE MODEL OF THE GDA

So far no experimental information exists on the two-pi
GDA. In the numerical studies to follow we will therefor
use a simple ansatz forFq

1(z,z,W2), which is based on the
general properties we have discussed in the previous sec

We only consider the contributions fromu andd quarks,
i.e., we takenf52. As already mentioned we will use th
07301
al-
o-

on.

isospin relations~21! and~22!, and take the asymptotic form
of the z dependence given in Eq.~59!. It thus remains to
make an ansatz for the coefficientsB10(W

2) andB12(W
2), or

equivalently for B̃10(W
2) and B̃12(W

2) introduced in Eq.
~60!.

For their phases, given by Eq.~61!, we use simple param
etrizations of the isosingletS-and D-wave phase shiftsd0

and d2 obtained in Ref.@28#. They are shown in Fig. 6
where for later use the phase shiftd1 of the P wave is also
displayed. The result~61! only holds below the inelastic
threshold inpp scattering, therefore we restrict all our stu
ies to invariant massesW below 1 GeV. Around that mass
corresponding to theKK̄ threshold, the phase shiftd0 of the
S wave drastically increases. While the analysis of Ref.@28#
stops at W50.97 GeV and does not exhibit this abru
change, the investigations in Ref.@29# find values of order
200° atW51 GeV. Our parameterization ofd0 in that region
is meant to be indicative rather than a precise description
this quantity. Through interference effects, the rapid var
tion of a phase shift leads to a characteristic behavior in
W spectrum of appropriate observables in our process, as
shall see in Sec. VII.

The analyticity properties of theB̃nl and the phase infor-
mation from Watson’s theorem~61! may be used to obtain
theW2 dependence ofB̃nl via dispersion relations, which ha
been exploited in Refs.@16#, @19#. Note, however, that while
the complex phases are simple for theB̃nl , it is theBnl that
have simple analytic properties in theW2-plane, given their
definition through operator matrix elements. The transform
tion from Bnl to B̃nl introduces extra poles atW250,; see,
4-10
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e.g., the factorsb25(W224mp
2 )/W2 in Eq. ~60!. Further-

more, the evaluation of the integrals that solve the dispers
relations requires knowledge of the phases at energies a
the value ofW whereB̃nl is evaluated. This further restrict
the range ofW where B̃nl can be obtained using thepp
phase shifts as input.

To keep our model simple we will make a less sophis
cated ansatz. We keep the energy dependent phasesd0 and
d2 from Watson’s theorem~61!. To determineuB̃10u,uB̃12u,
and the overall signsh10,h12 in Eq. ~61!, we retain only the
kinematical factorsb2 in the relation ~60! and replace
B10(W

2) and B12(W
2) with their values atW50. Close to

W51 GeV one will not expect this to be a good approxim
tion for theS wave, given the presence of thef 0(980). Be-
low this there is however no prominentpp resonance in the
I 50 channel, and the phase shifts show a smooth beha
It seems therefore reasonable to assume that the isosi
form factorsB̃10 andB̃12 do not have a strong energy depe
dence in that region, certainly not as strong as the elec
magnetic pion form factorFp with its large variations in
modulus and phase due to ther~770!. We do however not
claim our simple model to be better than, say, a factor o

For the input value ofB12(0) we use the constraint~64!
with Rp evaluated from the parton distributions in the pio
Taking the leading order~LO! parametrization of Glu¨ck-
Reya-Schienbein~GRS! @31# we findRp ranging from 0.5 to
0.6 at a factorization scalem2 between 1 and 20 GeV2. In our
numerical studies we useRp50.5. Note that this is very fa
from the asymptotic value~66!, which for nf52,3,4 isRp

50.27, 0.36, and 0.43, respectively. While using t
asymptotic form of thez dependence of the GDA for sim
plicity ~and lack of experimental information! we thus retain
a clear nonasymptotic effect in the coefficientB12(0). We
also remark that in the GRS LO parametrization the con
bution of strange quarks and antiquarks toRp is at the level
of 5 to 10 % in a wide range of the factorization scale. T
corroborates our restriction tou and d quarks in the GDA,
although with the caveat that the sea quark distribution in
pion is not constrained from experimental data@31#.

For the coefficientB10(0) we make use of the relation

B10~0!52B12~0!, ~67!

which has been obtained in Ref.@19# using chiral symmetry
in the form of a soft-pion theorem. Notice that our ans
then has the property that forb→1 theS- andD-wave com-
ponents of the GDA have equal size and opposite sign, a
easily seen from Eq.~60!.

Putting everything together, we will take the followin
model GDAs in our numerical studies:

Fu
15Fd

1510z~12z!~2z21!Rp

3F2
32b2

2
eid0~W2!1b2eid2~W2!P2~cosu!G ~68!

with Rp50.5.
With this we can easily calculate the scattering amplitu

for g* g→pp to leading order inaS . We shall neglect here
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the radiative corrections to the hard scattering, which h
been worked out to one loop in Ref.@16#. Taking the
asymptotic form~56! of the quark and gluon GDAs, includ
ing the asymptotic value~66! of the ratio Rp , they were
found to reduce the leading-order amplitude for equal pho
helicities by 30% ifaS50.3, with most of the correction
being due to the contribution fromFg . Finally, we recall
from the end of Sec. III D that we will neglect the contribu
tion of the helicity-two gluon GDA to the photon doubl
helicity-flip amplitude, which is also a one-loop effect.

V. COMPARISON WITH g* g\p0

Given the close analogy between the production of o
and of two pions it is natural to compare the production ra
of these two processes. Since our estimations forpp produc-
tion are at lowest order inaS we will compare with the
corresponding expression for the one-pion case for con
tency, although experimental data and more refined the
analyses are available there. From the leading-order exp
sion ~14! we obtain the cross section for the processeg
→ep0 as

dseg→ep0

dQ2 5
a3

seg
2

1

Q2~12e!
2p2f p

2 , ~69!

where we have used the asymptotic distribution amplitu
fu

p52fd
p53& f pz(12z) with f p'131 MeV. For a

lowest-order approximation, the cross section~69! is in fair
agreement with the data@9#.

To compare with two-pion production, we integrate t
cross section foreg→ep0p0 from threshold up toWmax.
With our model GDA~68! we find

dseg→ep0p0

dQ2 5
25a3

72seg
2

1

Q2~12e!
E

4mp
2

Wmax
2

dW2

3A12
4mp

2

W2 S uB̃10u21
1

5
uB̃12u2D

5
125a3

243seg
2

1

Q2~12e!
Rp

2 mp
2

3A12
4mp

2

Wmax
2 S Wmax

2

4mp
2 2

3

4
2

mp
2

Wmax
2 D .

~70!

A consequence of the identical scaling behavior of the t
processes is that the ratio of the cross sections~70! and~69!
is independent ofQ2 in the Born approximation.

Figure 7 shows the ratio of the cross sections~70! and
~69! as a function of the upper integration limitWmax. We
see that, even when integrating up toW51 GeV, the single-
pion production comes out as clearly dominant. We rem
that the measured production rates@9# for a singleh or h8 are
comparable to that of ap0. With our isospin relation~21! the
cross section forg* g→p1p2 is twice that of g* g
→p0p0, the relative factor 1/2 forp0p0 being due to the
4-11
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phase space of identical particles. Because of the phase s
one does not expect the production of more than two pion
be important forW below 1 GeV, except for the decaysh
→3p andh8→5p. The picture thus emerges that with o
estimation forg* g→pp the production of hadrons ing* g
collisions up to 1 GeV is dominated by the pseudosca
channel, in other words by the parity-odd sector as oppo
to the parity-even one. This is reminiscent of the special r
played by the axial current in low-energy QCD.

At this point we wish to comment on the end-point r
gions of the integrals overz in the factorized expression
~12! and ~14! for two-pion and one-pion production. Forz
→0 andz→1 the hard-scattering kernels are divergent, c
responding to the quark exchanged between theg and g*
going on-shell. These poles are canceled by the end-p
zeroes of the two-pion and one-pion distribution amplitud
so that the end-point regions give a finite contribution to
scattering amplitude in both cases. Quantitatively, the qu
virtualities in the hard-scattering diagrams arezQ2 and (1
2z)Q2, and it is clear that for a given finiteQ2 there is a
region in z where our leading-order expressions should
ceive important corrections. At small virtualities the stro
coupling becomes large, increasing the size ofaS correc-
tions, and whenzQ2 or (12z)Q2 becomes comparable t
the square of typical transverse quark momenta in a p
then power corrections due to the effect of the transve
momentum of the producedqq̄-pair will be important. We
recall in this context that various theoretical attempts
evaluate such corrections lead to fair agreement with the
for theg2p transition form factor@9,32# down to rather low
values ofQ2.

For pion pair production both the hard-scattering ker
and the distribution amplitude are zero atz51/2 due to the
constraints from charge conjugation invariance, so that c
pared to the single-pion case the integral inz is more sensi-
tive to the end-point regions. We thus expect that for int
mediate values ofQ2 corrections to the lowest-order resul
will be more important ing* g→pp than they are ing* g
→p0. The experimental comparison of theQ2 dependence
of these two processes will therefore be interesting and m
help us to better understand the origin of these correctio

FIG. 7. The ratio of the cross sections~70! and ~69! for the
production ofp0p0 and ofp0 in the limit of largeQ2. The cross
section foreg→ep0p0 is integrated overW from threshold up to
Wmax.
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which are a subject of considerable importance in the phy
of exclusive processes.

