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It is shown that the off-forward parton distribution f6+=0, i.e., where the initial and final states differ only
in their transverse momenta, can be interpreted as a simultaneous measurement of the longitudinal momentum
and transverse position of partons in the infinite momentum frame.

PACS numbgs): 12.38.Aw, 13.40.Gp, 13.60.Hb

I. INTRODUCTION has a simple interpretation in terms of a density as well,
namely as the Fourier transform of the light-cone
Deeply virtual Compton scatterinPVCS) provides a momentum/impact parameter density with respect to the im-
novel tool to explore hadron structure. In contrast with deeppact parameter.
inelastic scatteringDIS), where one measures the imaginary  |n a light-front (LF) framework it is easy to see that the
part of the forward Compton amplitude only, DVCS allows case;=0 is particularly simple since there only terms diag-
measuring the off-forward Compton amplitude. From thegnga| in the Fock space contribute t6x,t) (just as it is the
parton point of V|ew.th|s implies that DVCS allows. measur- case for ordinary parton distributionsExplicit Fock space
ing off-forward matrix elements of parton correlation func- representations fof(x,t) can be found in Refd4,5]. Mak-
tions; i.e., onle can access light-cone correlation functions %g a Gaussian ansatz for the Fock space components, it is
the form[1,2] therefore straightforward to see the connection between the
_ dependence off(x,t) and the Gaussian size paramdtgg].
fg(x,t)EJ' %<p;|Z(0)y+¢(x—)|p>eixp+x" (1.2) In this paper, we yviII demonstrate tha}t_ this very intuitive.
connection is valid independent of specific models and that it
is in fact possible to determine parton distributions as a func-
wherex* =x°+x® andp*=p°+p® refer to the usual light-  tion of the impact parameter, providéx,t) is known.
cone components arté=g°=(p—p’)? is the invariant mo- Of course, /=0 with t+#0 cannot be achieved in virtual
mentum transfer. The “off-forwardnessfor skewednegsn  compton scattering at finite energies because it always takes
Eq.(1.1) is defined to bg=q"/p". From the point of view gome Jongitudinal momentum transfer in order to convert a
of parton physics in the infinite momentum frame, these off- ;4 4| photon into a real photon, i.e., strictly speakitig
forward parton distributionSOFPD3 have the physical . =0 would correspond to reawide angle Compton scatter-
ang [6,7]. However, as a limiting case{0), f(x,t) is rel-

taken out of the nucleon with momentum fractioand then evant for DVCS as well.

it is inserted back into the nucleon with a four momentum The paper is oraanized as follows. In Sec. Il. we use a
transfer g# [3]. It was immediately recognized that off- tamili pbp bl gth lastic ch ) ¢ f' t’ o ill
forward parton distributions play dual roles in that they com- amiliar observable, the elasfic charge form factor, 1o 1iius-
bine features of both form factors and conventional partorJ;rate how relativistic effects may spoil the identification of

distribution functions[1,2]: for {=t=0 one recovers con- Fourier tre}nsforms qf position space distributions with form
ventional parton distributions, i.e., momentum distributionsfactors. Since this is a well known phenomenon for form
in the infinite momentum framé@MF), while when one in-  factors, Sec. Il will mainly serve to introduce our notation
tegratesf (x,t) over x, one obtains a form factor, i.e., the and reasoning. In Sec. lll, we will then generalize the results
Fourier transform of a coordinate space den€itythe Breit from Sec. Il to/=0 OFPDs. Section Ill contains the deriva-
frame. tion of the main result of this paper, namely the identification
However, the physical interpretation of the general cas®f Fourier transforms of impact parameter dependent parton
still remained obscure, mainly because the initial and finadistributions with OFPDs. The results are summarized in
states in Eq(1.1) are not the same and therefore, in generalSec. IV.
f/(x,t) cannot be interpreted as a ‘density’ but rather their
physical significance is that of a probability amplitude.
In this Rapid Communication, we will study a more gen- || FORM FACTORS AND CHARGE DISTRIBUTIONS
eral limiting case, namely=0, butt+#0, and we will argue
that Nonrelativistic intuition suggests to interpret ordinary
charge form factors as Fourier transforms of charge distribu-
fxO=f,-0(x,1) (1.2) tions in position space. As a warmup exercise, we will in the
following reexamine the limitations of this interpretation in a
relativistic framework.
'For some history on DVCS see Ré8]. Since the charge distribution of a plane wave is ill de-
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fined, it is useful to start from a wave packet - 25 5 - -
Fy(d)=F(—q )f dp|¥(p)[*=F(q*). (2.6

