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Addenda and corrections to work done on the path-integral approach to classical mechanics
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We continue the study of the path-integral approach to classical mechanics and in particataregeand
better clarify, with respect to previous papers, the geometrical meaning of the variables entering this formu-
lation. We show that the space spanned by the whole set of variab]esk(?) of our path integral is the
cotangent bundle to theversed-paritytangent bundle of the phase spaetof our system and it is indicated
as T*(ITTM). We also show that it is possible to build a different path integral made onlyosbnic
variables. These turn out to be the coordinate3 4fT*M) which is the double cotangent bundle to phase
space.

PACS numbs(s): 02.40.Hw, 31.15.Kb

We continue the study of theath-integralformulation of ¢ andc, i.e., F(¢,c), and let us transform its arguments:
Hamiltonian classical mechanics startedihand continued F(,0)=F[o(¢'),c(¢’,c")]=S(¢',c").
in [2]. Starting from a HamiltoniarH defined on a phase If we now applyd/de’ on S, we have
spaceM whose 21 coordinates we indicate a8, our path

integral[1] naturally generates a weight whose Lagrangian is (130" S(¢' ¢V =(dlde")Fle(e'),c(e',c)]  (4)

L=\l ¢*— 0®PayH]+ic [ 820, — 0?°dcdpH]c®, (1
ae pH] al S0t cpH] () (9(,0(9F+19C(9F :
where »?® is the symplectic matrix of the system and _mpf dp  gp' dC’ ©

(Na ,ca,?a) are auxiliary variables needed in our formulation.
In this paper we will try to better characterize geometricallyComparing the two right-hand sidéRHS9 of the above

the space spanned by the 8ariables (?,¢® \,,c,). equations we can say that
Let us start with\ ;. From the Lagrangiafil) one imme-
diately finds how thex, transform under the Hamiltonian d e 9 ach 9
flow: = + — (6)

[?(Pra_(?(pra (9(pb &go’a (7Cb.

r— — Py —ic. ol b

S 9j9aHAt N iCi @ (9jdpdHADCE. () Using the operatorial correspondence described in Ref.
. . . . ra_iy ! = b_ "~
If we perform any Hamiltonian diffeomorphisiig] on ,  [1 9/d¢"*=iN;, dld¢®=iN,, andd/dc®=cy, we can re-
@'3=3—3(y), it is easy to understand, in analogy to Eq. Write Eq. (6) as
(2), how \ 5 will change under the above transformation:
AP acd

Cp. (7)

ra

’ S i +
No=Nat Npdag®+ici(dadpe’)c, (3) P P
where 2= w3,G(¢) and G is any function ofe multi-

lied b infinitesimal ter. The ab i f One could say that in generat®/ d¢'2=0 because and
plied by an nfinltesimal parameter. fhe above trans orma-(P, are independent coordinates. Actually it is not so because,
tion properties of\ seem to be at odds with the representa-

. ) as we saw before the transformediepend ong and, vice
tion of N, that we found at the operatorial levil]: \,= -

. . : . versa, the originalc depend on the transformed. So
—idlde?. In fact in [1] we thought that this would imply g b 4

: ; a acl9p'@+0. Let us now proceed to see if the transforma-
that the\,, being proportional t@/d¢?, transform as the tions of the\ above are the same as E@). Using ¢?
basis of the vector field§3], N.=(d¢d¢'?) Npy=[52

, =¢'%4 0?%9,G(¢'), cA=[8+ w?%d,G]c'?, we get

+ d(0"9.G) Ny, and not as in Eq(3). The way to recon- J gﬁ ,‘2_ A (gobi) : p w,a_c bbc] i J

. : . a @ 1de' % =64 0°'9;9,G, d9c°[de'?* =w" d.0;9,Gc"". In-
cile these two facts is the following/d¢® would transform . ¢ : .

