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We analyze in detail the problem of gauge invariance of the deeply virtual Compton scat@¥as)
amplitude. Using twist-3 one-gluon exchange diagram contributions and the QCD equations of motion, we
derive the general gauge invariant expression of the DVCS amplitudemseadascalar particlgpion, He').
Similarly to the case of deep inelastic scattering, the amplitude does not depend on the twist-3 quark-gluon
correlations at the Born level. The contribution of the derived amplitude to the single-spin asymmetry with
longitudinally polarized lepton is calculated.

PACS numbdis): 13.60.Fz, 12.38.Bx

Deeply virtual Compton scatterindVCS) has recently given light-cone vectors. Hence, if the virtual photon mo-
attracted much attention. One of the main reasons for thimmentum, which has a transverse component, is convoluted
interest is the fact that the DVCS process gives informatiorwith the hard part of the leading order DVCS amplitude, one
about a new type of parton distribution, called skewed parto®btains a term directly proportional to the transverse compo-

distribution(see, for examplg,1-4] and references thergin  nent of the virtual photon momentum. In other words, the
The process measure of the photon gauge invariance violation is the non-

, , zero transverse component of the virtual photon momentum.
7 (@N(p)—(a")N(p") (1) The recent generalpanalys[ﬁ] conﬁrmetlj3 that violating
. . _ .. terms are indeed kinematically subleading.
ha§ Zbeen shzown to factorize in the Bjorker) jegon With | this paper we generalize the Ellis-furmanski-Petronzio
(a')°=0, —q° large and small transfar=(p—p’)*, asthe  (EFp factorization schemg7] to the nonforward case and
product of a perturbatively calculable coefficient function cgiculate the complete expression for the DVCS amplitude
and a long distance object, the skewed parton distributionyp to twist-3 order. While this scheme was originally applied
which generalizes the notion of parton distributions. to the case of the twist-4 power corrections to DIS, our
The fact that there is a problem with the photon gaugeanalysis will be closer to the subsequent treatment of the
invariance of the DVCS amplitude in leading order in thetransverse polarization in DIS at the twist-3 leVé,9].
Bjorken limit is fairly well known (see, for instancd4]).  Analogously to that case, proced) is described by the
The relevant terms are proportional to the transverse compatiagrams of Fig. 1, which contain leading and next-to-
nent of the momentum transfer and provide the leading conleading twist contributions. Namely, the diagrai)l in the
tribution to some observables, and in particular, to the singlease of the transverse gluon field, is entirely at twist-3 level,
spin asymmetry. while the handbag diagram(@ contains, besides the stan-
As was shown if5], a fruitful analogy between the trans- dard twist-2 term(produced by the good component of quark
verse spin case of the deep inelastic scattef®) and the fields and collinear parton momeita twist-3 term, related
DVCS process can be used to derive a general solution db the quark gluon contribution of diagrantbl by the equa-
this problem. We elaborate on this approach in the currerntions of motion. The latter play a crucial role in DIS, guar-
paper. anteeing that the sum of diagram&)land 1b) is gauge
For simplicity, we concentrate here on the DVCS processnvariant and, moreover, not explicitly dependent of the
of (pseudgscalar hadrons, which may be pions or helium-4quark-gluon correlations. We will show that the situation in
nuclei, but our calculation may be generalized to any hadbVCS is quite similar.
rons. In particular, the obtained DVCS amplitude presents The sum of thél'ffz amplitude from diagram(&) andTS’V)
the helicity-independent part of the nucleon DVCS ampli-from diagram 1b), has the following form, such as [18]:
tude. We also neglect hadron masses effects, i.e., kinematical
power corrections, which may be studied independently. () (b):f
The Lorentz structure of the hard subgraph of the leading Thn® Thaw dktriE,., (T (k)}
order DVCS diagranfiFig. 1(a)] has the form of a transverse
projectorg””—P#n”—n#*P" [2]. All 4-vectors may be pre- +J dkydka tr{E ., (Ky, k)T ,(Kq,k2)},
sented in the form of the Sudakov decomposition over two
light-cone vectord®,n and one component transversal to the 2)
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a\