Taking the asymptoticz dependence of the distributio
amplitudes as an example, we can explicitly see how imp
tant the end-point contributions are in the leading-order
pressions~12! and~14!. For single pion production the inte
grand in Eq.~14! is a constant then, so that 50% of thez
integral comes from the regions wherez or 12z is smaller
than 0.25. For two-pion production the integrand is prop
tional to (2z21)2, and 50% of the integrand comes from th
regions with z or 12z smaller than (12221/3)/2'0.1.
Given these numbers, one can expect that corrections to
leading-order calculation will not be negligible forQ2

around 4 GeV2, which is the lowest value considered in o
numerical estimates in Sec. VIII.

VI. RELATIONS WITH THE PHOTON STRUCTURE
FUNCTION

The exclusive process we consider here contributes
course to the inclusive reactiong* g→X. As we mentioned
in the previous section, the inclusive process is built up fr
a limited number of exclusive channels in the mass region
W below 1 GeV. Let us examine the connection between
discussion of one- and two-pion production with the famil
description of inclusiveg* g scattering in the kinematica
limit we are taking here.

The unpolarized cross section for inclusive deep inela
scattering on a photon,eg→eX, can be parameterized b
two photon structure functionsFT andFL as

dseg→eX

dQ2dW2 5
2pa2

seg
2

1

xQ2~12e!
@2xFT~x,Q2!1eFL~x,Q2!#,

~71!

whereFT and FL , respectively, give the contribution from
transverse and longitudinal polarization of the exchang
g* . The transverse structure functionFT is often traded for
F252xFT1FL .

At the level of partons inclusive hadron production is d
scribed byg* g→qq̄ to leading order inaS , which gives the
well-known expressions@2#

FT
qq̄5

3a

2p (
q

eq
4H ln

11bq

12bq
Fx21~12x!2

14x~12x!
mq

2

Q228x2
mq

4

Q4 G
2bqF ~122x!214x~12x!

mq
2

Q2G J ,

FL
qq̄5

12a

p (
q

eq
4x2~12x!Fbq2

2mq
2

W2 ln
11bq

12bq
G ,
~72!

where bq5(124mq
2/W2)1/2. Note thatmq is to be under-

stood here as a cutoff parameter, which regulates the co
ear divergence in the box diagram with massless quarks
4-12
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EXCLUSIVE PRODUCTION OF PION PAIRS INg* g . . . PHYSICAL REVIEW D 62 073014
The limit of largeQ2 at fixed smallW2 we are taking here
implies x→1 and is different from the Bjorken limit, wher
W2 is scaled up withQ2 so thatx remains constant. Neglec
ing terms of order 12x;W2/Q2 andmq

2/Q2 the expressions
~72! become

FT
qq̄5

3a

2p (
q

eq
4H ln

11bq

12bq
2bqJ , FL

qq̄5OS W2

Q2 D .

~73!

We observe that in our limit the leading-order expression
FT becomes independent ofQ2, i.e., it has the same scalin
behavior as the exclusive channelsg* g→p and g* g
→pp. This is to be contrasted with the Bjorken limit, whe
ln@(11bq)/(12bq)#;ln@Q2/mq

2#1ln@(12x)/x# gives rise to the
well-known logarithmic scaling violation ofFT at zeroth or-
der in aS .

Just as in the case ofg* g→pp, the contributionFL from
longitudinal photons is power suppressed in our limit. Let
add that in the Bjorken limit the hadronic part ofFT , often
parameterized using vector meson dominance, is only s
pressed by a factor lnQ2 with respect to the pointlike par
~72!, but does not survive our limiting procedure here: sin
hadronic structure functions typically decrease like a pow
of 12x for x→1, it becomes a correction inW2/Q2.

The contribution of our process to the structure functio
is, with our ansatz~68! for Fq

1 ,

FT
p1p21p0p0

5
25a

96p
bS uB̃10u21

1

5
uB̃12u2D

5
625a

3456p
Rp

2 bS 12
2

3
b21

1

5
b4D . ~74!

As a function ofW this quickly rises from the threshold a
2mp , levels off for W around 400 to 500 MeV, and the

remains flat with a valueFT
p1p21p0p0

/a'0.0077. Let us
compare this with the result~73! of the qq̄ calculation foru
andd quarks~including strange quarks would only lead to
minute change due to the charge factoreq

4!. With the quark
massesmu5md5290 MeV from the parametrization of th
photon structure function by Gordon and Storrow@33# we
get a value ofFT

qq̄/a'0.15 atW51 GeV, much larger than
the one we obtain for pion pairs.

It is worth remembering thatg* g→qq̄ also is the hard-
scattering subprocess in our factorized expression forg* g
→pp. As we discussed at the end of the previous sect
the collinear divergence of this process shows up as sin
larities at the end-point of thez integration in Eq.~12! and is
canceled by the end-point zeroes of the GDA, i.e., by
hadronization process. In the calculation of openqq̄ produc-
tion no such cancellation takes place and the divergenc
the diagram has to be regulated. This reflects the fact
even in the limitQ2→` inclusive hadron production from
g* g cannot be calculated in perturbation theory alone~un-
like for instance inclusive hadron production from a sing
timelike photon! and that the separation ofFT into a pertur-
bative pointlike and a nonperturbative hadronic part is
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unambiguous. While more sophisticated procedures h
been elaborated in the literature, we consider it sufficient
our purpose to use the quark mass regulator in Eq.~73!. One
might also take massless quarks and a lower cutoffk' on the
transverse quark momentum, obtaining the same result~73!
with mq replaced byk' in the expression ofbq . While
keeping us away from the region where perturbation the
breaks down, such phenomenological regulators becom
course inadequate as one approaches the ‘‘threshold’’ w
bq50. For our numbers this is atW5580 MeV. One should
bear this in mind when using the expression~73! for invari-
ant massesW around 1 GeV.

On the other hand we saw in Sec. V that with our estim
of two-pion production the hadronic mass spectrum below
GeV is dominated by the single-meson statesp0,h,h8. It is
clear that in such a region the parton-level result can o
hold in the sense of parton-hadron duality, averaged ov
sufficiently large interval inW. We therefore integrate the
cross section foreg→eX over W from threshold up to 1
GeV. The parton-level result, obtained from Eq.~73! with
mu5md5290 MeV, amounts to 2.42 times the cross sect
~69! for one-pion production. This factor should be com
pared with the factor 110.2610.9712.64 for the individual
contributions of the exclusive channelsp1pp1h1h8.
Here we used Eq.~74! for two-pion production, whereas fo
h and h8 we replacedf p5131 MeV in Eq. ~69! with the
respective values 129 and 213 MeV taken from the anal
of Ref. @32#. Given the caveats of parton-hadron duality~be-
low 1 GeV there are very few resonances in the two-pho
channel, andW51 GeV is just above theh8 threshold! and
those of the parton-level calculation itself~discussed above!,
we find the agreement remarkably fair.

VII. PHENOMENOLOGY

We will now discuss the phenomenology of our proce
in eg and ine1e2 collisions. The production of neutral an
charged pion pairs is rather different in this respect, sin
p0p0 is only produced by theg* g subprocess we have dis
cussed so far, whereas forp1p2 production this process
interferes with bremsstrahlung, i.e., the production of
pion pair from a timelike photon radiated off the beam le
ton. We start with the simpler case of neutral pions, and t
discuss charged pairs. In the following we will restrict ou
selves to unpolarized photon and lepton beams. A brief
cussion of beam polarization will be given in Appendix B

A. Helicity amplitudes

The building blocks of our investigation are the helici
amplitudes forg* g→pp, which describe the dynamics o
this process in a model independent way. They are obta
from the hadronic tensorTmn by multiplying the reduced
amplitudes

Ai j ~Q2,W2,u!5e i
mTmne j8

n , i 51,0,2, j 51,2
~75!

with the squared elementary chargee2. In theg* g c.m. our
photon polarization vectors read
4-13
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e05
1

Q
~ uqu,0,0,q0!, e65

1

&
~0,71,2 i ,0! ~76!

for the virtual and

e865
1

&
~0,71,1 i ,0! ~77!

for the real photon, where we have used the coordinate
tem described in Sec. II A. By parity invariance, there a
only three independent helicity amplitudes, which we cho
to beA11 , A21 , andA01 .

Each of these three amplitudes plays a distinctive dyna
cal role in the kinematical regionQ2@W2,L2. It is A11 that
receives the leading twist contribution we have discusse
detail, and which in the scaling regime gives access to
generalized quark distribution amplitudesFq

pp ,

A115(
q

eq
2

2 E
0

1

dz
2z21

z~12z!
Fq

pp~z,z,W2! ~78!

to zeroth order inaS . The amplitudeA21 has a leading-
twist part at orderaS , due to the helicity-two gluon GDA
We briefly discussed this at the end of Sec. III D; for mo
detail we refer to Ref.@16#. Finally, the contributionA01

from a longitudinalg* is nonleading twist. The predicte
power behavior inQ2 at fixed W2 and z is therefore that
A11 becomes independent ofQ2, whereasA01 decreases a
least as 1/Q. The amplitudeA21 should becomeQ2 inde-
pendent. If the helicity-two gluon GDA is, however, not su
ficiently large,A21 may be dominated by higher-twist con
tributions at accessible values ofQ2 and should decrease as
power of 1/Q in the correspondingQ2 range. Of course al
these predictions are to be understood as up to correctio
logQ2. At sufficiently largeQ2, the longitudinal amplitude
A01 is thus predicted to be small compared withA11 . One
can also expect thatA21 will be smaller thanA11 , since its
leading-twist part is suppressed byaS .

