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Quasilocal calculation of tidal heating
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We present a method for computing the flux of energy through a closed surface containing a gravitating
system. This method, which is based on the quasilocal formalism of Brown and York, is illustrated by two
applications: a calculation df) the energy flux, via gravitational waves, through a surface near infinityignd
the tidal heating in the local asymptotic frame of a body interacting with an external tidal field. The second
application represents the first use of the quasilocal formalism to study a non-stationary spacetime and shows
how such methods can be used to study tidal effects in isolated gravitating systems.

PACS numbg(s): 04.20.Cv, 04.25-g, 04.30-w, 04.40-b

[. INTRODUCTION the quasilocal surface is located in the wave-zone. Problem
(i) reproduces the calculation of Purd4g using quasilocall

In many physical problems in gravitation, one is inter- methods and shows how these methods are applicable for
ested in the interaction of a nearly isolated gravitating systenproblems in which the quasilocal surface is located in a
with an external universe. The interaction effects are combuffer zone.
puted in a “buffer zone”(see Sec. 20.6 of Rdfl] and Sec.
| B of Ref. [2]) surrounding the gravitating system, in which Il. QUASILOCAL ENERGY FLUX
the radius of curvature, scale of inhomogeneity, and rate of
change of curvature are much smaller than the size of thﬁ
body. The formalism of Thorne and Harflg] and Zhand 3] u
has been used recently by Purdd¢and Favatd5] to com-
pute the gauge-invariant heating of a body interacting wit
an external tidal field.

Until now, calculations of the sort described in these ref-
erences have made use of pseudotensors to compute ene

and momentum fluxes. However, quasilocal methods shoul ange in the mass O.f the system.
be equally applicable in situations with a reasonably well Consider a gravitating system separated from the external

defined buffer zone—in this case, the quasilocal surface Cagnlve(;se b%’ a(a 1)-?|mednflogql leellke Iboun;?aﬁ. Th'f
be conveniently located in the buffer zone. While quasiloca oundary has an outward ‘radial” normaj veclot, a met-

methods are not fundamentally different than pseudotensdf® Yab~ 9ab™ Nalp induced by its embedding in the space-

; ; time with metric g and an extrinsic curvatur® ,,=
methods[6], an advantage of quasilocal method is that all . ab> ~ab”
6] d d L£ 1 vap (With trace® = y2°@ ;). Let A, be the derivative

quantities(e.g., energy fluxgscan be computed in terms of ~ 2 ; . ; .
real tensors on the quasilocal surface. Gauge ambiguities fPerator compatible with the metrig,,. Foliate the bound-

the total amount of energy and energy flux such as thos@ryB into cllosed two-iun‘ac@t .of-cor;stant time; then the
reported in Ref[2] and discussed in Ref4] still exist for ~ time evolution vectot® on B satisfiest®A ,t=1 and can be
the quasilocal methods, but now the ambiguities can be urgecqmpaosed Into a lapse f“g‘?t't’m”q a shift vecto® on
derstood in terms of distortions of the quasilocal surface andt Via t*=Nu?+V?, whereu® is the timelike normal td},
so their geometric origin is identified. _embedded |rB._ The closed, spacelike, t\/\(o-surfaﬁe has an
In this paper we present a quasilocal formalism for cominduced metricoap=yap+tuaU, and, viewed as a two-
puting the work done on a gravitating system by an externapurface embedde_d in a three-dimensional space_hkg hypersur-
universe. Our formalism is based on the quasilocal mass dfce> locally defined such that®e T2, the extrinsic cur-
Brown and York[7]—the on-shell value of the gravitational Vature of Q. is kap=—3£,04p. A full discussion of the
Hamiltonian—which coincides with the Arnowitt-Deser- geometry of the boundar and its foliation (including a
Misner energy at spatial infinity and the Trautman-Bondi-diagram may be found ir{9]. The notation there is substan-
Sachs energy at null infinity7,8]. It is complementary to but tially the same as here thougfd is written asu®.
independent of9] which studied how motion of the observ-  The Codazzi identity,
ers affects the Brown-York energy. We use our expression
for energy flux to computé) the energy lost in gravitational A 7= 5PendR, /87, (D)
radiation from a gravitational system afig the heating of a
body through interactions with an external tidal field. Prob-where2°=(© y2°—©2)/8, relates the extrinsic curvature
lem (i) demonstrates that the formula for the work repro-of B to the spacetime Ricci curvatuf®,,. It then follows
duces the known gravitational radiation flux formula whenfrom the Einstein field equations that