) . . : serting these expressions into E@) we obtain

as vector fields if they were applied to functions onlygf
i.e., F(¢), but they would transform differently if they were ) bi — e :
applied to functions ofp andc, i.e., F(¢,c). We will now Na=[82+ 0"'9,0,G]Np+iChw°dcdd.GC, ®
show that, if applied to these last functions, tHé¢? trans- _
form as the\, do in Eq.(3). As explained in Appendix A of where we have replaced’ with ¢ because we keep only
Ref.[2], under the samésymplectig diffeomorphism which  terms which are first order in the infinitesim@land we have
is applied to\, the ¢ and c transform as¢’®=¢®  Dbroughtc in front in the last term of the RHS of the equation
- 0®9,G, ¢'?=[— w3%3.9,G]cP. Note that the trans- above. Equatior(8) is exactly the transformation for we
formedc’ depend onp via G. Let us now take a function of had in Eq.(3). So this proves that as an operaiqy act as
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a1 d¢® but over the function& (p,c) and this in turn implies
that thebase spaceve should consider is the chenade of
(¢.0).

Then let us first find out which kind of space this i&
are the & coordinates of the phase spat¢. Thec? trans-
form under a diffeomorphism as the formg?, so we stated
in Refs.[1,2] that, identifying cwith de, the space ¢?,c?)
makes up the cotangent bundl&| to phase spacel* M.
That iswrong In fact c® are at mosta basisin the fiber
T M and not a generic vector ifi; M. Since thec are a
basis, they belong to what is call¢d] the bundle of linear
frames to M. So the (?,c?) are nothing else thansection
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space is[ITM, the overall & coordinates ¢#,¢c? \,,C,)

can then be considered as a section of the bundle of linear
frames overlIT M. This is analternativeinterpretation of

our 8n variables with respect to the interpretation contained
in Eq. (10). This sort of “duality” in treating each of our

variables {,c,c) either as abasisor coordinatecould be
considered at each of the levels of E¢9),(10) and would
give rise to all possible combinations. Anyhow we will stick
here to thecoordinate picture which will lead to the
“reversed-parity” bundle of Eq(10).

In addition to this sort of “duality” which would allow us
to see in two different ways the spaces labeled by our vari-

of the linear frame bundle. We say a “section” becausegples, there is a further freedom. This is related to the

there are other base®r frames$, besidesc?, which one
could choose in the fibers of the linear frame bundle.

scheme of Egs(9),(10). Let us first perform a partial inte-
gration in the kinetic piece of the Grassmannian variables

As we have stressed before, the structure above holds gresent in the Lagrangiafl). The new Lagrangian, modulo

oneidentifies ¢ with d¢?. We did that identification in Ref.

[1] and used it to turn the whole Cartan calculus into opera
tions which could be performed via our path integral and the

structures present in it. Of course the fact that ¢Adrans-

surface terms, would bel’'=\,[¢*— w?®dyH]—icC,c?

—ic,w?%d.d,Hc?. As this Lagrangian is different fronf
only by a surface term, the equations of motiond®dmndc,

form as thed ¢? does not force us to identify them so explic- are the same, but no&j1 play the role of “configurational”

itly with the de? as we have done in Refl]. For example,
if we build a generic vector field/=V2j/d¢?, we would
have that the component? transform as the?. So one
could say that the? are the components apordinategand

not thebasig of the vectors in the tangent fibers. Then they

would make up, together with the, the tangent bundle to
phase spac& M. The only difference is that the® have a
Grassmannian nature and not a bosonic one likevtheln
that case the bundle is known in the literatydd as a
reversed-paritytangent bundle and indicated HsT M.

Next we have to consider the role of th@ 4emaining

variables §,,c,). Looking at the Lagrangian in Eq1) we

variables whilec? are their relative momenta. Then it would
seem natural to choose in E®) the (c,oafa) as new funda-
mental coordinates. Let us now see the geometrical interpre-
tation of all this: thec, transform[2] asc,=c,+ Cpdae” and

so, interpreting the?a as coordinatesand notbasis they
transform as components of forms but with Grassmannian
character, i.e., with the reversed-parity character. This means
that the @a,?a) are the coordinates of the reversed-parity
cotangent bundle: ¢?,c,)=IIT*M. From the Lagrangian

L' above we see that, andc? play the role of momenta to
the previous variables, so they belong to the cotangent fibers

see that they play the role of momenta to the variable$f the previous space. Putting all this together we can then
(¢?,¢?), so they will make cotangent fibers to the previousWrite down the following picture:

space. We can summarize all this in the following scheme:

(=M, (¢ cH)=IITM, 9

(¢2,C3N\5,Co)=TH(IITM). (10)

(=M, (¢3,c)=IIT*M, (12)

(¢2,Ca Ng,CH)=TH(IIT*M).

