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Wave function of the radion in a brane world
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We calculate the linearized metric perturbation corresponding to a massless four-dimensional scalar field,
the radion, in a five-dimensional two-brane model of Randall and Sundrum. In this way we obtain the relative
strengths of the radion couplings to matter residing on each of the branes. The results are in agreement with the
analysis of Garriga and Tanaka of gravitational and Brans-Dicke forces between matter on the branes. We also
introduce a model with an infinite fifth dimension and ‘‘almost’’ confined graviton, and calculate the radion
properties in that model.

PACS number~s!: 04.50.1h, 11.25.Mj
fiv

i-
o
M

o
u

on
s

c
is

-
ns
p
e
el

.
ir

en

-

ce-
o-

ed,
ght

lo-

dif-
ass
-
the
o
r-
the
r.
g

s
ion
har-
e-
the

ed
nd-
is
Recently, considerable interest has been raised by a
dimensional model with anS1/Z2 orbifold extra dimension
with two 3-branes residing at its boundaries@1#. This model
and its noncompact analogues@2–5# ~see@6# for an account
of earlier works! provide a novel setting for discussing var
ous conceptual and phenomenological issues related to c
pactification of extra dimensions in models motivated by
theory. In the two-brane Randall-Sundrum model@1#, the
branes have tensions1s and2s, and the bulk cosmologi-
cal constant is chosen in such a way that the classical s
tion describes five-dimensional space-time whose fo
dimensional slices are flat:

ds25a2~z!hmndxmdxn2dz2. ~1!

Herea(z)5e2kuzu, the fifth coordinatez runs fromz150 to
z25r c andk5(4p/3)G5s, whereG5 is Newton’s constant
in five dimensions. The orbifold symmetry, a local reflecti
symmetry at each brane, is assumed to hold for all field
this space-time.

The excitations above the background metric Eq.~1!, con-
tain a massless four-dimensional graviton~whose wave func-
tion is peaked at the positive tension brane! and the corre-
sponding Kaluza-Klein tower@3#. This is not the whole
story, however. In general when one has a wall in spa
time, one might expect a translational zero mode giving r
to free motion of the wall. In the case of anti–de Sitter~AdS!
space-time,]z is not a translational Killing vector but a con
formal Killing vector; nonetheless we can identify solutio
to the perturbation equations which correspond to the pro
motion of the wall~although these will be singular on th
AdS horizon!. In the conventional application of the Isra
equations, one identifies the extrinsic curvatureKmn on each
side of the wall, and then applies aZ2 symmetry across the
wall leading toK̃mn5(Kmn

1 1Kmn
2 )/250; geometrically this

means that the wall is locally ‘‘flat,’’ i.e., totally geodesic
To describe proper dynamical motion of the wall, we requ
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a nonzeroK̃mn , which is possible if theZ2 symmetry is not
imposed. The appropriate solution for such a motion th
turns out to be

dgmn5
sinh 2kz

2k
K̃mn , ~2!

where K̃m
m50, which is recognized as the ‘‘Nambu’’ equa

tion for a brane. Since this solution blows up at largez, it
does not correspond to a small perturbation of the spa
time, and is indicative that in the presence of such free m
tion, the asymptotic structure of the space-time is alter
similar to the difference between the metrics of a strai
cosmic string and a crinkly cosmic string@7#. As such, this
perturbation is not considered in the general spectrum of
calized perturbations of the Randall-Sundrum wall.

Once we have two branes, however, the situation is
ferent: there are now two sorts of motion; a center of m
~which will still be divergent! and relative motion—the ra
dion for which the second wall acts as a regulator on
divergence of Eq.~2!. It is this second mode that we wish t
identify, which will correspond to a massless fou
dimensional scalar. One may or may not suspect that
radion is also accompanied by its own Kaluza-Klein towe

The radion fieldT(x) has been introduced by considerin
metrics of the form@1,3,8,9#

ds25e22kuzuT(x)gmn~x!dxmdxn2T2~x!dz2, ~3!

wheregmn is the four-dimensional graviton. This form ha
been used for deriving the effective four-dimensional act
describing the large-distance dynamics. The complete c
acterization of the radion excitation everywhere in the fiv
dimensional space-time, however, requires a solution to
field equations about the background Eq.~1!. The ansatz~3!
does not in fact solve these linearized field equations.

The purpose of this report is to calculate in lineariz
theory the five-dimensional metric perturbation correspo
ing to the propagating radion field. We will see that th
©2000 The American Physical Society05-1



w
th
or

si

d
e
ot
ak
rv

th
s

at

l

i-

sily
at

tion

ith
the

hes,

ese
nate
the

of

ge

s.

ad

re

d by

BRIEF REPORTS PHYSICAL REVIEW D 62 067505
perturbation does not vanish on either of the branes. We
point out also that there is no Kaluza-Klein tower above
radion, i.e., that all massive states have been accounted f
the analysis of@3#.

