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Wave function of the radion in a brane world
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We calculate the linearized metric perturbation corresponding to a massless four-dimensional scalar field,
the radion, in a five-dimensional two-brane model of Randall and Sundrum. In this way we obtain the relative
strengths of the radion couplings to matter residing on each of the branes. The results are in agreement with the
analysis of Garriga and Tanaka of gravitational and Brans-Dicke forces between matter on the branes. We also
introduce a model with an infinite fifth dimension and “almost” confined graviton, and calculate the radion
properties in that model.

PACS numbd(s): 04.50+h, 11.25.Mj

Recently, considerable interest has been raised by a fivey nonzerd~<w, which is possible if th&, symmetry is not
dimensional model with al$1/22 orbifold extra dimension imposed_ The appropriate solution for such a motion then

with two 3-branes residing at its boundar[dg. This model  turns out to be
and its noncompact analogugs-5| (see[6] for an account

of earlier workg provide a novel setting for discussing vari- sinh kz_
ous conceptual and phenomenological issues related to com- ™" N 2

pactification of extra dimensions in models motivated by M

theory. In the two-brane Randall-Sundrum mofig], the
branes have tensionso and — o, and the bulk cosmologi-

tion describes five-dimensional
dimensional slices are flat:

z_=r; andk=(47/3)Gso, whereGs is Newton’s constant
in five dimensions. The orbifold symmetry, a local reflection
symmetry at each brane, is assumed to hold for all fields
this space-time.

tain a massless four-dimensional gravitarhose wave func-
tion is peaked at the positive tension braa@d the corre-
sponding Kaluza-Klein towef3]. This is not the whole
story, however. In general when one has a wall in space-

WhereRZ=0, which is recognized as the “Nambu” equa-

. . _ tion for a brane. Since this solution blows up at lamyét

cal constant is chosen in such a way that_ the classical SO“Hoes not correspond to a small perturbation of the space-
space-time whose four’[ime, and is indicative that in the presence of such free mo-
tion, the asymptotic structure of the space-time is altered,
similar to the difference between the metrics of a straight
cosmic string and a crinkly cosmic strif@]. As such, this
perturbation is not considered in the general spectrum of lo-
calized perturbations of the Randall-Sundrum wall.

Once we have two branes, however, the situation is dif-
ferent: there are now two sorts of motion; a center of mass
(which will still be divergent and relative motion—the ra-
.dion for which the second wall acts as a regulator on the
”Eiivergence of Eq(2). It is this second mode that we wish to
identify, which will correspond to a massless four-
dimensional scalar. One may or may not suspect that the
radion is also accompanied by its own Kaluza-Klein tower.

The radion fieldT (x) has been introduced by considering
metrics of the forn1,3,8,9

ds’=a%(z) n,,dx“dx’—dz. )

Herea(z)=e ¥, the fifth coordinate runs fromz, =0 to

The excitations above the background metric @g. con-

time, one might expect a translational zero mode giving rise dszze—2k\z|T(x)g (x)dx“dx”— T2(x)d 2 (3)
Mmv 1

to free motion of the wall. In the case of anti—de SittedS)

space-timeg, is not a translational Killing vector but a con- \here 9, is the four-dimensional graviton. This form has
formal Killing vector; nonetheless we can identify solutions heen used for deriving the effective four-dimensional action
to the perturbation equations which correspond to the propejescribing the large-distance dynamics. The complete char-
motion of the wall(although these will be singular on the acterization of the radion excitation everywhere in the five-
AdS horizon. In the conventional application of the Israel gimensional space-time, however, requires a solution to the
equations, one identifies the extrinsic curvatirg, on each  fieg|d equations about the background Et). The ansatz3)

side of the wall, and then appliesza symmetry across the does not in fact solve these linearized field equations.

wall leading tosz(K;ﬁ K,,)/2=0; geometrically this The purpose of this report is to calculate in linearized

means that the wall is locally “flat,” i.e., totally geodesic. theory the five-dimensional metric perturbation correspond-
To describe proper dynamical motion of the wall, we requireing to the propagating radion field. We will see that this
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perturbation does not vanish on either of the branes. We willvhere €* and €* depend only orx. These transformations
point out also that there is no Kaluza-Klein tower above thecorrespond to general coordinate transformatians z
radion, i.e., that all massive states have been accounted for &%, x*—x*+ &*; their consistency with the gauge condi-
the analysis of3]. tions Eq. (4) requires &= e€*(x), &*=(2k) ta 2e**(x)