)= d%p ¢(p) B 2.3
)= 2E(27)° P), : Therefore, in a nonrelativistic theofyas long as one uses a
P wave packet which is very localized in position space, the

whereE; = VM?+ p*. Momentum space eigenstates are nor_Fggliftretrﬁglssfc;L@ fgl;nghf?ac(;g? rl%?s ?;151}2 tl): tii(t)irr]n;?é ttcr; iism\(,avra Vrit

malized covariantly as usual, i.e(p’|p)=2E;5(p'—p). q g 9 interpr

Using th | definition ftl’,l ' h rge f rmpf tor ' the form factor as the Fourier transform of the intrinsic
sing the usual detinition ot the charge form facto charge distribution.

b’ [p(0)|p)=(Ez+E;)F(g?), 2.2
<p |p( )|p> ( P P JF(@) 22 B. Relativistic corrections (rest frame)
where Unfortunately, in a relativistic theory, it is in general not
2 e 2 =2 possible to form a wave packet of states whose Fourier trans-
q°=(E;—Ep)°—q (2.3 formed charge distribution equals the form factor. In the

nonrelativistic case, we used a wave packet that had an arbi-
trarily small extension in position space. In a relativistic
theory, localizing a wave packet to less than its Compton
o wavelength in size will in general induce various relativistic
jrw(a)zf d3xe—iq-><<qf|p(>2)|qf> corrections. This fact is best illustrated by considering the
rms radius of this charge distributi¢second derivative with

andq=p’ —p, one obtains for the Fourier transform of the
charge distribution in the wave packet

d3p o respect tag in Eq. (2.4)].
:f—ZE*ZE* W (p+aq)W(p)(p'[p(0)p) ExpandingZy(q) up to and including?(g?), one find$
peEp
- R°., R’ . ,(0:-p)?
1 E;+E; — 2 3 2
=2 | PP (p+ )W (D)F(a?). (2.4 Fy(q)=1-—=0q __fd Pl (p) 2
- 3.0)2
Note thatg? still depends implicitly orp [Eq. (2.3)] and thus +1J' d3p|q- V¥ (p)|2— EJ d3p|\If(5)|2(q p) ,
in general one cannot pui(q?) out of the integral. Equa- 8 E?

tion (2.4) clearly illustrates how the charge distribution in the j

wave packet is obtained from a convolution of the form fac- 2.7
tor with the spatial distribution of the wave packet as well aSyhere R2

varllo.ltj_s”reletlrt]lvstlc effecti. ) v introduced in order t +(R?/6)g2+ O(q". In addition to the contribution from the
nitially, the wave packet was only Introduced In order 10,4 size and the contribution from the size of the wave

be able to cleanly define a charge distribution. On the Othef)acket, one obtains a Lorentz contraction contribution and

hand, we are interested only in the intrinsic charge dlstrlbu-Other relativistic corrections.

t|onkoftthecrj1.s;(rj]ron%|.e., notin thlz (T'Ilfm?u“orl d%e t? the mgve Ideally, one would again like to construct a wave packet
packet an eretore we would TIk€ 10 get rid of anyting g, that the contribution from the spatial extension of the

iated with th ket i 4. > > o
associated wi e wave packet in E3.4) wave packet, i.e., the termd3p|q- V¥ (p)|?, is negligible