q’ a\ q IE ,,(K)
kP

=E,pu(k,K) )

we can write the DVCS amplitude as

m 1
T$3+T§f’ng dxtr{EW(xP)F(x)}an dx,dx,
p P’ P p’ Xtr{E,u,pV(leaxzp)wpp'rp’(xl1X2)}1 (8)
\ wherew,,,,=4,,,—n,P,, and
(@ (b)
FIG. 1. The DVCS diagraménotation: k=xP—A/2+ky, k' raﬁ(x)z—J dn e/ CTON P!y, (AN)ig(0)|p),

=xP+A/2+k;, m=x,P—A/2, andl =x,P+A/2).

whereE,, andE,,,, are the coefficient functions with two
quark legs and two quark and one gluon legs, respectively.
For simplicity, we restrict to the Born diagrams for the co-

Fﬁlﬁ(xl Xp) = %f d\ dN e T O FiIle XA,

szicc;zr.]t functions. In Eq(2), the following notation is intro- ><<p’|EB(0)( 7= D) (Aon) (A 10)| ),
9
Faﬁ(k):_f dZé(k_A/2)2<pl|¢a(Z)Jﬁ(O)|p>; where
F’éﬁ(kl,kz)=—J dzdzyelki-aRztilke—k)z D, =id*+gA*, D#=idt—gA*
X(p'|y (Zl)gA"(Zz)E,e(OHF)) Let us now focus on the QCD equations of motion both

for incoming and outcoming quarks. From these equations,
we deduce integral relations for structure functions, param-

A A - )
p'=P+—=, p=P—-=, A=q—q’. 3 etrizing quark and quark-gluon correlations. So, let us to start
2 2 from the QCD equations of motiofwe consider massless
quarks

Herep' andp are the final and initial hadron momentg,
andq are the final and initial photon momenta. For the sake

of convenience, we neglect all the kinematical power correc- <f72>) W(2)4(0))=0, (¥(2) t//(O)f)TO)):O (10)
tions and putP? andt=A? both equal to zero, keeping only ’ ’
the terms linear inA;. Also, we choose the axial gauge
condition for gluons, i.e.n-A=0, wheren is a light-cone
vector, normalized by the condition P=1. It is convenient
to assume that=q'/P-q’, although our result will not de-
pend explicitly on the choice af. We carry out a decompo-
sition of k in the basis defined by the— andn-light-cone

where( ) denote the asymmetrical matrix elements. Keeping
only vector and axial projectionsince for massless quarks
all other structures do not contriblifeve decompose the
quark and quark-gluon correlators in thebasis. We have

vectors — () P(0))=(h(0) Yo 1h(2)) V4
k=xP+(k-P)n+kr, x=k-n. @ —((0) Yo YsH(D)) yays,  (11)

Apart from this, — KA (Y)(2)$(0)) = (Y(0) YaGA(Y)#(2)) Va
A=-2¢P+Ar, —2¢=A-n. (5) —(¥(0) Yo ¥sIA(Y) ¥A(2)) Ya¥s-

Further, we carry out the following replacement for the inte- (12)

gration momentum in Eq2) ) i
In terms of P, AT, n vectors, we introduce the parametriza-

dk;—dk;dx; 8(x;— ki -n). (6)  tion of relevant vector and axial correlatdisee Eqs(11)
and(12)] in the following forms, where terms proportional to
Expanding the two-quark coefficient functidf,, (see Eq. n, contributing only at twist-4 level, have been omitted, and
(2)] in a Taylor series and, next, using the following Ward the axial gauge condition-A=0 has been taken into ac-
identity [7,8] count:
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(Z(O)y#zp(z))iHl(x)PMJrH3(x)AT, (13) fdy[B(A’(X,y)—D(S’(x,yH5(x—y)HI\(y)]
o I F =~ &H3(X) — 3H1(X) = XHa(x),
HW(0)y,(id,—id))p(2))=HI(X)P, A/, (14)
— 7 dy[BO(x,y)+ 8(x—y)H{(y)— DM (x,y)
(T0) Y57, 2)) =TH (X €se 15 J| asm @+ syl -0y
=xH3z(x)+ EHA(X), (20
_ — <~ F
3 (0) Y5y, (19, =10,)(2) =IH ()P L€ 7P, (16) _ _ _ _
where symmetrical and antisymmetrical functions are de-
- fined as
(¥(0)y,9AL(Y)(2))=B(X1,X2)P A, (17)