To deal with theZ2 symmetry as well as with junction
conditions on the branes, it is convenient to choose Gaus
normal ~GN! coordinates

gzz521, gzm50. ~4!

Such a system can always be chosen in the neighborhoo
the brane by integrating out along its normal, in which casz
will be the proper distance from the brane. However, n
that this system is slightly more general, in that we can m
coordinate transformations which shift the wall, but prese
the metric components@Eq. ~4!#.

Then the linearized theory is described by the metric

ds25a2~z!hmndxmdxn1hmn~x,z!dxmdxn2dz2. ~5!

We will explicitly consider the regionr c.z.0; the orbifold
symmetry giving hmn for other values ofz. The four-
dimensional indices will be raised and lowered using
Minkowski metric hmn . The linearized Einstein equation
are

dRzz58pG5S 2

3
Tzz1

1

3a2
Tl

lD , ~6a!

dRzm58pG5Tzm , ~6b!

dRmn24k2hmn58pG5S Tmn2
1

3
hmnTl

l1
a2

3
hmnTzzD .

~6c!

HereTab is the energy-momentum tensor of additional m
ter, if present, and

dRzz52S h8

2a2D 8
22kd~z!h1

2k

a2~r c!
d~z2r c!h, ~7a!

dRzm5S 1

2a2
~hm,n

n 2h,m!D 8
,

dRmn5
1

2
hmn9 12k2hmn2S k2h1

k

2
h8Dhmn

12k„d~z!2d~z2r c!…hmn

1
1

2a2
~2h(m,n)l

l 2hmn, l
l2h,mn!, ~7b!

where h5hm
m . Equations~7b! are invariant under residua

gauge transformations

hmn→hmn1a2~em,n1en,m!1
1

k
ez

,mn22ka2hmnez, ~8!
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where ez and em depend only onx. These transformations
correspond to general coordinate transformationsz→z
1jz, xm→xm1jm; their consistency with the gauge cond
tions Eq. ~4! requires jz5ez(x), jm5(2k)21a22ez,m(x)
1em(x).

The Israel junction conditions on a brane are most ea
formulated in the GN frame, in which the brane is located
fixed z. In the absence of matter on the brane, these junc
conditions arehmn8 12khmn50. They arenot invariant under
the gauge transformations, Eq.~8!, if ezÞ0. The importance
of the gauge transformations Eq.~8! becomes clear from the
observation that the coordinate system, which is GN w
respect to one brane, need not be GN with respect to
other. Hence, one is led to consider two coordinate patc
the first ~second! of which includes the positive~negative!
tension brane. The coordinate systems in each of th
patches are GN to the respective brane. A residual coordi
transformation is needed then to relate the metrics in
overlap of these patches.

In other words, to describe the propagating degrees
freedom, we introduce two sets of fields,hmn

(1)(x,z) and
hmn

(2)(x,z). The first of them,hmn
(1) , is defined in the interval

in the fifth direction that includesz150 but excludesz2

5r c , and conversely forhmn
(2) . Both hmn

(6) obey source-free
equations~7!. The boundary conditions are

hmn
(6)812khmn

(6)50 at z5z6 . ~9!

The relation between the two fields in the bulk is the gau
transformation of the form Eq.~8! with yet unknown gauge
functions.

For Tab50, the linearized Einstein equations~7! with
boundary conditions Eq.~9! are straightforward to solve by
‘‘brute force.’’ The outcome can be understood as follow
In each of the patches we write

hmn
(6)5h̃mn

(6)1
1

k
f ,mn

(6)22ka2hmn f (6), ~10!

where f (6)(x) are yet to be determined andh̃mn
(6) is

transverse-tracefree~TT! h̃m
(6)m50, h̃m,n

(6)n50. Then the field
equations in the bulk become

h̃mn
(6)922k2h̃mn

(6)2
1

2a2
h (4)h̃mn

(6)50, ~11!

while the junction conditions on the respective branes re

h̃mn
(6)812kh̃mn

(6)522 f ,mn
(6) . ~12!

