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Gauge invariance of the deeply virtual Compton scattering amplitude
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We analyze in detail the problem of gauge invariance of the deeply virtual Compton scattering~DVCS!
amplitude. Using twist-3 one-gluon exchange diagram contributions and the QCD equations of motion, we
derive the general gauge invariant expression of the DVCS amplitude on a~pseudo!scalar particle~pion, He4).
Similarly to the case of deep inelastic scattering, the amplitude does not depend on the twist-3 quark-gluon
correlations at the Born level. The contribution of the derived amplitude to the single-spin asymmetry with
longitudinally polarized lepton is calculated.

PACS number~s!: 13.60.Fz, 12.38.Bx
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Deeply virtual Compton scattering~DVCS! has recently
attracted much attention. One of the main reasons for
interest is the fact that the DVCS process gives informat
about a new type of parton distribution, called skewed par
distribution~see, for example,@1–4# and references therein!.
The process

g* ~q!N~p!→g~q8!N~p8! ~1!

has been shown to factorize in the Bjorken region w
(q8)250, 2q2 large and small transfert5(p2p8)2, as the
product of a perturbatively calculable coefficient functi
and a long distance object, the skewed parton distribut
which generalizes the notion of parton distributions.

The fact that there is a problem with the photon gau
invariance of the DVCS amplitude in leading order in t
Bjorken limit is fairly well known ~see, for instance,@4#!.
The relevant terms are proportional to the transverse com
nent of the momentum transfer and provide the leading c
tribution to some observables, and in particular, to the sin
spin asymmetry.

As was shown in@5#, a fruitful analogy between the trans
verse spin case of the deep inelastic scattering~DIS! and the
DVCS process can be used to derive a general solutio
this problem. We elaborate on this approach in the curr
paper.

For simplicity, we concentrate here on the DVCS proc
of ~pseudo!scalar hadrons, which may be pions or helium
nuclei, but our calculation may be generalized to any h
rons. In particular, the obtained DVCS amplitude prese
the helicity-independent part of the nucleon DVCS amp
tude. We also neglect hadron masses effects, i.e., kinema
power corrections, which may be studied independently.

The Lorentz structure of the hard subgraph of the lead
order DVCS diagram@Fig. 1~a!# has the form of a transvers
projectorgmn2Pmnn2nmPn @2#. All 4-vectors may be pre-
sented in the form of the Sudakov decomposition over t
light-cone vectorsP,n and one component transversal to t
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given light-cone vectors. Hence, if the virtual photon m
mentum, which has a transverse component, is convolu
with the hard part of the leading order DVCS amplitude, o
obtains a term directly proportional to the transverse com
nent of the virtual photon momentum. In other words, t
measure of the photon gauge invariance violation is the n
zero transverse component of the virtual photon moment
The recent general analysis@6# confirmed that violating
terms are indeed kinematically subleading.

In this paper we generalize the Ellis-furmanski-Petron
~EFP! factorization scheme@7# to the nonforward case an
calculate the complete expression for the DVCS amplitu
up to twist-3 order. While this scheme was originally appli
to the case of the twist-4 power corrections to DIS, o
analysis will be closer to the subsequent treatment of
transverse polarization in DIS at the twist-3 level@8,9#.
Analogously to that case, process~1! is described by the
diagrams of Fig. 1, which contain leading and next-
leading twist contributions. Namely, the diagram 1~b!, in the
case of the transverse gluon field, is entirely at twist-3 lev
while the handbag diagram 1~a! contains, besides the stan
dard twist-2 term~produced by the good component of qua
fields and collinear parton momenta!, a twist-3 term, related
to the quark gluon contribution of diagram 1~b! by the equa-
tions of motion. The latter play a crucial role in DIS, gua
anteeing that the sum of diagrams 1~a! and 1~b! is gauge
invariant and, moreover, not explicitly dependent of t
quark-gluon correlations. We will show that the situation
DVCS is quite similar.