BEA(x,y)=3[B(x,y) =B(y,X)]. (21)
F
(¥(0) ¥57, 9AL(Y)¥(2)) =ID (X1, X2) P y€pate . (18)

Note again the important difference with DIS, where the
axial correlator is symmetric and the vector one is antisym-
metric[8]. The latter property is based dninvariance, just
like the symmetry properties i discussed above. To see the
i(XP— A/2)2+i (xP+ AI2)Z" relation betweerx—y and ¢ symmetry, it is instructive to

write the general invariance relations

].'
heregHATpn%spaByAT“PﬁnV; = denotes the Fourier trans-
formation with measurez=\n, z' =0)

dx e

for quark correlators, and

dx,dx, e (1P~ A2)2-10g=x))Py+i(gP+A/2)7' Bx.y,£)=B(y.x,= &),

for quark-gluon correlators. Note that for the nonforward D(X,y,&)=—D(y,x,—§). (22

case the latter are actually new objects. We kept only the

argumentx for all the correlators, dropping for brevity the

dependence of the distributions of the skewedness parametep the “unnatural” symmetry irx,y results from the anti-

&, recovering it below where it is necessary. Their depensymmetrical in the part, clearly absent in the forward case.
dence ont=A? is beyond our scope. Finally, their depen- It is worthy to note that a similar unnatural symmetry may
dence on the factorization scale paramqjér requires an appear due to the final state interaction phases in the case of
extended separate investigation. T-odd fragmentation functions2].

The dependence anplays a crucial role in the disappear- ~ We can thus write the DVCS amplitude in a gauge invari-
ance of theH; term, when a local current, related to its @nt manner. Let us first write the contribution from the pure
integral inx, is considered. Although this is required by the quark amplitude:
conservation of local vector current, this effect is propor-
tional tot and is therefore beyond the scope of our approxi-
mation. At the same time, this is also required bynvari- T(a):J X
ance[10]. It is therefore natural, that symmetry &f (c.f. my (xP+Q)2
[11,4]), resulting also fron invariance,

Ha(x,€)=—Hs(x,—¢)

is relevant. Calculating the integral i and implying the
polynomiality condition[2], one gets a function which is
independent or¢, and hence vanishes since the only odd
constant is zero. A similar argument is also applicable to the
functionH,, so that

[H1(X)S,(xp+Q)up

+H3(X)S,xp+ Q) uaTT Ha(X) € 0aTPnE v(xP+ Q) pal
+(u—r,Q——-Q), (23

where the following notations were introduced

S#1M2M3M4: g#l#zgﬂsﬂ4+ gl’-l#Agﬂzﬂs - g#l#sgﬂle’

fdxH3(x)=0, fdxHA(X)=0- (19 Q=(q+q’)/2

Usingif? acting on Eq(11) andy on Eq.(12) from the left

or right side, the QCD equations of motion yield the follow- As a corollary, the contribution of the amplitude correspond-
ing integral relations for structure functions: ing to the one-gluon exchange diagram, has the form
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1
TEPBZ {[B(X1,X2)

1
— | dx,d
‘J O P+ Q2P+ Q)?

+8(X,=X2)H1(X,)]

Xtr(y,(xoP+Q)AT(x,P+Q) v,,P)

+i[D (X1, %) = 8(X1 ~X2) HA(X2) & asTen

Xtr(y,(XP+ Q) yo(x1P+ Q) y,,Pys)} + “crossed.”
(29

Calculating all traces in Eq24), using the following obvi-
ous identities

1 1 )
+ 1
(x1P=Q)?  (x,P=Q)?

