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Impact parameter dependent parton distributions and off-forward parton distributions for z\0
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~Received 17 May 2000; published 12 September 2000!

It is shown that the off-forward parton distribution forz50, i.e., where the initial and final states differ only
in their transverse momenta, can be interpreted as a simultaneous measurement of the longitudinal momentum
and transverse position of partons in the infinite momentum frame.

PACS number~s!: 12.38.Aw, 13.40.Gp, 13.60.Hb
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I. INTRODUCTION

Deeply virtual Compton scattering~DVCS! provides a
novel tool to explore hadron structure. In contrast with de
inelastic scattering~DIS!, where one measures the imagina
part of the forward Compton amplitude only, DVCS allow
measuring the off-forward Compton amplitude. From t
parton point of view this implies that DVCS allows measu
ing off-forward matrix elements of parton correlation fun
tions; i.e., one can access light-cone correlation function
the form @1,2#1

f z~x,t ![E dx2

4p
^p8uc̄~0!g1c~x2!up&eixp1x2

, ~1.1!

wherex65x06x3 andp15p01p3 refer to the usual light-
cone components andt[q25(p2p8)2 is the invariant mo-
mentum transfer. The ‘‘off-forwardness’’~or skewedness! in
Eq. ~1.1! is defined to bez[q1/p1. From the point of view
of parton physics in the infinite momentum frame, these o
forward parton distributions~OFPDs! have the physica
meaning of the amplitude for the process that a quark
taken out of the nucleon with momentum fractionx and then
it is inserted back into the nucleon with a four momentu
transfer qm @3#. It was immediately recognized that of
forward parton distributions play dual roles in that they co
bine features of both form factors and conventional par
distribution functions@1,2#: for z5t50 one recovers con
ventional parton distributions, i.e., momentum distributio
in the infinite momentum frame~IMF!, while when one in-
tegratesf z(x,t) over x, one obtains a form factor, i.e., th
Fourier transform of a coordinate space density~in the Breit
frame!.

However, the physical interpretation of the general c
still remained obscure, mainly because the initial and fi
states in Eq.~1.1! are not the same and therefore, in gene
f z(x,t) cannot be interpreted as a ‘density’ but rather th
physical significance is that of a probability amplitude.

In this Rapid Communication, we will study a more ge
eral limiting case, namelyz50, but tÞ0, and we will argue
that

f ~x,t ![ f z50~x,t ! ~1.2!

1For some history on DVCS see Ref.@3#.
0556-2821/2000/62~7!/071503~5!/$15.00 62 0715
-

of

-

is

-
n

s

e
l

l,
r

has a simple interpretation in terms of a density as w
namely as the Fourier transform of the light-co
momentum/impact parameter density with respect to the
pact parameter.

In a light-front ~LF! framework it is easy to see that th
casez50 is particularly simple since there only terms dia
onal in the Fock space contribute tof (x,t) ~just as it is the
case for ordinary parton distributions!. Explicit Fock space
representations forf (x,t) can be found in Refs.@4,5#. Mak-
ing a Gaussian ansatz for the Fock space components,
therefore straightforward to see the connection between tt
dependence off (x,t) and the Gaussian size parameter@5,6#.
In this paper, we will demonstrate that this very intuitiv
connection is valid independent of specific models and tha
is in fact possible to determine parton distributions as a fu
tion of the impact parameter, providedf (x,t) is known.

Of course,z50 with tÞ0 cannot be achieved in virtua
Compton scattering at finite energies because it always ta
some longitudinal momentum transfer in order to conver
virtual photon into a real photon, i.e., strictly speakingz
50 would correspond to real~wide angle! Compton scatter-
ing @6,7#. However, as a limiting case (z→0), f (x,t) is rel-
evant for DVCS as well.

The paper is organized as follows. In Sec. II, we use
familiar observable, the elastic charge form factor, to illu
trate how relativistic effects may spoil the identification
Fourier transforms of position space distributions with fo
factors. Since this is a well known phenomenon for fo
factors, Sec. II will mainly serve to introduce our notatio
and reasoning. In Sec. III, we will then generalize the resu
from Sec. II toz50 OFPDs. Section III contains the deriva
tion of the main result of this paper, namely the identificati
of Fourier transforms of impact parameter dependent pa
distributions with OFPDs. The results are summarized
Sec. IV.