To discuss the different partial waves in which the pi
pair can be produced, we expand each of the amplitu
A11 ,A01 ,A21 as

Ai j 5 (
l 5 j 2 i
even

`

Ai jl ~Q2,W2!Pl
j 2 i~cosu!, i 51,0,2, j 51,

~79!

wherePl
m denotes the associated Legendre polynomial c

responding to the value ofJz of the pp system in its c.m.

B. The g* g subprocess andp0p0 production

The differentialeg cross section for neutral pion pair pro
duction reads
07301
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dseg→epp

dQ2dW2d~cosu!dwU
G

5
a3

16p

b

seg
2

1

Q2~12e!

3„uA11u21uA21u212euA01u2

2cosw Re$A11* A012A21* A01%2Ae~11e!

2cos 2w Re$A11* A21%2e…, ~80!

where the subscriptG indicates that the pions are produce
in a g* g subprocess. Forp0p0 production the phase spac
in Eq. ~80! is understood as restricted to cosuP(0,1), w
P(0,2p) because there are two identical particles in the fi
state. We notice the close similarity of the expression~80!
with the cross section of the crossed channel process of
tual Compton scattering, and much of what we discuss in
following has its counterpart there@14#.

To obtain thee1e2 cross section we use the equivale
photon approximation@2#

dsee→eepp

dQ2dW2d~cosu!dwdx2

5
a

p

1

x2
S 11~12x2!2

2
lnFQmax82 ~x2!

Qmin82 ~x2! G
2~12x2! D dseg→epp

dQ2dW2d~cosu!dw
, ~81!

whereQmin82 andQmax82 are the minimal and maximal virtuality
of the photonq8, respectively. We have a lower kinematic
limit Qmin82 5x2

2me
2/(12x2) determined by the electron mas

me , whereasQmax82 depends on experimental cuts and will b
discussed in more detail in Sec. VIII A. We remark that fo
given eecollider energy the variablesx2 andy are not inde-
pendent at fixedQ2 andW2, since

yx25
Q21W2

see
, ~82!

and that in Eq.~81! one can easily tradedx2 for dy.
Since the helicity amplitudesAi j are independent ofw

they can be partially disentangled from thew dependence of
the cross section, which is completely explicit in Eq.~80!. In
particular, the relative size and theQ2 behavior of the
w-independent term and of the terms with cosw and cos 2w
allow detailed tests of the scaling predictions. This provid
indicators on how close one is to the asymptotic regime
finite values ofQ2. The w-independent term in the larg
parentheses of Eq.~80! receives contributions from leading
twist amplitudes and should thus display scaling behav
The coefficient of cosw is the interference of leading-twis
and nonleading twist amplitudes and should be suppres
by at least one power of 1/Q. Finally, the cos 2w term should
scale or be power suppressed depending on the size o
helicity-two gluon GDA.
4-14
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Apart from standard fitting techniques a way to separ
terms with different angular dependence is the use
weighted cross sections. Weighting each event with a fu
tion w(w,u) we define

Seg~w!5E dQ2dW2dV
dseg

dQ2dW2dV
w~w,u!, ~83!
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wheredV5d(cosu)dw. Notice that since it is not normal
ized, Seg(w) is not just the average value of the functio
w(w,u), and includes information about the size of the cro
section itself. InterpretingSeg(w) as a statistical variable on
can calculate its standard deviation and finds for its rela
statistical error~see, e.g., Ref.@34#!
d~w!5
1

AN

A*dQ2dW2dV
dseg

dQ2dW2dV
w2~w,u!A*dQ2dW2dV

dseg

dQ2dW2dV

U*dQ2dW2dV
dseg

dQ2dW2dV
w~w,u!U , ~84!
qs.

g
eri-
us

al-

is

ls

r-
oss
the

e
pli-
ns
ed

s

where

N5LE dQ2dW2dV
dseg

dQ2dW2dV
~85!

is the expected number of events for a given integrated
minosityL. Equation~84! generalizes the well-known resu
that the relative statistical error of the cross section, i.e.
Seg(1), is 1/AN. We emphasize that the method of weight
cross sections is very flexible, and that the choice of weig
w(w,u) can for instance be adapted to experimental con
tions such as limited angular acceptance or cuts. One ca
course take weighting functions that depend on other v
ables than onlyu and w. In the following we will also use
weighted differential cross sections, where only some of
kinematical variables have been integrated out while oth
are held fixed. In a data analysis, one may thus use
weighting technique for some variables and fitting for othe

The weighting technique is convenient to project out d
ferent terms in the cross section. As an immediate exam
we note that the terms constant inw, with cosw, and with
cos 2w in the eg cross section are obtained from

dSeg~cosmw!

dQ2dW2d~cosu!
~86!

with m50, 1, and 2, respectively. If the moments withm
51 and 2 are measured to be small compared with the
ment m50, this can be because any two of the amplitud
A11 ,A01 ,A21 are much smaller than the third, or it ma
be due to their relative phases. From the theoretical con
erations in Sec. VII A the most natural hypothesis in this c
is, however, thatA01 and A21 are small compared with
A11 .

While the w dependence of the cross section~80! gives
access to the various helicity combinations of the real
virtual photon, its dependence onu contains information on
the angular momentum states in which the pion pair is p
duced.A priori there can be arbitrarily high partial wave
but to analyze theu-distribution in practice one will assum
that at a givenW only a finite number of them is importan
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if only for reasons of phase space. It is easy to see from E
~79! and ~80! that for a superposition of partial wavesl
50,2, . . . ,L the moment of cosmw in Eq. ~86! is a linear
combination of polynomialsP2l

m(cosu) with highest degree
2L. Weighting the cross section with cos(mw)P2L12

m (cosu)
and integrating overw andu then gives a zero result. Usin
these weights thus provides one way to estimate from exp
mental data how many partial waves are relevant. Let
recall the physical relevance of this information: in the sc
ing regime the highest partial wave relevant inA11 provides
a constraint on how far the two-pion distribution amplitude
from its asymptotic form, as we discussed in Sec. III E.

Let us assume that only partial waves withl<L effec-
tively contribute in the cross section~80!. Theu dependence
of the moments in Eq.~86! is then determined byL11 co-
efficients for m50, L coefficients form51 and L coeffi-
cients form52, corresponding to the number of polynomia
P2l

m(cosu) with l<L. On the other hand, there are 3L/211
complex amplitudesAi jl with l<L in the expansion~79!, so
that there are 3L12 real quantities one would like to dete
mine. A global phase is however unobservable in the cr
section~80!, and one may for instance refer all phases to
phase ofA110 . The 3L11 coefficients one can extract from
the dependence of the cross section onw and u thus allow
one to reconstruct theuAi jl u and their relative phases. Sinc
the relation between the angular coefficients and the am
tudes is quadratic, there will however be multiple solutio
in general. More information can be obtained with polariz
beams, which we briefly discuss in Appendix B.

The situation is simplest if theu-dependence of the cros
section is compatible with thep0p0 system being produced
only in anS and aD wave, and if in addition thew depen-
dence is flat. Assuming thatA01 and A21 are negligible
compared toA11 , one can then decompose

dseg→ep0p0

dQ2dW2d~cosu!
5C001C02P2~cosu!1C22@P2~cosu!#2

~87!

and project out the coefficients, using thatCll 8
5dSeg(wll 8)/(dQ2dW2) with weights

w0052
5

16
~1242 cos2 u149 cos4 u!,
4-15
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FIG. 8. ~a! The coefficientsCll 8 in the differential cross section~87!, evaluated with our model GDA~68!. They are plotted againstW
instead ofW2 and therefore have been multiplied with a Jacobian 2W. The values of the remaining kinematical variables areseg

550 GeV2 andQ255 GeV2. ~b! The same with the alternative ansatz for the GDA described in the text.
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35

8
~126 cos2 u15 cos4 u!,

w225
35

16
~3230 cos2 u135 cos4 u!. ~88!

From these coefficients one can readily extract the am
tudesuA110u,uA112u, and the cosine of their relative phas

In Fig. 8~a! we show the coefficientsC00, C02, andC22
obtained with our model GDA~68!. The interference term
between theSandD waves contains a factor cos(d02d2) and
thus is sensitive to the phase shifts. Characteristic feature
the W dependence ofC02 are the point whered02d2
590°, and the sudden change just belowW51 GeV due to
the behavior of theS wave. To explore the dependence
these observables on our input GDA we have made an
hoc modification, changing the sign in the prediction~67!
from chiral dynamics and taking insteadB10(0)5B12(0)
with B12(0) fixed by the constraint~64! as before. Notice
that this flips the overall signh10 of theSwave in our model.
The result is shown in Fig. 8~b! and illustrates the sensitivity
especially of theS-D interference, to the detailed dynamic
of the g* g process.
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C. Production of p¿pÀ and interference with bremsstrahlung

For the production ofp1p2 pairs in eg collisions, the
g* g reaction we want to study competes with bremsstr
lung, where the pion pair originates from a virtual phot
radiated off the lepton@2#, see Fig. 9. This process produc
the pion pair in theC-odd channel and hence does not co
tribute for p0p0. Its amplitude can be fully computed fo
values ofW where the timelike electromagnetic pion for
factor Fp(W2) is known. The modulus ofFp has been well
measured ine1e2→p1p2. By Watson’s theorem its phas
is equal to theP-wave phase shiftd1 , provided thatW is in
the range wherepp scattering is elastic. This is rather we
satisfied forW up to 1 GeV. In our numerical studies we us
for Fp the parametrizationN51 of Ref. @30#, which is in
good agreement with the data foruFpu2 shown in Fig. 10. It
also gives a fair description of the phase ofFp in the W
range where we use it, as we see from the comparison
the phase shiftd1 in Fig. 6.

