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Addenda and corrections to work done on the path-integral approach to classical mechanics
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We continue the study of the path-integral approach to classical mechanics and in particular wecorrectand
better clarify, with respect to previous papers, the geometrical meaning of the variables entering this formu-

lation. We show that the space spanned by the whole set of variables (w,c,l,c̄) of our path integral is the
cotangent bundle to thereversed-paritytangent bundle of the phase spaceM of our system and it is indicated
as T!(PTM). We also show that it is possible to build a different path integral made only ofbosonic
variables. These turn out to be the coordinates ofT!(T!M) which is the double cotangent bundle to phase
space.

PACS number~s!: 02.40.Hw, 31.15.Kb
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We continue the study of thepath-integralformulation of
Hamiltonian classical mechanics started in@1# and continued
in @2#. Starting from a HamiltonianH defined on a phase
spaceM whose 2n coordinates we indicate aswa, our path
integral@1# naturally generates a weight whose Lagrangian

L̃5la@ẇa2vab]bH#1 i c̄a@db
a] t2vac]c]bH#cb, ~1!

where vab is the symplectic matrix of the system an
(la ,ca,c̄a) are auxiliary variables needed in our formulatio
In this paper we will try to better characterize geometrica
the space spanned by the 8n variables (wa,ca,la ,c̄a).

Let us start withla . From the Lagrangian~1! one imme-
diately finds how thela transform under the Hamiltonia
flow:

la85@da
b2vb j] j]aHDt#lb2 i c̄ iv

i j ~] j]b]aHDt !cb. ~2!

If we perform any Hamiltonian diffeomorphism@3# on w,
w8a5wa2«a(w), it is easy to understand, in analogy to E
~2!, how la will change under the above transformation:

la85la1lb]a«b1 i c̄ i~]a]b« i !cb, ~3!

where «a5vab]bG(w) and G is any function ofw multi-
plied by an infinitesimal parameter. The above transform
tion properties ofl seem to be at odds with the represen
tion of la that we found at the operatorial level@1#: la5
2 i ]/]wa . In fact in @1# we thought that this would imply
that thela , being proportional to]/]wa, transform as the
basis of the vector fields@3#, la85(]wb/]w8a) lb5@da

b

1]a(vbc]cG)#lb , and not as in Eq.~3!. The way to recon-
cile these two facts is the following:]/]wa would transform
as vector fields if they were applied to functions only ofw,
i.e., F(w), but they would transform differently if they wer
applied to functions ofw and c, i.e., F(w,c). We will now
show that, if applied to these last functions, the]/]wa trans-
form as thela do in Eq.~3!. As explained in Appendix A of
Ref. @2#, under the same~symplectic! diffeomorphism which
is applied to l, the w and c transform as w8a5wa

2vab]bG, c8a5@db
a2vac]c]bG#cb. Note that the trans-

formedc8 depend onw via G. Let us now take a function o
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w and c, i.e., F(w,c), and let us transform its argument
F(w,c)5F@w(w8),c(w8,c8)#[S(w8,c8).

If we now apply]/]w8 on S, we have

~]/]w8!S~w8,c8!5~]/]w8! F@w~w8!,c~w8,c8!# ~4!

5
]w

]w8

]F

]w
1

]c

]w8

]F

]c
. ~5!

Comparing the two right-hand sides~RHSs! of the above
equations we can say that

]

]w8a
5

]wb

]w8a

]

]wb
1

]cb

]w8a

]

]cb
. ~6!

Using the operatorial correspondence described in R
@1#, ]/]w8a5 ila8 , ]/]wa5 ila , and]/]cb5 c̄b , we can re-
write Eq. ~6! as

ila85 i
]wb

]w8a
lb1

]cb

]w8a
c̄b . ~7!

One could say that in general]cb/]w8a50 becausec and
w8 are independent coordinates. Actually it is not so becau
as we saw before the transformedc depend onw and, vice
versa, the originalc depend on the transformedw. So
]cb/]w8aÞ0. Let us now proceed to see if the transform
tions of the l above are the same as Eq.~3!. Using wa

5w8a1vab]bG(w8), ca5@db
a1vac]c]bG#c8b, we get

]wb/]w8a 5da
b1vbi] i]aG, ]cb/]w8a 5vbc]c] i]aGc8 i . In-

serting these expressions into Eq.~7! we obtain

la85@da
b1vbi] i]aG#lb1 i c̄bvbc]c] i]aGci , ~8!

where we have replacedc8 with c because we keep onl
terms which are first order in the infinitesimalG and we have
broughtc̄ in front in the last term of the RHS of the equatio
above. Equation~8! is exactly the transformation forl we
had in Eq.~3!. So this proves that as an operatorla act as
©2000 The American Physical Society02-1
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BRIEF REPORTS PHYSICAL REVIEW D 62 067702
]/]wa but over the functionsF(w,c) and this in turn implies
that thebase spacewe should consider is the one1 made of
(w,c).