The sum of theTmn
(a) amplitude from diagram 1~a! andTmn

(b)

from diagram 1~b!, has the following form, such as in@8#:

Tmn
(a)1Tmn

(b)5E dk tr$Emn~k!G~k!%

1E dk1dk2 tr$Emrn~k1 ,k2!Gr~k1 ,k2!%,

~2!
©2000 The American Physical Society01-1
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whereEmn and Emrn are the coefficient functions with two
quark legs and two quark and one gluon legs, respectiv
For simplicity, we restrict to the Born diagrams for the c
efficient functions. In Eq.~2!, the following notation is intro-
duced:

Gab~k!52E dzei (k2D/2)z^p8uca~z!c̄b~0!up&,

Gab
r ~k1 ,k2!52E dz1dz2ei (k12D/2)z11 i (k22k1)z2

3^p8uca~z1!gAr~z2!c̄b~0!up&,

p85P1
D

2
, p5P2

D

2
, D5q2q8. ~3!

Here p8 andp are the final and initial hadron momenta,q8
andq are the final and initial photon momenta. For the sa
of convenience, we neglect all the kinematical power corr
tions and putP2 andt[D2 both equal to zero, keeping onl
the terms linear inDT . Also, we choose the axial gaug
condition for gluons, i.e.,n•A50, wheren is a light-cone
vector, normalized by the conditionn•P51. It is convenient
to assume thatn5q8/P•q8, although our result will not de-
pend explicitly on the choice ofn. We carry out a decompo
sition of k in the basis defined by theP– andn–light-cone
vectors

k5xP1~k•P!n1kT , x5k•n. ~4!

Apart from this,

D522jP1DT , 22j5D•n. ~5!

Further, we carry out the following replacement for the in
gration momentum in Eq.~2!

dki→dkidxid~xi2ki•n!. ~6!

Expanding the two-quark coefficient functionEmn ~see Eq.
~2!# in a Taylor series and, next, using the following Wa
identity @7,8#

FIG. 1. The DVCS diagrams~notation: k5xP2D/21kT , k8
5xP1D/21kT8 , m5x1P2D/2, andl 5x2P1D/2).
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]kr
5Emrn~k,k! ~7!

we can write the DVCS amplitude as

Tmn
(a)1Tmn

(b)5E dx tr$Emn~xP!G~x!%1E dx1dx2

3tr$Emrn~x1P,x2P!vrr8Gr8~x1 ,x2!%, ~8!

wherewrr85drr82nr8Pr , and

Gab~x!52E dlei (x1j)l^p8uca~ln!c̄b~0!up&,

Gab
r8 ~x1 ,x2!5

1

2E dl1dl2ei (x11j)l11 i (x22x1)l2

3^p8uc̄b~0!~Dr8
→

2Dr8
←

!~l2n!ca~l1n!up&,

~9!

where

Dm
→

5 i ]m→
1gAm, Dm←

5 i ]m←
2gAm.

Let us now focus on the QCD equations of motion bo
for incoming and outcoming quarks. From these equatio
we deduce integral relations for structure functions, para
etrizing quark and quark-gluon correlations. So, let us to s
from the QCD equations of motion~we consider massles
quarks!

^D̂~z!
→

c~z!c̄~0!&50, ^c̄~z!c~0!D̂~0!
←

&50, ~10!

where^ & denote the asymmetrical matrix elements. Keep
only vector and axial projections~since for massless quark
all other structures do not contribute!, we decompose the
quark and quark-gluon correlators in theg basis. We have

24^c~z!c̄~0!&5^c̄~0!gac~z!&ga

2^c̄~0!gag5c~z!&gag5 , ~11!

24^gAr~y!c~z!c̄~0!&5^c̄~0!gagAr~y!c~z!&ga

2^c̄~0!gag5gAr~y!c~z!&gag5 .

~12!

In terms ofP, DT, n vectors, we introduce the parametriz
tion of relevant vector and axial correlators@see Eqs.~11!
and~12!# in the following forms, where terms proportional t
n, contributing only at twist-4 level, have been omitted, a
the axial gauge conditionn•A50 has been taken into ac
count:
1-2
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^c̄~0!gmc~z!&5
F

H1~x!Pm1H3~x!Dm
T , ~13!

1
2 ^c̄~0!gm~ i ]r

T
→

2 i ]r
T

←
!c~z!&5

F
H1

T~x!PmDr
T , ~14!