II. FORM FACTORS AND CHARGE DISTRIBUTIONS

Nonrelativistic intuition suggests to interpret ordina
charge form factors as Fourier transforms of charge distri
tions in position space. As a warmup exercise, we will in t
following reexamine the limitations of this interpretation in
relativistic framework.

Since the charge distribution of a plane wave is ill d
©2000 The American Physical Society03-1
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fined, it is useful to start from a wave packet2

uC&5E d3p c~pW !

A2EpW~2p!3
upW &, ~2.1!

whereEpW5AM21pW 2. Momentum space eigenstates are n
malized covariantly as usual, i.e.,^pW 8upW &52EpWd(pW 82pW ).
Using the usual definition of the charge form factor

^pW 8ur~0W !upW &5~EpW1EpW 8!F~q2!, ~2.2!

where

q25~EpW2EpW 8!
22qW 2 ~2.3!

andqW 5pW 82pW , one obtains for the Fourier transform of th
charge distribution in the wave packet

Fc~qW ![E d3xe2 iqW •xW^Cur~xW !uC&

5E d3p

A2EpW2EpW 8

C* ~pW 1qW !C~pW !^pW 8ur~0W !upW &

5
1

2E d3p
EpW1EpW 8

AEpWEpW 8

C* ~pW 1qW !C~pW !F~q2!. ~2.4!

Note thatq2 still depends implicitly onpW @Eq. ~2.3!# and thus
in general one cannot pullF(q2) out of the integral. Equa-
tion ~2.4! clearly illustrates how the charge distribution in th
wave packet is obtained from a convolution of the form fa
tor with the spatial distribution of the wave packet as well
various relativistic effects.

Initially, the wave packet was only introduced in order
be able to cleanly define a charge distribution. On the ot
hand, we are interested only in the intrinsic charge distri
tion of the hadron, i.e., not in the distribution due to the wa
packet and therefore we would like to get rid of anythi
associated with the wave packet in Eq.~2.4!.

A. Nonrelativistic limit

In the nonrelativistic limit, where (EpW1EpW 8)/2AEpWEpW 8
51 andq252qW 2, one can pull the form factor out of th
integral in Eq.~2.4!, yielding

Fc~qW !5F~2qW 2!E d3pC* ~pW 1qW !C~pW !. ~2.5!

Finally, by using a wave packetC that is very broad in
momentum space~i.e., localized in position space! the de-
pendence of the overlap integral*d3pC* (pW 1qW )C(pW ) on qW
is much weaker than the dependence of the form fa
F(2qW 2). For such a wave packet Eq.~2.5! one thus finds

2I would like to thank Bob Jaffe for his suggestion to use wa
packets in the discussion of relativistic corrections.
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FC~qW !5F~2qW 2!E d3puC~pW !u25F~qW 2!. ~2.6!

Therefore, in a nonrelativistic theory,3 as long as one uses
wave packet which is very localized in position space,
Fourier transform of the charge distribution for this wa
packet equals the form factor. It is thus legitimate to interp
the form factor as the Fourier transform of the intrins
charge distribution.

B. Relativistic corrections „rest frame…

Unfortunately, in a relativistic theory, it is in general n
possible to form a wave packet of states whose Fourier tra
formed charge distribution equals the form factor. In t
nonrelativistic case, we used a wave packet that had an a
trarily small extension in position space. In a relativis
theory, localizing a wave packet to less than its Comp
wavelength in size will in general induce various relativis
corrections. This fact is best illustrated by considering
rms radius of this charge distribution@second derivative with
respect toqW in Eq. ~2.4!#.