Then let us first find out which kind of space this is.wa

are the 2n coordinates of the phase spaceM. Theca trans-
form under a diffeomorphism as the formsdwa, so we stated
in Refs.@1,2# that, identifying cwith dw, the space (wa,ca)
makes up the cotangent bundle@3# to phase space:T!M.
That is wrong. In fact ca are at mosta basis in the fiber
Tw

!M and not a generic vector inTw
!M. Since thec are a

basis, they belong to what is called@5# the bundle of linear
frames2 to M. So the (wa,ca) are nothing else than asection
of the linear frame bundle. We say a ‘‘section’’ becau
there are other bases~or frames!, besidesca, which one
could choose in the fibers of the linear frame bundle.

As we have stressed before, the structure above hold
one identifies ca with dwa. We did that identification in Ref
@1# and used it to turn the whole Cartan calculus into ope
tions which could be performed via our path integral and
structures present in it. Of course the fact that theca trans-
form as thedwa does not force us to identify them so expli
itly with the dwa as we have done in Ref.@1#. For example,
if we build a generic vector fieldV[Va]/]wa, we would
have that the componentsVa transform as theca. So one
could say that theca are the components orcoordinates~and
not thebasis! of the vectors in the tangent fibers. Then th
would make up, together with thew, the tangent bundle to
phase spaceTM. The only difference is that theca have a
Grassmannian nature and not a bosonic one like theVa. In
that case the bundle is known in the literature@4# as a
reversed-paritytangent bundle and indicated asPTM.

Next we have to consider the role of the 4n remaining
variables (la ,c̄a). Looking at the Lagrangian in Eq.~1! we
see that they play the role of momenta to the variab
(wa,ca), so they will make cotangent fibers to the previo
space. We can summarize all this in the following schem

~wa!⇒M, ~wa,ca!⇒PTM, ~9!

~wa,ca,la ,c̄a!⇒T!~PTM!. ~10!

Anyhow this is not the only picture we can have of o
space. In fact in Ref.@1# we proved that thec̄a act, at the
operatorial level, asc̄a5]/]ca; moreover, in the previous
section of this paper we proved that thela , despite their
strange transformation properties~3!, still maintain their op-
eratorial meaning of beingla52 i ]/]wa. From these repre
sentations ofl and c̄, we can say that (la ,c̄a) form a basis
in the tangent fibers to thebase space(wa,ca). As this base

1If we had used the above transformation properties forl in Ref.

@2# we would have found that the LagrangianL̃ is a scalar under a
diffeomorphism even off shell.

2Actually the bundle of linear frames is made out of the basis
the tangent fibers while ours is made of the basis of the cotan
fibers, but the two are isomorphic.
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space isPTM, the overall 8n coordinates (wa,ca,la ,c̄a)
can then be considered as a section of the bundle of lin
frames overPTM. This is analternative interpretation of
our 8n variables with respect to the interpretation contain
in Eq. ~10!. This sort of ‘‘duality’’ in treating each of our
variables (l,c,c̄) either as abasis or coordinatecould be
considered at each of the levels of Eqs.~9!,~10! and would
give rise to all possible combinations. Anyhow we will stic
here to the coordinate picture which will lead to the
‘‘reversed-parity’’ bundle of Eq.~10!.