^c̄~0!g5gmc~z!&5
F

iH A~x!emDTPn
, ~15!

1
2 ^c̄~0!g5gm~ i ]r

T
→

2 i ]r
T

←
!c~z!&5

F
iH A

T~x!PmerDTPn
, ~16!

^c̄~0!gmgAr
T~y!c~z!&5

F
B~x1 ,x2!PmDr

T , ~17!

^c̄~0!g5gmgAr
T~y!c~z!&5

F
iD ~x1 ,x2!PmerDTPn

, ~18!

here«rDTPn[«rabgDTaPbng; 5
F

denotes the Fourier trans
formation with measure (z5ln, z850)

dx e2 i (xP2D/2)z1 i (xP1D/2)z8

for quark correlators, and

dx1dx2 e2 i (x1P2D/2)z2 i (x22x1)Py1 i (x2P1D/2)z8

for quark-gluon correlators. Note that for the nonforwa
case the latter are actually new objects. We kept only
argumentx for all the correlators, dropping for brevity th
dependence of the distributions of the skewedness param
j, recovering it below where it is necessary. Their dep
dence ont5D2 is beyond our scope. Finally, their depe
dence on the factorization scale parameterm2 requires an
extended separate investigation.

The dependence onj plays a crucial role in the disappea
ance of theH3 term, when a local current, related to i
integral inx, is considered. Although this is required by th
conservation of local vector current, this effect is prop
tional to t and is therefore beyond the scope of our appro
mation. At the same time, this is also required byT invari-
ance@10#. It is therefore natural, that symmetry ofH ~c.f.
@11,4#!, resulting also fromT invariance,

H3~x,j!52H3~x,2j!

is relevant. Calculating the integral inx and implying the
polynomiality condition@2#, one gets a function which is
independent onj, and hence vanishes since the only o
constant is zero. A similar argument is also applicable to
function HA , so that

E dx H3~x!50, E dx HA~x!50. ~19!

Using i ]̂ acting on Eq.~11! andg on Eq.~12! from the left
or right side, the QCD equations of motion yield the follow
ing integral relations for structure functions:
07150
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E dy@B(A)~x,y!2D (S)~x,y!1d~x2y!HA
T~y!#

52jH3~x!2 1
2 H1~x!2xHA~x!,

E dy@B(S)~x,y!1d~x2y!H1
T~y!2D ~A!~x,y!#

5xH3~x!1jHA~x!, ~20!

where symmetrical and antisymmetrical functions are
fined as

B(S,A)~x,y!5 1
2 @B~x,y!6B~y,x!#. ~21!

Note again the important difference with DIS, where t
axial correlator is symmetric and the vector one is antisy
metric @8#. The latter property is based onT invariance, just
like the symmetry properties inj discussed above. To see th
relation betweenx↔y and j symmetry, it is instructive to
write the generalT invariance relations

B~x,y,j!5B~y,x,2j!,

D~x,y,j!52D~y,x,2j!. ~22!

So the ‘‘unnatural’’ symmetry inx,y results from the anti-
symmetrical in thej part, clearly absent in the forward cas
It is worthy to note that a similar unnatural symmetry m
appear due to the final state interaction phases in the cas
T-odd fragmentation functions@12#.

We can thus write the DVCS amplitude in a gauge inva
ant manner. Let us first write the contribution from the pu
quark amplitude:

Tmn
(a)5E dx

1

~xP1Q!2
@H1~x!Sn(xP1Q)mP

1H3~x!Sn(xP1Q))mDT1HA~x!«aDTPn«n(xP1Q)ma#

1~m→n,Q→2Q!, ~23!

where the following notations were introduced

Sm1m2m3m4
5gm1m2

gm3m4
1gm1m4

gm2m3
2gm1m3

gm2m4
,

Q5~q1q8!/2.

As a corollary, the contribution of the amplitude correspon
ing to the one-gluon exchange diagram, has the form
1-3
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Tmn
(b)5

1

4E dx1dx2

1

~x1P1Q!2~x2P1Q!2
$@B~x1 ,x2!