In this section, we derive an expression for the energy
x through a closed two-surface surrounding a gravitating
system. Our analysis closely follows Sec. V of RET],
hwhich derives a conserved measure of mass for stationary
systems. We relax the requirement that the quasilocal two-
surface time evolution vector be a Killing vector of the
cetime and thereby obtain an expression for the rate of
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Ao (t, 720 =t3nPT 0+ 2 73°E (0. (2)  =74—7, 0verB. A set of observers dwelling on the surfaces

Q. (which foliate B) measures the shell to have matter-
eenergyM*—M* [Eqg. (3)]. A more detailed discussion of
this may be found irf9] but here we note that the above
analysis for the quasilocal energy also shows that the set of
observers dwelling o); measures the matter-energy to
change with ratelW/dt [Eq. (5)]. Then the quasilocal den-
M =f dZX\/;uathab 3 sities defined above are the energy, angular momentum, and
N stress tensor of thenatter shell A set of observers being

a_ a H
is a conserved measure of the total mass contained within tHeY©Ved byt —usee work being done on the shell at a rate
boundary(), . It is the “non-orthogonal” Brown-York mass equal to the integral of the stress tensor contracted with the

[7.9], up to a subtraction term that is required for it to betime rate of change of the area—exactly as one would expect

bounded for large surfaces in asymptotically flat spacetimegom classical physics.
(see, e.g., Lau or Manf10]).
Whent? is not a Killing vector of the boundary, then Eq. IIl. GRAVITATIONAL RADIATION

(2) represents an energy flow from the system. Between two gquation(4) purportedly measures the change in the mass
times 1, and t, one can integrate to find thaAM= " of 5 system. In this section we apply our work formula to
— 3/ 8d°\/— y7°E {7,y is the change in the mass contained gptain the correct mass loss for a system radiating gravita-
by €1,. Subtraction terms from a reference spacetime do nofional waves. For this we suppose that the quasilocal surface
need to be included here as it expressesci@ngein the s in the wave-zone, far away from the radiating system.
mass of the SyStem. The rate at which this work is done is A|th0ugh this is not a very interesting app“cation of a
Y 1 quasi_local methodsince an asymptotic method, such as the
- _f d2x\— y72°L .1 (4)  Bondi-Sachs mass loss formula could as well be ysieds
dt 2] q, useful to confirm that Eq4) does recover the correct result.

We restrict our attention to a vacuum spacetime in which th
stress-energy tensdr,, vanishes. Then, if? is a Killing
vector field of the boundary metrig,,,, Eq.(2) is a conser-
vation equation and the quantity

. ) ' Gravitational radiation far from the generating source can
which describes the rate of change of the system’s mass dyg, gescribed as a transverse-traceless perturbation to the flat-
to the_purely _grawtatlonal interaction between it and the SUrgpace metric. In spherical-polar coordinates, the metric is
rounding environment. . given by ds?=—dt2+dr2+ (rd 6)%+ (r sin 6d¢)?