To deal with theZ, symmetry as well as with junction + e*(x).
conditions on the branes, it is convenient to choose Gaussian The Israel junction conditions on a brane are most easily

normal (GN) coordinates formulated in the GN frame, in which the brane is located at
fixed z In the absence of matter on the brane, these junction
9.~—-1, 0,=0. (4 conditions aréh, ,+2kh,,=0. They arenotinvariant under

) ) the gauge transformations, E@®), if €*#0. The importance
Such a system can always be chosen in the neighborhood 8? the gauge transformations E@) becomes clear from the

the brane by integrating out along its normal, in which @se sy ation that the coordinate system, which is GN with
will be_ the proper d_|stance from the bra_me. However, nOterespect to one brane, need not be GN with respect to the
that this system is slightly more general, in that we can makgyner Hence, one is led to consider two coordinate patches,
coordinate transformations which shift the wall, but preservepa first (second of which includes the positivénegative
the metric co_mponeni[fq.(4)].. . . tension brane. The coordinate systems in each of these
Then the linearized theory is described by the metric  oches are GN to the respective brane. A residual coordinate
Y Y transformation is needed then to relate the metrics in the
ds’=a%(z) n,,dx*dx"+h,,(x,2)dx“dx’—dZ®.  (5) overlap of these patches,
; . : : ) ; In other words, to describe the propagating degrees of
We will explicitly consider the region.>z>0; the orbifold freedom. we introduce two sets ofp fiepldg(”(g 2 %nd
symmetry giving h,, for other values ofz The four- o) ' : - ) uy \ S
dimensional indices will be raised and lowered using thdu» (X,2). The first of themh,,,’, is defined in the interval
Minkowski metric 7,,. The linearized Einstein equations " the fifth direction that includeg, =0 but excludesz
are =r., and conversely foh{). Both h{)) obey source-free
equationg7). The boundary conditions are

2 1 )
5Rzz:87TG5(§TZZ+QT§ ) (6a) h’(ui;) +2kh£:_;}):0 at z=z.. 9
The relation between the two fields in the bulk is the gauge
ORz,=87GsT,, (6D transformation of the form Eq8) with yet unknown gauge
1 ) functions.
a For T,,=0, the linearized Einstein equatiorfg) with
_ 2 — — Ny T ab ' q
R,y =4k, 8WG5(T’” 3 T Tt 3 n“VTZZ)' boundary conditions Eq9) are straightforward to solve by
(60 “brute force.” The outcome can be understood as follows.

In each of the patches we write
HereT,, is the energy-momentum tensor of additional mat-
ter, if present, and ~ 1
*)_ * * 2 *
he) =)+ ) —2kalp,,, f), (10

’ 2k
OoR,,= —(—) —2ké8(z)h+ mﬁ(z—rc)h, (79

2a2 where f(*)(x) are yet to be determined ant,) is

transverse-tracefre@T) h(*=0, h(*)"=0. Then the field

1 , ' equations in the bulk become
5Rz,u: E(hﬂ’vv_h’”’) ,
1
RE) ol ZR(E) _ T @R =
L } h(.) —2k?h(; 2a2[1< hiS)=0, (11)
— 4 2 2 ’
5RW—§hM+2k h,,—| kh+ Eh )7],‘“/

while the junction conditions on the respective branes read
+2k(8(z) — 8(z—r)h,,
L RS+ 2kh(5) = —2fC). (12)
+_2(2h?,u,ll)}\_hMV,§_h,/LV)’ (7b) . . ~ .
2a The latter are consistent with TT property df,, if
O®f(*)=0. Hence, if the four-dimensional momenta are
where h=h# . Equations(7b) are invariant under residual gych thatp?+0, one is left with Eq(11) and homogeneous
gauge transformations boundary conditiongi.e., Eq.(12) with f(*)=0]. This is
precisely the system of equations analyzeidh so we see
1ezw—2ka277,wez, ) that all massive propagating modes have been revealed by