Anyhow this is not the only picture we can have of our og the physics contained in the Lagrangiahsind £’ are

space. In fact in Ref[1] we proved that the, act, at the
operatorial level, ax,=d/dc?; moreover, in the previous
section of this paper we proved that thg, despite their
strange transformation properti€®, still maintain their op-
eratorial meaning of beiny,= —id/d¢?. From these repre-
sentations o andc, we can say that\,,c,) form a basis
in the tangent fibers to thizase spacé¢?c?). As this base

11f we had used the above transformation properties\fim Ref.

[2] we would have found that the Lagrangignis a scalar under a
diffeomorphism even off shell.

the same and the coordinates are the same, we can then say
that our variables label both space3*(IITM) and
T*(IIT*M). A more mathematically precise proof of this is
contained in Ref[10].

The reader may feel a little bit uneasy with the Grassman-
nian double bundles we have provided in the previous sec-
tion and even with the alternative interpretation as sections
of the frame bundle. For this reason in this section we will
show that, at least for thdamiltonianflow, it is possible to
provide a path integral of classical mechanics made entirely
of bosonic variables. Moreover, we will prove that these
variables are just the coordinates of a standard double bundle
such asT*(T*M). The procedure to achieve what we said

*Actually the bundle of linear frames is made out of the basis ofabove is explained below. _ .
the tangent fibers while ours is made of the basis of the cotangent The path integra[1] for classicalmechanicSCM) was

fibers, but the two are isomorphic.

basically the following:
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(92
de ﬁﬂt—wabT
do-do

~ f(t—t") is the retarted ocausalGreen function. If we had
Z[O]_f Dedle(t) = ¢a(t)] used other Green functions such as #fe—t’'), we would
not have obtained Eq16), which means also relatiofi3)
_ [ po3l oo ab M 12 would not have been valid. To make relatitiB) valid we
poye e b 12 should better specify what we mean by a functional determi-
nant.
where the dét ] appearing in Eq(12) is a functional deter- It is actually well known[6,7] that all functional determi-
minant[1]. The Lagrangian of Eq) is obtained by doing nhants of the form dgs;5(t—t")— 8(t—t')G’(¢)] depend
the Fourier transformvia the variables\,) of the Dirac  on theboundary conditionsinder which we solve the asso-
delta in the second term of E¢L2) and exponentiating the ciated differential equation[d;—G'(¢)]c,(t)=onCn(t),
def -] with Grassmannian variables andga. In order to  Whose eigenvalues,, are needed to calculqte the determi-
avoid using the Grassmannian variables the trick we adopt@nt in someregularizedform: def (-)]={II5=" .o} requi-
now is to substitute the det] in Eq. (12) with an inverse  Solving the differential equation above witausalboundary

determinant; conditions one obtain7]
J°H 9%H !
de{ fat_wabT z[de{ 5?‘9t+wabT ] . def g 8(t—t")—o(t—=t")G'(¢)causal
dp-de dp-do
1
=exp{—§f dt'G'(qD(t'))). (17)

The proof of this relation goes as follows: the determinants
in Eq. (13) are functional determinants, which means

def 39, — 0 3?H1d¢Pig'] So by reversing the sign @' (¢) we get

2

={dewt}[ de{ So(t—t")— f(t—t") 0 H

(9(pb(9<p|

}. defd;6(t—t")+ 8(t—t")G'(¢)]causal

1 re '
(149 =exp( +§f dt’'G' (e(t ))) (18

If Eq. (13) holds, then the determinant of the product of the

two matrices appearing, respectively, on the LHS and RHS _ )
of Eq. (13) is 1. The proof goes as follows: By comparing the RHS of the last two equations above we

see that the two determinants are the inverse of each other.
det{ f dt’

2 This proves relatior{13) provided we specify that the func-
X

Spo(t—t')— (t—t") tional determinant has to be evaluated wittusalboundary
conditions. The reason we choose these boundary conditions