It is illustrative to decompose the expression for the work’ p, qwudx’ where h . dx“dx’= h,[(rd6)2—(r sinéde)?]
into terms involving projections of £,, normal to and into +2ﬁx(rd0)(r sin 6d¢) is the transverse, trace free perturba-
the spatial two-surface®;. We find tion. The “plus,” h, , and “cross,” hy , polarizations rep-

dw resent outgoing, spherical waves, and have the form
d—=f d2X o {3S?°E oy — £ N+ £,V  (5) hi(tr,0,¢)=s (t—r,0,¢)/r and h,(t,r,6,¢)=s.(t
t Q —r,0,¢)/r. We then find the energy lost by the radiating
system by inserting this metric into E@) while taking the

_ b H— b b__ b
whearga i‘d‘fa kab/s’ga Ja=0qpUc@78m, and sP=[k* 0 hqanto be a sphere of constaii the wave-zonévery
+0®(n°u®Agu.—0%.q) /87 are the quasilocal surface larger). The integrand of Eq(4) is

energy, momentum, and stress densities. The first two are

potentials conjugate to changes in the lapse function and dE r2

shift vector respectively while the surface stress density is a dtdo. @[
. : . . ¢

work potential conjugate to changes in the size and shape of

the surface(), . _ to leading order in the perturbation and iin This is the

The stress density can be further decomposed as followgtandard expression for the flux of gravitational radiation—
A change in the two-metricdoap=sapd\o+ 0S5y, IS see, e.g., EqL0) of Ref.[12].
written as a change in the “sizeyo of the surface plus @ By inspection of the form of the perturbation, it is clear
change in the conformally-invariant part of the metfibe  that the energy loss arises due to the shearing of the bound-
“shape” of the surfaces,,= 04/ \/o. Correspondingly, the ing two-surface(); since, to leading order, the perturbation
surface stress density is decomposed into a surface tensi@oes not affect the volume element on that two-surface. Thus
s=s%,, and a sheam®”=s*"/\/o. Then we rewrite the the entire energy loséin the transverse, trace-free gaige
work term asts®£ o, = 3 (SE (Vo + 72° sap). arises from the %2°£ s,,” work term.

The above has a particularly nice application in the phys- As a simple example, consider two point-particles, each
ics of thin shells. Isragl11] first showed that a thin shell of of massm=M/2, orbiting each other in thgy-plane with
matter can be described in general relativity by matching twangular frequencyw and constant separati@ The quadru-
spacetimes along a timelike boundaB such that even pole moment tensof;, in Cartesian coordinates i,,=
though they induce the same surface metri@othe extrin- -7, = tMa3cos 2ot andZ,,= Ma?sin 2wt (constant terms
sic curvature in each spacetime is different®lf, and®,,  omitted. The far-field ~metric perturbation is hik
are those curvatures thimild) singularity can be accounted =2(3Z;/dt?)/r, so hy,=—h,,=(Ma?w?/r)cos 2v(t—r)
for if there is a (distributiona) stress energy tensds,, andhxy=—(Ma2w2/r)sin 20(t—r).

(ah, 19t)%+ (ohy [dt)?] (6)
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Using Egs.(4.3) and(4.4) of Ref.[13], we find

h, =—iMa2w?r Y1+ co28)cos Tw(t—r)— ¢]
(78

h,=—Ma?w?r ‘cosfsinw(t—r)—¢]. (7b)

We then integrate Eq6) over the sphere at largeto obtain
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ds?= — (14 2d)dt*+2(A;+d,&)dxidt

+[(1—2D) 8+ 3, + 9, & ]dX' dx 9
where the indices run from one to three afdis the Carte-

sian metric diapl,1,1] on a spacelike slice. The Newtonian
potential is ®=—M/r—3(3r 3Z;—r?g;)n'n! and A;=

—2r2n*dZ;, /dt— Zr3(5n;n* - 28 n'dé, /dt is a vector
potential that must be added so that the metric is a solution to
the first order Einstein equations. Herg,is the radial nor-
mal with respect to the flat spatial metri; and r?=x?
+y?+ 2%, The diffeomorphism generating vector figidrep-
resents the gauge ambiguity in setting up a nearly
Minkowski coordinate system. In order that the metric be
slowly evolving and nearly Minkowski¢; must be of the
form &=ar ~2Z;n*+ Br3& n*+ yr3¢ n*n'n;, where e,