In addition to this sort of ‘‘duality’’ which would allow us
to see in two different ways the spaces labeled by our v
ables, there is a further freedom. This is related to
scheme of Eqs.~9!,~10!. Let us first perform a partial inte
gration in the kinetic piece of the Grassmannian variab
present in the Lagrangian~1!. The new Lagrangian, modulo
surface terms, would beL 8[la@ẇa2vab]bH#2 icG aca

2 i c̄avac]c]bHcb. As this Lagrangian is different fromL̃
only by a surface term, the equations of motion forca andc̄a

are the same, but nowc̄a play the role of ‘‘configurational’’
variables whileca are their relative momenta. Then it woul
seem natural to choose in Eq.~9! the (wa,c̄a) as new funda-
mental coordinates. Let us now see the geometrical inter
tation of all this: thec̄a transform@2# asc̄a85 c̄a1 c̄b]a«b and

so, interpreting thec̄a as coordinatesand not basis, they
transform as components of forms but with Grassmann
character, i.e., with the reversed-parity character. This me
that the (wa,c̄a) are the coordinates of the reversed-par
cotangent bundle: (wa,c̄a)⇒PT!M . From the Lagrangian
L 8 above we see thatla andca play the role of momenta to
the previous variables, so they belong to the cotangent fib
of the previous space. Putting all this together we can t
write down the following picture:

~wa!⇒M, ~wa,c̄a!⇒PT!M, ~11!

~wa,c̄a ,la ,ca!⇒T!~PT!M!.

As the physics contained in the LagrangiansL and L 8 are
the same and the coordinates are the same, we can the
that our variables label both spaces:T!(PTM) and
T!(PT!M). A more mathematically precise proof of this
contained in Ref.@10#.

The reader may feel a little bit uneasy with the Grassm
nian double bundles we have provided in the previous s
tion and even with the alternative interpretation as secti
of the frame bundle. For this reason in this section we w
show that, at least for theHamiltonianflow, it is possible to
provide a path integral of classical mechanics made enti
of bosonic variables. Moreover, we will prove that the
variables are just the coordinates of a standard double bu
such asT!(T!M). The procedure to achieve what we sa
above is explained below.

The path integral@1# for classicalmechanics~CM! was
basically the following:

f
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BRIEF REPORTS PHYSICAL REVIEW D 62 067702
Z@0#5E Dwd̃@w~ t !2wcl~ t !#

5E Dwd̃F ẇa2vab
]H

]wbGdetFd l
a] t2vab

]2H

]wb]w l G ~12!

where the det@•# appearing in Eq.~12! is a functional deter-
minant @1#. The Lagrangian of Eq.~1! is obtained by doing
the Fourier transform~via the variablesla) of the Dirac
delta in the second term of Eq.~12! and exponentiating the
det@•# with Grassmannian variablesca and c̄a . In order to
avoid using the Grassmannian variables the trick we ad
now is to substitute the det@•# in Eq. ~12! with an inverse
determinant:

detFd l
a] t2vab

]2H

]wb]w l G5H detFd l
a] t1vab

]2H

]wb]w l G J 21

.

~13!

The proof of this relation goes as follows: the determina
in Eq. ~13! are functional determinants, which means

det@d l
a] t2vab ]2H/]wb]w l #

5$det] t%H detFd l
ad~ t2t8!2u~ t2t8!vab

]2H

]wb]w l G J .

~14!

If Eq. ~13! holds, then the determinant of the product of t
two matrices appearing, respectively, on the LHS and R
of Eq. ~13! is 1. The proof goes as follows:

detH E dt8Fdb
ad~ t2t8!2u~ t2t8!val

]2H

]w l]wbG
3Fdc

bd~ t82t9!1u~ t82t9!vbk
]2H

]wk]wcG J
5detH dc

ad~ t2t9!2E dt8u~ t2t8!u~ t82t9!

3val
]2H

]w l]wb
vbk

]2H

]wk]wcJ ~15!

'expS 2E dt8u~ t2t8!u~ t82t !

3val
]2H

]w l]wb
vbk

]2H

]wk]wa D 51, ~16!

where we have dropped the det] t part, and in Eq.~16! we
have used the ‘‘exp tr log’’ form for the determinant plus t
fact that the product of the twou(•) is zero. So this proves
the relation~13!. Before proceeding we should better quali
the steps done in Eqs.~15! and ~16!. There we used the
u(t2t8) as ‘‘inverse’’ ~or Green function! of ] t . The
06770
pt

s
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u(t2t8) is the retarted orcausalGreen function. If we had
used other Green functions such as thee(t2t8), we would
not have obtained Eq.~16!, which means also relation~13!
would not have been valid. To make relation~13! valid we
should better specify what we mean by a functional deter
nant.