ExpandingFC(qW ) up to and includingO(qW 2), one finds4

FC~qW !512
R2

6
qW 22

R2

6 E d3puC~pW !u2
~qW •pW !2

EpW
2

11E d3puqW •¹W C~pW !u22
1

8E d3puC~pW !u2
~qW •pW !2

EpW
4 ,

~2.7!

where R2 is defined through the slope ofF(q2)51
1(R2/6)q21O(q4). In addition to the contribution from the
intrinsic size and the contribution from the size of the wa
packet, one obtains a Lorentz contraction contribution a
other relativistic corrections.

Ideally, one would again like to construct a wave pack
such that the contribution from the spatial extension of
wave packet, i.e., the term}*d3puqW •¹W C(pW )u2, is negligible
compared toR2qW 2. Making the corrections due to the exte
sion of the wave packet negligible requires a typical mom
tum scale inC(pW ) that is much larger than 1/R. This on the
other hand leads to contributions from the relativistic corr
tions in Eq. ~2.7! that are at least of the orderDR2

;1/R2M4, which are negligible only if the Compton wave
length of the target is much smaller than its intrinsic size~as
defined through the slope of the form factor!.

The physics of this result is clear: as soon as one attem
to localize the wave packet to a region smaller than
Compton wavelength, the particle in the wave packet
comes relativistic and relativistic effects, such as Lore

3Actually, ‘‘nonrelativistic’’ is necessary here only to the exte
that the momentum transfer leaves the target nonrelativistic.

4We assume here a target with unit charge. The generalizatio
other values for the charge is straightforward.
3-2
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contraction, are no longer negligible. What this means is
an identification of the slope of the form factor with the rm
radius of a charge distribution in the rest frame is not una
biguously possible and the best one can achieve is an i
tification with uncertainties on the order of the Compt
wavelength of the target.

C. Infinite momentum frame

In certain frames, such as the IMF~which will be relevant
for the application to off-forward parton distribution!, this
ambiguity can be avoided. The essential point is that
relativistic corrections are governed by coefficients li
(qW •pW )/EpW

2 and qW 2/EpW
2 . One way to keep these relativist

coefficients small is to keepqW 2 andqW •pW finite while sending
EpW→`, i.e., by going to the IMF. In the following, let u
assume a wave packet such thatPW 5(0,0,pz) is the mean
momentum of the wave packet and the momentum transf
purely transverse, i.e.,qW 5(qx ,qy,0). Furthermore, we chos
a wave packet that is a plane wave~or very delocalized! in
the z direction, i.e.,pz of the wave packet is very sharpl
peaked aroundPz , and we choosePz such that Pz

@M ,uqW u. Then the above-mentioned corrections due to
wave packet can be made small without leading to la
relativistic corrections, which are governed by the expans
parameter (qW •pW )/EpW

2
;q' /L'P2.

In other words, if we consider a wave packet which
localized in the transverse direction only, but a plane wa
with very large momentum in thez direction, then as long a
this system is probed with only a transverse moment
transfer, the relativistic corrections to the form factor of th
wave packet are governed not by the Compton wavelen
but rather bylP[1/Am21pz

2, which can be made arbitrarily
it
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small.5 One thus finds for purely transverse momentu
transfers in the IMF

FC~qW !5F~qW 2!. ~2.8!

Physically, this implies that in the IMF one can identify th
Fourier transform of the charge distribution in the transve
direction ~the ‘‘transverse profile’’! with the form factor
without relativistic corrections. Of course, for ordinary for
factors, this result is not very important since the IMF is n
a natural frame for physical interpretation of the form fact
However, the analogous result will be crucial when we a
lyze ~off-forward! parton distributions for which the natura
frame is the IMF.

III. OFF-FORWARD PARTON DISTRIBUTIONS

Consider a wave packetuC& which is chosen such that i
has a sharp longitudinal momentumpz , but whose position
is a localized wave packet in the transverse direction

uC&5E d2p'

A2EpW~2p!2
C~pW'!upW &. ~3.1!

Clearly,

f C~x,bW'![E dx2

4p
^Cuc̄~bW',0!g1c~bW' ,x2!uC&eixp1x2

~3.2!

describes the probability to find partons with momentu
fractionx at transverse~position! coordinatexW' in this wave
packet. What we will show in the following is thatf C(x,bW')
can be related to off-forward parton distribution functio
with z50.