We now calculate the work done by an external gravita-g, andy are free constants of order one.
tional field to deform a self-gravitating body. The canonical ~We set up a constanttimelike quasilocal surfacB in the
example of this effect in the solar system is the tidal heatinduffer zone and foliate with constanspacelike two-surfaces
of lo by Jupiter. In this instance, the gradient of Jupiter'sQ),. Then the time vectarf is d/4t. In calculating the rate of
gravitational field distorts lo from being a perfect sphere ancchange of the mass contained witléd it is most convenient
then tidally locks it in its orbit so that it always presents theto switch to spherical coordinates. We make the standard
same face to Jupiter. That orbit is strongly perturbed by theransformation to spherical coordinates X!
other Gallilean moons and so its radial distance from Jupitetr[sin §cose,sinésin ¢,cosd]; in these coordinates, the
varies with time. With this variation comes a correspondingmetric is
one in the gradient of the field and so lo is gradually
stretched and then allowed to relax. The energy transferre&sz:
by this pumping is largely dispersed as heat and it is this heat
that produces the volcanic activity on lo. The same type of
process occurs for any two bodies in non-circular orbits
about each other.

First from a Newtonian perspective, we may mathemati-
cally describe the gravitational fields in this situation as fol-
lows. We assume that the self-gravitating body is far enough
away from the source of the external field that that field is
nearly uniform close to the body. Then in a rectangular co-
ordinate system that orbits with the body with its origin atW 5 0 3 )
the center of mass, the Newtonian potential of the external” 2,8r2899+2yr Err s 3 Hygp=2ar "Ly, +2p1°E4y
field may be written a® o= 3€;;x'x! where&;; is the(time- ~ +277 <_‘3r3r . Hip=— ar. Zrot(4B+2y)r°€y, _3Hr¢
dependent but symmetric and trace-frggadrupole moment = —af "Ly +(4B+2y)r°€,, and  Hyp,=2ar "I,
of the field andx' is the position vector based at the body’s +28r°Egs. I these expressionse, =&;jeel, &,
center of mass. At the same time, to quadrupolar order the&jjee;, etc., with e=n', e,=dee; and e,
Newtonian potential of the body is®,=—M/r  =(1/sind)d,e . Also, A,=(A;+d:&j)el, etc., but we do not

the loss of energy from the system:
—dE/dt=2M?a*wb=2%(M/a)® (8)

where we have used Kepler's laiw?=M for particles in a
circular orbit.

IV. TIDAL HEATING

—(1+2®)dt*+ (1—2d)[dr?+(rd 6)?

+(r sinfde)?]+2A,drdt+2A,(rd 6)dt

+2A,(r sinfdg)dt+H, dr2+H ,,(rd )2

+Hyy(r sindde)?+2H, ,dr(rd6)

+2H, 4dr(r singde) +2H ,(rd 0)(r singd¢)?  (10)

here H,, = —4ar 37, +6(B+ y)r%&,, Hp=2ar 3Z,,

—3r=3Z;n'nl, whereM is the mass of the body, is the
radial distance from the center of masg; is its (time-
dependent but symmetric and trace-jrepiadrupole mo-
ment, andn' is the unit normal radial vector.

With this in mind the techniques of Thorne and Haf&¢

need their expanded forms since only time derivatives of
them show up in later calculations and we are ignoring sec-
ond order time derivatives.