The contribution of theg* g subprocess to the cross se
tion of eg→ep1p2 has the same form~80! as for eg
→ep0p0. We recall that with the isospin relation~21! the
leading-twist helicity amplitudeA11 in Eq. ~78! is the same
for neutral and for charged pion pairs. The bremsstrahlu
contribution reads
s

a
,

-

FIG. 9. The two subprocesse
contributing to the reactioneg
→ep1p2: ~a! g* g scattering
and~b! bremsstrahlung. There is
second bremsstrahlung diagram
where the photon vertices are in
terchanged on the lepton line.
4-16
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dseg→epp

dQ2dW2d~cosu!dwU
B

5
a3

16p

b

seg
2

2b2

W2e
uFp~W2!u2

3„@122x~12x!#sin2 u14x~12x!e cos2 u

1coswA2x~12x!~2x21!Ae~11e!2 sinu cosu

2cos 2wx~12x!2e sin2 u…. ~89!

Finally, the interference term of the two subprocesses ca
written as2

dseg→epp

dQ2dW2d~cosu!dwU
I

522el

a3

16p

b

seg
2

&b

AW2Q2e~12e!

3~C01C1 cosw1C2 cos 2w1C3 cos3w!
~90!

with el51 for positrons and21 for electrons, and coeffi
cients

C05Re$Fp* A11%A2x~12x!Ae~11e!cosu

1Re$Fp* A01%~12x!Ae~11e!sinu,

C15Re$Fp* A11%@12~12x!~11e!#sinu

2Re$Fp* A01%A2x~12x!2e cosu

1Re$Fp* A21%~12x! sinu,

C252Re$Fp* A01%xAe~11e!sinu

2Re$Fp* A21%A2x~12x!Ae~11e!cosu,

2A C program containing the expressions~80!, ~89!, ~90!, ~91!, as
well as the amplitudeA11 calculated with our model GDA~68!,
can be obtained from the authors.

FIG. 10. The square of the electromagnetic pion form facto
the timelike region. The data points are from Ref.@35# and the
curve is the parametrizationN51 of Ref. @30#.
07301
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C352Re$Fp* A21%xe sinu. ~91!

Remember that in our kinematical limit 12x;W2/Q2 is
small. The structure of the bremsstrahlung contribution~89!
then becomes rather simple, since atQ2@W2 the terms in
large parentheses reduce to sin2 u. With the scaling predic-
tions for theg* g amplitudes discussed in Sec. VII A we als
obtain theQ2 behavior for each of the coefficientsCn in the
interference term~90!.

The relative dependence onQ2, W2 and one of the three
contributions to the cross section is controlled by the pref
tors

1

Q2~12e!
,

2b2

W2e
,

&b

AW2Q2e~12e!
~92!

for g* g, bremsstrahlung and their interference, respective
and by the pion form factorFp(W2), which appears linearly
in the interference and squared in the pure bremsstrah
term. The factorsQ2 andW2 in Eq. ~92! can be traced back
to the propagator of the virtual photon in each subproce
and the extra factor ofb in the bremsstrahlung amplitud
reflects the fact that the pion pair is produced in theP wave
there.

From the factors~92! it follows that theg* g contribution
decreases faster withQ2 than bremsstrahlung. On the oth
hand theg* g process is enhanced at largee, whereas brems-
strahlung profits from smalle. To study the amplitudesAi j
either in theg* g contribution or in the interference term
one will therefore go to larger values ofe, corresponding to
small or intermediate values ofy ~notice thate50.8 corre-
sponds toy50.5!. The behavior inQ2 andy of the different
contributions to theeecross section can be seen in Figs.
and 12, respectively, which have again been obtained w
our model GDA~68!. Notice that apart from the factors~92!
just discussed, there is a global dependence ony and Q2

through the factor 1/seg
2 in the eg cross section and throug

the variablex2 in the real photon flux, see Eqs.~9! and~82!.
A very strong effect on the relative weight of the differe

contributions comes from the pion form factorFp(W2). As
one can anticipate from Fig. 10 it leads to a considera
enhancement of the bremsstrahlung term in a broadW inter-
val around ther mass, thereby also enhancing the interf
ence. TheW2-dependence of the different terms, obtain
with of our ansatz~68! for the GDA, are shown in Fig. 13
As we discussed in Sec. IV this ansatz most likely overs
plifies theW2 dependence of the coefficientsB10 andB12 in
Fq

1 , but the corresponding error in estimating theW2 be-
havior of A11 should not change the qualitative picture
Fig. 13.

In the limit of largeQ2 the different contributions to the
cross section have distinctive dependences onw. The g* g
contribution is predicted to be constant inw with a cos 2w
modulation due to the productA11* A21 . The bremsstrah-
lung term should be flat, and the interference between th
should be dominated by cosw and cos 3w, going with A11

andA21 , respectively. We show examples of thew behav-
ior in Fig. 14, remembering that in our modelA21 is zero

n

4-17



les

M. DIEHL, T. GOUSSET, AND B. PIRE PHYSICAL REVIEW D62 073014
FIG. 11. ~a! The contributions to the differentialeecross section fromg* g, bremsstrahlung and their interference. Kinematical variab
are W5400 MeV, w50, y50.1, E153.1 GeV, E259 GeV. For the real photon flux in Eq.~81! we take a2L

max5300 mrad andl'L8max

5100 MeV as explained in Sec. VIII A. The sign of the interference term corresponds to ane1g subprocess.~b! The same as~a!, but with
y50.2.
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because we have neglected the contribution of the helic
two gluon GDA. We notice that the cos 2w term in brems-
strahlung, which is kinematically suppressed by 12x
;W2/Q2, is clearly visible at the larger energyW
5800 MeV. Theu dependence, shown in Fig. 15, is al
quite different for the three components of the cross sect
For theg* g term and the interference it depends in detail
the coefficients of the different partial waves contributing
the amplitudesAi j .

D. Studying the g* g subprocess through the interference
term

The interference between theg* g and bremsstrahlung
subprocesses provides an opportunity to study theg* g con-
tribution atamplitudelevel. On one hand this means that o
can completely separate the contributionsA11 , A21 , and

FIG. 12. The same as Fig. 11, but as a function ofy at Q2

55 GeV2.
07301
y-

n.

A01 from different photon polarizations. On the other hand
gives access to the phases of these amplitudes relative t
phase of the pion form factorFp , which is equal to thepp
phase shiftd1 in the range ofW we are considering. In ki-
nematical regions where the bremsstrahlung amplitude
large, especially forW around ther mass peak, the interfer
ence can also be used to ‘‘amplify’’ theg* g signal.

For this to be useful it is essential that one can clea
separate the interference term~90! from the pureg* g and
bremsstrahlung contributions in the cross section. This
possible since theg* g collision produces the pion pair in th
C-even channel, whereas in bremsstrahlungpp occurs in the
C-odd projection. The interference term can therefore
separated by reversing the charge of the lepton in theeg
collision, a possibility that is automatically provided ate1e2

colliders. Alternatively, any observable that is odd under

FIG. 13. TheW dependence of the different contributions to t
differential e1g cross section atQ255 GeV2, w50 and seg

550 GeV2. The corresponding values ofy range from 0.1 to 0.12.
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FIG. 14. ~a! Thew dependence
of the different contributions to
the differentiale1g cross section
at Q255 GeV2, W5400 MeV,
and y50.1. ~b! The same forW
5800 MeV.
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change of thep1 andp2 momenta is only sensitive to th
interference term, which in turn drops out in any observa
even under this exchange. In terms of the variables we
using, this exchange corresponds to the substitution (u,w)
→(p2u,p1w). This means that we have direct access
the interference through the angular distribution of the p
pair in its rest frame. We emphasize that on the experime
level this does not require a perfect angular measurem
but only that the detection and reconstruction does not in
duce a bias between positive and negative pions.

From thew dependence of the cross section one can
tract the four coefficientsCn in Eq. ~90!, which determine
the three quantities Re$Fp*A11%, Re$Fp*A01%, and
Re$Fp*A21%. In fact, they overdetermine them, and one c
for instance use onlyC1 ,C2 ,C3 , and keep the information
from C0 for a cross check. We remark in passing that this
owed to the fact that pions have zero spin, otherwise th
would be more helicity amplitudes for theg* g reaction than
independent observables one can extract from
w-dependence. Using thew moments~86! with m51,2,3 and
inverting the relation betweenC1 ,C2 ,C3 and the helicity
amplitudes we obtain

K

12~12x!~11e!

dSeg~w1!

dQ2dW2d~cosu!
1$u↔p2u%

52 Re$Fp* A11%sin3 u,

K

xAe~11e!

dSeg~w0!

dQ2dW2d~cosu!
1$u↔p2u%

52 Re$Fp* A01%sin2 u cosu,

K

xe

dSeg~w2!

dQ2dW2d~cosu!
1$u↔p2u%

52 Re$Fp* A21%sinu ~93!

with a global factor
07301
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K~Q2,W2,e!52elS a3

8

~bxy!2

Q4

&

AW2Q2e~12e!
D 21

~94!

and weights

w15sin2 u cosw

2A2~12x!

x
A e

11e
2 cosu sinu cos 2w

1
12x

xe
~sin2 u14e cos2 u!cos 3w,

w052sinu cosu cos 2w

1A2~12x!

x
A11e

e
cos2 u cos 3w,

w252cos 3w. ~95!

By taking weights that are odd under the exchange of thep1

and p2 momenta and summing over configurations withu
andp2u we have canceled the contributions from the pu
g* g and bremsstrahlung terms in the cross section. We
mark that our method can easily be adapted to the case w
one does not have full acceptance inw, since the moments o
cosw, cos 2w, and cos 3w are always linear combinations o
Re$Fp*Aij%.