Using Eq.~3.1!, one finds
FC~x,qW'![E d2q'e2 iqW'•bW' f C~x,bW'!

5E d2p'C* ~pW'8 !C~pW'!

A2EpW2EpW 8
E dx2eixp1x2

^p8uc̄~0,0W'!c~x2,0W'!up&

5E d2p'C* ~pW'8 !C~pW'!

A2EpW2EpW 8

f z~x,q2!, ~3.3!
t is
we
pace

ite
nly
ele-
wherepW'8 5pW'1qW' andpz85pz , i.e., z50.

A. Nonrelativistic limit

Again we start by investigating the nonrelativistic lim
first, where one findsEpW'EpW 8'm and therefore alsoq2

'2qW 2. As a result, Eq.~3.3! simplifies, yielding

FC~x,qW'!5 f ~x,2qW'
2 !E d2p'C* ~pW'8 !C~pW'!

2m
. ~3.4!
In order to proceed further, we choose a wave packet tha
very localized in transverse position space. Specifically,
choose a packet whose width in transverse momentum s

5Note that this result is reminiscent of the result that in the infin
momentum frame, for purely transverse momentum transfer, o
terms that are diagonal in Fock space contribute to the matrix
ments of the~‘‘good’’ ! current@8#.
3-3
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is much larger than a typical QCD scale. That way, the
pendence of the integrand in Eq.~3.4! on qW' is mostly due to
the matrix element and not due to the wave packetC. There-
fore, by making the wave packet very localized in positi
space one obtains

FC~x,qW'!5 f ~x,2qW'
2 !, ~3.5!

and, just as it was the case for the form factor, it is th
legitimate to identify the Fourier transform of thez50
OFPD with respect toqW' with the impact parameter depen
dence of the parton distribution in a very localized wa
packet, i.e., with the impact parameter dependence of
parton distribution in the target particle itself.

B. Infinite momentum frame

In an arbitrary frame, e.g., the rest frame, relativistic c
rections also spoil the above identification of~Fourier trans-
forms of! the impact parameter dependence of parton dis
butions with OFPD atz50. Similarly to the relativistic
corrections for form factors, the above identification b
comes ambiguous when one looks at scales smaller than
Compton wavelength of the target.

However, since the natural frame to think about~off-
forward! parton distributions is the IMF, we will skip detail
about relativistic corrections in the rest frame and proc
immediately to the IMF. The crucial steps are as follows:
Eq. ~3.3!, we choose a wave packetC(pW') whose typical
momentum scalelC is much smaller thanAm21pz

2; at the
same time, we would like to choose the wave packet s
that its typical momentum scaleLC is much larger than the
momentum scaleqW' at which we want to probe the targe
which should be on the order ofLQCD @we expect the typica
scales for the dependence off (x,2qW 2) on qW' to be similar to
typical momentum scales in form factors#. Of course, satis-
fying these requirements simultaneously is only possible
pz@m.

For a wave packet satisfying the above requirements,
clear that one can approximateEpW'EpW 8'upzu, as well as
q252qW 2 in Eq. ~3.3!, yielding

FC~x,qW'!5 f ~x,2qW'
2 !

1

2upzu
E d2p'C* ~pW'8 !C~pW'!

' f ~x,2qW'
2 !

1

2upzu
, ~3.6!

where in the last step we used the fact that we had chos
very localized wave packet, i.e.,

E d2p'C* ~pW'1qW'!C~pW'!'E d2p'C* ~pW'!C~pW'!51

~3.7!

for qW'
2 5O(LQCD

2 ). In the previous section we had argue
that Eqs.~2.6! and ~2.8! justify to identify the elastic form
factor F(qW 2) with the Fourier transform of the charge distr
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bution in the rest frame~nonrelativistic! and the transverse
charge distribution in the infinite momentum frame, resp
tively. In the same vein, Eqs.~3.4! and ~3.6! justify to iden-
tify f z50(x,t) with the Fourier transform of~impact param-
eter dependent! parton distribution functions with respect t
the impact parameter.