=(P-Q)(X1+%) +Qs_ 1(
(xP+Q)*(x,P~Q)?) 2

1 1

+(P-Q)(x1—X) 1 ~ )
(xP+Q)?  (xP+Q)?/’

(XPTQ2Ax,P*Q)) 2

and the equations of motiof20) in terms of symmetric and
antisymmetric functions, we add contributions of E&3)

and (24), taking into account the crossed diagrams. TheAT ands;

gauge invariant expression of the DVCS amplitude is thus

1
— + -
Et+ie XxX+é—ie

g ¥ |
Tﬂv__zp-Qf dx| — T,,, (29

where

7;11/: Hl(X)[ - pr,upv_ P/.LQV_ PVQ[L+ g,u,V(P' Q)
—3P, A +3P,AL]- Hs(x)(gPVA;+ 3¢P,A)

o
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We can see that the first term of E&5), proportional to the
H, function, completely coincides with the improved DVCS
amplitude, proposed by Guichon and Vanderhad@av) in
[4]. Indeed, if we proceed, in such terms, to GV bddik
where then vector is expressed via the virtual photon mo-
mentumq and decompose th@ vector in this basis, then we
derive the following(omitting the terms withH; andiH
functions:

e

X

L
X2

1
X—&+ie

+X+ §—ie) H1(x)

T
P,A,
P-q

P.n,+PnNn,—g,,—

P,

—TLO
=TO4
T/—“’ Pq

TTLO
AT ons

(26)

where the definition oﬂ";f,f amplitude is related with the

transverse direction projector, which isP(n,+P,n,
—0u)-

Ilrli complete analogy to DIS, the answer does not depend
explicitly on quark-gluon correlations. However, in contrast
to DIS, it contains two additional new functions, instead of
the single functiong, in the DIS case. WhileH; may be
considered as an analog g5 (the coefficients of them are
respectively, the DIS analog of the functioH 5
is excluded byT invariance and may be present only for
fragmentation.

We emphasize that the deduced gauge invariant expres-
sion of the DVCS amplitude has a significant meaning for
the sequential application of QCD to the investigation of any
observable values. To demonstrate this, let us consider the
single (electron spin asymmetrySSA), which arises in the
collision of the longitudinally polarized electron beams with
the unpolarized scalar target. The SSA parami@terdetails
see, for instancd?]) is

T Ty & T T _do(—)—do()
+AIU,QV+AVQIU,) XHA(X)(‘?’gPMAV gPVA,u AL_dO’(-’)"‘dO’(H), (27)
—4,Q,+A7Q,). where
d —d L SF.b2 fd S(X+ &) — S(x— (H k+k')-P
o(—)—do(+) qzt(k_A)z(k/+A)28kk’PA X[ O(x+ &) = a(x=&)]- | Hi(x)[( )-P]
) 2¢ ) ) ) eb 2¢
+2H3(x)(k 'A)_—X(P.Q)HA(X)[(k‘A)(k ‘P)—=(k"-A)(k-P)] +E6KK'PA—(P-Q)
xf dxdx’([&(x+§)—5(x—§)][,—+,— —[8(x"+&)—8(x"—¢&)]
X'—& X' +¢
P P H Ha(X'
ey )-(Hl<x>H3<x'>—Hl<x')H3<x>— o) Ay P 5), 29
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whereF, (t) is the target electromagnetic form factor, ema-Dorokhov, M. Diehl, A. V. Efremov, E. A. Kuraev, N. I.
nating from the Bethe-Heitler diagrams, akdndk’ denote  Kochelev, S. V. Mikhailov, D. Mer, A. V. Radyushkin, R.
the momenta of the initial and final electrok{k’=q). Rushkov, A. Schier, N. Kivel, and M. V. Polyakov, for
useful discussions and comments. CPhT is UMR 7644 du
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