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Quasilocal calculation of tidal heating
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We present a method for computing the flux of energy through a closed surface containing a gravitating
system. This method, which is based on the quasilocal formalism of Brown and York, is illustrated by two
applications: a calculation of~i! the energy flux, via gravitational waves, through a surface near infinity and~ii !
the tidal heating in the local asymptotic frame of a body interacting with an external tidal field. The second
application represents the first use of the quasilocal formalism to study a non-stationary spacetime and shows
how such methods can be used to study tidal effects in isolated gravitating systems.

PACS number~s!: 04.20.Cv, 04.25.2g, 04.30.2w, 04.40.2b
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I. INTRODUCTION

In many physical problems in gravitation, one is inte
ested in the interaction of a nearly isolated gravitating sys
with an external universe. The interaction effects are co
puted in a ‘‘buffer zone’’~see Sec. 20.6 of Ref.@1# and Sec.
I B of Ref. @2#! surrounding the gravitating system, in whic
the radius of curvature, scale of inhomogeneity, and rate
change of curvature are much smaller than the size of
body. The formalism of Thorne and Hartle@2# and Zhang@3#
has been used recently by Purdue@4# and Favata@5# to com-
pute the gauge-invariant heating of a body interacting w
an external tidal field.

Until now, calculations of the sort described in these r
erences have made use of pseudotensors to compute e
and momentum fluxes. However, quasilocal methods sho
be equally applicable in situations with a reasonably w
defined buffer zone—in this case, the quasilocal surface
be conveniently located in the buffer zone. While quasilo
methods are not fundamentally different than pseudoten
methods@6#, an advantage of quasilocal method is that
quantities~e.g., energy fluxes! can be computed in terms o
real tensors on the quasilocal surface. Gauge ambiguitie
the total amount of energy and energy flux such as th
reported in Ref.@2# and discussed in Ref.@4# still exist for
the quasilocal methods, but now the ambiguities can be
derstood in terms of distortions of the quasilocal surface
so their geometric origin is identified.

In this paper we present a quasilocal formalism for co
puting the work done on a gravitating system by an exter
universe. Our formalism is based on the quasilocal mas
Brown and York@7#—the on-shell value of the gravitationa
Hamiltonian—which coincides with the Arnowitt-Dese
Misner energy at spatial infinity and the Trautman-Bon
Sachs energy at null infinity@7,8#. It is complementary to bu
independent of@9# which studied how motion of the observ
ers affects the Brown-York energy. We use our express
for energy flux to compute~i! the energy lost in gravitationa
radiation from a gravitational system and~ii ! the heating of a
body through interactions with an external tidal field. Pro
lem ~i! demonstrates that the formula for the work rep
duces the known gravitational radiation flux formula wh
0556-2821/2000/62~6!/067503~4!/$15.00 62 0675
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the quasilocal surface is located in the wave-zone. Prob
~ii ! reproduces the calculation of Purdue@4# using quasilocal
methods and shows how these methods are applicable
problems in which the quasilocal surface is located in
buffer zone.

II. QUASILOCAL ENERGY FLUX

In this section, we derive an expression for the ene
flux through a closed two-surface surrounding a gravitat
system. Our analysis closely follows Sec. V of Ref.@7#,
which derives a conserved measure of mass for station
systems. We relax the requirement that the quasilocal t
surface time evolution vector be a Killing vector of th
spacetime and thereby obtain an expression for the rat
change in the mass of the system.

Consider a gravitating system separated from the exte
universe by a (211)-dimensional timelike boundaryB. This
boundary has an outward ‘‘radial’’ normal vectorna, a met-
ric gab5gab2nanb induced by its embedding in the spac
time with metric gab , and an extrinsic curvatureQab5
2 1

2 £ ngab ~with traceQ5gabQab). Let na be the derivative
operator compatible with the metricgab . Foliate the bound-
ary B into closed two-surfacesV t of constant timet; then the
time evolution vectorta on B satisfiestanat51 and can be
decomposed into a lapse functionN and a shift vectorVa on
V t via ta5Nua1Va, whereua is the timelike normal toV t
embedded inB. The closed, spacelike, two-surfaceV t has an
induced metricsab5gab1uaub and, viewed as a two-
surface embedded in a three-dimensional spacelike hype
face S locally defined such thatnaPTS, the extrinsic cur-
vature of V t is kab52 1

2 £ nsab . A full discussion of the
geometry of the boundaryB and its foliation ~including a
diagram! may be found in@9#. The notation there is substan
tially the same as here thoughua is written asũa.