Note that, while it would seem unnatural to identify th
elastic form factor with something defined in the IMF, th
natural frame to think about parton distribution functio
~forward and off-forward! is the IMF. Therefore, the fact tha
Eq. ~3.6! is free of relativistic corrections only in the IMF
does not represent a serious restriction at all.

IV. Q2 EVOLUTION

Throughout this paper we have suppressed the de
dence of the parton distributions on the momentum scaleQ2.
Obviously, because of scaling violations, all parton distrib
tions involved depend onQ2 as well, e.g.,f (x,bW') should be
replaced byf (x,bW' ,Q2) and f (x,2qW'

2 ) should be replaced

by f (x,2qW'
2 ,Q2).

Fortunately, it is rather straightforward to generalize o
results to takeQ2 evolution into account since theQ2 evo-
lution equations for OFPDs reduce to the usual Dokshitz
Gribov-Lipatov-Altarelli-Parisi ~DGLAP! equations forz
50 @1,2#. Of course, although all parton distributions th
enter the DGLAP equations for OFPDs depend on the inv
ant momentum transfert, the evolution equations themselve
are impact parameter independent.

Likewise, the impact parameter dependent parton dis
butions evolve according to the standard DGLAP equati
as well in the sense that the same DGLAP equation app
to eachbW' and differentbW' do not mix under DGLAP evo-
lution. To see this, one can use translational invariance
shift thebW') dependence on the right-hand side of Eq.~3.2!
from the operator to the state, i.e., instead of measuring
correlatorc̄(bW',0)g1c(bW' ,x2) in a wave packet centere
around 0W' one can equivalently measure the correla
c̄(0W',0)g1c(0W' ,x2) in a wave packet centered aroun
2bW' .

Combining these observations it is thus trivial to see t
the identification of impact parameter dependent parton
tributions with Fourier transforms off (x,2qW 2) with respect
to qW is preserved under QCD evolution in the sense that

f ~xB j ,bW' ,Q2!5E d2q'

2p
eiqW'bW' f z50~xB j ,2qW'

2 ,Q2!

~4.1!

is valid for all Q2 ~as long asQ2 is large enough for DGLAP
to be applicable!.

V. SUMMARY AND DISCUSSION

Off-forward parton distributions atz50 allow a simulta-
neous measurement of the light-cone momentum and tr
3-4
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verse position~impact parameter! distribution of partons in a
hadron:

f ~xB j ,bW'!5E d2q'

2p
eiqW'bW' f z50~xB j ,2qW'

2 !. ~5.1!

This fundamental observation is strictly true in the IMF, b
receives relativistic corrections in other frames. Those c
rections are of the same nature as the relativistic correct
that spoil the identification of the charge form factor with t
Fourier transform of a charge distribution for systems wh
the Compton wavelength is of the same order as the size,
MR5O(1), or larger. Of course in nonrelativistic system
the identification off z50(xB j ,qW'

2 ) with the Fourier transform
of the longitudinal momentum/transverse position distrib
tion function is also strictly true.

Moreover, although we restricted our discussion of s
independent parton distribution functions, it should be cl
that our result generalizes to spin dependent distribution
well.

While this result is not so much of importance for exa
calculations of off-forward distribution functions~for ex-
ample within the framework of lattice QCD!, the main ap-
plication of our result lies more within the areas of modeli
07150
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and phenomenology, as well as the physical interpretatio
experimental and numerical~lattice! data.

However, the most important application is using expe
mental~or numerical! data on thet dependence to learn how
parton distributions depend on the impact parameter. For
ample, by considering the slope off z(x,t) with respect tot at
t5z50 one obtains the parton distribution weighted by t
impact parameter squared and thus the ‘‘outer’’ region of
target hadron gets more strongly emphasized. A precise m
surement of this slope could thus reveal important inform
tion in the transverse distribution of partons within hadro
which could also help to distinguish surface effects fro
bulk effects in nucleons and nuclei.

More specific applications should also include extend
models for conventional parton distribution functions to o
forward distributions atz→0. However, providing explicit
examples for this is beyond the scope of this paper.
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