+a%(e, ,+ + = :
h,uv_>h/u/ a (E,qu EVvM) k that analysis.
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At p2=0, however, there are two types of solutions. Onefield couples to matter on the negative tension brane expo-
of them isf(*)(x)=0, F#V(Xl):azXW(X% and does not hentially stronger than to matter on the positive tension one,
require the gauge transformation in the overlap of the twdd2 /g% =e?c. This relation is just the opposite to the case of
patches. These solutions have been considerd@]inand  graviton, and it is in accord with the results of Garriga and
describe massless four-dimensional gravitons. The other typganaka 10]. The overall strength of these interactions can be
of solution is also read off from[10]: the interaction Lagrangian of the

) normalized radion fielcf(x) with matter on each brane is

a (B) =g FTE Wi
=(x)_ Qx4 Li/=9-1T with
= T ay w9 7
, 167 ek
wheref(*)(x) are yet arbitrary and.. =a(z..). The relation 9i=—3 Gsk sinhkr,’ (17

betweenf(*) and () is found using Eq(8). Sinceh,,, are
proportional toa™ 2, they should coincide in the two patches, The fact that the radion couples to matter on the negative
so one requires, f(Y)(x)=a_f(7)(x)=f(x). One finally tension brane much stronger than the graviton does has been

obtains observed also if8,9].
It is instructive to return to Eq.3) with the benefit of our
(+) 1 1 5 perturbative calculation to see what the linearized metric
h'=— zkaszJrEfW—Zka 7ot (143 with the walls fixed at some coordinate values 0 and

should look like. To derive this form, we take the two GN
patches of Eqs(14a and(14b), and perform a gauge trans-
formation to make the two identical. We now have a single
coordinate chart between the walls, but the walls are no
(14b)  longer az=0,.. We then perform another coordinate trans-
formation which is determined by the dual requirements that

wheref(x) is a massless four-dimensional scalar mode. Thgne \walls sit at thenew) Z coordinates 0 and,, and that
first term on the right hand sid&®HS) is clearly identifiable ©

as the growing part of the mode in E@), and hence corre- ther'e are no cross tgr@M n tD? metric. The price of
sponds to motion of the wall; the coincidence of this term inhaving the walls at a rigid value afis that the system is no
Eqgs.(149 and(14b) identifies this as a relative motion. One longer GN—a nontrivialyz; is introduced. After performing
can quantify this by noting that the transition function be-these transformations we find that the new metric can be
tween the two patches is written in the form

e2krC

f ot ——Ff ,,—2ka%e® ey, f,

()= _
M T e e R

€(x)=(e*e—1)f(x), €,=0. (15 g2 e—2k(§+f(;)eZKNZ)g#V(')’()d';(;Ld';(V

This transition function then determines the physical distance

between the branes(x)—r.= €*(x) [recall that Eq.(8) is

the coordinate transformation between the coordinate sys- . . .
; . where we have included the possibility of graviton perturba-
tems in which the branes are located exactlga0 andz

=r., respectivel}. These properties show théfx) is in- tions' in gM(x). This fqrm of the metric correctly describgs
deed theunnormalized radion field in the linearized theory. the linearized dynamics of the massless metric_excitations
Equations(14a and (14b) determine the induced metrics (and also reduces to the appropriate expressiorx fide-

on each of the branes in the presence of the radion field. Theendent, although not necessarily small, displacements of the

first two terms on the RHS’s of these equations can bavall).

gauged awayn the branesWith the graviton fieldy,,, in- Clearly, the properties of the radion are quite different

cluded, the induced metrics on each brane are from the graviton. To stress this point, let us introduce a
model in which gravitons are not confined, but the radion is.

— (1+2kf(X)e¥)2d 2, (18)

. 5 2k This model may be of interest by itself, as in an appropriate
H(/;v (X)=a%| 7yt Xu(X)— 5 f(X)7,, |- (160  limit gravity on a brane is expected to be almost, but not
ax exactly, Einsteinian.