1d~x12x2!H1
T~x2!#

3tr„gn~x2P̂1Q̂)D̂T~x1P̂1Q̂!gmP̂…

1 i @D~x1 ,x2!2d~x12x2!HA
T~x2!#«aDTPn

3tr„gn~x2P̂1Q̂!ga~x1P̂1Q̂!gmP̂g5…%1 ‘‘crossed.’’

~24!

Calculating all traces in Eq.~24!, using the following obvi-
ous identities

6~P•Q!~x11x2!1Q2

~x1P6Q!2~x2P6Q!2)
5

1

2 S 1

~x1P6Q!2
1

1

~x2P6Q!2D ,

6~P•Q!~x12x2!

~x1P6Q!2~x2P6Q!2)
5

1

2 S 1

~x2P6Q!2
2

1

~x1P6Q!2D ,

and the equations of motion~20! in terms of symmetric and
antisymmetric functions, we add contributions of Eqs.~23!
and ~24!, taking into account the crossed diagrams. T
gauge invariant expression of the DVCS amplitude is thu

Tmn52
1

2P•QE dxS 1

x2j1 i e
1

1

x1j2 i e DTmn , ~25!

where

Tmn5H1~x!@22jPmPn2PmQn2PnQm1gmn~P•Q!

2 1
2 PmDn

T1 1
2 Pn Dm

T #2H3~x!„jPnDm
T13jPmDn

T

1Dm
TQn1Dn

TQm…2
j

x
HA~x!„3jPmDn

T2jPnDm
T

2Dm
TQn1Dn

TQm….
07150
e

We can see that the first term of Eq.~25!, proportional to the
H1 function, completely coincides with the improved DVC
amplitude, proposed by Guichon and Vanderhaegen~GV! in
@4#. Indeed, if we proceed, in such terms, to GV basis@4#,
where then vector is expressed via the virtual photon m
mentumq and decompose theQ vector in this basis, then we
derive the following~omitting the terms withH3 and iH A
functions!:

Tmn5E dx
1

2 S 1

x2j1 i e
1

1

x1j2 i e DH1~x!

3S Pmnn1Pnnm2gmn2
PnDm

T

P•q D
[Tmn

LO1
Pn

P•q
Dl

TTml
LO , ~26!

where the definition ofTmn
LO amplitude is related with the

transverse direction projector, which is (Pmnn1Pnnm
2gmn).

In complete analogy to DIS, the answer does not dep
explicitly on quark-gluon correlations. However, in contra
to DIS, it contains two additional new functions, instead
the single functiong2 in the DIS case. WhileH3 may be
considered as an analog ofg2 ~the coefficients of them are
DT andsT , respectively!, the DIS analog of the functionHA
is excluded byT invariance and may be present only f
fragmentation.

We emphasize that the deduced gauge invariant exp
sion of the DVCS amplitude has a significant meaning
the sequential application of QCD to the investigation of a
observable values. To demonstrate this, let us consider
single ~electron! spin asymmetry~SSA!, which arises in the
collision of the longitudinally polarized electron beams wi
the unpolarized scalar target. The SSA parameter~for details
see, for instance,@2#! is

AL5
ds~→ !2ds~← !

ds~→ !1ds~← !
, ~27!

where
ds~→ !2ds~← !;
e6F1~ t !2j

q2t~k2D!2~k81D!2
«kk8PDE dx@d~x1j!2d~x2j!#•S H1~x!@~k1k8!•P#

12H3~x!~k8•D!2
2«

x~P•Q!
HA~x!@~k•D!~k8•P!2~k8•D!~k•P!# D1

e6

q4
ekk8PD

2j

~P•Q!

3E dxdx8S @d~x1j!2d~x2j!#F P

x82j
1

P

x81j
G2@d~x81j!2d~x82j!#

3F P

x2j
1

P

x1jG D •S H1~x!H3~x8!2H1~x8!H3~x!2FH1~x8!
HA~x!

x
2H1~x!

HA~x8!

x8
Gj D , ~28!
1-4
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whereF1(t) is the target electromagnetic form factor, em
nating from the Bethe-Heitler diagrams, andk andk8 denote
the momenta of the initial and final electron (k2k85q).
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