It is actually well known@6,7# that all functional determi-
nants of the form det@] td(t2t8)2d(t2t8)G8(w)# depend
on theboundary conditionsunder which we solve the asso
ciated differential equation,@] t2G8(w)#cn(t)5sncn(t),
whose eigenvaluessn are needed to calculate the determ
nant in someregularizedform: det@(•)#5$)n52`

n5` sn% regul .
Solving the differential equation above withcausalboundary
conditions one obtains@7#

det@] td~ t2t8!2d~ t2t8!G8~w!#causal

5expS 2
1

2E dt8G8„w~ t8!…D . ~17!

So by reversing the sign ofG8(w) we get

det@] td~ t2t8!1d~ t2t8!G8~w!#causal

5expS 1
1

2E dt8G8„w~ t8!…D . ~18!

By comparing the RHS of the last two equations above
see that the two determinants are the inverse of each o
This proves relation~13! provided we specify that the func
tional determinant has to be evaluated withcausalboundary
conditions. The reason we choose these boundary condit
is because, after all, we are just doing classical mechan
which means just solving ordinary Hamiltonian equations
motion. These are usually solved by giving a value ofw at
the initial time t50 and looking for the evolution atlater
times using acausalpropagator. The use ofperiodic bound-
ary conditionsand of a time-symmetric Green function fo
our path integral has been analyzed in full detail in Ref.@8#.
The result is a path integral whose onlynonzeroexpectation
values are those associated with observables which are i
pendent from deformations of the HamiltonianH and of its
symplectic formvab . This means a path integral which
not affected by the form ofH anymore. Something that doe
not feel the dynamics at all isnot what we want to use here

Having clarified the boundary conditions we use in eva
ating the determinants in Eq.~13!, the next step is to use
relation~13! in Eq. ~12! and then ‘‘exponentiate’’ the invers
of the matrix using bosonic variables by making use of
well-known formula3 *dxidyj exp(ixiAi

jyj)}$det@Ai
j #%21. Do-

ing all that we get

3This formula requires that the determinant be positive and thi
our case because the LHS of Eq.~13! is positive@1#.
2-3
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BRIEF REPORTS PHYSICAL REVIEW D 62 067702
Z@J#5E Dwd̃F ẇa2vab
]H

]wbG H detFd l
a] t1vab

]2H

]wb]w l G J 21

~19!

5E DwaDlaDpaDja expS i E LdtD , ~20!

where

L5laF ẇa2vab
]H

]wbG1p lFd l
a] t1vab

]2H

]wb]w l Gja . ~21!

The variablesp l and ja are thebosonicvariables we have
used to exponentiate the inverse matrix and they replace
Grassmannian variablesca and c̄a present inL̃ of Eq. ~1!.

Let us now see if we can give a geometrical understa
ing of the new variablespa,ja present here. Let us show
how they change under the Hamiltonian flow, which mea
under their equation of motion,] tj l1javab ]2H/]wb]w l

50, which can easily be derived from the LagrangianL
above. This equation should be compared with the equat
of motion of ca derived @1# from L̃ of Eq. ~1! which are
] tc

a2vab (]2H/]wb]w l) cl50. From the above equations
is now easy to see that the quantityJ[jaca is invariant
under the Hamiltonian flow. This quantity would behave
the same way under any diffeomorphism of the phase sp
s
.
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M and not just under the Hamiltonian flow.4 The invariance

of J is the same thing that would happen to a form5 J̃

[j̃adwa and by identifying thedwa above with theca we see
that we can identify theja with the j̃a. So while theca are
the basis of the fibers onT!M, theja are the coordinates o
the same space. Looking at the Lagrangian~21! we see that
pa and la are the momenta associated withja and wa,
which means they will make up the cotangent fibers to
previous space. So the overall set of variab
(wa,ja ,la ,pa) makes up the coordinates ofT!(T!M). This
is a double bundle but it may please the reader more than
reversed-parity oneT!(PTM) associated with the Lagrang
ian L̃ of Eq. ~1!. It might also be a space easier to handle
the study of variousphysicalissues like the study of ergod
icity and Lyapunov exponents@9# that we performed previ-
ously using the old Lagrangian~1!. It may also be worth-
while to see if the universal symmetries~BRS and
supersymmetry! we found in@1,9# are present~in a different
form! also in the purely bosonic case presented here.

This work has been supported by grants from MURS
INFN, and NATO. We thank F. Benatti, G. Landi, G
Marmo, and especially D. Mauro for helpful discussions.

4This is so because we would have to choose the transforma
on p andj induced by the diffeomorphism inw in such a way so as
to keep invariant the Hamiltonian associated withL.

5This is so because forms are objects totally coordinate free.
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