The Codazzi identity,

natab5gbcndRcd/8p, ~1!

wheretab5(Qgab2Qab)/8p, relates the extrinsic curvatur
of B to the spacetime Ricci curvatureRab . It then follows
from the Einstein field equations that
©2000 The American Physical Society03-1
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na~ tbtab!5tanbTab1 1
2 tab£ tgab . ~2!

We restrict our attention to a vacuum spacetime in which
stress-energy tensorTab vanishes. Then, ifta is a Killing
vector field of the boundary metricgab , Eq. ~2! is a conser-
vation equation and the quantity

M5E
V t

d2xAsuatbtab ~3!

is a conserved measure of the total mass contained within
boundaryV t . It is the ‘‘non-orthogonal’’ Brown-York mass
@7,9#, up to a subtraction term that is required for it to
bounded for large surfaces in asymptotically flat spacetim
~see, e.g., Lau or Mann@10#!.

Whenta is not a Killing vector of the boundary, then Eq
~2! represents an energy flow from the system. Between
times t1 and t2 one can integrate to find thatDM5
2 1

2 *Bd3xA2gtab£ tgab is the change in the mass contain
by V t . Subtraction terms from a reference spacetime do
need to be included here as it expresses thechangein the
mass of the system. The rate at which this work is done

dW

dt
52

1

2EV t

d2xA2gtab£ tgab ~4!

which describes the rate of change of the system’s mass
to the purely gravitational interaction between it and the s
rounding environment.

It is illustrative to decompose the expression for the wo
into terms involving projections of £tgab normal to and into
the spatial two-surfacesV t . We find

dW

dt
5E

V t

d2xAs$ 1
2 sab£ tsab2«£ tN1 j a£ tV

a% ~5!

where «5sabkab/8p, j a5sabucQ
bc/8p, and sab5@kab

1sab(ncudnduc2scdkcd)#/8p are the quasilocal surfac
energy, momentum, and stress densities. The first two
potentials conjugate to changes in the lapse function
shift vector respectively while the surface stress density
work potential conjugate to changes in the size and shap
the surfaceV t .

The stress density can be further decomposed as follo
A change in the two-metric,dsab5§abdAs1Asd§ab , is
written as a change in the ‘‘size’’As of the surface plus a
change in the conformally-invariant part of the metric~the
‘‘shape’’ of the surface! §ab5sab /As. Correspondingly, the
surface stress density is decomposed into a surface ten
s5sab§ab and a shearhab5sab/As. Then we rewrite the
work term as1

2 sab£ tsab5 1
2 (s£ tAs1hab£ t§ab).

The above has a particularly nice application in the ph
ics of thin shells. Israel@11# first showed that a thin shell o
matter can be described in general relativity by matching
spacetimes along a timelike boundaryB such that even
though they induce the same surface metric onB, the extrin-
sic curvature in each spacetime is different. IfQab

1 andQab
2

are those curvatures this~mild! singularity can be accounte
for if there is a ~distributional! stress energy tensorSab
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2 overB. A set of observers dwelling on the surfac
V t ~which foliate B) measures the shell to have matte
energyM 12M 2 @Eq. ~3!#. A more detailed discussion o
this may be found in@9# but here we note that the abov
analysis for the quasilocal energy also shows that the se
observers dwelling onV t measures the matter-energy
change with ratedW/dt @Eq. ~5!#. Then the quasilocal den
sities defined above are the energy, angular momentum,
stress tensor of thematter shell. A set of observers being
evolved byta5ua see work being done on the shell at a ra
equal to the integral of the stress tensor contracted with
time rate of change of the area—exactly as one would exp
from classical physics.