A. Nonrelativistic limit cpmpared tdR?q2. Making the_: porrectiops due to the exten-
S sion of the wave packet negligible requires a typical momen-
Inthe ;onrqlgﬂwstlc limit, where B+ Ep/)/2VEGE, tum scale in‘lf(|5) that is much larger than R/ This on the
=1 andg“=—q", one can pull the form factor out of the other hand leads to contributions from the relativistic correc-

integral in Eq.(2.4), yielding tions in Eq. (2.7) that are at least of the ordekR?
~1/R?M*#, which are negligible only if the Compton wave-
fzp(a):[:(_dz)f d*pW*(p+q)¥(p). (2.5  length of the target is much smaller than its intrinsic e
defined through the slope of the form fagtor
. . . . The physics of this result is clear: as soon as one attempts
ngrllgﬁtgyn uss'gg eiaew?(\)/c?al?;eccli(?z trc;i}ti?nvsrg):zg)ea%;-n to localize the wave packet to a region smaller than its
pace.e., _ 3 P N spage Z Compton wavelength, the particle in the wave packet be-
pendence of the overlap integred“pW* (p+q)W(p) ong  comes relativistic and relativistic effects, such as Lorentz
is much weaker than the dependence of the form factor

F(—ﬁz). For such a wave packet E€.5) one thus finds

is defined through the slope oF(g%)=1

SActually, “nonrelativistic” is necessary here only to the extent
that the momentum transfer leaves the target nonrelativistic.
2 would like to thank Bob Jaffe for his suggestion to use wave “We assume here a target with unit charge. The generalization to
packets in the discussion of relativistic corrections. other values for the charge is straightforward.
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contraction, are no longer negligible. What this means is thasmall®> One thus finds for purely transverse momentum
an identification of the slope of the form factor with the rmstransfers in the IMF

radius of a charge distribution in the rest frame is not unam- R R

biguously possible and the best one can achieve is an iden- Fu(q)=F(q?). (2.9
tification with uncertainties on the order of the Compton

wavelength of the target. Physically, this implies that in the IMF one can identify the

Fourier transform of the charge distribution in the transverse
direction (the “transverse profile) with the form factor
C. Infinite momentum frame without relativistic corrections. Of course, for ordinary form
In certain frames, such as the IMWhich will be relevant ~ factors, this result is not very important since the IMF is not
for the application to off-forward parton distributiprthis & natural frame for physical interpretation o_f the form factor.
ambiguity can be avoided. The essential point is that th owever, the analogous r.eSl.Jlt V\.”" be crumgl when we ana-
relativistic corrections are governed by coefficients like yze (off-forward) parton distributions for which the natural

S e —o 2 .. frameis the IMF.
(q~p)/E5 and q /Eﬁ. One way to keep these relativistic
coefficients small is to keeg? andq- p finite while sending Ill. OFF-FORWARD PARTON DISTRIBUTIONS

Ep—, i.e., by going to the IMF. In the following, let us  cqngider a wave packé¥) which is chosen such that it
assume a wave packet such tiat(0,0p,) is the mean has a sharp longitudinal momentym, but whose position
momentum of the wave packet and the momentum transfer ig a localized wave packet in the transverse direction
purely transverse, i.eﬁz(qx,qy,O). Furthermore, we chose )
a wave packet that is a plane wat@ very delocalizefin |\I’>:f dop. qr(ﬁ )|5>
the z direction, i.e.,p, of the wave packet is very sharply \/W + '
peaked aroundP,, and we chooseP, such thatP,
>M,|q|. Then the above-mentioned corrections due to thé-'€ary,
wave packet can be made small without leading to large _ dx— . R L
relativistic corrections, which are governed by the expansion fq,(x,bl)EJ H(\Ifw(bl,O) y (b, ,x7)|P)e*P X
parameter - 5)/E§~ q, /L, P2 3.2

In other words, if we consider a wave packet which is ) N ] )
localized in the transverse direction only, but a plane wavélescribes the probability to find partons with momentum
with very large momentum in thedirection, then as long as fractionx at transversgposition coordinatex; in this wave
this system is probed with only a transverse momentunpacket. What we will show in the following is th&g (x,b, )
transfer, the relativistic corrections to the form factor of thiscan be related to off-forward parton distribution functions
wave packet are governed not by the Compton wavelengtyith /=0.
but rather byx p=1/\/m?+ pzz, which can be made arbitrarily Using Eq.(3.1), one finds

(3.