The functionswi have been chosen such that they a
finite, because the use of unbounded weighting function
problematic. As a consequence, the terms Re$Fp*Aij% on the
RHS of Eq.~93! are still multiplied with functions ofu. One
can avoid the rather strong suppression of anglesu near 0 or
p in Re$Fp*A11%sin3 u if the measurement of the momen
~93! indicates thatA21 and A01 are small compared with
A11 . In this case one may replace the weightw1 with
cosw, whose moment is dominated byA11sinu with correc-
tions of orderA12xA01 and (12x)A21 . Alternatively, the
moment of
4-19
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FIG. 15. ~a! The u depen-
dence of the different contribu
tions to the differential e1g
cross section atQ255 GeV2, W
5400 MeV, w50, and y50.1.
~b! The same forW5800 MeV.
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w18 5sinu cosw2A2~12x!

x
A e

11e
2 cosu cos 2w,

~96!

projects onA11sin2 u with corrections only of order (1
2x)A21 . In a similar way the moment of cosu cos 2w ap-
proximately projects onA01sinu cosu if A21 is sufficiently
small.

Theu dependence of the moments~93! contains informa-
tion on the partial wave decomposition of the pion pair. O
way to extract the partial waves is of course to fit theu
dependence of the weighted differential cross sections~93!.
Alternatively, one can use weighted cross sections integr
over bothw andu. The weight cos 3wPl

2(cosu)/sinu readily
projects out thel th partial wave inA21 as we easily see
from Eq.~93!. Note that, sincePl

2(cosu)}sin2 u, this weight-
ing function is a trigonometric polynomial. Similarly
cos 2wPl

1(cosu)/sinu can be used to obtain thel th partial
wave inA01 if the contribution fromA21 is small enough.

For A11 the situation is more complicated, because
functions w1Pl(cosu)/sin3 u, w18 Pl(cosu)/sin2 u, and
coswPl(cosu)/sinu are all unbounded. The same proble
occurs for the functionw0Pl

1(cosu)/(sin2 u cosu). In practice
one may proceed as we discussed in Sec. VII B and res
the analysis to a finite number of partial waves, which has
be determined from the data. Decomposing the coeffic
Cn in Eq. ~91! on polynomialsPl 11

n (cosu) one can see tha
if only partial waves withl<L are relevant in the amplitude
Ai j , then weighting the cross section with cosnwPL13

n (cosu)
and integrating overw andu must give zero. For a restricte
number of partial waves one can then find weights to pro
out the corresponding amplitudes. In the case whereA21

andA01 are negligible and only the partial wavesl 50 and
l 52 are important inA11 , we have, for instance,

K

12~12x!~11e!

dSeg~w1 l !

dQ2dW2 5Re$Fp* A11 l%, l 50,2

~97!

with
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w105
4

3p
cosw~112 cos2 u!,

w1252
16

3p
cosw~124 cos2 u!. ~98!

In Fig. 16 we show the moments of cosw, w10 andw12
as a function ofW for our model GDA~68! and also for the
alternative ansatz described at the end of Sec. VII B.
clearly see the sensitivity of our observables to the deta
phase structure of theg*g amplitude.

E. Comparison with lepton pair production

In this section we compare our processeg→ep1p2 with
the production of a muon pair,eg→em1m2, in the same
kinematics. This is interesting in itself becausem1m2 pro-
duction is the QED analogue of the reaction we are study
but also because it constitutes an experimental backgroun
the extent that a muon pair can be misidentified as a pai
charged pions.

The helicities of the muons can couple to 0 or61 along
the direction of them1 momentum in theg*g c.m. From
angular momentum conservation in the subprocessesg* g
→m1m2 and g* →m1m2 ~the latter occurring in brems
strahlung! it is clear that the dependence onu andw must be
different in the cross sections for pion and for muon p
production. We therefore restrict ourselves here to the cr
sections integrated over these angles. For the bremsstrah
contribution we have

dseg→eX

dQ2dW2U
B

5
a3

3seg
2

122x~12x!~12e!

e
f B

X~W2!, ~99!

where

f B
p1p2

5
b3uFp~W2!u2

W2 , f B
m1m2

5
2bm~32bm

2 !

W2

~100!
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FIG. 16. ~a! Differential
cross sections weighted with
cosw, w10 , and w12 . The
curves are calculated for ane1g
collision at seg550 GeV2 and
Q255 GeV2 with the model
GDA in Eq. ~68!. ~b! The same
for the alternative GDA de-
scribed at the end of Sec. VII B
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with the muon velocitybm5(124mm
2 /W2)1/2 in the g*g

c.m. For theg*g process we can easily adapt the result~73!
for openqq̄-production to them1m2 case and find

dseg→X

dQ2dW2U
G

5
a3

4seg
2

1

Q2~12e!
f G

X~W2!, ~101!

where

f G
p1p2

5S 25Rp

18 D 2

bS 12
2

3
b21

1

5
b4D ,

f G
m1m2

58S ln
11bm

12bm
2bmD , ~102!

up to corrections of orderW2/Q2. Notice that both for
bremsstrahlung and forg*g, theQ2 dependence is the sam
in the pion and the muon case.

The functionsf B
X and f G

X are compared in Fig. 17. We se
that for the bremsstrahlung contribution pion production
enhanced by the strong resonance effect around ther mass,
as manifested inFp(W2). In the g*g subprocess, on the
other hand, we find that with our estimate of the GDA, pi
production is suppressed compared to muons by a facto
to 100. This is mostly due to the numerical constants in
07301
s

50
e

expressions~102!. In part it also comes from the logarithm

log(12bm) in f G
m1m2

, which is generated by the collinea
regions aroundu50 andp as discussed in Sec. VI. Notic
that for this reason them1m2 cross section will be relatively
sensitive to cuts that affectu. The same will apply to the
interference between bremsstrahlung andg*g, which drops
of course out after angular integration. From the results onf B

X

and f G
X we expect that the ratio of muon to pion pair produ

tion will be appreciable in the interference term.
Another experimental background, again due to parti

misidentification, ise6g→e6e1e2. Compared withm1m2

production there are further Feynman diagrams, which
be obtained from the muon case by interchanging the li
with momentak8 and eitherp or p8, now corresponding to
identical particles. We shall not analyze these diagrams h
but will at least assess the contributions from those diagra
that are also present in muon production. Replacingbm with
be we obtain velocities extremely close to 1. Nothing dr
matic happens in the bremsstrahlung part~100!, but the loga-
rithm in theg*g subprocess~102! is now much larger than
for muons. This large logarithm is however generated
transverse momentap' of orderme in the g*g c.m., which
correspond to extremely small anglesu of orderme /W. For
any cut that effectively leads to a minimum angleumin much
larger than that, one has to replacebm with cosumin in Eq.
g

r

FIG. 17. ~a! The functionsf B
X

occurring in the bremsstrahlun
contribution ~99! to p1p2 and
m1m2 production. They are plot-
ted againstW instead ofW2 and
therefore have been multiplied
with a Jacobian 2W. ~b! The same
for the functions f G

X in the g* g
contribution ~101!. Note that the
curve for pions, obtained with ou
model GDA ~68!, has been multi-
plied by a factor 100.
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FIG. 18. ~a! The pion ener-
gies pL

0 ~solid! and pL8
0 ~dotted!

in the laboratory as a function o
the angleu in the two-pion c.m.
The values of the remaining ki
nematical variables areE153.1
GeV, E259 GeV, Q255 GeV2,
W5400 MeV, y50.1,w50. ~b!
The same for the transverse pio
momenta p'L and p'L8 in the
laboratory.
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~102!, which can significantly reduce the size of the log
rithm.

We finally note that the differential cross sections f
e1e2→e1e2e1e2 and e1e2→e1e2m1m2 have been
fully calculated to first order in QED and are available in t
form of Monte Carlo generators@36#.

VIII. CROSS SECTION ESTIMATES

A. Laboratory kinematics and experimental cuts

Before giving our estimates for the cross section of o
process at variouse1e2 colliders, we give a brief discussio
of the kinematics in the laboratory frame and the effects
some experimental cuts. Starting with the kinematics of
scattered leptonk8, we remark that there is a simple tran
formation between the variables (Q2,y) and (E18 ,a1L),
whereE18 anda1L , respectively, are the energy and scatt
ing angle ofk8 in the laboratory frame. Imposing minimum
values on both quantities we have

y511
Q2

4E1
22

E18

E1
<11

Q2

4E1
22

E18
min

E1
~103!

and

y512
Q2

4E1
2

11cosa1L

12cosa1L
>12

Q2

4E1
2

11cosa1L
min

12cosa1L
min .

~104!

The condition~103! cuts on large values ofy and is generally
not very serious, because most information on theg*g pro-
cess is obtained from low or intermediatey as we discussed
after Eq.~92!. The lower cut~104!, on the other hand, se
verely restricts the interestingy range in some experimenta
setups ifQ2 is not large enough. We will encounter an e
ample of this in Sec. VIII B.

The transformation of the pion momenta into the labo
tory system leads to rather lengthy expressions, which
will not give here. Notice that the leptonk8 has a large
transverse momentumk'L8 5QA12y in the laboratory,
which must be compensated by the two pions. Even tho
thepp system has a rather low invariant mass, the pions t
07301
-

r

f
e

-

-
e

h
s

carry large transverse momentum which helps to de
them. An exception are configurations with the c.m. anglu
close to 0 orp, which in the laboratory correspond to a
asymmetric sharing of momentum between the two pio
This is illustrated in Fig. 18.