III. GRAVITATIONAL RADIATION

Equation~4! purportedly measures the change in the m
of a system. In this section we apply our work formula
obtain the correct mass loss for a system radiating grav
tional waves. For this we suppose that the quasilocal sur
is in the wave-zone, far away from the radiating syste
Although this is not a very interesting application of
quasilocal method~since an asymptotic method, such as t
Bondi-Sachs mass loss formula could as well be used!, it is
useful to confirm that Eq.~4! does recover the correct resu

Gravitational radiation far from the generating source c
be described as a transverse-traceless perturbation to the
space metric. In spherical-polar coordinates, the metric
given by ds252dt21dr21(rdu)21(r sinudf)2

1hmndxmdxn where hmndxmdxn5h1@(rdu)22(r sinudf)2#
12h3(rdu)(r sinudf) is the transverse, trace free perturb
tion. The ‘‘plus,’’ h1 , and ‘‘cross,’’ h3 , polarizations rep-
resent outgoing, spherical waves, and have the fo
h1(t,r ,u,f)5s1(t2r ,u,f)/r and h3(t,r ,u,f)5s3(t
2r ,u,f)/r . We then find the energy lost by the radiatin
system by inserting this metric into Eq.~4! while taking the
boundary to be a sphere of constantr in the wave-zone~very
large r ). The integrand of Eq.~4! is

dE

dt dV t
52

r 2

16p
@~]h1 /]t !21~]h3 /]t !2# ~6!

to leading order in the perturbation and inr. This is the
standard expression for the flux of gravitational radiation
see, e.g., Eq.~10! of Ref. @12#.

By inspection of the form of the perturbation, it is cle
that the energy loss arises due to the shearing of the bo
ing two-surfaceV t since, to leading order, the perturbatio
does not affect the volume element on that two-surface. T
the entire energy loss~in the transverse, trace-free gaug!
arises from the ‘‘hab£ t§ab’’ work term.

As a simple example, consider two point-particles, ea
of massm5M /2, orbiting each other in thexy-plane with
angular frequencyv and constant separationa. The quadru-
pole moment tensorIjk in Cartesian coordinates isIxx5
2Iyy5

1
8 Ma3cos 2vt andIxy5

1
8 Ma2sin 2vt ~constant terms

omitted!. The far-field metric perturbation is hjk
52(]2Ijk /]t2)/r , so hyy52hxx5(Ma2v2/r )cos 2v(t2r)
andhxy52(Ma2v2/r )sin 2v(t2r).
3-2
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BRIEF REPORTS PHYSICAL REVIEW D 62 067503
Using Eqs.~4.3! and ~4.4! of Ref. @13#, we find

h152 1
2 Ma2v2r 21~11cos2u!cos 2@v~ t2r !2f#

~7a!

h352Ma2v2r 21cosu sin 2@v~ t2r !2f#. ~7b!

We then integrate Eq.~6! over the sphere at larger to obtain
the loss of energy from the system:

2dE/dt5 2
5 M2a4v65 2

5 ~M /a!5 ~8!

where we have used Kepler’s lawa3v25M for particles in a
circular orbit.

IV. TIDAL HEATING

We now calculate the work done by an external grav
tional field to deform a self-gravitating body. The canonic
example of this effect in the solar system is the tidal heat
of Io by Jupiter. In this instance, the gradient of Jupite
gravitational field distorts Io from being a perfect sphere a
then tidally locks it in its orbit so that it always presents t
same face to Jupiter. That orbit is strongly perturbed by
other Gallilean moons and so its radial distance from Jup
varies with time. With this variation comes a correspond
one in the gradient of the field and so Io is gradua
stretched and then allowed to relax. The energy transfe
by this pumping is largely dispersed as heat and it is this h
that produces the volcanic activity on Io. The same type
process occurs for any two bodies in non-circular orb
about each other.