Ful(x,4,)= f d%q, 719 Pty (.6, )
dzpﬁlf*<51>~lf<5l>J U .
= dx e”P * (p'|(0,0,)y(x~,0
= e (P[0, 6.)lp)
d’p, * (p))W(p,)
:f P, Py P. fg(X,qz), (3.3
V2E;2E;
|
wherep! =p, +q, andp,=p,, i.e., {=0. In order to proceed further, we choose a wave packet that is
very localized in transverse position space. Specifically, we
A. Nonrelativistic limit choose a packet whose width in transverse momentum space

Again we start by investigating the nonrelativistic limit
first, where one findE;~E; ~m and therefore als@?

— —’2 . . . .
~—Qq°. As aresult, Eq(3.3 simplifies, yielding SNote that this result is reminiscent of the result that in the infinite

5 2 - momentum frame, for purely transverse momentum transfer, only
Fu(x d‘ )="f(x _q‘z)J' d°p, W™ (p )W (pL) (3.4) terms that are diagonal in Fock space contribute to the matrix ele-
WAL S 2m ’ ' ments of the(“good” ) current[8].
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is much larger than a typical QCD scale. That way, the debution in the rest framénonrelativisti¢ and the transverse
pendence of the integrand in §§.4) onq, is mostly due to ~ charge distribution in the infinite momentum frame, respec-
the matrix element and not due to the wave padkefhere-  tively. In the same vein, Eq¢3.4) and(3.6) justify to iden-
fore, by making the wave packet very localized in positiontify f;=o(x,t) with the Fourier transform ofimpact param-

space one obtains eter dependepiparton distribution functions with respect to
the impact parameter.
Fo(x,0,)=F(x,—G?), (3.5 Note that, while it would seem unnatural to identify the

elastic form factor with something defined in the IMF, the

and, just as it was the case for the form factor, it is thughatural frame to think about parton distribution functions
Eq. (3.6) is free of relativistic corrections only in the IMF,

OFPD with respect tg, with the impact parameter depen- . e
P . P P P does not represent a serious restriction at all.

dence of the parton distribution in a very localized wave
packet, i.e., with the impact parameter dependence of the
parton distribution in the target particle itself. IV. Q% EVOLUTION

Throughout this paper we have suppressed the depen-
dence of the parton distributions on the momentum sg&le
In an arbitrary frame, e.g., the rest frame, relativistic cor-Obviously, because of scaling violations, all parton distribu-

rections also spoil the above identification(§burier trans-  tions involved depend 0@? as well, e.g.f(x,b, ) should be
forms of) the impact parameter dependence of parton distri- > 2 _q2

butions with OFPD at{=0. Similarly to the relativistic replaced szf(xz’bi Q%) andf(x,~q1) should be replaced
corrections for form factors, the above identification be-byf(x’_ch Q%)

comes ambiguous when one looks at scales smaller than the Fortunately, it is rath-er §traightf0rward_to generalize our
Compton wavelength of the target. results to takeQ? evolution into account since th@? evo-

However, since the natural frame to think abdoff- lution equations for OFPDs reduce to the usual Dokshitzer-
forward parton distributions is the IMF, we will skip details CGribov-Lipatov-Altarelli-Parisi (DGLAP) equations for{

about relativistic corrections in the rest frame and proceed™© [1,2]. Of course, although all parton distributions that
immediately to the IMF. The crucial steps are as follows: In€nter the DGLAP equations for OFPDs depend on the invari-

> , ant momentum transfey the evolution equations themselves
Eqg. (3.3, we choose a wave packdt(p,) whose typical . .
are impact parameter independent.

momen_tum scalay is ”.‘“Ch smaller than/m?+ p;; at the Likewise, the impact parameter dependent parton distri-
same time, we would like to choose the wave packet suc ions evolve according to the standard DGLAP equations
that its typical momentum scalky is much larger than the 55 el in the sense that the same DGLAP equation applies
momentum scalg, at which we want to probe the target, 1, gachp, and differents, do not mix under DGLAP evo-
which should be on the order dfocp [we expect the typical  ytjon. To see this, one can use translational invariance to
scales for the dependencefgk, — %) ong, to be similarto gyt the b,) dependence on the right-hand side of B&}2)
typical momentum scales in form factgrOf course, satis- om the operator to the state, i.e., instead of measuring the

fgl;gmthese requirements simultaneously is only possible foEorreIatorE(Bi,O)f w(ﬁi X} in a wave packet centered
S m.