It is instructive to consider the point where there thepp
system has zero longitudinal momentumPL

3 in the labora-
tory. With the approximationW2!Q2 we find

PL
35yE12

12y

y

Q2

4E1
, ~105!

so thatPL
350 wheny equals

y05
Q

2E1
SA11

Q2

16E1
22

Q

4E1
D . ~106!

For Q!E1 this simplifies toy05Q/(2E1). If y is very dif-
ferent fromy0 the pp system is strongly boosted along th
beam axis, and if this boost is too large then one or b
pions will go out of the detector acceptance.

We finally have to discuss the kinematics of the scatte
lepton l 8 in the laboratory. In terms of its scattering ang
a2L we have, up to electron mass corrections

l'L8 5~12x2!E2 sina2L ~107!

for the transverse component ofl 8, and

Q8252q825~12x2!E2
2S 2 sin

a2L

2 D 2

~108!

for the photon virtuality. For smalla2L we obtain the simple
relation

Q825
l'L82

12x2
. ~109!

It turns out that an antitagging condition on the leptonl 8,
i.e., a2L<a2L

max with a2L
max determined by the acceptance of

lepton in the detector, is not enough to keepQ82 small. With
the parametersE2 anda2L

max in Tables I and III we find that,
except in the region ofx2 very close to 1, the maximum
4-22
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TABLE I. Cross sections fore1e2→e1e2p1p2, integrated over the rangeW5300 to 1000 MeV,
Q254 to 20 GeV2, and y from its lower kinematical limit~110! up to 0.5. The cut parametersa2L

max and
l'L
max5100 MeV determine the real photon flux as described in Sec. VIII A. In the column for CLEO, the

of the weighted cross sectionsSee@sgn(cosw)# andSee(cosw) corresponds to a taggede1.

BABAR
e2 tagged

BABAR
e1 tagged

BELLE
e2 tagged

BELLE
e1 tagged

CLEO

E1 @GeV# 9 3.1 8 3.5 5.3
E2 @GeV# 3.1 9 3.5 8 5.3
a2L

max @mrad# 684 300 154 112 227

s @fb# 452 452 452 452 453
sG @ fb# 15 15 14 15 15
sB @ fb# 437 438 437 438 438
See @sgn(coss)# @fb# 251 52 251 51 51
See (cosw) @fb# 240 40 240 40 41
ANd@sgn(cosw)# 8.8 8.8 8.8 8.8 8.8
ANd(cosw) 7.7 7.7 7.7 7.7 7.7
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values ofQ82 and l'L82 are a few GeV2. Under such circum-
stances it is clearly inappropriate to approximateq82 as zero
and the momental ,l 8,q8 as collinear, which we have don
throughout this work. Both the kinematical transformati
from the eg frame to the laboratory and the calculation
the cross section have to be modified then. One must
only recalculate the two-photon and bremsstrahlung p
cesses of Fig. 9 but also include further diagrams contrib
ing to the reactione1e2→e1e2pp. Although this is pos-
sible in principle, we wish to retain here the simpl
expressions for the cross section with one real photon.
therefore require thatQ82 be small compared with the othe
kinematical invariants in our problem.

A way to achieve this, suggested by Eq.~109!, is to im-
pose an upper cut onl'L8 , i.e., in practical terms on the sum
uk'L8 1p'L1p'L8 u of the reconstructed transverse momen
possibly supplemented by a lower cut on 12x2 . In our nu-
merical studies we determine the maximum virtualityQmax82

in the photon flux of Eq.~81! through Eqs.~107! and ~108!
by requiring both a2L<a2L

max and l'L8 < l'L8 max5100 MeV.
This leads to considerably smaller virtualities than the a
tagging condition alone, although forx2 very close to 1 the
resulting Qmax82 is still not very much smaller thanW2. In
practice one may therefore consider an additional cut onx2 ,
but we have refrained from this in our estimates. Notice t
the Q82 spectrum of the photon flux is logarithmic so that
substantial part of the cross section comes fromQ82 much
smaller thanQmax82 .

B. B factories

We have now all elements to give cross section estim
for existing e1e2 facilities. We start with theB factories
BABAR, BELLE, and CLEO, running at a c.m. energyAsee
around 10 GeV. Using our model GDA~68! we calculate the
integrated cross sections and the individual contributions
sG andsB from theg*g and bremsstrahlung subprocess
To project out their interference term we take simple e
amples of weightede1e2 cross sectionsSee@sgn(cosw)# and
07301
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See(cosw), defined in complete analogy with the weighte
eg cross sections~83!. We remark thatSee@sgn( cosw)# is
simply the left-right asymmetry of the pions in their c.m. W
integrate overy from its lower kinematical limit

y>
Q21W2

4E1E2
~110!

up to y50.5. Choosing a larger value increases the cr
section, but the gain is mainly due to bremsstrahlung. Up
which values ofy one can extract useful information on th
g*g process depends of course on the detailed kinema
and must be studied in each particular case. The same is
for the upper limit of theQ2 integration. For its lower limit
we take 4 GeV2 as a minimum value where one might expe
a lowest-order calculation to be reliable, see our discuss
in Sec. V. To determine the value ofQmax82 in the equivalent
photon flux we impose the cuts discussed at the end of S
VIII A. Our results for e1e2→e1e2p1p2 are given in
Table I, where apart from the quantities just discussed
also give the coefficients in the relative statistical erro
d(w);const/AN of the weighted cross sectionsSee(w). We
see that the results for the different kinematical situations
practically identical. This indicates that it is the cutl'L8
<100 MeV which determines the real photon flux in most
the relevant parameter space, and not the cut ona2L , which
is different in each of the five cases. We also find th
See(cosw) has a slightly smaller relative statistical error th
See@sgn( cosw)# and thus greater sensitivity to the interfe
ence term.

To estimate the effects of experimental acceptance for
detected particles we impose a cuta1L

min<a1L<a1L
max on the

scattering anglea1L of the tagged leptonk8, a cut uL
min

<(uL ,uL8)<uL
max on the polar anglesuL and uL8 of the pion

momentap andp8 ~measured with respect to the direction
the initial beam leptonk! and a minimum transverse mome
tum of 100 MeV for the tagged lepton and for each of t
pions. All quantities refer of course to the laboratory fram
The results are shown in Table II.
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TABLE II. As Table I but with cuts imposed on the detection angles as specified, and in addit
minimum transverse momentum for the tagged lepton and for both pions of 100 MeV in the laboratorE1 ,
E2 , anda2L

max for each column are the same as in Table I.

BABAR
e2 tagged

BABAR
e1 tagged

BELLE
e2 tagged

BELLE
e1 tagged

CLEO

a1L
min @mrad# 300 684 112 154 227

(p2a1L
max) @mrad# 684 300 154 112 227

uL
min @mrad# 300 684 297 524 314

(p2uL
max) @mrad# 684 300 524 297 314

s @fb# 329 433 443 443 446
sG @ fb# 6 12 13 13 14
sB @ fb# 323 422 420 430 433
See @sgn(cosw)# @fb# 231 48 250 51 52
See(cosw) @fb# 224 38 239 40 41
AN d@sgn(cosw)# 10.5 8.9 8.7 8.7 8.6
AN d(cosw) 9.0 7.8 7.6 7.6 7.5
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Comparing with Table I we see that the effects of the
cuts are generally quite moderate. The strongest effec
observed for BABAR kinematics in the case where thee2 is
tagged. This can be traced back to the constrainta1L

min

<a1L . The minimum value ofy implied by Eq. ~104! for
Q254 GeV2 is 0.46 in this case, which effectively cuts awa
all phase space where theg*g process is relevant. The situ
ation improves rapidly asQ2 goes up, and forQ256 GeV2

our cut impliesy>0.19. For the other experimental config
rations the same cut is much less restrictive: for BABA
kinematics with a taggede1 our cut on a1L implies y
>0.18 atQ254 GeV2, whereas in the cases of BELLE an
CLEO there is not restriction ony from the inequality~104!
at all, not even atQ254 GeV2.

We find that in the kinematics ofB factories the interfer-
ence term is clearly larger than the contribution fromg*g
alone. With several 10 fb21 integrated luminosity our esti
mated cross sections give event rates of order 10 000. As
see from the tables, the relative statistical error on the in
ference term, extracted through the mome
See@sgn( cosw)# or See(cosw) is about 8 to 10 times large
than for integrated cross sections~where it is 1/AN!, so that
the interference could be measured with statistical error
the 10% range.

For the production of neutral pion pairs we easily obta
the cross section without cuts by multiplyingsG in Table I
with a factor 1

2, due to the restricted phase space of identi
particles. We refrain from a discussion of the experimen
reconstruction of the four-photon state coming from tw
pion decays, but for an order-of-magnitude indication
event rates one may take half of the cross sectionssG in
Table II. We then estimate hundreds of events with sev
10 fb21, corresponding again to a statistical error arou
10%. Thus studies of both charged and neutral pair prod
tion seem promising to us.

C. LEP

Let us now investigate the situation at high-energy coll
ers, taking as examples the CERNe1e2 collider LEP1 at
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E15E2545 GeV and LEP2 atE15E2595 GeV. In the
columns labeled ‘‘no cuts’’ in Table III we list our predicte
cross sections, with cuts only onl'L8 anda2L so that the real
photon flux is defined. For the kinematics we have chos
the cross sections come out about a factor 2 to 3 larger
at theB factories. Luminosities at LEP are, however, mu
smaller, so that unfortunately we estimate rather low achi
able event rates, and it is not clear to what extent studie
our process in this kinematical regime will be feasible.