The latter are consistent with TT property ofh̃mn if
h (4)f (6)50. Hence, if the four-dimensional momenta a
such thatp2Þ0, one is left with Eq.~11! and homogeneous
boundary conditions@i.e., Eq. ~12! with f (6)50#. This is
precisely the system of equations analyzed in@3#, so we see
that all massive propagating modes have been reveale
that analysis.
5-2
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At p250, however, there are two types of solutions. O
of them is f (6)(x)50, h̃mn(x,z)5a2xmn(x), and does not
require the gauge transformation in the overlap of the t
patches. These solutions have been considered in@3#, and
describe massless four-dimensional gravitons. The other
of solution is

h̃mn
(6)52

a6
2

2ka2
f ,mn

(6) , ~13!

wheref (6)(x) are yet arbitrary anda65a(z6). The relation
betweenf (1) and f (2) is found using Eq.~8!. Sinceh̃mn are
proportional toa22, they should coincide in the two patche
so one requiresa1 f (1)(x)5a2 f (2)(x)[ f (x). One finally
obtains

hmn
(1)52

1

2ka2
f ,mn1

1

k
f ,mn22ka2hmn f , ~14a!

hmn
(2)52

1

2ka2
f ,mn1

e2krc

k
f ,mn22ka2e2krchmn f ,

~14b!

where f (x) is a massless four-dimensional scalar mode. T
first term on the right hand side~RHS! is clearly identifiable
as the growing part of the mode in Eq.~2!, and hence corre
sponds to motion of the wall; the coincidence of this term
Eqs.~14a! and~14b! identifies this as a relative motion. On
can quantify this by noting that the transition function b
tween the two patches is

ez~x!5~e2krc21! f ~x!, em50. ~15!

This transition function then determines the physical dista
between the branes,r (x)2r c5ez(x) @recall that Eq.~8! is
the coordinate transformation between the coordinate
tems in which the branes are located exactly atz50 andz
5r c , respectively#. These properties show thatf (x) is in-
deed the~unnormalized! radion field in the linearized theory

Equations~14a! and ~14b! determine the induced metric
on each of the branes in the presence of the radion field.
first two terms on the RHS’s of these equations can
gauged awayon the branes. With the graviton fieldxmn in-
cluded, the induced metrics on each brane are

h̄mn
(6)~x!5a6

2 S hmn1xmn~x!2
2k

a6
2

f ~x!hmnD . ~16!

If matter is present on the branes, it couples to the indu
metrics through L int}h̄mnTmn. Clearly, the radion field
couples to the trace of the energy-momentum tensor.
corresponding effective coupling constants at each brane
proportional tog6}a6

21 . Indeed, the elementary vertex of
graviton to matter at each brane is proportional toAGN6,
where GN6}a6

2 are effective four-dimensional Newton’
constants at each brane@1#; from Eq. ~16! it follows that the
radion vertex contains an extra factora6

22 . Hence, the radion
06750
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field couples to matter on the negative tension brane ex
nentially stronger than to matter on the positive tension o
g2

2 /g1
2 5e2krc. This relation is just the opposite to the case

graviton, and it is in accord with the results of Garriga a
Tanaka@10#. The overall strength of these interactions can
also read off from@10#: the interaction Lagrangian of th
normalized radion fieldf̂ (x) with matter on each brane i
L int

(6)5g6 f̂ Tm
(6)m with

g6
2 5

16p

3
G5k

e7krc

sinhkrc
. ~17!

The fact that the radion couples to matter on the nega
tension brane much stronger than the graviton does has
observed also in@8,9#.

It is instructive to return to Eq.~3! with the benefit of our
perturbative calculation to see what the linearized me
with the walls fixed at some coordinate values 0 andr c
should look like. To derive this form, we take the two G
patches of Eqs.~14a! and ~14b!, and perform a gauge trans
formation to make the two identical. We now have a sing
coordinate chart between the walls, but the walls are
longer atz50,r c . We then perform another coordinate tran
formation which is determined by the dual requirements t
the walls sit at the~new! z̃ coordinates 0 andr c , and that
there are no cross termsg̃z̃m in the metric. The price of
having the walls at a rigid value ofz̃ is that the system is no
longer GN—a nontrivialg̃z̃z̃ is introduced. After performing
these transformations we find that the new metric can
written in the form

ds̃25e22k„z̃1 f ( x̃)e2kz̃
…gmn~ x̃!dx̃mdx̃n

2„112k f~ x̃!e2kz̃
…

2dz̃2, ~18!

where we have included the possibility of graviton perturb
tions in gmn( x̃). This form of the metric correctly describe
the linearized dynamics of the massless metric excitati
~and also reduces to the appropriate expression forx̃ inde-
pendent, although not necessarily small, displacements o
wall!.

Clearly, the properties of the radion are quite differe
from the graviton. To stress this point, let us introduce
model in which gravitons are not confined, but the radion
This model may be of interest by itself, as in an appropri
limit gravity on a brane is expected to be almost, but n
exactly, Einsteinian.