As might be expected, the subsequent calculations are
quite involved and we did them partially with GRTensor

can be used to construct a metric that describes these situa-4]. To lowest order

tions in the slow moving, nearly Newtonian limit. First, de-

fine an annulus surrounding the body whose inner boundar
is chosen so that the gravitational field of the body is weak— = —
throughout and whose outer boundary is chosen so that thgt

external field is nearly uniform. This region is termed the

buffer zone. The rectangular coordinate system is replaced
with one that is chosen so that the metric is as close to

Minkowskian as possible over the buffer zog. Then to
first order in perturbations from Minkowski and first order in
time derivatives the metric can be written as

1
EJQ d?x\ = Y7L Yap
t

L 0Ty LA g og2iaysay?
=% g1 * 50 attel B—2B°+4y+ay
+8BY)Ir°E;E+2(3—2a+6B—12y+8ay)ET;

—(—9+12a+4a?)r °L;T;]. (11)
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The calculations used the identitiq&Qtd fd¢ sinbA,;B,  The second term is a bit more complicated. It is

:(87T/15)A|] B” and thd 6’dd) sin 0(2A0¢Bg¢_AgoB¢¢

—A¢¢Bge)=(4w/3)AijBij where the integrations are over the dw, a d§; B . dI;, 4y dI;

unit sphere. Tt - s a TS g T
This result requires some interpretation. As the external

field changes with time and thereby forces the self- 1d

gravitating body to change configuration, the work done by + 3—()a[(—1—3ﬁ—2,82+472+ 8By)r°€;&;
the external field can be split into time reversible and irre-

versible partgas seen in Eq.11)]. The reversible work rep- +2(3—a+3B-6y+4ay)&T;

resents work being done to increase the potential energy of

the system and is recoverable. On the other hand the irrevers- — (27— 9a+9)r °7;Z;]. 13

ible part represents work done to deform and/or heat up the

system. This is the tidal heating that we are interested inThys part of the work done is measured by deformations of
Further, from the quasilocal perspective, we expect to see afie surface and part is measured by changes in how observ-
energy flow arising from fluctuations of the quasilocal sur-ers choose to measure the rate of passage of time. Note that
face within otherwise static fields. Of course this work wouldingividually the time irreversible sections of the two parts are
we are interested in and we have calculated that to bggq, (11) and the gauge dependence vanishes back into the
3&,;dZ;; /dt above. This is the same leading term obtainedreyersible part where we would expect it.

when one does the corresponding calculation in Newtonian

gravity or with pseudotensorf#] and it is independent of

diffeomorphisms generated ki which correspond to fluc- V. CONCLUSIONS

tuations of the quasilocal surface. Note however, that the
time reversible and gauge dependent terms of (Ed). are
dependent on those fluctuations and furthermore that depe
dence is different from that found in Ré#] using pseudo-
tensor methods. Similarly other pseudo-tensor or quasiloc
methods would obtain a different gauge dependence fo
these terms. What is important is that the physically relevan
time irreversible term does not depend on thegenerated

We have modified the quasilocal energy formalism of
Brown and York so that it may be used to study non-
gfationary spacetimes where energy flows in and out through
%‘re quasilocal surface. As applications of this extension we

ave examined implications for the physics of relativistic
hin shells of matter, the energy carried from a source to
infinity by gravitational waves, and the transfer of energy to

. - a body during gravitational tidal heating. The success of the
diffeomorphisms.

. . . formalism in all three applications provides further evidence
Fmally for cqmplgteness let us consider how th|§ ENCTO%hat the Brown-York energy has physical content. Further-
EOW(SS)DI'_}_? th'ntt?] Its gomtpr)]o?ents par_tst as (tzogstﬁlered Ir?’nore, in the tidal heating application we have seen how the
I 4. ). e? 0 te order that we a(;e intereste | fte ar??huiquasilocal formalism provides a geometrical explanation of
ar momentum term IS zero and we are Jeft With . gauge ambiguities that are also found in the Newtonian
two terms dWy/dt=—fdodéVoeE£ N and dW,/dt .0y ocendotensor approaches.
=1[dod¢pJoNS* £ 0,,. We find

dWy 1 dZ; «a d; B_ dZ; 4y _ dI ACKNOWLEDGMENTS
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