To see the effect of cuts on the detected particles
require a1L

min<a1L<p2a1L
min with a1L

min530 mrad andE18
>0.7E1 for the tagged lepton, as well asuL

min<(uL ,uL8)<p
2uL

min with uL
min5262 mrad~corresponding to pseudorapid

ties uhu<2) and a minimum transverse momentum of 1
MeV for each of the pions. The results are given in t
columns ‘‘with cuts’’ of Table III. The most serious restric

TABLE III. Cross sections fore1e2→e1e2p1p2, integrated
over the rangeW5300 to 1000 MeV,Q254 GeV2 to Qmax

2 , andy
from its lower kinematical limit~110! up to 0.5. The columns
marked ‘‘no cuts’’ correspond to imposing only the cuts that det
mine the real photon flux as explained in Sec. VIII A, with para
eters a2L

max530 mrad andl'L8max5100 MeV. The columns ‘‘with
cuts’’ refer to the additional cuts described in the text. The sign
the weighted cross sectionsSee@sgn(cosw)# andSee(cosw) is for a
taggede1.

LEP 1 LEP 2
no cuts with cuts no cuts with cuts

E15E2 @GeV# 45 45 95 95
Qmax

2 @GeV2# 20 20 40 40

s @fb# 1023 167 1333 50
sG @ fb# 86 53 124 17
sB @ fb# 937 114 1209 33
See@sgn(cosw)# @fb# 128 41 159 13
See(cosw) @fb# 101 32 125 10
AN d@sgn(cosw)# 8.0 4.0 8.4 3.7
AN d(cosw) 7.0 3.5 7.4 3.3
4-24
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EXCLUSIVE PRODUCTION OF PION PAIRS INg* g . . . PHYSICAL REVIEW D 62 073014
tion here is the cut on the pion anglesuL anduL8 . This can be
understood from our considerations after Eq.~106!. The
value of y where thepp system has zero longitudinal mo
mentum in the laboratory isQ/(2E1) and thus of order 0.01
to 0.05 here. Over most of they range the pions are therefor
so strongly boosted in the lab that they appear under
tremely small angles and cannot be detected. We observ
fact in Table III that the effect of cuts is stronger at LEP
with its higher beam energy, and that it is more pronoun
for bremsstrahlung than for theg* g process, the latter bein
less affected by a loss of events at largery.

At LEP1 the cut ona1L puts no restriction ony, but for
LEP2 we find that forQ254 GeV2 it implies y.0.5, so that
one must go to largerQ2. ForQ2 of about 8 GeV2 there is no
restriction ony from the constraint~104! any more.

We finally note that at the very large values ofQ2 acces-
sible at high-energy colliders one can afford invariant mas
W well above 1 GeV, while still fulfilling the basic condition
W2!Q2 of our study. We have not explored this mass
gion, since our model for the pion GDA is not applicab
there. It is however clear that there will be a strong enhan
ment of the GDAs atW around the masses ofC-even reso-
nances, such as thef 2(1270).

IX. SUMMARY AND OUTLOOK

In this paper we have analyzed in detail the proc
g* g→pp in the domain where the virtualityQ of theg* is
much larger than the invariant massW of the two-pion sys-
tem. It factorizes into a parton-level subprocess, which
under perturbative control, and nonperturbative matrix e
ments called generalized distribution amplitudes. This ma
the reaction a laboratory to study the nonperturbative dyn
ics of a two-pion system forming from a well-defined pa
tonic state, namely, from a quark-antiquark or a two-glu
pair produced at small distance. The perturbative stage o
overall process is completely analogous to the one in sin
meson production, well studied in the case of ap0, h, and
h8. It results in a scaling behavior of the amplitude asQ2

increases at fixedW2, selects characteristic helicity comb
nations of the two photons, and predicts that the two pi
are produced with total isospin zero. The dynamical cont
of the nonperturbative matrix elements, on the other hand
more complex than for a single particle. Even the low
Fock state ofup& ^ up&, that is,qq̄^ qq̄, contains more par-
tons that the initialqq̄ or gg system from which the two
pions are formed. In this sense a GDA describes the tra
tion between different parton configurations in the no
perturbative regime. The two-pion distribution amplitu
contains the full strong interactions between the two pio
leading to dynamical phases which, by Watson’s theor
are identical to the phase shifts in elasticpp scattering as
long asW is below the inelastic threshold. We use this re
tion as an input for our model GDA, and therefore restr
our study to theW region up to 1 GeV.

The evolution equation giving the factorization scale d
pendence of the GDAs is more complex than for a sin
pion due to the mixing ofqq̄ or gg amplitudes, and we hav
given the relevant splitting functions and anomalous dim
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sions for the quantum numbers of relevance here. A sim
taneous expansion ofF(z,z,W2) in the parton momentum
fractionz and partial waves of the pion system leads to lo
matrix elements between the vacuum and a two-pion st
By analytic continuation they are related to the moments
the parton distribution functions of the pion. We have us
the quark momentum fractionRp in the pion, determined
from a global fit of these distributions, as an input for o
model ofF(z,z,W2). The corresponding value ofRp is well
below its asymptotic value under perturbative evolutio
which may be an indication that the lowest non-asympto
terms in the crossed-channel quantityF(z,z,W2) are not
small at factorization scales in the GeV range. We empha
that the question of how close one is to the asymptotic re
of evolution is particularly interesting, because in the case
light pseudoscalars the single-meson distribution amplitu
may be surprisingly close to their asymptotic form even
low scales@9,32#.

From a theory point of view it is also interesting to co
siderFq(z,z,W2), defined by the matrix element in Eq.~13!,
for values ofW much larger than the scale of nonperturbati
interactions. While the dynamics inFq(z,z,W2) is entirely
soft for smallW, part of it becomes hard whenW increases.
In the limit W@1 GeV and to leading order inaS one can
explicitly write Fq(z,z,W2) in terms of a perturbative sub
process and theqq̄ distribution amplitudes for each separa
pion @37#. The resultingFq(z,z,W2) is very far from the
asymptotic form inz. It receives substantial contribution
from high partial waves of thepp system, has a power-law
falloff similar to 1/W2, and its imaginary part is small com
pared to its real part.

We have constructed a model for the GDA atW below 1
GeV, using simple structure as a guide, andRp and thepp
phase shifts as phenomenological inputs. Comparing
rates for the production ofpp and of a single pseudoscala
meson, we found that the hadron spectrum ing* g collisions
below 1 GeV is strongly dominated by the single resonan
p0, h, andh8.

We have further compared our process with openqq̄ pro-
duction, which at higher invariant massesW is commonly
used to describe the part of the total hadronicg* g cross
section due to the pointlike part of the real photon. Intere
ingly, we find that in our particular kinematical limit, th
corresponding scattering amplitude has the same scaling
havior and helicity structure as the one for the exclus
processesg* g→p and g* g→pp. The main difference is
that in thep and pp cases the collinear divergence of th
lowest-order hard scattering diagrams is regulated by
hadronization process. This is encapsulated in the distr
tion amplitudes, which vanish at the end pointsz50 and 1.
In the openqq̄ calculation, on the other hand, the divergen
has to be regulated explicitly. We also note that the sens
ity to the soft end-point region may be larger for pion-pa
production than for a single pion, because for two pions
hard scattering and the distribution amplitudes vanish az
5 1

2 for symmetry reasons. Thus one may expect the onse
the scaling behavior to occur at differentQ2 in the two cases,
an issue that will be interesting to study in experiment.

An investigation of the structure of the cross secti
4-25
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shows that ineg and e1e2 collisions information on the
g* g process can be obtained either through the square o
g* g amplitude, or from its interference with the bremsstra
lung process if the pions are charged. This interference
readily be projected out by appropriateC-odd observables
and it offers the opportunity to separate the differentg* g
helicity amplitudes. If further provides direct access to th
dynamical phases, although a full phase reconstruction
quires polarized beams~see Appendix B!.

The angular distribution of the pion pair in its c.m. co
tains detailed information about the dynamics of theg* g
process. The dependence on the azimuthw separates the dif
ferent helicity combinations of the real and virtual photo
each of which plays a distinct role in the scaling limit.
particular it permits one to study leading-twist and nonle
ing twist amplitudes at the same time, which should prov
additional insight into how far one is from the asympto
regime. Theu dependence, on the other hand, gives acces
the partial waves in which the two pions are produced. I
sensitive to the phases, which reflect the dynamics of thepp
system and its resonances. Even though one will proba
not be able to perform a full extraction of thepp phase shifts
in this way, our process provides constraints on these qu
tities that are independent of the analyses of elasticpp scat-
tering. The presence of higher partial waves would in its
be very interesting, since it gives indirect information on t
deviation ofF(z,z,W2) from its asymptotic form inz.

We have restricted ourselves to the production of p
pairs in this work, but it is clear that many of our results a
also valid for other exclusive systems. The most obvio
generalization is to charged or neutralKK̄ pairs, whose com-
parison withpp would allow one to study aspects of flavo
SU~3! breaking in the context of the quark-hadron transitio
At even higher values ofW2 there is the production ofpp̄,
where extra spin degrees of freedom come in, as in the w
studied case of the parton distributions of the nucleon.

Another very similar process is the production ofm1m2

pairs, i.e., the QED analogue of our reaction. Comparing
rates ofeg→em1m2 with our estimate foreg→ep1p2 we
find that the bremsstrahlung mechanism prefers pions ifW is
in the vicinity of ther mass, reflecting the strong resonan
effect in thepp system. For the production fromg* g, on
the other hand, the cross section is considerably larger in
case of muon pairs. We remark that this could not be an
pated from a dimensional analysis. The amplitudes forg* g
→mm and forg* g→pp have the sameQ2 dependence in
our kinematical limit, and the two-pion distribution ampl
tude, which describes that pions are not pointlike but h
internal structure, is a dimensionless quantity.