Let us consider five-dimensional space-time with infinite

metrics throughLine<h,,, T#". Clearly, the radion field tensjons and another with negative tensieno/2 (note the
couples to the trace of the energy-momentum tensor. Thgyeior 1/2). The latter brane is placed to the right of the
corresponding effective coupling constants at each brane aggmer in the fifth direction. The bulk cosmological constant
proportional tog.. «a. ~. Indeed, the elementary vertex of a petween the two branes and to the left of the positive-tension
graviton to matter at each brane is proportionaliBy.,  one is the same as in the Randall-Sundrum model, and is
where Gy.xa% are effective four-dimensional Newton's zero to the right of the negative-tension brane. Then there
constants at each brafig]; from Eq.(16) it follows that the  exists a solution to the Einstein equations for which both
radion vertex contains an extra factr?. Hence, the radion branes are at rest, the coordinates of the positive and nega-
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tive tension branes being=0 and z=r., respectively, Israel junction conditions on the branes. The gauge transfor-
wherer . is again an arbitrary constant. This solution has themation relatinghijy) andh() in the bulk between the two
form of Eq. (1) but now with branes is

(
nv

, e 2Kz or z<r, 19 ) 1 , 1 o
a“(z)= —_p=f _ _ = gbkr

(2= a-2kre— const  for 2> (19 hoy =) = f = 2ka?t g, — ce¥ea®t (22
The four-dimensional hypersurfaces=const are flat; the e in the notation of Eq(8)
five-dimensional space-time is flat to the right of the negative
tension brane, and AdS in the rest of the bulk. f,

An interesting feature of this model is that gravitons are e’=f; 6M=§(1—e‘”‘rcaz). (23
almost but not exactly confined: the wave functions of gravi-
tons,hwzaz(z)xw(x), are peaked at=0 but are not nor-

i . ; . It is easy to see that this corresponds to proper relative mo-
malizable. At large ., gravity experienced by matter resid- y P prop

) " ; tion of the wall, since computing the extrinsic curvature of
ing on the positive tension brane should be almost, but n puting

ot T .
exactly, Einsteiniarithe limit r .— corresponds to the non- the first wall givesK{)=—f . Meanwhile, at the second
compact Gogberashvili-Randall-Sundrum mofB], with ~ wall K{ )= —2e?Tef . Alternatively, the perturbation Eg.
gravitons confined to the positive tension brarkhe back-  (21) is pure gauge for>r, and changing coordinates to the
ground Eq.(19) is of interest for exploring possible devia- right of the second wall so that the metric there is
tions from the Einstein gravity in the brane world and, in Minkowskian, we find that the wall is located at™)=r.
particular, for analyzing the issue ¢hornjconservation of —2e?<"cf. Similarly, for z<0, the perturbation Eq20) is
energy measured by a four-dimensional observer. pure gauge, and changing coordinates for the first wall gives
We leave the discussion of gravitational perturbations irg(+) — —f, therefore we see hofwoes indeed encode a rela-
our model for the future, and here we consider a simplefjye motion of the walls. Note how the radion field is non-
mode, the radion. For the confined radion, the metric Perturtrivial only inbetween the two branes and on the positive
bation analogous to Eqél4a and(14b) has to be a solution  tansion brane itself. In other words, there is not even short-
to linearized Einstein equatiorjstill in the gauge Eq(4)]  ranged radion hair outside the two-brane system. It is likely
which tends to pure the gauge as>+ andz——=. We 5t the absence of the radion hair outside a stack of branes is
again have to consider two coordinate patches, overlapping general property of models with infinite extra dimensions.
in a region between the branes. In the overlap, the perturba- Finally, we note that in our model the radion does not
tions h(;) andh(;) are to be related by a gauge transforma-induce metric perturbations on the negative tension brane,
tion Eq. (8). o h(,)(rc)=0. Hence, the radion does not interact with matter
Proceeding as above, we find in the left patch residing on the negative tension brane, in sharp contrast to
1 the Randall-Sundrum model discussed above. This seems to
hgj”):E(l_ e2k2)fw(x) —2ka?f(x) Mw (20) be a peculiarity of our model, which is related to the flatness
of the five-dimensional space-time farr;, since a per-
turbed wall in flat space-time written in GN coordinates can
be shown to have four-dimensional metrig,,=7,,
+2zf ,,+ O(f?), and so any perturbation always vanishes

wheref(x) is the massless radion field. The forms of metric
perturbation in the right patch are different in AdS and flat

parts to leading order on the wall.
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