} is because, after all, we are just doing classical mechanics,

r?go'r?(pb
J°H

k c
de dep

which means just solving ordinary Hamiltonian equations of
motion. These are usually solved by giving a valuepoét
the initial timet=0 and looking for the evolution dater
" , o times using aausalpropagator. The use geriodic bound-
=del{ So(t—t )_f dt’o(t—t") o(t" —t") ary conditionsand of a time-symmetric Green function for
our path integral has been analyzed in full detail in R&f.
92H 9%H } The result is a path integral whose omlgnzeroexpectation

S5t —t")+ (' —t") K

X wal

T h wPX P (15 values are those associated with observables which are inde-
dede de de pendent from deformations of the Hamiltonighand of its
symplectic formw,,. This means a path integral which is
%exp< _f dt’ o(t—t") 6(t’ 1) not affected by the form dff anymore. Something that does
not feel the dynamics at all isot what we want to use here.
Having clarified the boundary conditions we use in evalu-
9°H b 9°H ating the determinants in Eq13), the next step is to use
old p @ PTPR =1, (16) relation(13) in Eq.(12) and then “exponentiate” the inverse
¢ o ¢ o of the matrix using bosonic variables by making use of the

where we have dropped the detpart, and in Eq(16) we  Well-known formuld dx dy; exp(x Aly;)>-{def Al]}~*. Do-
have used the “exptrlog” form for the determinant plus the INg all that we get

fact that the product of the twé(-) is zero. So this proves

the relation(13). Before proceeding we should better qualify

the steps done in Eqg15) and (16). There we used the  S3This formula requires that the determinant be positive and this is
f(t—t') as “inverse” (or Green function of d;. The  our case because the LHS of H{?3) is positive[1].

X 0
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9°H
de 5|a(9t+ wabT
e do

. JH
¢a_ wab

Z[J]= f Dpd pyC

of Z is the same thing that would happen to a forE
(19 =%,de® and by identifying thalo? above with thec? we see
that we can identify the, with the ¢,. So while thec? are
the basis of the fibers of* M, the &, are the coordinates of
= f DD\ ,DmDE, exp{i f cdt), (20) the same space. Looking at the Lagrangiah) we see that
72 and A, are the momenta associated wify and ¢2,
which means they will make up the cotangent fibers to the
where previous space. So the overall set of variables
(2, 4,15, ) makes up the coordinates ®f (T*M). This
is a double bundle but it may please the reader more than the
£ (21) reversed-parity on&* (IIT M) associated with the Lagrang-

ian Z of Eq. (1). It might also be a space easier to handle for
the study of variouphysicalissues like the study of ergod-

The variabless' and &, are thebosonicvariables we have icity and Lyapunov exponen{®] that we performed previ-
used to exponentiate the inverse matrix and they replace trsly using the old Lagrangiafi). It may also be worth-

. . — o~ hile to see if the universal symmetrieEBRS and
Grassmannian variable$ andc, present inl of Eq. (1). W . X .
Let us now see if we can give a geometrical understand§upersymmet0ywe found |n[1,§_)] are presen(in a different
. . a form) also in the purely bosonic case presented here.
ing of the new variablesr® &, present here. Let us show
how they change under the Hamiltonian flow, which means This work has been supported by grants from MURST,
under their equation of motiong, &+ &,03°°H/ded¢'  INFN, and NATO. We thank F. Benatti, G. Landi, G.
=0, which can easily be derived from the Lagrangién Marmo, and especially D. Mauro for helpful discussions.
above. This equation should be compared with the equations

of motion of c® derived[1] from Z of Eq. (1) which are
9= 0 (9*H/d¢°d¢") c'=0. From the above equations it 4This is so because we would have to choose the transformations

is now easy to see that the quant@y=¢,c? is invariant  on« and¢ induced by the diffeomorphism ia in such a way so as
under the Hamiltonian flow. This quantity would behave into keep invariant the Hamiltonian associated with

the same way under any diffeomorphism of the phase spaceThis is so because forms are objects totally coordinate free.

]‘1 M and not just under the Hamiltonian fléWThe invariance

2

. J
L=\, ¥ — 0 — |+ 7| 629+ 0?®
(9cpb
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