Using our model GDA to calculate the cross section
e1e2→e1e2pp, we find encouraging rates for the kine
matics and luminosity ofB factories. Thus there should b
enough statistics for detailed studies at these facilities.
estimates of the effect of cuts also indicate that in the ki
matical region interesting in our context, the pions and
tagged lepton are well within the experimental acceptan
For high-energy colliders such as LEP, our predictions
less optimistic, at least in the range ofW below 1 GeV which
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we have studied here, due both to the lesser luminosity
the strong longitudinal boost of the pion system. In conc
sion, we find that the processg* g→pp can offer valuable
insight into the interactions between quarks, gluons and h
rons, and that it should well be measurable at existinge1e2

facilities.
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APPENDIX A: PION ISOSPIN STATES

We specify in this appendix our sign convention for t
definition of pion states. The relative sign forp1 andp2 is
relevant because it determines the relative sign of the GD
for charged and neutral pion pairs.

In terms of eigenstatesup i& of the isospin operatorsI i ( i
51,2,3) we define

up1&5
1

&
~ up1&1 i up2&), up2&5

1

&
~ up1&2 i up2&),

up0&5up3&. ~A1!

Notice that the sign forup1& is opposite to the usual con
vention for eigenstates of SU~2!. This has to be remembere
when writing down two-pion states with definite isospin u
ing the Clebsch-Gordan coefficients.

The convention~A1! is in line with the customs of field
theory, see for instance Sec. 12.5 of Ref.@38#. If, starting
from the real scalar fields associated withup1& andup2&, one
constructs the complex scalar fieldw which createsup2& out
of the vacuum, thenup1& is created by the conjugated fiel
w* . If one used the opposite sign in definingup1&, which is
more natural in the context of isospin, then there would be
extra minus sign between the fields creatingup2& andup1&.
Through the LSZ reduction formula this sign would show
in crossing relations. With our definition~A1! this does not
happen, and we have for instance that the spacelike p
form factor

^p1~p!uJem
m ~0!up1~p8!&5~p1p8!mFp~ t !. ~A2!

with t5(p2p8)2 becomes
4-26
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EXCLUSIVE PRODUCTION OF PION PAIRS INg* g . . . PHYSICAL REVIEW D 62 073014
^p1~p!p2~p8!uJem
m ~0!u0&5~p2p8!mFp~s! ~A3!

with s5(p1p8)2 in the timelike region. We remark in pass
ing that if one uses the isospin relation~22! and neglects the
contributions from strange and heavy quarks, one has
sum rule

E dzFu
2~z,z,W2!5~2z21!Fp~W2!. ~A4!

The choice~A1! also leads to a convenient relation for th
action of the charge conjugation operatorC, namely,

Cup1&5up2&, Cup0&5up0&. ~A5!

The impossibility to find a sign convention that is natural f
both charge conjugation and the isospin algebra is discu
at length in Chap. 5, Sec. 7 of Ref.@39# ~where the other sign
in defining up1& was chosen!. We also remark that the defi
nition ~A1! implies

^p1uūa~x!db~0!u0&5^p2ud̄a~x!ub~0!u0&, ~A6!

and therefore a relative plus sign between the distribu
amplitudes forp1 andp2.

Our definition is the same as the one chosen by Polya
et al. @18# and it was also adopted in Ref.@37#. We finally
mention that the definition leading to Eq.~15! of Ref. @4# has
the opposite sign forup1&.

APPENDIX B: BEAM POLARIZATION

As we have shown in Secs. VII B and VII D, the unpola
ized eg cross section contains detailed information on
g* g helicity amplitudesAi j . From Eqs.~80! and ~91! it is
however clear that this information is not sufficient to ful
reconstruct the three independent complex amplitudesA11 ,
A01 , andA12 . For completeness we give in this append
the expressions of the cross section with longitudinally
larized lepton and photon beams, and discuss what additi
information can be obtained from single and double po
ization asymmetries.

Starting with theg* g contribution, we have

dseg→epp

dQ2dW2d~cosu!dwU
G

5Eq. ~80!1
a3

16p

b

seg
2

1

Q2~12e!

3@~Pl sinw Im$A11* A012A21* A01%2Ae~12e!

1Pg sinw Im$A11* A011A21* A01%2Ae~11e!

1Pg sin 2w Im$A11* A21%2e

1Pl Pg$uA11u22uA21u2%A12e2

2Pl Pg coswRe$A11* A011A21* A01%2Ae~12e!],
~B1!
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wherePl and Pg , respectively, denote the longitudinal po
larization of the lepton and photon beam, ranging from21 to
1. Together with Eq.~80! we see that if both lepton an
photon are polarized, one has enough independent term
reconstruct the real and imaginary parts of the interferen
A11* A21 , A11* A01 , and A21* A01 . Furthermore, the
squared termsuA11u2 and uA21u2 come with a different
relative sign in the unpolarized cross section and the dou
polarization asymmetry.

The bremsstrahlung contribution to the cross section re

dseg→epp

dQ2dW2d~cosu!dwU
B

5Eq. ~89!1
a3

16p

b

seg
2

2b2

W2e
uFp~W2!u2

3Pl Pg@~2x21!A12e2 sin2 u

1coswA2x~12x!Ae~12e!2 sinu cosu]. ~B2!

Notice that it only contributes to the unpolarized cross s
tion and the double polarization asymmetry, but not to sin
polarization asymmetries. Finally, the interference term c
be written as

dseg→epp

dQ2dW2d~cosu!dwU
I

5Eq. ~90!22el

a3

16p

b

seg
2

&b

AW2Q2e~12e!

3@Pl~C1
l sinw1C2

l sin 2w!

1Pg~C1
g sinw1C2

g sin 2w1C3
g sin 3w!

1Pl Pg~C0
lg1C1

lg cosw1C2
lg cos 2w!] ~B3!

with coefficients

C1
l 52Im$Fp* A11%xA12e2 sinu

1Im$Fp* A21%~12x!A12e2 sinu,

C2
l 5Im$Fp* A01%xAe~12e! sinu

2Im$Fp* A21%A2x~12x!Ae~12e! cosu ~B4!

for lepton polarization,
4-27
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C1
g52Im$Fp* A11%@12~12x!~12e!#sinu

1Im$Fp* A01%A2x~12x!2e cosu

2Im$Fp* A21%~12x!sinu

C2
g5Im$Fp* A01%xAe~11e! sinu

1Im$Fp* A21%A2x~12x!Ae~11e! cosu,

C3
g5Im$Fp* A21%xe sinu ~B5!

for photon polarization, and

C0
lg5Re$Fp* A11%A2x~12x!Ae~12e! cosu

2Re$Fp* A01%~12x!Ae~12e! sinu,

C1
lg5Re$Fp* A11%xA12e2 sinu

2Re$Fp* A21%~12x!A12e2 sinu,
9
uc

ev
l.

th
ig

A,

t. B

07301
C2
lg52Re$Fp* A01%xAe~12e! sinu

1Re$Fp* A21%A2x~12x!Ae~12e! cosu ~B6!

if both lepton and photon are polarized. We see that w
polarized photons one can extract Im$Fp*A11%, Im$Fp*A01%,
and Im$Fp*A21%, which together with the unpolarize
interference term makes it possible to reconstruct all th
complex g* g amplitudes for values ofW where the
pion form factor Fp is known. One cannot achieve th
same with a polarized lepton beam alone, since there
only two terms in thew dependence. In this case one can s
use the suppression by 12x of the second term inC1

l in
order to approximately extract Im$Fp*A11%. Finally, the
double polarization asymmetry gives access to
same quantities one can already obtain in the unpolar
case.
ys.

D

@1# H. Terazawa, Rev. Mod. Phys.45, 615 ~1973!.
@2# V. M. Budnevet al., Phys. Rep., Phys. Lett.15C, 181 ~1975!.
@3# S. J. Brodsky, hep-ph/9708345, talk presented at PHOTON

Egmond aan Zee, Netherlands, 1997; M. R. Pennington, N
Phys. B~Proc. Suppl.! 82, 291 ~2000!.

@4# M. Diehl, T. Gousset, B. Pire, and O. V. Teryaev, Phys. R
Lett. 81, 1782~1998!; M. Diehl, T. Gousset, and B. Pire, Nuc
Phys. B~Proc. Suppl.! 82, 322 ~2000!.

@5# D. Müller et al., Fortschr. Phys.42, 101 ~1994!.
@6# A. Freund, Phys. Rev. D61, 074010~2000!.
@7# G. P. Lepage and S. J. Brodsky, Phys. Rev. D22, 2157~1980!.
@8# S. Ong, Phys. Rev. D52, 3111~1995!; R. Jakob, P. Kroll, and

M. Raulfs, J. Phys. G22, 45 ~1996!; P. Kroll and M. Raulfs,
Phys. Lett. B387, 848 ~1996!; A. V. Radyushkin and R. T.
Ruskov, Nucl. Phys.B481, 625 ~1996!; I. V. Musatov and A.
V. Radyushkin, Phys. Rev. D56, 2713~1997!.

@9# CLEO Collaboration, J. Gronberget al., Phys. Rev. D57, 33
~1998!.

@10# X. Ji, J. Phys. G24, 1181~1998!, and references therein.
@11# M. Diehl, T. Gousset, and B. Pire, in the Proceedings of

Workshop on Exclusive and Semiexclusive Processes at H
Momentum Transfer, Jefferson Lab, Newport News, V
1999, hep-ph/9909445; B. Lehmann-Dronkeet al., Phys. Lett.
B 475, 147 ~2000!.

@12# K. Watanabe, Prog. Theor. Phys.67, 1834~1982!.
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