First from a Newtonian perspective, we may mathem
cally describe the gravitational fields in this situation as f
lows. We assume that the self-gravitating body is far eno
away from the source of the external field that that field
nearly uniform close to the body. Then in a rectangular
ordinate system that orbits with the body with its origin
the center of mass, the Newtonian potential of the exte
field may be written asFext5

1
2 E i j x

ixj whereEi j is the~time-
dependent but symmetric and trace-free! quadrupole momen
of the field andxi is the position vector based at the body
center of mass. At the same time, to quadrupolar order
Newtonian potential of the body is Fo52M /r
2 3

2 r 23I i j n
inj , whereM is the mass of the body,r is the

radial distance from the center of mass,Ii j is its ~time-
dependent but symmetric and trace-free! quadrupole mo-
ment, andni is the unit normal radial vector.

With this in mind the techniques of Thorne and Hartle@2#
can be used to construct a metric that describes these s
tions in the slow moving, nearly Newtonian limit. First, d
fine an annulus surrounding the body whose inner bound
is chosen so that the gravitational field of the body is we
throughout and whose outer boundary is chosen so tha
external field is nearly uniform. This region is termed t
buffer zone. The rectangular coordinate system is repla
with one that is chosen so that the metric is as close
Minkowskian as possible over the buffer zone@4#. Then to
first order in perturbations from Minkowski and first order
time derivatives the metric can be written as
06750
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ds252~112F!dt212~Aj1] tj j !dxjdt

1@~122F!d i j 1] ij j1] jj i #dxidxj ~9!

where the indices run from one to three andd i j is the Carte-
sian metric diag@1,1,1# on a spacelike slice. The Newtonia
potential is F52M /r 2 1

2 (3r 23Ii j 2r 2Ei j )n
inj and Aj5

22r 22nkdIjk /dt2 2
21 r 3(5njn

k22d j
k)nldEkl /dt is a vector

potential that must be added so that the metric is a solutio
the first order Einstein equations. Here,ni is the radial nor-
mal with respect to the flat spatial metricd i j and r 25x2

1y21z2. The diffeomorphism generating vector fieldj j rep-
resents the gauge ambiguity in setting up a nea
Minkowski coordinate system. In order that the metric
slowly evolving and nearly Minkowski,j j must be of the
form j j5ar 22I jknk1br 3E jknk1gr 3E kln

knlnj , wherea,
b, andg are free constants of order one.

We set up a constantr timelike quasilocal surfaceB in the
buffer zone and foliate with constantt spacelike two-surfaces
V t . Then the time vectorta is ]/]t. In calculating the rate of
change of the mass contained withinV t it is most convenient
to switch to spherical coordinates. We make the stand
transformation to spherical coordinates xi

5r @sinu cosf,sinu sinf,cosu#; in these coordinates, th
metric is

ds252~112F!dt21~122F!@dr21~rdu!2

1~r sinudf!2#12Ārdrdt12Āu~rdu!dt

12Āf~r sinudf!dt1Hrr dr21Huu~rdu!2

1Hff~r sinudf!212Hrudr~rdu!

12Hrfdr~r sinudf!12Huf~rdu!~r sinudf!2 ~10!

where Hrr 524ar 23Irr 16(b1g)r 2Err , Huu52ar 23Iuu
12br 2Euu12gr 2Err , Hff52ar 23Iff12br 2Eff
12gr 2Err , Hru52ar 23Iru1(4b12g)r 2Eru , Hrf
52ar 23Irf1(4b12g)r 2Erf , and Huf52ar 23Iuf

12br 2Euf . In these expressionsErr 5E i j er
i er

j , Eru

5E i j er
i eu

j , etc., with er
i 5ni , eu

i 5]uer
i and ef

i

5(1/sinu)]fer
i . Also, Ār5(Aj1] tj j )er

j , etc., but we do not
need their expanded forms since only time derivatives
them show up in later calculations and we are ignoring s
ond order time derivatives.