For a wave packet satisfying the above requirements, it iground Q one can equivalently measure the correlator
clear that one can approximakg;~E; ~|p,|, as well as zﬂ(E)L,O)yﬂp(Ol ,X7) in a wave packet centered around
g?=—q? in Eq. (3.3, yielding —b, .

Combining these observations it is thus trivial to see that
the identification of impact parameter dependent parton dis-
tributions with Fourier transforms cff(x,—ﬁz) with respect

to ﬁ is preserved under QCD evolution in the sense that

B. Infinite momentum frame

N N 1 N .
Fo(x,q,)=f(x,—q? mj d?p, ¥* (p)¥(p,)
z

-, 1
2|pz| 2
f(X ) 6 QZ):f d aq. eialﬁlf (x . _d)z QZ)
where in the last step we used the fact that we had chosen a Bi»FL 2 (=0v 7By ML
very localized wave packet, i.e., 4.0

is valid for all Q2 (as long aQ? is large enough for DGLAP

2 * (0~ 3 S 2 *(n ) —
f d°p, ¥ (pL+qL)W(pL)~f dp, ¥*(p)W¥(p,)=1 to be applicablg

3.7

for g% =0O(A3¢p). In the previous section we had argued V. SUMMARY AND DISCUSSION

that Egs.(2.6) and (2.8) justify to identify the elastic form Off-forward parton distributions af=0 allow a simulta-
factor F(q?) with the Fourier transform of the charge distri- neous measurement of the light-cone momentum and trans-
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verse positior{impact parameteristribution of partons in a and phenomenology, as well as the physical interpretation of
hadron: experimental and numericéhttice) data.
5 However, the most important application is using experi-
f(Xg, 5 ):fdieidj_ﬁLf o(Xai —62) (5.1) mental(qr nlum.erlca) data on the de_pendence to learn how
Bi» L 27 (=007Bjy ML ' parton distributions depend on the impact parameter. For ex-
) o ) ) ample, by considering the slope g x,t) with respect td at
This fundamental observation is strictly true in the IMF, butt— ;=0 one obtains the parton distribution weighted by the
receives relativistic corrections in other frames. Those corimpact parameter squared and thus the “outer” region of the
rections are of the same nature as the relativistic correctiongrget hadron gets more strongly emphasized. A precise mea-
that spoil the identification of the charge form factor with the gyrement of this slope could thus reveal important informa-
Fourier transform of a charge distribution for systems whergjon in the transverse distribution of partons within hadrons,

the Compton wavelength is of the same order as the size, i.&yhich could also help to distinguish surface effects from
MR=0(1), orlarger. Of course in nonrelativistic systems, pulk effects in nucleons and nuclei.

the identification off ,_ o(Xg; ﬁf) with the Fourier transform More specific applications should also include extending
of the longitudinal momentum/transverse position distribu-models for conventional parton distribution functions to off-
tion function is also strictly true. forward distributions at— 0. However, providing explicit

Moreover, although we restricted our discussion of spinexamples for this is beyond the scope of this paper.
independent parton distribution functions, it should be clear
that our result generalizes to spin dependent distribution as
well.

While this result is not so much of importance for exact It is a pleasure to thank R.L. Jaffe, X. Ji, A.R. Radyush-
calculations of off-forward distribution functionfor ex-  kin, and A.l. Vainshtein for helpful and encouraging discus-
ample within the framework of lattice QQDthe main ap- sions. This work was supported in part by a grant from DOE
plication of our result lies more within the areas of modeling(DE-FG03-95ER40965and in part by TINAF.
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