Let us consider five-dimensional space-time with infin
fifth dimension. Let there be two branes, one with posit
tensions and another with negative tension2s/2 ~note the
factor 1/2). The latter brane is placed to the right of t
former in the fifth direction. The bulk cosmological consta
between the two branes and to the left of the positive-tens
one is the same as in the Randall-Sundrum model, an
zero to the right of the negative-tension brane. Then th
exists a solution to the Einstein equations for which bo
branes are at rest, the coordinates of the positive and n
5-3



th

iv

re
vi

-
n
-

-
in

i
le

tu

pi
rb
a

ric
a

ee
th

for-

mo-
of

.
e
is

ves
-

n-
ive
ort-
ely
es is
ns.
ot
ne,

ter
t to
s to
ss

an

es

ka,
ns.
on

yal
e-

BRIEF REPORTS PHYSICAL REVIEW D 62 067505
tive tension branes beingz50 and z5r c , respectively,
wherer c is again an arbitrary constant. This solution has
form of Eq. ~1! but now with

a2~z!5H e22kuzu for z,r c ,

e22krc5const for z.r c .
~19!

The four-dimensional hypersurfacesz5const are flat; the
five-dimensional space-time is flat to the right of the negat
tension brane, and AdS in the rest of the bulk.

An interesting feature of this model is that gravitons a
almost but not exactly confined: the wave functions of gra
tons,hmn5a2(z)xmn(x), are peaked atz50 but are not nor-
malizable. At larger c , gravity experienced by matter resid
ing on the positive tension brane should be almost, but
exactly, Einsteinian~the limit r c→` corresponds to the non
compact Gogberashvili-Randall-Sundrum model@2,3#, with
gravitons confined to the positive tension brane!. The back-
ground Eq.~19! is of interest for exploring possible devia
tions from the Einstein gravity in the brane world and,
particular, for analyzing the issue of~non!conservation of
energy measured by a four-dimensional observer.

We leave the discussion of gravitational perturbations
our model for the future, and here we consider a simp
mode, the radion. For the confined radion, the metric per
bation analogous to Eqs.~14a! and~14b! has to be a solution
to linearized Einstein equations@still in the gauge Eq.~4!#
which tends to pure the gauge asz→1` andz→2`. We
again have to consider two coordinate patches, overlap
in a region between the branes. In the overlap, the pertu
tions hmn

(1) andhmn
(2) are to be related by a gauge transform

tion Eq. ~8!.
Proceeding as above, we find in the left patch

hmn
(1)5

1

k
~12e2kz! f ,mn~x!22ka2f ~x!hmn , ~20!

where f (x) is the massless radion field. The forms of met
perturbation in the right patch are different in AdS and fl
parts

hmn
(2)5H 2

k
e2krc sinh@2k~r c2z!# f ,mn for z,r c ,

24~z2r c!e
2krcf ,mn for z.r c .

~21!

It is straightforward to see that these perturbations ind
obey the Einstein equations everywhere in the bulk and
06750
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Israel junction conditions on the branes. The gauge trans
mation relatinghmn

(1) and hmn
(2) in the bulk between the two

branes is

hmn
(1)2hmn

(2)5
1

k
f ,mn22ka2f hmn2

1

k
e4krca2f ,mn , ~22!

i.e., in the notation of Eq.~8!

ez5 f ; em5
f ,m

2k
~12e4krca2!. ~23!

It is easy to see that this corresponds to proper relative
tion of the wall, since computing the extrinsic curvature
the first wall givesK̃mn

(1)52 f ,mn . Meanwhile, at the second

wall K̃mn
(2)522e2krcf ,mn . Alternatively, the perturbation Eq

~21! is pure gauge forz.r c , and changing coordinates to th
right of the second wall so that the metric there
Minkowskian, we find that the wall is located atẑ(2)5r c
22e2krcf . Similarly, for z,0, the perturbation Eq.~20! is
pure gauge, and changing coordinates for the first wall gi
ẑ(1)52 f , therefore we see howf does indeed encode a rela
tive motion of the walls. Note how the radion field is no
trivial only inbetween the two branes and on the posit
tension brane itself. In other words, there is not even sh
ranged radion hair outside the two-brane system. It is lik
that the absence of the radion hair outside a stack of bran
a general property of models with infinite extra dimensio

Finally, we note that in our model the radion does n
induce metric perturbations on the negative tension bra
hmn

(2)(r c)50. Hence, the radion does not interact with mat
residing on the negative tension brane, in sharp contras
the Randall–Sundrum model discussed above. This seem
be a peculiarity of our model, which is related to the flatne
of the five-dimensional space-time forz.r c , since a per-
turbed wall in flat space-time written in GN coordinates c
be shown to have four-dimensional metricgmn5hmn

12z f,mn1O( f 2), and so any perturbation always vanish
to leading order on the wall.
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