As might be expected, the subsequent calculations
quite involved and we did them partially with GRTens
@14#. To lowest order

dW

dt
52

1

2EV t

d2xA2gtab£ tgab

5
1

2
Ei j

dIi j

dt
1

1

60

d

dt
@2~2322b22b214g14g2

18bg!r 5Ei j Ei j 12~322a16b212g18ag!Ei j Ii j

2~29112a14a2!r 25Ii j Ii j #. ~11!
3-3
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The calculations used the identities*V t
dudf sinuArrBrr

5(8p/15)Ai j Bi j and *V t
dudf sinu(2AufBuf2AuuBff

2AffBuu)5(4p/3)Ai j Bi j where the integrations are over th
unit sphere.

This result requires some interpretation. As the exter
field changes with time and thereby forces the se
gravitating body to change configuration, the work done
the external field can be split into time reversible and ir
versible parts@as seen in Eq.~11!#. The reversible work rep-
resents work being done to increase the potential energ
the system and is recoverable. On the other hand the irrev
ible part represents work done to deform and/or heat up
system. This is the tidal heating that we are interested
Further, from the quasilocal perspective, we expect to se
energy flow arising from fluctuations of the quasilocal s
face within otherwise static fields. Of course this work wou
also be reversible. Thus, it is only the irreversible part t
we are interested in and we have calculated that to
1
2 Ei j dIi j /dt above. This is the same leading term obtain
when one does the corresponding calculation in Newton
gravity or with pseudotensors@4# and it is independent o
diffeomorphisms generated byj j which correspond to fluc-
tuations of the quasilocal surface. Note however, that
time reversible and gauge dependent terms of Eq.~11! are
dependent on those fluctuations and furthermore that de
dence is different from that found in Ref.@4# using pseudo-
tensor methods. Similarly other pseudo-tensor or quasilo
methods would obtain a different gauge dependence
these terms. What is important is that the physically relev
time irreversible term does not depend on thej j -generated
diffeomorphisms.

Finally for completeness let us consider how this ene
flow splits up into its components parts as considered
Eq. ~5!. Then to the order that we are interested the an
lar momentum term is zero and we are left wi
two terms dWN /dt52*dudfAs«£ tN and dWs /dt
5 1

2 *dudfAsNsab£ tsab . We find

dWN

dt
5

1

2
Ei j

dIi j

dt
1

a

15

dEi j

dt
Ii j 2

b

5
Ei j

dIi j

dt
2

4g

5
Ei j

dIi j

dt

1
1

60

d

dt
@2~4g1b22!r 5Ei j Ei j 26Ei j Ii j

23~2a23!r 25Ii j Ii j #. ~12!
et
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The second term is a bit more complicated. It is

dWs

dt
52

a

15

dEi j

dt
Ii j 1

b

5
Ei j

dIi j

dt
1

4g

5
Ei j

dIi j

dt

1
1

30

d

dt
@~2123b22b214g218bg!r 5Ei j Ei j

12~32a13b26g14ag!Ei j Ii j

2~2a229a19!r 25Ii j Ii j #. ~13!

Thus part of the work done is measured by deformations
the surface and part is measured by changes in how obs
ers choose to measure the rate of passage of time. Note
individually the time irreversible sections of the two parts a
gauge dependent, but when we combine them we reob
Eq. ~11! and the gauge dependence vanishes back into
reversible part where we would expect it.

V. CONCLUSIONS

We have modified the quasilocal energy formalism
Brown and York so that it may be used to study no
stationary spacetimes where energy flows in and out thro
the quasilocal surface. As applications of this extension
have examined implications for the physics of relativis
thin shells of matter, the energy carried from a source
infinity by gravitational waves, and the transfer of energy
a body during gravitational tidal heating. The success of
formalism in all three applications provides further eviden
that the Brown-York energy has physical content. Furth
more, in the tidal heating application we have seen how
quasilocal formalism provides a geometrical explanation
the gauge ambiguities that are also found in the Newton
and pseudotensor approaches.
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